人教版初一数学培优竞赛讲炼教程:乘法公式
初一数学竞赛系列讲座(6)整式的恒等变形
初一数学竞赛系列讲座(6)整式的恒等变形一、知识要点1、 整式的恒等变形把一个整式通过运算变换成另一个与它恒等的整式叫做整式的恒等变形2、 整式的四则运算整式的四则运算是指整式的加、减、乘、除,熟练掌握整式的四则运算,善于将一个整式变换成另一个与它恒等的整式,可以解决许多复杂的代数问题,是进一步学习数学的基础。
3、 乘法公式乘法公式是进行整式恒等变形的重要工具,最常用的乘法公式有以下几条: ① (a+b) (a-b)=a 2-b 2② (a±b)2=a 2±2ab+b 2③ (a+b) (a 2-ab+b 2)=a 3+b 3④ (a-b) (a 2+ab+b 2)=a 3-b 3⑤ (a+b+c)2= a 2+b 2+c 2+2ab+2bc+2ca⑥ (a+b+c) (a 2+b 2+c 2-ab-bc-ca)= a 3+b 3+c 3-3abc⑦ (a±b)3= a 3±3a 2b+3a b 2±b 34、 整式的整除如果一个整式除以另一个整式的余式为零,就说这个整式能被另一个整式整除,也可说除式能整除被除式。
5、 余数定理多项式()x f 除以 (x-a) 所得的余数等于()a f 。
特别地()a f =0时,多项式()x f 能被(x-a) 整除二、例题精讲例1 在数1,2,3,…,1998前添符号“+”和“-”并依次运算,所得可能的最小非负数是多少?分析 要得最小非负数,必须通过合理的添符号来产生尽可能多的“0”解 因1+2+3+…+1998=()19999992199811998⨯=+⨯是一个奇数, 又在1,2,3,…,1998前添符号“+”和“-”,并不改变其代数和的奇偶数,故所得最小非负数不会小于1。
先考虑四个连续的自然数n 、n+1、n+2、n+3之间如何添符号,使其代数和最小。
很明显 n-(n+1)-(n+2)+(n+3)=0所以我们将1,2,3,…,1998中每相邻四个分成一组,再按上述方法添符号, 即(-1+2)+(3-4-5+6)+ (7-8-9+10)+…+ (1995-1996-1997+1998)= -1+2=1故所求最小的非负数是1。
初中数学7年级乘法公式
乘法是数学中非常重要的运算之一、在初中数学7年级的课程中,学生会学习到乘法公式,以及如何正确应用乘法公式解决问题。
一、乘法的定义及性质乘法是一种加快计算速度的运算方法。
在数学中,乘法是指把两个数的乘法操作称为乘积。
例如,将3和4相乘,结果为12,我们可以写成3×4=12、乘法操作符号“×”表示乘法。
乘法具有一些特殊的性质。
其中,乘法结合律是指三个数相乘的结果不受先后顺序的影响。
例如,(3×4)×5=3×(4×5)=60。
乘法交换律是指两个数相乘的结果也不受先后顺序的影响。
例如,3×4=4×3=12乘法还有一个特别重要的性质是乘法公式。
二、乘法公式乘法公式是用于展开乘法式子的一个重要工具。
在初中数学7年级的课程中,学生将学习到以下几个常见的乘法公式:1.两个一位数相乘的乘法公式:当两个个位数相乘时,可应用如下乘法公式:ab × cd = ad × 10 + ad × b + bc × 10 + bc × d例如:27×36=20×30+20×6+7×30+7×6=9722.一个两位数与一个一位数相乘的乘法公式:当一个两位数与一个个位数相乘时,可应用如下乘法公式:ab × c = c × 10a + c × b3.两个两位数相乘的乘法公式:当两个两位数相乘时,可应用如下乘法公式:ab × cd = ac × 100 + ad × 10 + bc × 10 + bd例如:27×38=20×100+20×8+7×100+7×8=1026三、应用乘法公式解决问题乘法公式在解决实际问题时非常有用。
下面举几个例子,看看如何应用乘法公式解决问题。
初一下数学培优辅导2(乘法公式)
初一下数学辅导资料2(乘法公式)常用的乘法公式:(1)()()22a b a b a b +-=- (2)()2222a b a ab b ±=±+常用的公式变形:(1)()()222222a b a b ab a bab +=+-=-+(2)()()()()22224;4a b a b ab a b a b ab +=-+-=+-(3)22222211112;2a a a a a a a a ⎛⎫⎛⎫+=++-=+- ⎪ ⎪⎝⎭⎝⎭(4)()()()()22222222a b a b a b a b ab +-++--==(5)()2222222a b c a b c ab ac bc ++=+++++例1、计算(1)99×101×10001 (2)()()a b c a b c -+--(3)221.2340.7662.4680.766++⨯例2、(1)已知4,2x y xy +==,试求:①22x y +②44x y +(2)已知2310x x -+=,试求:①221x x +②441x x +例3、已知222a b c ab bc ca ++=++,且2a =,求()2005a b c +-例4、一个自然数减去45后是一个完全平方数,这个自然数加上44后仍是一个完全平方数,试求这个自然数一、基础练习 1、计算(1)(2x+5y )2(2)(31m-21n )2 (3)(x-3)2(4)(-2t-1)2(5)(51x+101y)2 (6)(-cd+21)22、利用完全平方公式计算。
(1)962 (2)9982 (3)1012+9923、计算(1)(a-2b )2(a+2b )2 (2)(3xa+1)2-(ab-1)2(3)(a-2b+c )(a+2b+c ) (4)(2x -y )2-41(x 2-y 2)4、已知a+b=7,ab=12,求a 2+ab+b 2的值是多少?a 2+3ab+b 2的值是多少?5、计算:1022×9826、计算 ()()28x x ++ ()()()2212141x x x -++()()22x y z x y z -+-+- 31011313⨯()223m n -- 2210199+ 21692⎛⎫⎪⎝⎭()()1442a b a b +- 2221000252248-()22a b -+ 2200420032005-⨯7、(1)()()()()246421212121+++⋅⋅⋅+(2)2222111111112342006⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(3)2222222100999897969521-+-+-+⋅⋅⋅-二、巩固练习1.()()___________1x =-+1x ()()__________1=--+-x 1x2.()______________12=-x ()()____________11=++x x3. ()()2949_________73x x -=-- ()22_________144=++x x4.__________999910199=⨯⨯ ________2003200120022=⨯- 5.()()_________22=--+b a b a ()__________222-+=+b a b a6.已知________,60,172=+==+y x xy y x 2则7.已知________________1,01232=++++=+++x x x x x x x 43则 8.多项式156422++-+y x y x 的最小值是 9.比较下面算式结果的大小(在横线上选填“<”、“>”、“=”)()()332_________33762_________76122_______12342________3422222222⨯⨯+⨯⨯+⨯-⨯+-⨯⨯+通过观察、归纳,用字母写出能反映这种规律的一般结论是 10. 已知正方形的边长为a ,如果它的边长增加4,那么它的面积增加二、选择题1.下列多项式乘法中,可以用平方差公式计算的是( )()()x y y x A ++. ()()y x y x B 2332.+-()()y x y x C +--. ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+-b x b x D 2121.2.下列各式的计算结果,正确的是( )()()84.2-=-+x x 2x A ()()131313.22-=+-y x xy xy B ()()22933.y x y x y x C -=++- ()()2.x 164x 4x D -=+--3.下列两个多项式相乘,哪些不可以用平方差公式( )A .2m)3n)(3n (2m --; B.)5xz 4y 4z)(5xy (--+-; C .c)b a)(a c (b --++; D.)38x y x 31)(xy 31(8x 223+-. 4. 如果多项式92+-mx x 是一个完全平方式,则m 的值是( )A 、±3B 、3C 、±6D 、65.如果多项式k x x ++82是一个完全平方式,则k 的值是( )A 、-4B 、4C 、-16D 、166. 如图,长方形的长为a ,宽为b ,横向阴影部分为长方形, 另一阴影部分为平行四边形,它们的宽都为c,则空白部分的面积是…. ( ) A 、ab -bc +ac -c 2 B 、ab -bc -ac +c 2 C 、ab - ac -bc D 、ab - ac -bc -c 2 三、解答题:(1)3y)3y)(2x (2x -+ (2))x )(y y x (2332--- (3)2b)a (--(4))5z 4y 5z)(3x 3x (4y +--+ (5)25c)4b (3a -+(6) 9(x +2)(x -2)-(3x -2)2 (7)()()()1122+--+x x x(8)()()()212113+---+-a a a (9)()()2222b a b a ---+(10) ))()(()()(2222y x y x y x y x y x ++---+四、解方程:()()()152x 2x 1x 2=-+-+五、已知12,3-==+ab b a ,求下列各式的值.(1)22b ab a +- (2) 2)(b a -.提高练习: 1、 计算乘积⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⋯⋯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-2222200011411311211219991-1等于( )A .20001999 B.20002001 40001999.C 40002001.D 2、已知20021999,20011999,20001999+=+=+=x c x b x a ,则多项式bc ac ab c b a ---++222的值( )A .0 B.1 C.2 D.33、1234567901234567881234567892⨯-4、计算)12()12)(12)(12(242++++n5、22222212979899100-+⋯⋯+-+- 6、2481611111111122222⎛⎫⎛⎫⎛⎫⎛⎫+++++⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭7、2342007122222+++++⋅⋅⋅8、确定()()()()()243231313131312-+++⋅⋅⋅++的末尾数10、已知()()227,4a b a b +=-=,求22,a b ab +11、若3,1x y xy +==-,求3223242x y x y xy -+的值。
培优七年级第17讲——乘法公式
17 乘法公式只有通过数学,我们才能彻底了解科学的精髓.至有在数学中,我们才能发现科学规律的高度简洁性、严格性和抽象性.任何科学教育如果不以数学为出发点,则其基础势必有缺陷。
-------科姆特知识纵横乘法公式是在多项式乘法的基础上,将多项式乘法的一半法则应用一一些特殊形式的多项式相乘,出的既有特殊性、又有实用性的具体结论,在复杂的数值计算,代数式的化简求值、代数式的恒等变形、代数等式的证明等方面有着广泛的应用。
在学习乘法公式时,应该做到以下几点:1.熟悉每个公式的结构特征,理解掌握公式;2.根据待求式的特点,模仿套用公式;3.对公式中字母的全面理解,灵活运用公式;4.既能正用、又可逆用且能适当变形或重新组合,综合运用公式.例题求解例1 (1) 在2004、2005、2006、2007这四个数中,不能表示为两个整数平方差是______.(第10届江苏竞赛题)(2) 已知(2000-a)(1998-a)=1999,那么, = _________.(重庆竞赛题) 思路点拨:(1),m+n,m-n的奇偶性相同,这是解本例题的基础。
(2)视(2000-a)•(1998-a)为整体,•由平方和想到完全平方公式及其变形例2 (1) 已知a、b、c满足,,,则a+b+c 的值等于( ).A. 2B. 3C. 4D.5(2) a、b、b不全为0, 满足a+b+c=0,,称使得恒成立的正整数n为”好数”,则不超过2007的正整数中”好数”的个数为( )A. 2B. 1004C. 20006D. 2007思路点拨:对于(1) ,由条件等式联想到完全平方式,解题的关键是整体考虑;对于(2) , 由条件出发,探求a,b,c之间的关系。
例3 观察下列算式(1) 1x3-;(2)2x4-(3)3x5-(4)__________________________;……..(1) 请你按照以上规律写出第四个算式.(2) 把这个规律用含字母的式子表示出来.(3) 你认为(2)中所写出的式子一定成立吗?并说明理由(2011年湖南省益阳市考题) 思路点拨: 从特殊情形归纳一般结论,并证明这个结论例4 已知a+b=1, 求。
乘法公式演示课件人教版1
乘法公式演示课件人教版1(精品课件 )
乘法公式演示课件人教版1(精品课件 )
(2)a2+b2=(a+b)2-2ab=7-2×0.5=6.
乘法公式演示课件人教版1(精品课件 )
乘法公式演示课件人教版1(精品课件 )
三级检测练
一级基础巩固练
13. 计算:(x-2y-3)(2y+x+3).
解:(x-2y-3)(2y+x+3) =x2-(2y+3)2 =x2-4y2-12y-9.
乘法公式演示课件人教版1(精品课件 )
); ); ).
乘法公式演示课件人教版1(精品课件 )
8. 填空:
(1)x+y-1=x+(
y-1
(2)x-y-1=x+(
y+1
(3)x-y+z-1=x-( y-z+1
); ); ).
乘法公式演示课件人教版1(精品课件 )
乘法公式演示课件人教版1(精品课件 )
9. (例 3)计算:
(1)(a-b-3)(a-b+3);
原式=(a-b)2-32=a2-2ab+b2-9.
乘法公式演示课件人教版1(精品课件 )
乘法公式演示课件人教版1(精品课件 )
(2)(2x-y+1)(2x+y-1).
原式=[2x-(y-1)][2x+(y-1)] =(2x)2-(y-1)2 =4x2-y2+2y-1.
2ab
;
(2)a2+b2=(a-b)2+
2ab
.
3. (例 1)已知 a-b=10,ab=20,求下列代数
式的值:
(1)a2+b2;
七年级数学下册 9.4 乘法公式课件1 (新版)新人教版
、(a-b
3
自我检测一:4分钟 课本76页T2
最新中小学教案、试题、试卷、课 件
4
自学指导二:4分钟 76页例2
思考: 1.每个题目中的那一项是 “a”“b”? 2.第3题还可以怎样做? 4分钟后比谁能正确作出检 测题
最新中小学教案、试题、试卷、课 件ቤተ መጻሕፍቲ ባይዱ
5
自我检测二:5分钟 课本76页T1、T3
9
布置作 业
• 课本79页T1、T2
最新中小学教案、试题、试卷、课 件
10
2
2
4ab ( 2)(a b) 2 ( a b) 2 __________ 2 2 2 2 a b 2ab a b 2ab (3)a b _________ _________
最新中小学教案、试题、试卷、课 件 8
• 本节课你有何收获?
最新中小学教案、试题、试卷、课 件
最新中小学教案、试题、试卷、课 件
6
计算: (1 ) 98
2 2 2
(2) 101
(3)(a b c)
最新中小学教案、试题、试卷、课 件
7
观察下列式子,填空:
a b a 2 2ab b 2 2 a b a 2 2ab b 2
2
2 2 2 a 2 b ( 1 ) ( a b) ( a b) __________
9.4 乘法公式 - 完全平方公式
最新中小学教案、试题、试卷、课 件
1
• 学习目标 • 1.能推导完全平方公式。 • 2.了解公式的几何背景,并能利用 公式进行简单计算。
最新中小学教案、试题、试卷、课 件
2
自学指导一: 5分钟
2023年初中数学培优竞赛讲座第讲乘法公式
第十八讲 乘法公式乘法公式是在多项式乘法的基础上,将多项式乘法的一般法则应用于一些特殊形式的多项式相乘,得出的既有特殊性、又有实用性的具体结论,在复杂的数值计算,代数式的化简求值、代数式的恒等变形、代数等式的证明等方面有着广泛的应用,在学习乘法公式时,应当做到以下几点:1.熟悉每个公式的结构特性,理解掌握公式;2.根据待求式的特点,模仿套用公式;3.对公式中字母的全面理解,灵活运用公式;4.既能正用、又可逆用且能适当变形或重新组合,综合运用公式.例题【例1】 (1)已知两个连续奇数的平方差为2023,则这两个连续奇数可以是 .(江苏省竞赛题)(2)已知(2023一a)(1998一a)=1999,那么(2023一a)2+(1998一a)2= . (重庆市竞赛题) 思绪点拨 (1)建立两个连续奇数的方程组;(2)视(2023一a)·(1998一a)为整体,由平方和想到完全平方公式及其变形.注:公式是如何得出来的?一种是由已知的公式,通过推导,得到一些新的公式;另一种是从大量的特殊的数量关系入手,并用字母表达数来揭示一类数量关系的一般规律—一公式.从特殊到一般的过程是人类结识事物的一般规律,而观测、发现、归纳是发现数学规律最常用的方法. 乘法公式常用的变形有:(1)ab b a b a 2)(222 ±=+,2)()(2)()(222222b a b a b a b a ab --+=+-+=. (2)222222)()(b a b a b a +=-++;(3) ab b a b a 4)()(22=--+; (4)4)()(22b a b a ab --+=,)(2)(2222ac bc ab c b a c b a ++-++=++ 【例2】 若x 是不为0的有理数,已知)12)(12(22+-++=x x x x M ,)1)(1(22+-++=x x x x N ,则M 与N 的大小是( ) A .M>N B . M<N C . M=N D .无法拟定 思绪点拨 运用乘法公式,在化简M 、N 的基础上,作差比较它们的大小.【例3】 计算:(1)6(7十1)(72十1)(74十1)(78十1)+1; (天津市竞赛题)(2)1.345×0.345×2.69—1.3452一1.345×0.3452. (江苏省竞赛题)思绪点拨 若按部就班计算,显然较繁.能否用乘法公式,简化计算,关键是对待求式恰当变形,使之符合乘法公式的结构特性,对于(2),由于数字之间有联系,可用字母表达数(称为换元),将数值计算转化为式的计算,更能反映问题的本质特性.【例4】 (1)已知x 、y 满足x 2十y 2十45=2x 十y ,求代数式y x xy +的值. (“希望杯”邀请赛试题) (2)整数x ,y 满足不等式y x y x 22122+≤++,求x+y 的值. (第14届“希望杯”邀请赛试题)(3)同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:第一次提价的百分率为a ,第二次提价的百分率为b ,乙商场:两次提价的百分率都是2b a +(a>0,b>o),丙商场:第一次提价的百分率为b ,第二次提价的百分率为a ,则哪个商场提价最多?说明理由. (河北省竞赛题)思绪点拔 对于(1),(2)两个未知数一个等式或不等式,须运用特殊方法与手段方能求出x 、y 的值,由平方和想到完全平方公式及其逆用,解题的关键是拆项与重组;对于(3)把三个商场经两次提价后的价格用代数式表达,作差比较它们的大小.注: 有些问题经常不能直接使用公式,而需要发明条件,使之符合乘法公式的特点,才干使用公式.常见的方法是:分组、结合,拆添项、字母化等.完全平方公式逆用可得到两个应用广泛的结论: (1)0)(2222≥±=+±b a b ab a ;揭示式子的非负性,运用非负数及其性质解题. (2)ab b a 222≥+应用于代数式的最值问题.代数等式的证明有以下两种基本方法:(1) 由繁到简,从一边推向另一边; (2)相向而行,寻找代换的等量.【例5】 已知a 、b 、c 均为正整数,且满足222c b a =+,又a 为质数.证明:(1)b 与c 两数必为一奇一偶;(2)2(a+b+1)是完全平方数.思绪点拨 从222c b a =+的变形入手;222b c a -=,运用质数、奇偶数性质证明.学力训练1.观测下列各式:(x 一1)(x+1)=x 2一l ;(x 一1)(x 2+x+1)=x 3一1;(x 一1)(x 3十x 2+x+1)=x 4一1.根据前面的规律可得(x 一1)(x n +x n-1+…+x+1)= . (武汉市中考题) 2.已知052422=+-++b a b a ,则ba b a -+= . (杭州市中考题) 3.计算:(1)1.23452+0.76552+2.469×0.7655: ;(2)19492一19502+19512一19522+…+19972一19982+19992 = ; (3)2199919991999199719991998222-+ .4.如图是用四张全等的矩形纸片拼成的图形,请运用图中空白部分的面积的不同表达方法写出一个关于a 、b 的恒等式 . (大原市中考题)5.已知51=+a a ,则2241aa a ++= . (菏泽市中考题) 6.已知5,3-=+=-cb b a ,则代数式ab a bc ac -+-2的值为( ).A .一15B .一2C .一6D .6 (扬州市中考题) 7.乘积)200011)(199911()311)(211(2222----等于( ). A .20001999 B .20002001 C .40001999 D .40002001 (重庆市竞赛题) 8.若4,222=+=-y x y x ,则20022002y x +的值是( ).A .4B .20232C . 22023D .420239.若01132=+-x x ,则441xx +的个位数字是( ). A .1 B .3 C . 5 D .710.如图①,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( ).A .))((22b a b a b a -+=-B .2222)(b ab a b a ++=+C .2222)(b ab a b a +-=-D .222))(2(b ab a b a b a -+=-+ (陕西省中考题)11.(1)设x+2z =3z ,判断x 2一9y 2+4z 2+4xz 的值是不是定值?假如是定值,求出它的值;否则请说明理由.(2)已知x 2一2x=2,将下式先化简,再求值:(x —1)2+(x+3)(x 一3)+(x 一3)(x 一1). (上海市中考题)12.一个自然数减去45后是一个完全平方数,这个自然数加上44后仍是一个完全平方数,试求这个自然数.13.观测:2514321=+⋅⋅⋅21115432=+⋅⋅⋅21916543=+⋅⋅⋅……(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1),计算2023×2023×2023×2023+1的结果(用一个最简式子表达). (黄冈市竞赛题)14.你能不久算出19952吗?为了解决这个问题,我们考察个位上的数字为5的自然数的平方,任意一个个位数为5的自然数可写成l0n+5(n 为自然数),即求(10n+5)2的值,试分析 n=1,n=2,n =3……这些简朴情形,从中探索其规律,并归纳猜想出结论.(1)通过计算,探索规律.152225可写成100×1×(1+1)+25;252=625可写成100×2×(2+1)+25;352=1225可写成100× 3×(3+1)+25;452=2025可写成100×4×(4+1)+25;……752=5625可写成 ;852=7225可写成 .(2)从第(1)题的结果,归纳、猜想得(10n+5)2= .(3)根据上面的归纳猜想,请算出19952= . (福建省三明市中者题)15.已知014642222=+-+-++z y x z y x ,则z y x ++= . (天津市选拔赛试题)16.(1)若x+y =10,x 3+y 3=100,则x 2+y 2= .(2)若a-b=3,则a 3-b 3-9ab = .17.1,2,3,……,98共98个自然数中,可以表达成两整数的平方差的个数是 . (初中数学联赛)18.已知a-b=4,ab+c 2+4=0,则a+b=( ). A .4 B .0 C .2 D .一219.方程x 2-y 2=1991,共有( )组整数解. A .6 B .7 C .8 D .920.已知a 、b 满足等式)2(4,2022a b y b a x -=++=,则x 、y 的大小关系是( ).A .x ≤yB .x ≥yC .x<yD .x>y (大原市竞赛题)21.已知a=1999x+2023,b =1999x+2023,c =1999x+2023,则多项式a 2+b 2+c 2一ab —bc-ac 的值为( ).A .0B .1C .2D .3 (全国初中数学竞赛题)22.设a+b=1,a 2+b 2=2,求a 7+b 7的值. (西安市竞赛题)23.已知a 满足等式a 2-a-1=0,求代数式487-+a a 的值. (河北省竞赛题)24.若b a y x +=+,且2222b a y x +=+,求证:1997199719971997b a y x+=+. (北京市竞赛题)25.有l0位乒乓球选手进行单循环赛(每两人间均赛一场),用xl ,y 1顺次表达第一号选手胜与负的场数;用x 2,y 2顺次表达第二号选手胜与负的场数;……;用x 10、y 10顺次表达十号选手胜与负的场数.求证:21022212102221y y y x x x +++=+++ .26.(1)请观测: 222233*********,335112225,351225,525====写出表达一般规律的等式,并加以证明.(2)26=52+12,53=72+22,26×53=1378,1378=372+32.任意挑选此外两个类似26、53的数,使它们能表达成两个平方数的和,把这两个数相乘,乘积仍然是两个平方数的和吗?你能说出其中的道理吗?注:有人称这样的数“不变心的数”.数学中有许多美妙的数,通过度析,可发现其中的奥秘.瑞士数学家欧拉曾对26(2)的性质作了更进一步的推广.他指出:可以表达为四个平方数之和的甲、乙两数相乘,其乘积仍然可以表达为四个平方数之和.即(a 2+b 2+c 2十d 2)(e 2+f 2+g 2+h 2)=A 2+B 2+C 2+D 2.这就是著名的欧拉恒等式.第十八讲 乘法公式参考答案。
初中数学整式乘除培优讲义(含解析)
初中数学整式乘除培优考试要求:知识点汇总:模块一壽的运算需的运算概念:求〃个相同因数的积的运算,叫做乘方,乘方的结果叫做幕,在/中,α叫做底数, n叫做指数. 含义:水中,"为底数,〃为指数,即表示α的个数,/表示有刃个α连续相乘.例如:3'表示3×3×3×3×3 , (一3f 表示(一3)x(-3)x(-3)x(-3)x(-3) , -3'表示 -(3×3×3×3×3)5. . 2x2x2x2x2z2 < . . 2 2 2 2 2 27 7 7 7 7 7 7 7特别注意负数及分数的乘方,应把底数加上括号.“奇负偶正” 口诀的应用:口诀“奇负偶正”在多处知识点中均提到过,它具体的应用有如下几点:⑴多重负号的化简,这里奇偶指的是“一”号的个数,例如:一[-(一3)] = -3; -[+(-3)] = 3・⑵有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(—3) × (—2) × (—6) = —36,而(—3) × (—2) X (+6) = 36 ・⑶有理数乘方,这里奇、偶指的是指数,当底数为负数时,指数为奇数,则嫌为负;指数为偶数,则幕为正,例如:(一3)‘ = 9 , (一3)、= 一27 ・特别地:当“为奇数时,(一")”=一『:而当“为偶数时,(-a)n =a n・负数的奇次幕是负数,负数的偶次幕是正数正数的任何次幕都是正数,1的任何次幕都是1,任何不为O的数的O次幕都是⑴・(1)同底数幕相乘・同底数的彖相乘,底数不变,指数相加.用式子表示为:(m√ι都是正整数)・(2) 策的乘方.幕的乘方的运算性质:幕的乘方.底数不变,指数相乘.用式子麦示为: (町=旷(m 9n 都是正整数)・ ⑶积的乘方.积的乘方的运算性质:积的乘方,等于把积的每一个因式分别乘方,再把所得的無相乘•用 式子表示为: (ab)n ≈a fl h fl(“是正整数)・ (4)同底数彖相除・同底数的幕相除,底数不变,指数相减.用式子表示为:模块二整式的乘法⑴单项式与单项式相乘:系数、同底数幕分别相乘作为积的因式,只有一个单项式里含有的 字母,则连同它的指数作为积的一个因式・以下举例说明单项式与单项式相乘的规则如下:Ub • 3a 2b y c 2= 3a^c 2,两个单项式的系数分 别为1和3,乘积的系数是3,两个单项式中关于字母α的幕分别是α和/,乘积中d 的幕 是才,同理,乘积中b 的幕是戻,另外,单项式“b 中不含C 的幕,而3i l 2b i c 2中含¢2,故乘 积中含疋・ ⑵单项式与多项式相乘:单项式分别与多项式中的每一项相乘,然后把所得的积相加,公式为:m(a + b + c) = ma + mb + me ,其中加为单项式,a+b + c为 多项式.⑶多项式与多项式相乘:将一个多项式中的每一个单项式分别与另一个多项式中的每一个单 项式相乘,然后把积相加,公式为:(∕π + n)(a + b) = ma + mb + Ha + Hh模块三整式的除法(1) 单项式除以单项式^系数、同底数的幕分别相除作为商的因式,对于只在被除式中含有 的字母,則连同它的指数作为商的一个因式•如:3a 2b 3c 2*ab = 3ab 2c 2,被除式为3a 2b 3c 2, 除式为肪,系数分别为3和1,故商中的系数为3, α的彖分别为/和α,故商中α的 幕为∕τ=α,同理,〃的幕为,,另外,被除式中含Y,而除式中不含关于c ・的策,故 商中e 的幕为c'・(2) 多项式除以单项式:多项式中的每一项分别除以单项式,然后把所得的商相加, 公式为:(" + b + c ∙)÷∙m = "*"2 + b*m + c*"?,其中加为单项式,a + h + c 为多项式.(3) 多项式除以多项式后有专题介绍.模块四平方差公式(a+ h){a-b) = a 2 -h 2平方差公式的特点:即两数和与它们差的积等于这两数的平方差。
人教版七年级数学培优教程
比例数.
有限小数
可化为分数形式,是有理数
小数 无限循环小数
无限不循环小数 不可化为分数形式,不是有理数
有理数的分类:
正整数
整数
零
自然数
有理数(按定义分类)
负整数
分数
正分数 负分数
正整数
正有理数
正分数
有理数(按符号分类) 零(零既不是正数,也不是负数)
负有理数
负整数 负分数
该定义更接近分类而非本质定义,例如小数是有理数吗?下面给出有理数更加接近本质的定
义.
定义:能写成 m (m、n 为整数,n≠0,(m,n)=1)的数. n
例: 12 3 , 3 3 , 0.1
1
,
0.3
1
82
1
10
3
有理数:rational number,rational(有道理的)的词根为 ratio(比例),有理数可以理解为
6、数轴上:B 到 A 的距离为 1,C 到 B 的距离为 2,求 AC=________
动点(规律类) 1、数轴上:点 A 从原点向右移一个单位,再向左移动两个单位,求现在位置 2、数轴上:点 A 向左移动 3 个单位,向右移动 5 个单位到 2014,求开始的位置 3、数轴上:点 A 从原点开始按照右移 1 个单位,左移 2 个单位,右移 3 个单位,左移 4 个 单位……右移 99 个单位,左移 100 个单位的规律移动 (1)最后的位置________. (2)共移动了多少个单位长度? (3)若 A 为一个起始为 300kg 的质点,每移动一个单位减少 1kg,A 点消失的位置? 基础夯实 【例 3】(1)如右图所示,数轴的一部分被墨水污染了,被污染的部分内含有的整数为
初中数学培优竞赛讲座第17讲--整式的乘法与除法
初中数学培优竞赛讲座第17讲--整式的乘法与除法第十七讲 整式的乘法与除法指数运算律是整式乘除的基础,有以下4个:nm n m a a a +=⋅,nmnm a a=)(,nn nb a ab ⋅=)(,nm n ma a a-=÷.学习指数运算律应注意:1.运算律成立的条件;2.运算律字母的意义:既可以表示一个数,也可以是一个单项式或者多项式;3.运算律的正向运用、逆向运用、综合运用. 多项式除以多项式是整式除法的延拓与发展,方法与多位数除以多位数的演算方法相似,基本步骤是: 1.将被除式和除式按照某字母的降幂排列,如有缺项,要留空位;2.确定商式,竖式演算式,同类项上下对齐; 3.演算到余式为零或余式的次数小于除式的次数为止. 例题 【例1】 (1)如果12=-+x x ,则3223++x x = . ( “希望杯”邀请赛试题) (2)把(x 2一x+1)6展开后得012211111212a x a x a x a x a+++++ ,则24681012a a a a a a a ++++++ . (“祖冲之杯”邀请赛试题)思路点拨 (1)把高次项用低次多项式表示;(2)我们很难将(x 2一x+1)6的展开式写出,因此想通过展开式去问题的难度. 【例4】))(2(67222B y x A y x y x y xy x +++-=-----.求A 、B 的值.思路点拨 等号左右两边的式子是恒等的,它们的对应项系数对应相等,从而可以通过比较对应项系数来解.【例5】 是否存在常数p 、q 使得qpx x++24能被522++x x 整除?如果存在,求出p 、q 的值,否则请说明理由.思路点拔 由条件可推知商式是一个二次三项式(含待定系数),根据“被除式=除式×商式”,运用待定系数法求出p 、q 的值,所谓p 、q 是否存在,其实就是关于待定系数的方程组是否有解.注 运用指数运算率解题,应注意以下几点: (1)善于变异底为同底; (2)适当地对已知等式进行运算处理,从整体上解决问题.所谓恒等式,就是指不论用任意数值来代替式中的字母左右两边的值都相等的等式.如果两个多项式恒等,那么,这两个多项式的对应项系数一定对应相等.待定系数法是数学中的一种重要方法,在有关整式的恒等变形的解题中经常用到,运用此方法解题的一般步骤是:(1)根据多项式之间的次数关系,设出一个恒等式,其中有几个待定系数;(2)比较对应项的系数,列出方程组; (3)解方程组,求出待定系数的值.学力训练1.如图,是某住宅的平面结构示意图,图中标注了有关尺寸(墙体厚度忽略不计,单位:米).房的主人计划把卧室以外的地面都铺上地砖,如果他选用地砖的价格是a 元/米2,则买砖至少需要 元(用含a 、x 、y 的代数式表示). (河北省中考题) 2.若2x+5y —3=0,则4x .32y . (绍兴市竞赛题)3.满足(x —1)200>3200的x 的最小正整数为 . (2003年武汉市选拔赛试题) 4.d c b a 、、、都是正数,且5,4,3,25432====d c b a ,则d c b a 、、、中,最大的一个是 . (“英才杯”竞赛题)5.化简)2(2)2(2234++-n n n 得( ). (IT 杯全国初中数学竞赛题)A .8121-+n B .12+-n C .87 D .476.已知223344556,5,3,2====d c b a ,那么d c b a 、、、从小到大的顺序是( ).A .a<b<c<dB .a<b<d<cC .b<a<c<dD .a<d<b<c (北京市“迎春杯”竞赛题) 7.已知a 是不为0的整数,并且关于x 的方程453223+--=a a a ax 有整数根,则a 的值共有( ).A . 1个B .3个C .6个D .9个 8.计算(0.04)2003×[(一5)2003]2得( ). (杭州市中考题)A .1B .—lC .200351 D .200351-9.已知)3)(32(1437622c y x b y x a y x y xy x +++-=+++--,试确定c b a 、、的值.10.设d c b a 、、、都是正整数,并且19,,2345=-==a c d c b a ,求a-b的值. (江苏省竞赛题)11.已知四位数yxy x 9292⋅=,试确定)1(92112-----y y x xx y x 的值.12.多项式875223-+-x x x与多项式112++bx ax的乘积中,没有含4x 的项,也没有含3x 的项,则ba +2= .13.若多项式7432+-x x 能表示成cx b x a ++++)1()1(2的形式,则a= . 14.若1223344555)12(a x a x a x a x a x a x +++++=-,则42a a + . (2003年北京市竞赛题) 15.如果多项式1)2)((-+-x a x 能够写成两个多项式(x+3)和(x+b)的乘积,那么a= ,b= .16.若2233445566,55,33,22====d c b a ,那么d c b a 、、、从小到大的顺序是( ).A .a>b>c>dB .a>b>d>cC .b>a>c>dD .a>d>b>c (北京市“迎春杯”竞赛题) 17.已知19971996321,,,,,a aa a a 均为正数,又M ))((199732199621a a a a a a++++++= ,N ))((199632199721a a a a a a++++++= ,则M 与N 的大小关系是( ).A .M=NB .M<NC .M>ND .关系不确定 18.若133=-x x,则199973129234+--+x x x x的值等于( )A .1997B .1999C .2001D .2003 (北京市竞赛题)19.已知关于x 的整系数二次三项式ax 2十bx+c 当x 取1,3,6,8时,某同学算得这个二次三项式的值分别为l ,5,25,50.经检验,只有一个结果是错误的,这个错误的结果是( ).A .当x=1时,ax 2十bx+c=1B .当x =3时,ax 2十bx+c=5C .当x=6时,ax 2十bx+c=25D .当x =8时,ax 2十bx+c=5020.已知3x 2-x-1=0,求6x 3十7x 2一5x+1999的值.21.已知a 是方程01322=-+x x的一个根,试求代数式131593322345-+-+++a a a a a a 的值.22.已知102222=⋅=⋅d c b a,求证:(a 一1)(d —1)=(b 一1)(c一1).23.是否存在整数c b a 、、满足2)1516()910()89(=c b a?若存在,求出cb a 、、的值;若不存在,说明理由.24.当自然数n的个位数分别为0,1,2,……,9时,n2,n3,n 4,n 5的个位数如表所示n的个位数0123456789n2的个位数0149656941n3的个位数0187456329n4的个位数0161656l61n5的个位数0l23456789(1)从所列的表中你能发现什么规律?(2)若n为自然数,和数1981n+1982 n+1983 n+1984 n 不能被10整除,那么n必须满足什么条件?第十七讲整式的乘法与除法参考答案11。
人教版七年级数学培优教程
相反数的性质:
(1)代数意义:只有符号不同的两个数互为相反数,特别地,0 的相反数是 0.
A.伦敦时间 2006 年 6 月 17 日凌晨 1 时
B.纽约时间 2006 年 6 月 17 日晚上 22 时
C.多伦多时间 2006 年 6 月 16 日晚上 20 时 D.首尔时间 2006 年 6 月 17 日上午 8 时
知识导航
相反数:只有符号不同的两个数互称为相反数,特别地,0 的相反数是 0.
该定义更接近分类而非本质定义,例如小数是有理数吗?下面给出有理数更加接近本质的定
义.
定义:能写成 m (m、n 为整数,n≠0,(m,n)=1)的数. n
例: 12 3 , 3 3 , 0.1
1
,
0.3
1
82
1
10
3
有理数:rational number,rational(有道理的)的词根为 ratio(比例),有理数可以理解为
错例
原因
无原点
没有正方向
单位长度不统一
没有单位长度
有理数与数轴的关系: (1)一切有理数都可以用数轴上的点表示出来.
注意:数轴上的点不都代表有理数,如π, 2
(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大. (3)正数都大于 0,负数都小于 0,正数大于一切负数. 常见题型 覆盖: 1、长度为 2.1 的线段在数轴上能覆盖________整数点,长度为 3.1,4.1,4.2 的呢? 2、长度为 2014.5 的线段在数轴上能覆盖________整数点. 3、一条长度大于 n 小于 n+1 的线段(n 为正整数),能覆盖________个整数点. 4、一条线段在数轴上恰能覆盖 2 个或 3 个整数点,求线段长范围. 5、一条线段在数轴上恰能覆盖 2 个整数点,求线段长范围. 6、一条线段在数轴上恰能覆盖 2014 个整数点,求线段长范围. 7、一条线段在数轴上恰能覆盖 n 个整数点,求线段长范围.
人教版初中数学《乘法公式》_课件-下载
【获奖课件ppt】人教版初中数学《乘 法公式 》_课 件-下载 1-课件 分析下 载
【获奖课件ppt】人教版初中数学《乘 法公式 》_课 件-下载 1-课件 分析下 载
1 下列各式添括号正确的是( D ) A.-x+y=-(y-x) B.x-y=-(x+y) C.10-m=5(2-m) D.3-2a=-(2a-3)
【获奖课件ppt】人教版初中数学《乘 法公式 》_课 件-下载 1-课件 分析下 载
【获奖课件ppt】人教版初中数学《乘 法公式 》_课 件-下载 1-课件 分析下 载
知1-讲
例1 (1)下列各式中,成立的是( C ) A.-x+y=-(x+y) B.-3x+8=-3(x+8) C.2-5x=-(5x-2) D.-2-5x+y=-(2-5x+y)
导引:因为-x+y=-(x-y),所以A选项错误;因为 -3x+8=-(3x-8),所以B选项错误;因为2- 5x=-(5x-2),所以C选项正确;因为-2-5x +y=-(2+5x-y),所以D选项错误.
【获奖课件ppt】人教版初中数学《乘 法公式 》_课 件-下载 1-课件 分析下 载
【获奖课件ppt】人教版初中数学《乘 法公式 》_课 件-下载 1-课件 分析下 载
知1-练
【获奖课件ppt】人教版初中数学《乘 法公式 》_课 件-下载 1-课件 分析下 载
【获奖课件ppt】人教版初中数学《乘 法公式 》_课 件-下载 1-课件 分析下 载
2 下列添括号正确的是( C ) A.a-b+c=a+(b+c) B.m+p-q=m-(p+q) C.a-b-c+d=a-(b+c-d) D.x2-x+y=-(x2+x-y)
-(-x2-2x3),所以B选项错误;因为(a-b)(b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初一数学培优和竞赛二合一讲炼教程
(14)乘法公式
【知识精读】
1.
乘法公式也叫做简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。
公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。
公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。
2.
基本公式就是最常用、最基礎的公式,并且可以由此而推导出其他公式。
完全平方公式:(a±b)2=a2±2ab+b2,
平方差公式:(a+b)(a-b)=a2-b2
立方和(差)公式:(a±b)(a2 ab+b2)=a3±b3
3.公式的推广:
①
多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd
即:多项式平方等于各项平方和加上每两项积的2倍。
②
二项式定理:(a±b)3=a3±3a2b+3ab2±b3
(a±b)4=a4±4a3b+6a2b2±4ab3+b4)
(a±b)5=a5±5a4b+10a3b2 ±10a2b3+5ab4±b5)
…………
注意观察右边展开式的项数、指数、系数、符号的规律
③
由平方差、立方和(差)公式引伸的公式
(a+b)(a3-a2b+ab2-b3)=a4-b4
(a+b)(a4-a3b+a2b2-ab3+b4)=a5+b5
(a+b)(a5-a4b+a3b2-a2b3+ab4-b5)=a6-b6
…………
注意观察左边第二个因式的项数、指数、系数、符号的规律
在正整数指数的条件下,可归纳如下:设n为正整数
(a+b)(a2n-1-a2n-2b+a2n-3b2-…+ab2n-2-b2n-1)=a2n-b2n
(a+b)(a2n-a2n-1b+a2n-2b2-…-ab2n-1+b2n)=a2n+1+b2n+1
类似地:
(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n
4.
公式的变形及其逆运算
由(a+b)2=a2+2ab+b2得 a2+b2=(a+b)2-2ab
由 (a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得 a3+b3=(a+b)3-3ab(a+b)
由公式的推广③可知:当n为正整数时
a n-
b n能被a-b整除,
a2n+1+b2n+1能被a+b整除,
a2n-b2n能被a+b及a-b整除。
【分类解析】
例1. 己知x+y=a xy=b
求 ①x2+y2 ②x3+y3 ③x4+y4 ④x5+y5
解: ①x2+y2=(x+y)2-2xy=a2-2b
②x3+y3=(x+y)3-3xy(x+y)=a3-3ab
③x4+y4=(x+y)4-4xy(x2+y2)-6x2y2=a4-4a2b+2b2
④x5+y5=(x+y)(x4-x3y+x2y2-xy3+y4)
=(x+y)[x4+y4-xy(x2+y2)+x2y2]
=a[a4-4a2b+2b2-b(a2-2b)+b2]
=a5-5a3b+5ab2
例2.
求证:四个連续整数的积加上1的和,一定是整数的平方。
证明:设这四个数分别为a, a+1, a+2, a+3 (a为整数)
a(a+1)(a+2)(a+3)+1=a(a+3)(a+1)(a+2)+1=(a2+3a)(a2+3a+2)+1
=(a2+3a)2+2(a2+3a)+1=(a2+3a+1)2
∵a是整数,整数的和、差、积、商也是整数
∴a2+3a+1是整数 证毕
求证:2222+3111能被7整除
例3.
证明:2222+3111=(22)111+3111=4111+3111
根据 a2n+1+b2n+1能被a+b整除,(见内容提要4)
∴4111+3111能被 4+3整除
∴2222+3111能被7整除
例4. 由完全平方公式推导“个位数字为5的两位数的平方数”的计算规律解:∵(10a+5)2=100a2+2×10a×5+25=100a(a+1)+25
∴“个位数字为5的两位数的平方数”的特点是:幂的末两位数字是底数个位数字5的平方,幂的百位以上的数字是底数十位上数字乘以比它大1的数的积。
如:152=225 幂的百位上的数字2=1×2), 252=625 (6=2×3),
352=1225 (12=3×4) 452=2025 (20=4×5)
……
【实战模拟】
1.
填空:
①a2+b2=(a+b)2-_____ ②(a+b)2=(a-b)2+___
③a3+b3=(a+b)3-3ab(___) ④a4+b4=(a2+b2)2-____
,⑤a5+b5=(a+b)(a4+b4)-_____ ⑥a5+b5=(a2+b2)(a3+b3)-____
2.
填空:
①(x+y)(___________)=x4-y4 ②(x-y)(__________)=x4-y4
③(x+y)( ___________)=x5+y5 ④(x-y)(__________)=x5-y5
3.计算:
①552= ②652= ③752= ④852= ⑤952=
4. 计算下列各题,你发现什么规律
⑥11×19= ⑦22×28= ⑧34×36= ⑨43×47= ⑩76×74=
5..已知x+x 1=3, 求①x 2+21x ②x 3+31x ③x 4+41
x 的值
6.化简:①(a+b )2(a -b)2
②(a+b)(a 2-ab+b 2)
③(a -b)((a+b)3-2ab(a 2-b 2)
④(a+b+c)(a+b -c)(a -b+c)(-a+b+c)
7.己知a+b=1, 求证:a 3+b 3-3ab=1
8.己知a 2=a+1,求代数式a 5-5a+2的值
9.求证:233+1能被9整除
10.求证:两个连续整数的积加上其中较大的一个数的和等于较大的数
的平方
11.如图三个小圆圆心都在大圆的直径上,它们
的直径分别是a,b,c
①②练习
4. 十位上的数字相同,个位数的和为10的两个两位数相乘,其积的末两位数是两个个位数字的积,积的百位以上的数是,原十位上数字乘上比它大1的数的积
n(n+1)+(n+1)=(n+1)2
8.①可证明3个小圆周长的和减去大圆周长,其差等于0
9.②2
(ab+ac+bc)。