2002年高考.全国卷.理科数学试题及答案
2001年高考.全国卷.理科数学试题及答案
2001年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页。
第II 卷3至9页。
共150分。
考试时间120分钟。
第I 卷(选择题60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式()()[]βαβαβα-++=sin sin 21cos sin ()()[]βαβαβα--+=sin sin 21sin cos ()()[]βαβαβα-++=cos cos 21cos cos ()()[]βαβαβα--+-=cos cos 21sin sin 正棱台、圆台的侧面积公式()l c c S +'=21台侧其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长台体的体积公式()h S S S S V +'+'=31台体其中S '、S 分别表示上、下底面积,h 表示高一、选择题:本大题共12小题;第每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)若0cos sin >θθ,则θ在(A )第一、二象限(B )第一、三象限(C )第一、四象限(D )第二、四象限(2)过点()()1,11,1--B A 、且圆心在直线02=-+y x 上的圆的方程是(A )()()41322=++-y x (B )()()41322=-++y x (C )()()41122=-+-y x (D )()()41122=+++y x (3)设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是(A )1(B )2(C )4(D )6(4)若定义在区间()01,-内的函数()()1log 2+=x x f a 满足0)(>x f ,则a 的取值范围是(A )(0,21)(B )(0,21](C )(21,+∞)(D )(0,+∞)(5)极坐标方程)4sin(2πθρ+=的图形是o(A )(B )(C )(D )(6)函数)0(1cos ≤≤-+=x x y π的反函数是(A ))20)(1arccos(≤≤--=x x y (B ))20)(1arccos(≤≤--=x x y π(C ))20)(1arccos(≤≤-=x x y (D ))20)(1arccos(≤≤-+=x x y π(7)若椭圆经过原点,且焦点为)0,3(),0,1(21F F ,则其离心率为(A )43(B )32(C )21(D )41(8)若40πβα<<<,a =+ααcos sin ,b =+ββcos sin ,则(A )b a <(B )b a >(C )1<ab (D )2>ab (9)在正三棱柱111C B A ABC -中,若12AB =,则1AB 与B C 1所成的角的大小为(A )60°(B )90°(C )105°(D )75°(10)设)()(x g x f 、都是单调函数,有如下四个命题:○1若)(x f 单调递增,)(x g 单调递增,则)()(x g x f -单调递增;○2若)(x f 单调递增,)(x g 单调递减,则)()(x g x f -单调递增;○3若)(x f 单调递减,)(x g 单调递增,则)()(x g x f -单调递减;○4若)(x f 单调递减,)(x g 单调递减,则)()(x g x f -单调递减;其中,正确的命题是(A )○1○3(B )○1○4(C )○2○3(D )○2○4(11)一间民房的屋顶有如图三种不同的盖法:○1单向倾斜;○2双向倾斜;○3四向倾斜.记三种盖法屋顶面积分别为321P P P 、、.①② ③若屋顶斜面与水平面所成的角都是α,则(A )123P P P >>(B )123P P P =>(C )123P P P >=(D )123P P P ==(12)如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联。
(详细解析)2000年高考数学试卷(全国旧课程)理科
2000 年高考数学试题(全国旧课程)理科2000 年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷 1 至 2 页.第 II 卷 3至 9 页.共 150 分.考试时间 120 分钟.第Ⅰ卷(选择题共60 分)一、选择题:本大题共12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合 A 和 B 都是自然数集合 N ,映射 f : A B 把集合 A 中的元素 n 映射到集合 B 中的元素 2n n ,则在映射 f 下,象 20 的原象是A .2B . 3 C. 4 D. 5【答案】 C【解析】 2n n 20 ,解得 n 4 .2.在复平面内,把复数 3 3i 对应的向量按顺时针方向旋转,所得向量对应的复数是3A . 2 3 B. 2 3i C. 3 3i D. 3 3i【答案】 B【解析】所求复数为(3 3i )[cos( ) i sin()] (3 3i)( 13 i )2 3i .3 3 2 23.一个长方体共一顶点的三个面的面积分别是2, 3, 6 ,这个长方体对角线的长是A . 2 3B. 3 2 C. 6 D. 6【答案】 D【解析】设长、宽和高分别为a,b, c ,则 ab 2, bc 3, ac 6 ,∴ abc6 ,∴ a 2, b 1, c 3 ,∴对角线长l 2 1 3 6 .12000 年高考数学试题(全国旧课程)理科4.已知sin sin ,那么下列命题成立的是A .若, 是第一象限角,则cos cosB .若, 是第二象限角,则tan tanC.若, 是第三象限角,则cos cosD .若, 是第四象限角,则tan tan【答案】D【解析】用特殊值法:取60 , 30 ,A 不正确;取120 , 150 , B 不正确;取210 ,240 , C 不正确; D 正确.5.函数 y x cos x 的部分图像是【答案】 D【解析】函数y x cos x 是奇函数, A 、 C 错误;且当x (0, ) 时, y 0 .26.《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过 800 元的部分不必纳税,超过800 元的部分为全月应纳税所得额.此项税款按下表分段累进计算:某人一月份应交纳此项税款26.78 元,则他的当月工资、薪金所得介于A .800~900元 B .900~1200 元C.1200~1500 元D. 1500~280 0 元【答案】 C【解析】当月工资为1300 元时,所得税为25 元; 1500 元时,所得税为25 20 45元,所以选 C.22000 年高考数学试题(全国旧课程)理科7.若 a b 1 , Plg a lg b,Q 1 lg a lg b ,R lg a b,则2 2A . R P QB . P Q RC . Q P RD . P R Q【答案】 B【解析】 方法一 :1lg a lg b 1(2 lg a lg b)lg a lg b ; lg a b lg ab22 21lg a lg b ,所以 B 正确. 2方法二 :特殊值法:取 a100, b 10 ,即可得答案.8.以极坐标系中的点 (1,1)为圆心, 1 为半径的圆的方程是 A .2cosB .2sin44C .2cos1D .2sin1【答案】 C【解析】设圆上任意一点M ( , ) ,直径为 2,则 2cos(1) ,即2cos1 .9.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是1 2 1 4 1 2 1 4A .B . 4C .D .2 2【答案】A【解析】设圆柱的半径为r ,则高 h 2 r , S 全 2 r 2 (2 r )21 2 . S 侧 (2 r )2210.过原点的直线与圆x 2y 24x 3 0 相切,若切点在第三象限,则该直线的方程是A . y 3xB .y 3x C . y 3 x D . y3 x3 3 【答案】C【解析】圆的标准方程为( x 2) 2 y 21,设直线的方程为 kx y 0 ,由题设条件可得2k,解得k 3 ,由于切点在第三象限,所以 k3y313 ,所求切线x .1 k23 332000 年高考数学试题(全国旧课程)理科11 y ax (a 0)的焦点 F 作一直线交抛物线于P,Q两点,若线段 PF与FQ的.过抛物线 2长分别是 p, q ,则11 等于p qA . 2 a1C. 4a4 B.D.2a a【答案】C【解析】特殊值法.作PQ y 轴,即将y1 1代入抛物线方程得x ,4a 2a∴ 1 1 4a .p q【编者注】此题用一般方法比较复杂,并要注意原方程不是标准方程.12.如图, OA 是圆锥底面中心 A 到母线的垂线,OA 绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为1 1A . arccos 32B. arccos 2C. arccos 1D. arccos 12 4 2【答案】 D【解析】设圆锥的底面半径为r ,高为 h ,上半部分由共底的两个圆锥构成,过 A 向轴作垂线 AC ,垂足为 C ,OA r cos , CA OA cos r cos2,∴ V11( r cos2 ) 2 h ,原3圆锥的体积为V 1 r 2h 2V12r2h cos4,解得cos 4 2 ,∴arccos41.3 3 2第II 卷(非选择题共 90 分)二、填空题:本大题共 4 小题,每小题 4 分,共 16 分.把答案填在题中横线.13.乒乓球队的10 名队员中有 3 名主力队员,派 5 名参加比赛. 3 名主力队员要安排在第一、三、五位置,其余7 名队员选 2 名安排在第二、四位置,那么不同的出场安排共有种(用数字作答).【答案】 25242000 年高考数学试题(全国旧课程)理科【解析】不同的出场安排共有 A 33 A 72252 .14.椭圆 x 2 y 2F 1PF 2 为钝角时,点 P 横9 1的焦点为 F 1, F 2 ,点 P 为其上的动点,当4 坐标的取值范围是 . 【答案】 ( 3 , 3)5 5【解析】 方法一 :(向量法) 设 P( x, y) ,由题设 PF 1 PF 2 0 ,即( x c,y) ( x c,y) 0,x 2 2 y 2 0 ,又由 x 2 y 2 1得y2 4x 2 ,代入 x 2 c 2 y 2 0 并化简得 c 94 4 95x 2 c 24 1 ,解得 3 x3 .9 5 5方法二 :(圆锥曲线性质)设P( x, y) ,∵ a 3,b 2 ,∴ c 5 ,又 PF 13 5x ,3 PF 2 35x ,当22F 1F 2 23x 33 F 1PF 2 为钝角时, PF 1PF 2 ,解得 5 .515.设 a n 是首项为 1的正项数列,且 (n 1)a 2 na 2 a a 0(n 1,2,3,...) ,则它 n 1 n n1 n 的通项公式是 a n .【答案】 1n【解析】条件化为 (a n1 a n )[( n 1)a n 1 na n ] 0 ,∵ a n 0 ∴ ( n 1)a n 1 na n0 ,即 an1 n ,累成得 a n 1 .a n n 1 n16.如图, E, F 分别为正方体的面ADD1A1、面 BCC1 B1的中心,则四边形BFD1E 在该正方体的面上的射影可能是.(要求:把可能的图的序号都.52000 年高考数学试题(全国旧课程)理科填上)【答案】②③【解析】投到前后和上下两个面上的射影是图形②;投到左右两个面上的射影是图形③.三、解答题:本大题共 6 小题,共74 分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12 分)已知函数y 1 cos2 x 3 sin xcos x 1, x R .2 2( I)当函数 y 取得最大值时,求自变量x 的集合;( II )该函数的图像可由y sin x( x R) 的图像经过怎样的平移和伸缩变换得到?【解】本小题主要考查三角函数的图像和性质,考查利用三角公式进行恒等变形的技能以及运算能力.满分 12 分.(Ⅰ) y 1 cos2 x 3 sin x cosx 11 (2cos 2x1) 1 3 (2sin x cos x) 12 2 4 4 41 cos2x3 sin 2 x 5 1 (cos2x sin sin 2xcos ) 54 4 4 2 6 6 41 sin(2x) 5 .—— 6 分2 6 4y 取得最大值必须且只需2x6 2 2k , k Z ,即 x k , k Z .6所以当函数y 取得最大值时,自变量x 的集合为x|x k , k Z—— 8分6(Ⅱ)将函数y sin x 依次进行如下变换:( i)把函数y sin x 的图像向左平移,得到函数y sin( x ) 的图像;6 6( ii )把得到的图像上各点横坐标缩短到原来的 1 倍(纵坐标不变),得到函数2 y sin(2x ) 的图像;662000 年高考数学试题(全国旧课程)理科( iii )把得到的图像上各点纵坐标缩短到原来的 1 倍(横纵坐标不变),得到函数1 sin(2 x 2y) 的图像;2 65 个单位长度,得到函数1 sin(2 x 5( iv )把得到的图像向上平移)的图像;4 2 6 4综上得到函数y 1 cos2 x 3 sin x cos x 1 的图像.—— 12 分2 218.(本小题满分 12分)如图,已知平行六面体1 11的底面 ABCD 是菱形,且 1 ABCD A1BC D C CBC1CD BCD 60 .(I)证明: C1C BD ;(II )假定CD 2,CC13,记面 C1BD为,面 CBD 2为,求二面角BD 的平面角的余弦值;(Ⅲ)当CD的值为多少时,能使AC1平面 C1BD ?请给出证明.CC1【解】本小题主要考查直线与直线、直线与平面的关系,逻辑推理能力,满分12 分.(Ⅰ)证明:连结 AC1 1 , AC , AC 和 BD 交于 O ,连结 C1O .∵四边形 ABCD 是菱形,∴AC BD ,BD CD .又∵BCC1DCC1, C1C C1C ,∴C1BCC1DC ,∴ C1 B C1D ,∵DO OB ,∴C1O BD ,—— 2 分但 AC BD, AC C1O O ,∴ BD 平面 AC1,又 CC1平面 AC1,∴CC1BD .—— 4分(Ⅱ)由(Ⅰ)知AC BD ,C1O BD ,72000 年高考数学试题(全国旧课程)理科∴C1OC 是二面角BD的平面角.在C1 BC 中, BC 2, C1C 3 ,BCC160 ,( 3)2 3213∴ C1B222 2 2 cos 60 .—— 6 分2 24∵OCB30 ,∴OB 1 BC1.2∴ C1O 2C1B2OB213 19 ,34 4∴ C1O,即 C1O C1C .2作 O1H3 OC ,垂足为 H .∴点 H 是 OC 的中点,且OH ,2所以 cos C1OC OH 3.—— 8分C1O 3(Ⅲ)当CD 1时,能使AC1平面C1BDCC1证明一:∵CD1,∴BC CDC1C,CC1又BCD C1CBC1CD ,由此可推得BD C1 B C1D .∴三棱锥C C1BD 是正三棱锥.—— 10分设AC1与 C1O 相交于G .∵AC11// AC ,且 AC11 :OC2:1 ,∴ C1G :GO 2:1 .又 C1O 是正三角形 C1BD 的 BD 边上的高和中线,∴点 G 是正三角形 C1BD 的中心,∴CG 平面 C1BD .即 AC1平面 C1BD .—— 12 分证明二:由(Ⅰ)知,BD 平面 AC1,∵ AC 平面 AC ,∴ BD AC .—— 10 分1 1 1当CD 1 时,平行六面体的六个面是全等的菱形,CC182000 年高考数学试题(全国旧课程)理科同 BD AC 1 的证法可得BC 1AC 1 ,又 BC 1 B AC C 1BDBD ,∴ 平面 .—— 12 分1 19.(本小题满分12 分)设函数 f xx 2 1 ax ,其中 a 0 .(I )解不等式 fx 1;(II )求 a 的取值范围,使函数 f x 在区间 [0, ) 上是单调函数.【解】 本小题主要考查不等式的解法、函数的单调性等基本知识, 分类讨论的数学思想方法和运算、推理能力.满分 12分.(Ⅰ)不等式f x 1 即 x 2 1 1 ax ,由此得 1 1 ax ,即 ax 0 ,其中常数a 0 .x 2 1 (1 ax) 2 , x 0,所以,原不等式等价于即 —— 3 分 (a 2 1)x 2ax 0. 0.所以,当 0 a 1时,所给不等式的解集为 | x 2a ;x 0 1 a 2当 a 1 时,所给不等式的解集为x|x 0 . —— 6 分 (Ⅱ)在区间 [ 0,) 上任取 x , x ,使得 x x . 1 2 1 2f ( x 1 ) f (x 2 ) x 12 1 x 22 1 a(x 1 x 2 ) x 12 x 12 x 22 a( x 1 x 2 ) 1 x 22 1 (x x )( x 1 x 2 a) .—— 8分1 2 x 12 1 x 22 1(ⅰ)当 a 1 时,∵x 1 x 21,∴x 1 x 2a 0 ,x 12 1x 22 1x 12 1x 22 1又 x 1 x 2 ,∴ f(x 1)f (x 2 ) 0 ,即 f( x 1 )f (x 2 ) .所以,当 a1 时,函数 f x 在区间 [ 0, ) 上是单调递减函数. —— 10分92000 年高考数学试题(全国旧课程)理科( ii )当 0 a 1 时,在区间[0, ) 上存在两点 x 1 0, x 2 2a ,满足 f (x 1 ) 1, 1 a 2f ( x 2 ) 1 ,即 f( x 1 ) f ( x 2 ) ,所以函数 f x 在区间[ 0,) 上不是单调函数.综上,当且仅当 a 1 时,函数 fx 在区间 [0, ) 上是单调函数. —— 12分20.(本小题满分 12 分)( I )已知数列 c n ,其中 c n 2n 3n,且数列 cn 1 pc n 为等比数列,求常数 p ;( II )设 a n , b n 是公比不相等的两个等比数列, c n a n b n ,证明数列 c n 不是等 比数列.【解】本小题主要考查等比数列的概念和基本性质,推理和运算能力,满分12 分.(Ⅰ)因为cn 1 pc n 是等比数列,故有 (c n 1pc n )2(c n 2 pc n 1 )(c n pc n 1) , 将c n 2n 3n 代入上式,得[2 n 1 3n 1 p(2n 3n )]2[2n 2 3n 2 p(2n 13n 1)][(2 n 3n p(2 n 13n 1 )] ,—— 3 分即[(2 p)2 n (3 p)3n ]2 [(2 p)2n 1 (3 p)3n 1 ] [(2 p)2n 1 (3 p)3n 1] ,整理得 1 (2 p)(3 p) 2n 3n 0 ,6解得 p2 或 p3 .—— 6 分(Ⅱ)设 a n, b n 的公比分别为 p, q, p q , c n a n b n . 为证 c 不是等比数列,只需证 c 2c c . n 2 1 3 事实上,c 22 (a 1 p b 1q)2 a 12 p 2 b 12q 2 2a 1b 1 pq ,c 1 c 3 ( a 1 b 1 )(a 1p 2 b 1q 2 ) a 12 p 2 b 12q 2 a 1b 1( p 2 q 2 ) .由于 p q, p 2 q 2 2 pq ,又 a 1 ,b 1 不为零,因此c22c1c3,故c n不是等比数列.—— 12 分102000 年高考数学试题(全国旧课程)理科21.(本小题满分 12 分)某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的 300 天内,西红柿市 场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.(Ⅰ)写出图一表示的市场售价与时间的函数关系式 P f (t ) ;写出图二表示的种植成本与时间的函数关系式Q g(t) ;(Ⅱ)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大? (注:市场售价和种植成本的单位:元/102 kg ,时间单位:天)【解】本小题主要考查由函数图像建立函数关系式和求函数最大值的问题, 考查运用所学知 识解决实际问题的能力,满分 12 分. (Ⅰ)由图一可得市场售价与时间的函数关系为,t 200,f (t ) 300 t 0—— 2分2t 300,200 t 300;由图二可得种植成本与时间的函数关系为g(t ) 1 (t 150)2 100,0 t 300 .—— 4分200 (Ⅱ)设 t 时刻的纯收益为 h(t) ,则由题意得 h(t ) f (t) g(t )1 2 1 175 , t 200t 2 t 0即 h(t ) 200 2—— 6分1 2 7 1025 ,t 300t 2t200200 2 当 0 t 200 时,配方整理得h(t) 1(t 50)2 100 ,200112000 年高考数学试题(全国旧课程)理科所以,当 t 50 时, h(t ) 取得区间 [0,200] 上的最大值 100;当 200 t 300 时,配方整理得 h(t )1 (t 350) 2100 200所以,当 t 300 时, h(t) 取得区间 [200,300] 上的最大值87.5 .—— 10分综上,由 100 87.5可知, h(t) 在区间 [0,300] 上可以取得最大值 100,此时 t 50,即从二月一日开始的第 50 天时,上市的西红柿纯收益最大.—— 12 分22.(本小题满分 14 分)如图,已知梯形 ABCD 中 AB 2 CD ,点 E 分有向线段 AC 所成的比为 ,双曲线 过 C, D , E 三点,且以 A, B 为焦点.当 23 时,求双曲线离心率 e34的取值范围.【解】本小题主要考查坐标法、定比分点坐标公式、双曲线的概念和性 质,推理、运算能力和综合应用数学知识解决问题的能力,满分14 分.如图,以 AB 的垂直平分线为y 轴,直线 AB 为 x 轴,建立直角坐 标系 xOy ,则 CD y 轴.因为双曲线经过点 C , D ,且以 A, B 为焦点,由双曲线的对称性知 C , D 关于 y 轴对称.—— 2 分依题意,记 A( c 1 c,0), C ( , h), E( x 0 , y 0 ) ,其中 c AB 为双曲线的半焦距, h 是梯 2 2形的高.由定比分点坐标公式得cc( 2)ch2x 02( , y 0 .11) 1 设双曲线的方程为x 2 y 2c .a2 b 21,则离心率 ea由点 C , E 在双曲线上,将点c代入双曲线方程得C , E 的坐标和 ea122000 年高考数学试题(全国旧课程)理科e2h 21,①4 b2e2 2 2 2 h21.②—— 7分4 1 1 b 2由①式得h 2e2 1 ,③b 2 4将③式代入②式,整理得e 24 1 2 ,44故3.—— 10分1e2 2由题设2 3 得,2 1 323 .3 4 3 e2 4 解得7 e 10 .所以双曲线的离心率的取值范围为[ 7,10] .—— 14分13。
2002年全国卷高考理科数学试题及标准答案
2002年普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I卷1至2页.第II卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I卷(选择题)和第II 卷(非选择题)两部分.第I卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.(1)圆1)1(22=+-y x 的圆心到直线y x =的距离是 (A)21 (B )23 (C)1 (D )3 (2)复数3)2321(i +的值是 (A )i - (B)i (C )1- (D )1(3)不等式0|)|1)(1(>-+x x 的解集是(A)}10|{<≤x x (B )0|{<x x 且}1-≠x(C )}11|{<<-x x (D )1|{<x x 且}1-≠x(4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B)),4(ππ (C))45,4(ππ (D))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 (A)N M = (B )N M ⊂ (C )N M ⊃ (D)∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A)0 (B)1 (C )2 (D)2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是(A )43 (B )54 (C)53 (D)53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A)︒90 (B )︒60 (C)︒45 (D)︒30(9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是(A )0≥b (B)0≤b (C)0>b (D)0<b(10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A )8种 (B)12种 (C)16种 (D )20种(12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A)115000亿元 (B)120000亿元 (C )127000亿元 (D)135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.(13)函数x a y =在]1,0[上的最大值与最小值这和为3,则a =(14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k(15)72)2)(1(-+x x 展开式中3x 的系数是。
2023年全国统一高考数学试卷(理科)(甲卷)(解析版)
2023年全国统一高考数学试卷(理科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},U为整数集,则∁U(A⋃B)=( )A.{x|x=3k,k∈Z}B.{x|x=3k﹣1,k∈Z}C.{x|x=3k﹣2,k∈Z}D.∅【答案】A【解答】解:∵A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},∴A∪B={x|x=3k+1或x=3k+2,k∈Z},又U为整数集,∴∁U(A⋃B)={x|x=3k,k∈Z}.故选:A.2.(5分)若复数(a+i)(1﹣ai)=2,a∈R,则a=( )A.﹣1B.0C.1D.2【答案】C【解答】解:因为复数(a+i)(1﹣ai)=2,所以2a+(1﹣a2)i=2,即,解得a=1.故选:C.3.(5分)执行下面的程序框图,输出的B=( )A.21B.34C.55D.89【答案】B【解答】解:根据程序框图列表如下:A13821B251334n1234故输出的B=34.故选:B.4.(5分)向量||=||=1,||=,且+=,则cos〈﹣,﹣〉=( )【答案】D【解答】解:因为向量||=||=1,||=,且+=,所以﹣=+,即2=1+1+2×1×1×cos<,>,解得cos<,>=0,所以⊥,又﹣=2+,﹣=+2,所以(﹣)•(﹣)=(2+)•(+2)=2+2+5•=2+2+0=4,|﹣|=|﹣|===,所以cos〈﹣,﹣〉===.故选:D.5.(5分)已知正项等比数列{a n}中,a1=1,S n为{a n}前n项和,S5=5S3﹣4,则S4=( )A.7B.9C.15D.30【答案】C【解答】解:等比数列{a n}中,设公比为q,a1=1,S n为{a n}前n项和,S5=5S3﹣4,显然q≠1,(如果q=1,可得5=15﹣4矛盾),可得=5•﹣4,解得q2=4,即q=2,S4===15.故选:C.6.(5分)有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为( )A.0.8B.0.4C.0.2D.0.1【答案】A【解答】解:根据题意,在报名足球或乒乓球俱乐部的70人中,设某人报足球俱乐部为事件A,报乒乓球俱乐部为事件B,则P(A)==,由于有50人报名足球俱乐部,60人报名乒乓球俱乐部,则同时报名两个俱乐部的由50+60﹣70=40人,则P(AB)==,则P(B|A)===0.8.故选:A.7.(5分)“sin2α+sin2β=1”是“sinα+cosβ=0”的( )A.充分条件但不是必要条件B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件【答案】B【解答】解:sin2α+sin2β=1,可知sinα=±cosβ,可得sinα±cosβ=0,所以“sin2α+sin2β=1”是“sinα+cosβ=0”的必要不充分条件,故选:B.8.(5分)已知双曲线的离心率为,其中一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.9.(5分)有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为( )A.120B.60C.40D.30【答案】B【解答】解:先从5人中选1人连续两天参加服务,共有=5种选法,然后从剩下4人中选1人参加星期六服务,剩下3人中选取1人参加星期日服务,共有=12种选法,根据分步乘法计数原理可得共有5×12=60种选法.故选:B.10.(5分)已知f(x)为函数向左平移个单位所得函数,则y=f(x)与的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:把函数向左平移个单位可得函数f(x)=cos(2x+)=﹣sin2x的图象,而直线=(x﹣1)经过点(1,0),且斜率为,且直线还经过点(,)、(﹣,﹣),0<<1,﹣1<﹣<0,如图,故y=f(x)与的交点个数为3.故选:C.11.(5分)在四棱锥P﹣ABCD中,底面ABCD为正方形,AB=4,PC=PD=3,∠PCA=45°,则△PBC的面积为( )A.B.C.D.【答案】C【解答】解:解法一:∵四棱锥P﹣ABCD中,底面ABCD为正方形,又PC=PD=3,∠PCA=45°,∴根据对称性易知∠PDB=∠PCA=45°,又底面正方形ABCD得边长为4,∴BD=,∴在△PBD中,根据余弦定理可得:=,又BC=4,PC=3,∴在△PBC中,由余弦定理可得:cos∠PCB==,∴sin∠PCB=,∴△PBC的面积为==.解法二:如图,设P在底面的射影为H,连接HC,设∠PCH=θ,∠ACH=α,且α∈(0,),则∠HCD=45°﹣α,或∠HCD=45°+α,易知cos∠PCD=,又∠PCA=45°,则根据最小角定理(三余弦定理)可得:,∴或,∴或,∴或,∴tanα=或tanα=,又α∈(0,),∴tanα=,∴cosα=,sinα=,∴,∴cosθ=,再根据最小角定理可得:cos∠PCB=cosθcos(45°+α)==,∴sin∠PCB=,又BC=4,PC=3,∴△PBC的面积为==.故选:C.12.(5分)已知椭圆=1,F1,F2为两个焦点,O为原点,P为椭圆上一点,cos∠F1PF2=,则|PO|=( )A.B.C.D.【答案】B【解答】解:椭圆,F1,F2为两个焦点,c=,O为原点,P为椭圆上一点,,设|PF1|=m,|PF2|=n,不妨m>n,可得m+n=6,4c2=m2+n2﹣2mn cos∠F1PF2,即12=m2+n2﹣mn,可得mn=,m2+n2=21,=(),可得|PO|2==(m2+n2+2mn cos∠F1PF2)=(m2+n2+mn)=(21+)=.可得|PO|=.故选:B.二、填空题:本题共4小题,每小题5分,共20分。
2003年高考真题——数学(理科)真题及答案[全国卷I]
2003年高考真题——数学(理科)真题及答案[全国卷I]2003年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的。
1.已知$x\in (-\pi/2,0)$,$cosx=4$,则$tan2x=$text{(A)}\frac{7}{24}\quad\text{(B)}-\frac{7}{24}\quad\text{(C)}\frac{24}{7}\quad\text{(D)}-\frac{247}{25}2.圆锥曲线$\rho=2cos\theta$的准线方程是text{(A)}\rho cos\theta=-2\quad\text{(B)}\rhocos\theta=2\quad\text{(C)}\rho sin\theta=2\quad\text{(D)}\rho sin\theta=-23.设函数$f(x)=\begin{cases}1,&x1$,则$x$的取值范围是text{(A)}(-1,1)\quad\text{(B)}(-1,+\infty)\quad\text{(C)}(-\infty,-2)\cup[0,+\infty)\quad\text{(D)}(-\infty,-1)\cup(1,+\infty)4.函数$y=2sinx(sinx+cosx)$的最大值为text{(A)}1+2\sqrt{2}\quad\text{(B)}2-\sqrt{2}\quad\text{(C)}2\quad\text{(D)}2\sqrt{2}5.已知圆$C:(x-a)^2+(y-2)^2=4(a>0)$及直线$l:x-y+3=0$,当直线$l$被$C$截得的弦长为23时,则$a=$text{(A)}2\quad\text{(B)}2-\sqrt{2}\quad\text{(C)}2^{-1}\quad\text{(D)}2+\sqrt{2}6.已知圆锥的底面半径为$R$,高为$3R$,在它的所有内接圆柱中,全面积的最大值是text{(A)}2\pi R\quad\text{(B)}\pi R^2\quad\text{(C)}\piR\sqrt{2}\quad\text{(D)}\pi R\sqrt{3}7.已知方程$(x^2-2x+m)(x^2-2x+n)=0$的四个根组成一个首项为1的等差数列,则$|m-n|=$text{(A)}1\quad\text{(B)}3\quad\text{(C)}\frac{1}{2}\quad\t ext{(D)}\frac{4}{3}8.已知双曲线中心在原点且一个焦点为$F(7,0)$,直线$y=x-1$与其相交于$M$、$N$两点,$MN$中点的横坐标为$-\frac{1}{2}$,则此双曲线的方程是text{(A)}\frac{x^2}{9}-\frac{y^2}{8}=1\quad\text{(B)}\frac{y^2}{9}-\frac{x^2}{8}=1\quad\text{(C)}\frac{x^2}{8}-\frac{y^2}{9}=1\quad\text{(D)}\frac{y^2}{8}-\frac{x^2}{9}=19.函数$f(x)=\sin x$,$x\in[\frac{\pi}{2},\frac{3\pi}{2}]$的反函数$f^{-1}(x)$是text{(A)}-\arcsin x,\ x\in[-1,1]\quad\text{(B)}-\pi-\arcsin x,\ x\in[-1,1]\quad\text{(C)}\pi+\arcsin x,\ x\in[-1,1]\quad\text{(D)}\pi-\arcsin x,\ x\in[-1,1]10.已知长方形的四个顶点$A(0,0)$,$B(2,0)$,$C(2,1)$和$D(0,1)$,一质点从$AB$的中点$P$沿与$AB$的夹角$\theta$的方向射到$BC$上的点$Q$,则$\theta$的取值范围是text{(A)}\left[-\frac{\pi}{4},\frac{\pi}{4}\right]\quad\text{(B)}\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\quad\text{(C)}\left[-\frac{\pi}{3},\frac{\pi}{3}\right]\quad\text{(D)}\left[-\frac{\pi}{6},\frac{\pi}{6}\right]2.将文章进行修正和改写:2、P3和P4是点P在CD、DA和AB上的反射点,入射角等于反射角。
2004年高考.全国卷Ⅱ.理科数学试题及答案(四川、吉林、黑龙江、云南等地区)
2004年高考试题全国卷Ⅱ理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21(B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2 (C )ω1-(D )21ω(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条(9)已知平面上直线L 的方向向量e =(-54,53),点O (0,0)和A (1,-2)在L 上的射影分别是O 1和A 1,则11A O =λe ,其中λ= (A )511 (B )-511(C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π (12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120 则z =3x +2y 的最大值是 . (15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . (16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱 其中,真命题的编号是 (写出所有真命题的编号).三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高.(18)(本小题满分12分)已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求 (Ⅰ)A 、B 两组中有一组恰有两支弱队的概率; (Ⅱ)A 组中至少有两支弱队的概率.(19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.(Ⅰ)求证:CD⊥平面BDM;(Ⅱ)求面B1BD与面CBD所成二面角的大小.(21)(本小题满分12分)给定抛物线C:y2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点.(Ⅰ)设l的斜率为1,求与夹角的大小;(Ⅱ)设=AFλ,若λ∈[4,9],求l在y轴上截距的变化范围.(22)(本小题满分14分)已知函数f(x)=ln(1+x)-x,g(x)=x ln x.(1)求函数f(x)的最大值;(2)设0<a<b,证明:0<g(a)+g(b)-2g(2ba+)<(b-a)ln2.2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 解题思路:1、 已知集合M={x|x 2<4},N={x|x 2-2x-3<0},则集合M ∩N=( C )A {x|x<-2}B {x|x>3}C {x|-1<x<2}D {x|2<x<3} 解法一:(直接求解)由M={x|x 2<4}={x|-2<x<2},N={x|x 2-2x-3<0}={x|-1<x<3} 则:M ∩N={x|-2<x<2}∩{x|-1<x<3}={x|-1<x<2}。
2023年全国统一高考数学试卷(理科)(乙卷)(解析版)
2023年全国统一高考数学试卷(理科)(乙卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=,则=( )A.1﹣2i B.1+2i C.2﹣i D.2+i【答案】B【解答】解:∵i2=﹣1,i5=i,∴z===1﹣2i,∴=1+2i.故选:B.2.(5分)设集合U=R,集合M={x|x<1},N={x|﹣1<x<2},则{x|x≥2}=( )A.∁U(M∪N)B.N∪∁U M C.∁U(M∩N)D.M∪∁U N【答案】A【解答】解:由题意:M∪N={x|x<2},又U=R,∴∁U(M∪N)={x|x≥2}.故选:A.3.(5分)如图,网格纸上绘制的是一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30【答案】D【解答】解:根据几何体的三视图转换为直观图为:该几何体是由两个直四棱柱组成的几何体.如图所示:故该几何体的表面积为:4+6+5+5+2+2+2+4=30.故选:D.4.(5分)已知f(x)=是偶函数,则a=( )A.﹣2B.﹣1C.1D.2【答案】D【解答】解:∵f(x)=的定义域为{x|x≠0},又f(x)为偶函数,∴f(﹣x)=f(x),∴,∴,∴ax﹣x=x,∴a=2.故选:D.5.(5分)设O为平面坐标系的坐标原点,在区域{(x,y)|1≤x2+y2≤4}内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为( )A.B.C.D.【答案】C【解答】解:如图,PQ为第一象限与第三象限的角平分线,根据题意可得构成A的区域为圆环,而直线OA的倾斜角不大于的点A构成的区域为图中阴影部分,∴所求概率为=.故选:C.6.(5分)已知函数f(x)=sin(ωx+φ)在区间(,)单调递增,直线x=和x=为函数y=f(x)的图像的两条对称轴,则f(﹣)=( )A.﹣B.﹣C.D.【答案】D【解答】解:根据题意可知=,∴T=π,取ω>0,∴ω==2,又根据“五点法“可得,k∈Z,∴φ=,k∈Z,∴f(x)=sin(2x)=sin(2x﹣),∴f(﹣)=sin(﹣)=sin(﹣)=sin=.故选:D.7.(5分)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )A.30种B.60种C.120种D.240种【答案】C【解答】解:根据题意可得满足题意的选法种数为:=120.故选:C.8.(5分)已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,∠AOB =120°,若△PAB的面积等于,则该圆锥的体积为( )A.πB.πC.3πD.3π【答案】B【解答】解:根据题意,设该圆锥的高为h,即PO=h,取AB的中点E,连接PE、OE,由于圆锥PO的底面半径为,即OA=OB=,而∠AOB=120°,故AB===3,同时OE=OA×sin30°=,△PAB中,PA=PB,E为AB的中点,则有PE⊥AB,又由△PAB的面积等于,即PE•AB=,变形可得PE=,而PE=,则有h2+=,解可得h=,故该圆锥的体积V=π×()2h=π.故选:B.9.(5分)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C﹣AB﹣D为150°,则直线CD与平面ABC所成角的正切值为( )A.B.C.D.【答案】C【解答】解:如图,取AB的中点E,连接CE,DE,则根据题意易得AB⊥CE,AB⊥DE,∴二面角C﹣AB﹣D的平面角为∠CED=150°,∵AB⊥CE,AB⊥DE,且CE∩DE=E,∴AB⊥平面CED,又AB⊂平面ABC,∴平面CED⊥平面ABC,∴CD在平面ABC内的射影为CE,∴直线CD与平面ABC所成角为∠DCE,过D作DH垂直CE所在直线,垂足点为H,设等腰直角三角形ABC的斜边长为2,则可易得CE=1,DE=,又∠DEH=30°,∴DH=,EH=,∴CH=1+=,∴tan∠DCE===.故选:C.10.(5分)已知等差数列{a n}的公差为,集合S={cos a n|n∈N*},若S={a,b},则ab=( )A.﹣1B.﹣C.0D.【答案】B【解答】解:设等差数列{a n}的首项为a1,又公差为,∴,∴,其周期为=3,又根据题意可知S集合中仅有两个元素,∴可利用对称性,对a n取特值,如a1=0,,,•,或,,a3=π,•,代入集合S中计算易得:ab=.故选:B.11.(5分)设A,B为双曲线x2﹣=1上两点,下列四个点中,可为线段AB中点的是( )A.(1,1)B.(﹣1,2)C.(1,3)D.(﹣1,﹣4)【答案】D【解答】解:设A(x1,y1),B(x2,y2),AB中点为(x0,y0),,①﹣②得k AB==9×=9×,即﹣3<9×<3⇒,即或,故A、B、C错误,D正确.故选:D.12.(5分)已知⊙O的半径为1,直线PA与⊙O相切于点A,直线PB与⊙O交于B,C两点,D为BC的中点,若|PO|=,则•的最大值为( )A.B.C.1+D.2+【答案】A【解答】解:如图,设∠OPC=α,则,根据题意可得:∠APO=45°,∴==cos2α﹣sinαcosα==,又,∴当,α=,cos()=1时,取得最大值.故选:A.二、填空题:本题共4小题,每小题5分,共20分。
2004年高考数学(理科)真题及答案[全国卷I]
2004年全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C k n P k(1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合=⋂<--=<=N M x x x N x x M 则集合},032|{},4|{22 ( )A .{2|-<x x }B .{3|>x x }C .{21|<<-x x }D . {32|<<x x }2.=-+-+→542lim 22x x x x n x ( )A .21B .1C .52 D .41 3.设复数ωω++-=1,2321则i =( )A .ω-B .2ωC .ω1-D .21ω 4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为( )A .1)1(22=++y xB .122=+y xC .1)1(22=++y xD .1)1(22=-+y x球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π,其中R 表示球的半径5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是( )A .6π-B .6πC .12π-D .12π 6.函数x e y -=的图象( )A .与x e y =的图象关于y 轴对称B .与x e y =的图象关于坐标原点对称C .与x e y -=的图象关于y 轴对称D .与x e y -=的图象关于坐标原点对称7.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则 球心O 到平面ABC 的距离为( )A .31 B .33 C .32 D .36 8.在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条 9.已知平面上直线l 的方向向量e =),53,54(-点O (0,0)和A (1,-2)在l 上的射影分别是O ′和A ′,则λ=''A O e ,其中λ= ( )A .511 B .511-C .2D .-2 10.函数x x x y sin cos -=在下面哪个区间内是增函数( )A .)23,2(ππB .)2,(ππC .)25,23(ππ D .)3,2(ππ 11.函数x x y 24cos sin +=的最小正周期为 ( )A .4π B .2π C .πD .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521 的数共有 ( ) A .56个 B .57个 C .58个 D .60个第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为14.设y x ,满足约束条件:⎪⎩⎪⎨⎧≤-≥≥,12,,0y x y x x则y x z 23+=的最大值是 .15.设中心在原点的椭圆与双曲线2222y x -=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . 16.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱 ④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知锐角三角形ABC 中,.51)sin(,53)sin(=-=+B A B A (Ⅰ)求证:B A tan 2tan =;(Ⅱ)设AB=3,求AB 边上的高. 18.(本小题满分12分) 已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:(Ⅰ)A 、B 两组中有一组恰有两支弱队的概率; (Ⅱ)A 组中至少有两支弱队的概率. 19.(本小题满分12分)数列}{n a 的前n 项和记为S n ,已知).3,2,1(2,111 =+==+n S nn a a n n 证明: (Ⅰ)数列}{nS n是等比数列; (Ⅱ).41n n a S =+ 20.(本小题满分12分)如图,直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,AC=1,CB=2,侧棱AA 1=1,侧面AA 1B 1B的两条对角线交点为D ,B 1C 1的中点为M.(Ⅰ)求证CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.21.(本小题满分12分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点。
2004年高考数学(理科)真题及答案[全国卷I]
2004年全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C k n P k(1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合=⋂<--=<=N M x x x N x x M 则集合},032|{},4|{22 ( )A .{2|-<x x }B .{3|>x x }C .{21|<<-x x }D . {32|<<x x }2.=-+-+→542lim 22x x x x n x ( )A .21B .1C .52 D .41 3.设复数ωω++-=1,2321则i =( )A .ω-B .2ωC .ω1-D .21ω 4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为( )A .1)1(22=++y xB .122=+y xC .1)1(22=++y xD .1)1(22=-+y x球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π,其中R 表示球的半径5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是( )A .6π-B .6πC .12π-D .12π 6.函数x e y -=的图象( )A .与x e y =的图象关于y 轴对称B .与x e y =的图象关于坐标原点对称C .与x e y -=的图象关于y 轴对称D .与x e y -=的图象关于坐标原点对称7.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则 球心O 到平面ABC 的距离为( )A .31 B .33 C .32 D .36 8.在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条 9.已知平面上直线l 的方向向量e =),53,54(-点O (0,0)和A (1,-2)在l 上的射影分别是O ′和A ′,则λ=''A O e ,其中λ= ( )A .511 B .511-C .2D .-2 10.函数x x x y sin cos -=在下面哪个区间内是增函数( )A .)23,2(ππB .)2,(ππC .)25,23(ππ D .)3,2(ππ 11.函数x x y 24cos sin +=的最小正周期为 ( )A .4π B .2π C .πD .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521 的数共有 ( ) A .56个 B .57个 C .58个 D .60个第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为14.设y x ,满足约束条件:⎪⎩⎪⎨⎧≤-≥≥,12,,0y x y x x则y x z 23+=的最大值是 .15.设中心在原点的椭圆与双曲线2222y x -=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . 16.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱 ④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知锐角三角形ABC 中,.51)sin(,53)sin(=-=+B A B A (Ⅰ)求证:B A tan 2tan =;(Ⅱ)设AB=3,求AB 边上的高. 18.(本小题满分12分) 已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:(Ⅰ)A 、B 两组中有一组恰有两支弱队的概率; (Ⅱ)A 组中至少有两支弱队的概率. 19.(本小题满分12分)数列}{n a 的前n 项和记为S n ,已知).3,2,1(2,111 =+==+n S nn a a n n 证明: (Ⅰ)数列}{nS n是等比数列; (Ⅱ).41n n a S =+ 20.(本小题满分12分)如图,直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,AC=1,CB=2,侧棱AA 1=1,侧面AA 1B 1B的两条对角线交点为D ,B 1C 1的中点为M.(Ⅰ)求证CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.21.(本小题满分12分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点。
2000年高考.全国卷.理科数学试题及答案
2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页。
第II卷3至9页。
共150分。
考试时间120分钟。
第I卷(选择题共60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素,则在映射f下,象20的原象是()(A)2 (B)3(C)4(D)5(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6(D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα>tgβ(C)若α、β是第三象限角,则cosα>cosβ(D)若α、β是第四象限角,则tgα>tgβ(5)函数y=-xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算。
某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A)800~900元(B)900~1200元(C)1200~1500元(D)1500~2800元(7)若a>b>1,,则(A)R<P<Q(B)P<Q<R(C)Q<P<R(D)P<R<Q (8)以极坐标中的点(1,1)为圆心,1为半径的圆的方程是(A)(B)(C)(D)(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A)(B)(C)(D)(10)过原点的直线与圆相切,若切点在第三象限,则该直线的方程是(A)(B)(C)(D)(11)过抛物线(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ 的长分别是p、q,则等于(A)2a(B)(C)4a(D)(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A)(B)(C)(D)第II卷(非选择题共90分)注意事项:1.第II卷共7页,用钢笔或圆珠笔直接答在试题卷中。
2000年高考.全国卷.理科数学试题及答案
2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页。
第II卷3至9页。
共150分。
考试时间120分钟。
第I卷(选择题共60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素,则在映射f下,象20的原象是()(A)2 (B)3(C)4(D)5(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6(D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα>tgβ(C)若α、β是第三象限角,则cosα>cosβ(D)若α、β是第四象限角,则tgα>tgβ(5)函数y=-xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算。
全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%……某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A)800~900元(B)900~1200元(C)1200~1500元(D)1500~2800元(7)若a>b>1,,则(A)R<P<Q(B)P<Q<R(C)Q<P<R(D)P<R<Q (8)以极坐标中的点(1,1)为圆心,1为半径的圆的方程是(A)(B)(C)(D)(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A)(B)(C)(D)(10)过原点的直线与圆相切,若切点在第三象限,则该直线的方程是(A)(B)(C)(D)(11)过抛物线(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ 的长分别是p、q,则等于(A)2a(B)(C)4a(D)(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A)(B)(C)(D)第II卷(非选择题共90分)注意事项:1.第II卷共7页,用钢笔或圆珠笔直接答在试题卷中。
2000年高考.全国卷.理科数学试题及答案
2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页。
第II卷3至9页。
共150分。
考试时间120分钟。
第I卷(选择题共60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素,则在映射f下,象20的原象是()(A)2 (B)3 (C)4 (D)5(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6 (D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα>tgβ(C)若α、β是第三象限角,则cosα>cosβ(D)若α、β是第四象限角,则tgα>tgβ(5)函数y=-xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算。
全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%……某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A)800~900元(B)900~1200元(C)1200~1500元(D)1500~2800元(7)若a>b>1,,则(A)R<P<Q (B)P<Q<R (C)Q<P<R (D)P<R<Q(8)以极坐标中的点(1,1)为圆心,1为半径的圆的方程是(A)(B)(C)(D)(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A)(B)(C)(D)(10)过原点的直线与圆相切,若切点在第三象限,则该直线的方程是(A)(B)(C)(D)(11)过抛物线(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,则等于(A)2a (B)(C)4a(D)(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A)(B)(C)(D)第II卷(非选择题共90分)注意事项:1.第II卷共7页,用钢笔或圆珠笔直接答在试题卷中。
2024年高考全国甲卷数学(理)真题卷(含答案与解析).
绝密★启用前2024年普通高等学校招生全国统一考试理科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设5i z =+,则()i z z +=( )A 10iB. 2iC. 10D. 2-2. 集合{}}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( )A. {}1,4,9B. {}3,4,9C. {}1,2,3D. {}2,3,53. 若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A. 5B.12C. 2-D. 72-4. 等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =( ) A. 2-B.73C. 1D. 25. 已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为( ) A. 4B. 3C. 2D.6. 设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为( ) .A.16B.13C.12D.237. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A. B.C. D.8.已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1+B. 1-C.D. 19. 已知向量()()1,,,2a x x b x =+=r r,则( )A. “3x =-”是“a b ⊥r r”的必要条件 B. “3x =-”是“//a b r r”的必要条件 C. “0x =”是“a b ⊥r r ”充分条件D. “1x =-”是“//a b r r”的充分条件10. 设αβ、两个平面,m n 、是两条直线,且m αβ=I .下列四个命题: ①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥其中所有真命题的编号是( ) A. ①③B. ②④C. ①②③D. ①③④11. 在ABC V 中内角,,A B C 所对边分别,,a b c ,若π3B =,294b ac =,则sin sin A C +=( ) A.32B.C.D.12. 已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( )的是为A. 2B. 3C. 4D. 二、填空题:本题共4小题,每小题5分,共20分.13. 1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______. 14. 已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙______. 15. 已知1a >,8115log log 42a a -=-,则=a ______. 16. 有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17. 某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品 合格品 不合格品总计 甲车间 26 24 0 50 乙车间 70 28 2 100 总计96522150(1)填写如下列联表:优级品非优级品甲车间 乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =,设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+150件产品的数据,能否认12.247≈)附:22()()()()()n ad bc K a b c d a c b d -=++++ ()2P K k ≥0.050 0.010 0.001 k3.8416.63510.82818. 记n S 为数列{}n a 的前n 项和,且434n n S a =+. (1)求{}n a 的通项公式; (2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .19. 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.20. 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.21 已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分. [选修4-4:坐标系与参数方程]22. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 的直角坐标方程; (2)设直线l :x ty t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.[选修4-5:不等式选讲]23. 实数,a b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥.参考答案一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设5i z =+,则()i z z +=( )A. 10iB. 2iC. 10D. 2-【答案】A 【解析】【分析】结合共轭复数与复数的基本运算直接求解.【详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=. 故选:A2. 集合{}}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( )A. {}1,4,9B. {}3,4,9C. {}1,2,3D. {}2,3,5.【答案】D 【解析】【分析】由集合B 的定义求出B ,结合交集与补集运算即可求解. 【详解】因为{}}1,2,3,4,5,9,A B A ==,所以{}1,4,9,16,25,81B =,则{}1,4,9A B =I ,(){}2,3,5A A B =I ð 故选:D3. 若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A. 5B.12C. 2-D. 72-【答案】D 【解析】【分析】画出可行域后,利用z 的几何意义计算即可得.【详解】实数,x y 满足43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:由5z x y =-可得1155y x z =-, 即z 的几何意义为1155y x z =-的截距的15-,则该直线截距取最大值时,z 有最小值, 此时直线1155y x z =-过点A , 联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫ ⎪⎝⎭,则min 375122z =-⨯=-. 故选:D.4. 等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =( ) A. 2- B.73C. 1D. 2【答案】B 【解析】【分析】由510S S =结合等差中项的性质可得80a =,即可计算出公差,即可得1a 的值. 【详解】由105678910850S S a a a a a a -=++++==,则80a =, 则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭. 故选:B.5. 已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为( ) A. 4 B. 3C. 2D.【答案】C 【解析】【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率. 【详解】设()10,4F -、()20,4F 、()6,4-P , 则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===. 故选:C.6. 设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为( ) A.16B.13C.12D.23【答案】A 【解析】【分析】借助导数的几何意义计算可得其在点()0,1处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【详解】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+,则()()()()()02e 2cos 010e 2sin 000310f ++-+⨯'==+,即该切线方程为13y x -=,即31y x =+, 令0x =,则1y =,令0y =,则13x =-, 故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=. 故选:A.7. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A. B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D. 【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭, 故可排除D.故选:B. 8. 已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭()A.1+B. 1-C.D. 1【答案】B 【解析】 【分析】先将cos cos sin αα-α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos cos sin ααα=-,所以11tan =-α,tan 1⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==-α+ ⎪-α⎝⎭, 故选:B .9. 已知向量()()1,,,2a x x b x =+=r r,则( )A. “3x =-”是“a b ⊥r r”的必要条件B. “3x =-”是“//a b r r”的必要条件C. “0x =”是“a b ⊥r r”的充分条件D. “1x =-”是“//a b r r”的充分条件【答案】C 【解析】【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b ⊥r r 时,则0a b ⋅=r r,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b ==r r ,故0a b ⋅=r r,所以a b ⊥r r,即充分性成立,故C 正确;对B ,当//a b r r时,则22(1)x x +=,解得1x =,即必要性不成立,故B 错误;对D ,当1x =-+时,不满足22(1)x x +=,所以//a b r r不成立,即充分性不立,故D 错误. 故选:C.10. 设αβ、是两个平面,m n 、是两条直线,且m αβ=I .下列四个命题: ①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n④若n 与α和β所成的角相等,则m n ⊥其中所有真命题的编号是( ) A. ①③ B. ②④C. ①②③D. ①③④【答案】A 【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③. 【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β, 当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确; 对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s , 同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β, 因为s ⊂平面α,m αβ=I ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误; 综上只有①③正确, 故选:A.11. 在ABC V 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A.32B.C.D.【答案】C 【解析】【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==. 由余弦定理可得:22294b ac ac ac =+-=, 即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==, 所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +=. 故选:C.12. 已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( )A. 2B. 3C. 4D. 【答案】C 【解析】【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解. 【详解】因为,,a b c 成等差数列,所以2b a c =+,2c b a =-,代入直线方程0ax by c ++=得20ax by b a ++-=,即()()120a x b y -++=,令1020x y -=⎧⎨+=⎩得12x y =⎧⎨=-⎩,故直线恒过()1,2-,设()1,2P -,圆化为标准方程得:()22:25C x y ++=,设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB 最小,1,PC AC r ===,此时24AB AP ====.故选:C二、填空题:本题共4小题,每小题5分,共20分.13. 1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______. 【答案】5 【解析】【分析】先设展开式中第1r +项系数最大,则根据通项公式有1091101010111101011C C 3311C C 33rrr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,进而求出r 即可求解.【详解】由题展开式通项公式为101101C 3rr r r T x -+⎛⎫= ⎪⎝⎭,010r ≤≤且r ∈Z ,设展开式中第1r +项系数最大,则1091101010111101011C C 3311C C 33r rr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩, 294334r r ⎧≥⎪⎪⇒⎨⎪≤⎪⎩,即293344r ≤≤,又r ∈Z ,故8r =, 所以展开式中系数最大的项是第9项,且该项系数为28101C 53⎛⎫= ⎪⎝⎭. 故答案为:5.14. 已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙______.【解析】【分析】先根据已知条件和圆台结构特征分别求出两圆台的高,再根据圆台的体积公式直接代入计算即可得解.【详解】由题可得两个圆台高分别为)12h r r==-甲,)12h r r==-乙,所以V hV h====甲甲乙乙.15. 已知1a>,8115log log42aa-=-,则=a______.【答案】64【解析】【分析】将8log,log4aa利用换底公式转化成2log a来表示即可求解.【详解】由题28211315loglog log4log22aaa a-=-=-,整理得()2225log60log aa--=,2log1a⇒=-或2log6a=,又1a>,所以622log6log2a==,故6264a==故答案为:64.16. 有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n为取出的三个球上数字的平均值,则m与n差的绝对值不超过12的概率是______.【答案】715【解析】【分析】根据排列可求基本事件的总数,设前两个球的号码为,a b,第三个球的号码为c,则的323a b c a b +-≤≤++,就c 的不同取值分类讨论后可求随机事件的概率.【详解】从6个不同的球中不放回地抽取3次,共有36A 120=种, 设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++-≤, 故2()3c a b -+≤,故32()3c a b -≤-+≤, 故323a b c a b +-≤≤++,若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种,若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4,()()()()()3,1,4,1,5,1,6,1,4,3,故有10种,当3c =,则39a b ≤+≤,则(),a b 为:()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5, ()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c =,则511a b ≤+≤,同理有16种, 当5c =,则713a b ≤+≤,同理有10种, 当6c =,则915a b ≤+≤,同理有2种, 共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=, 故所求概率为56712015=. 故答案为:715三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17. 某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品 合格品 不合格品总计 甲车间262450乙车间 70 28 2 100 总计96522150(1)填写如下列联表:优级品非优级品甲车间 乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =,设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+150件产品的数据,能否认12.247≈)附:22()()()()()n ad bc K a b c d a c b d -=++++ ()2P K k ≥0.050 0.010 0.001 k3.841 6.63510828【答案】(1)答案见详解(2)答案见详解 【解析】【分析】(1)根据题中数据完善列联表,计算2K ,并与临界值对比分析; (2)用频率估计概率可得0.64p =,根据题意计算p +. 【小问1详解】 根据题意可得列联表:.优级品非优级品甲车间 26 24 乙车间7030可得()2215026302470754.687550100965416K ⨯-⨯===⨯⨯⨯, 因为3.841 4.6875 6.635<<,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异. 【小问2详解】由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64150=, 用频率估计概率可得0.64p =,又因为升级改造前该工厂产品的优级品率0.5p =,则0.50.50.5 1.650.56812.247p +=+≈+⨯≈,可知p p >+ 所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了. 18. 记n S 为数列{}n a 的前n 项和,且434n n S a =+. (1)求{}n a 的通项公式; (2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .【答案】(1)14(3)n n a -=⋅-(2)(21)31nn T n =-⋅+ 【解析】【分析】(1)利用退位法可求{}n a 的通项公式. (2)利用错位相减法可求n T.【小问1详解】当1n =时,1114434S a a ==+,解得14a =.当2n ≥时,11434n n S a --=+,所以1144433n n n n n S S a a a ---==-即13n n a a -=-,而140a =≠,故0n a ≠,故13nn a a -=-, ∴数列{}n a 是以4为首项,3-为公比的等比数列, 所以()143n n a -=⋅-.【小问2详解】111(1)4(3)43n n n n b n n ---=-⋅⋅⋅-=⋅,所以123n n T b b b b =++++L 0211438312343n n -=⋅+⋅+⋅++⋅L 故1233438312343nn T n =⋅+⋅+⋅++⋅L 所以1212443434343n n n T n --=+⋅+⋅++⋅-⋅L()1313444313n nn --=+⋅-⋅-()14233143n n n -=+⋅⋅--⋅(24)32n n =-⋅-,(21)31n n T n ∴=-⋅+.19. 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值. 【答案】(1)证明见详解;(2【解析】【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD ,进而得证;(2)作BO AD ⊥交AD 于O ,连接OF ,易证,,OB OD OF 三垂直,采用建系法结合二面角夹角余弦公式即可求解. 【小问1详解】因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD =, 四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;【小问2详解】如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =, 结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =, 所以ABM V 为等边三角形,O 为AM中点,所以OB =,又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =, 四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM V 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系,()0,0,3F,)()(),0,1,0,0,2,3BM E,()(),BM BF ==u u u u r u u u r,()2,3BE =u u u r ,设平面BFM 的法向量为()111,,m x y z =r,平面EMB 的法向量为()222,,n x y z =r,则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩u u u u r r u u u r r,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =113,1y z ==,即)m =r ,则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩u u u u r r u u u r r,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==-,即)1n =-r,11cos ,13m n m n m n ⋅===⋅r r r r r r,则sin ,m n =r r , 故二面角F BM E --20. 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y +=(2)证明见解析 【解析】【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x =-,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y -,结合韦达定理化简前者可得10Q y y -=,故可证AQ y ⊥轴.【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b =故椭圆方程为22143x y +=.【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y ,由223412(4)x y y k x ⎧+=⎨=-⎩可得()2222343264120k x k x k +-+-=, 故()()422Δ102443464120k kk=-+->,故1122k -<<, 又22121222326412,3434k k x x x x k k -+==++, 而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=- ⎪⎝⎭-,故22223325252Qy y y x x --==--, 所以()1222112225332525Q y x y y y y y x x ⨯-+-=+=--()()()12224253425k x x k x x -⨯-+-=-()222212122264123225825834342525k k x x x x k k k kx x -⨯-⨯+-++++==-- 2222212824160243234025k k k k k x --+++==-, 故1Q y y =,即AQ y ⊥轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.21. 已知函数()()()1ln 1f x ax x x =-+-. (1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围. 【答案】(1)极小值为0,无极大值.(2)12a ≤- 【解析】【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值. (2)求出函数的二阶导数,就12a ≤-、102a -<<、0a ≥分类讨论后可得参数的取值范围. 【小问1详解】当2a =-时,()(12)ln(1)f x x x x =++-, 故121()2ln(1)12ln(1)111x f x x x x x +'=++-=+-+++, 因为12ln(1),11y x y x=+=-++在()1,∞-+上为增函数, 故()f x '在()1,∞-+上为增函数,而(0)0f '=,故当10x -<<时,()0f x '<,当0x >时,()0f x '>, 故()f x 在0x =处取极小值且极小值为()00f =,无极大值. 【小问2详解】()()()()11ln 11ln 1,011a x axf x a x a x x x x +-=-+'+-=-+->++, 设()()()1ln 1,01a x s x a x x x+=-+->+,则()()()()()()222111211111a a x a aax a s x x x x x ++++-++=-=-=-+++'+, 当12a ≤-时,()0s x '>,故()s x 在()0,∞+上为增函数, 故()()00s x s >=,即()0f x '>,所以()f x 在[)0,∞+上为增函数,故()()00f x f ≥=. 当102a -<<时,当210a x a+<<-时,()0s x '<, 故()s x 在210,a a +⎛⎫-⎪⎝⎭上为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()0s x s <,即在210,a a +⎛⎫-⎪⎝⎭上()0f x '<即()f x 为减函数, 故在210,a a +⎛⎫-⎪⎝⎭上()()00f x f <=,不合题意,舍. 当0a ≥,此时()0s x '<在()0,∞+上恒成立,同理可得()0,∞+上()()00f x f <=恒成立,不合题意,舍; 综上,12a ≤-. 【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分. [选修4-4:坐标系与参数方程]22. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 的直角坐标方程;(2)设直线l :x ty t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.【答案】(1)221y x =+(2)34a = 【解析】【分析】(1)根据cos xρρθ⎧⎪=⎨=⎪⎩可得C 的直角方程.(2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值;在法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值. 【小问1详解】由cos 1ρρθ=+,将cos xρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+,1x =+,两边平方后可得曲线的直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+. 法1:直线l 的斜率为1,故倾斜角为π4,故直线的参数方程可设为x y a s ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R .将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s,则)()212121,21s s a s s a +=--=-,且()()22Δ818116160a a a =---=->,故1a <,12AB s s ∴=-=2==,解得34a =法2:联立221y x ay x =+⎧⎨=+⎩,得22(22)10x a x a +-+-=,()22Δ(22)41880a a a =---=-+>,解得1a <,设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=-=-,则AB ==2=,解得34a =[选修4-5:不等式选讲]23. 实数,a b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥. 【答案】(1)证明见解析.(2)证明见解析 【解析】【分析】(1)直接利用22222()a b a b +≥+即可证明. (2)根据绝对值不等式并结合(1)中结论即可证明. 【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=≥, 当a b =时等号成立,则22222()a b a b +≥+, 因为3a b +≥,所以22222()a b a b a b +≥+>+; 【小问2详解】222222222222()a b b a a b b a a b a b -+-≥-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+≥+-+=++-≥⨯=绝密★启用前2024年普通高等学校招生全国统一考试文科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B =I ( )A. {}1,2,3,4B. {}1,2,3C. {}3,4D. {}1,2,92.设z =,则z z ⋅=( )A. -iB. 1C. -1D. 23. 若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A. 5B.12C. 2-D. 72-4. 等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A. 2-B.73C. 1D.295. 甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A.14B.13C.12D.236. 已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为( )A. 4B. 3C. 2D.7. 曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为( ) A.16B.C.12D. 8. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-大致图像为()A. B.C. D.9.已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1+B. 1-C.D. 1原10题略10. 设αβ、是两个平面,m n 、是两条直线,且m αβ=I .下列四个命题: ①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成角相等,则m n ⊥其中所有真命题的编号是( ) A. ①③B. ②④C. ①②③D. ①③④11. 在ABC V 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( ) A.32B.C.D.二、填空题:本题共4小题,每小题5分,共20分.原13题略的的12. 函数()sin f x x x =在[]0,π上的最大值是______. 13. 已知1a >,8115log log 42a a -=-,则=a ______. 14. 曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.15. 已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-. (1)求{}n a 的通项公式; (2)求数列{}n S 的通项公式.16. 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ; (2)求点M 到ABF 的距离.17. 已知函数()()1ln 1f x a x x =--+. (1)求()f x 单调区间;(2)若2a ≤时,证明:当1x >时,()1e xf x -<恒成立.18. 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.的的(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 直角坐标方程; (2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.20. 实数,a b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B =I ( )A. {}1,2,3,4B. {}1,2,3C. {}3,4D. {}1,2,9【答案】A 【解析】【分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算. 【详解】依题意得,对于集合B 中元素x ,满足11,2,3,4,5,9x +=, 则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =, 于是{1,2,3,4}A B ⋂=. 故选:A 2.设z =,则z z ⋅=( )A. -iB. 1C. -1D. 2【答案】D 【解析】的的【分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【详解】依题意得,z =,故22i 2zz =-=. 故选:D3. 若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A. 5B.12C. 2-D. 72-【答案】D 【解析】【分析】画出可行域后,利用z 的几何意义计算即可得.【详解】实数,x y 满足43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:由5z x y =-可得1155y x z =-, 即z 的几何意义为1155y x z =-的截距的15-,则该直线截距取最大值时,z 有最小值, 此时直线1155y x z =-过点A , 联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫⎪⎝⎭,则min 375122z =-⨯=-. 故选:D.4. 等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A. 2- B.73C. 1D.29【答案】D【解析】【分析】可以根据等差数列基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=.故选:D方法二:利用等差数列的性质 根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式,193799()9()122a a a a S ++===,故3729a a +=. 故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选:D5. 甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A.14B.13C.12D.23【答案】B 【解析】【分析】分类讨论甲乙的位置,得到符合条件的情况,然后根据古典概型计算公式进行求解. 【详解】当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意; 基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选:B6. 已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为( )的A. 4B. 3C. 2D.【答案】C【解析】 【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】设()10,4F -、()20,4F 、()6,4-P ,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===. 故选:C.7. 曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为( )A. 16B.C. 12 D. 【答案】A【解析】【分析】先求出切线方程,再求出切线的截距,从而可求面积.【详解】()563f x x ='+,所以()03f '=,故切线方程为3(0)131y x x =--=-, 故切线的横截距为13,纵截距为1-,故切线与坐标轴围成的面积为1111236⨯⨯= 故选:A. 8. 函数()()2e e sin x x f x x x -=-+-在区间[ 2.8,2.8]-的大致图像为( )A. B.C. D. 【答案】B【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22e e sin e e sin x x x x f x x x x x f x ---=-+--=-+-=, 又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭, 故可排除D.故选:B.9.已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1+B. 1-C.D. 1【答案】B【解析】 【分析】先将cos cos sin αα-α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos cos sin ααα=-,所以11tan =-α,tan 1⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==-α+⎪-α⎝⎭, 故选:B .原10题略10. 设αβ、是两个平面,m n 、是两条直线,且m αβ=I .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥ ③若//n α,且//n β,则//m n④若n 与α和β所成的角相等,则m n ⊥其中所有真命题编号是( )A. ①③B. ②④C. ①②③D. ①③④ 【答案】A 的【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确;对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s , 同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ=I ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误;综上只有①③正确,故选:A.11. 在ABC V 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A. 32B.C.D. 【答案】C【解析】 【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A C B ==. 由余弦定理可得:22294b ac ac ac =+-=, 即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==, 所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=, 因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +=. 故选:C. 二、填空题:本题共4小题,每小题5分,共20分.原13题略12. 函数()sin f x x x =在[]0,π上的最大值是______.【答案】2【解析】【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】()πsin 2sin 3f x x x x ⎛⎫==- ⎪⎝⎭,当[]0,πx ∈时,ππ2π,333x ⎡⎤-∈-⎢⎥⎣⎦, 当ππ32x -=时,即5π6x =时,()max 2f x =. 故答案为:213. 已知1a >,8115log log 42a a -=-,则=a ______. 【答案】64【解析】【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解. 【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=, 2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.14. 曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______. 【答案】()2,1-【解析】【分析】将函数转化为方程,令()2331x x x a -=--+,分离参数a ,构造新函数()3251,g x x x x =+-+结合导数求得()g x 单调区间,画出大致图形数形结合即可求解.【详解】令()2331x x x a -=--+,即3251a x x x =+-+,令()()32510,g x x x x x =+-+> 则()()()2325351g x x x x x =+-=+-',令()()00g x x '=>得1x =, 当()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,x ∞∈+时,()0g x '>,()g x 单调递增,()()01,12g g ==-,因为曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点, 所以等价于y a =与()g x 有两个交点,所以()2,1a ∈-.故答案为:()2,1-三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.15. 已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的通项公式.。
2002年高考全国卷理科数学试题及答案
11 普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分.第 I 卷 1 至 2 页.第 II 卷 3 至 9 页.共 150 分.考试时间 120 分钟.第Ⅰ卷(选择题共 60 分)一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分.第 I 卷 1 至 2 页.第 II 卷 3 至 9页.共 150 分.考试时间 120 分钟.(1)圆(x - 1)2+ y 2= 1的圆心到直线 y =3 x 的距离是3(A ) 12(B )2(C )1(D )(2)复数( + 2 (A ) - i3 i )3 的值是 2(B ) i(C ) -1(D )1(3)不等式(1 + x )(1- | x |) > 0 的解集是(A ){x | 0 ≤ x < 1}(B ){x | x < 0 且 x ≠ -1}(C ){x | -1 < x < 1}(D ){x | x < 1且 x ≠ -1}(4)在(0,2π) 内,使sin x > cos x 成立的 x 的取值范围是(A ) ( )(5)设集合 M = {x | x = + , k ∈ Z },N = {x | x = 2 4 + , k ∈ Z } 4 2 (A ) M = N (B ) M ⊂ N (C ) M ⊃ N (D ) M N = ∅33π,π ) (π, 5π )(B ) ( π ,π)(C )( π,5π ) (D )( π ,π) ( 5π, 3π4 2444 4 k 1 k 1 44 2,则2⎩⎧x =t 2(6)点P(1,0) 到曲线 ⎨y = 2t(其中参数t ∈R )上的点的最短距离为(A)0 (B)1 (C)(D)2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是(A)34(B)45(C)35(D)-35(8)正六棱柱ABCDEF -A1 B1C1 D1 E1 F1 的底面边长为1,侧棱长为面对角线E1 D 与BC1 所成的角是,则这个棱柱侧(A)90︒ (B)60︒ (C)45︒ (D)30︒(9)函数y =x 2 +bx +c (∈ [0,+∞) )是单调函数的充要条件是(A)b≥ 0(10)函数 y = 1 -(B)b ≤ 01的图象是x - 1(C)b > 0 (D)b < 0(11)从正方体的 6 个面中选取3 个面,其中有2 个面不相邻的选法共有(A)8 种(B)12 种(C)16 种(D)20 种(12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A)115000 亿元(B)120000 亿元(C)127000 亿元(D)135000 亿元第II 卷(非选择题共90 分)二、填空题:本大题共 4 小题,每小题 4 分,共16 分.把答案填在题中横线.(13)函数y =a x 在[0,1]上的最大值与最小值这和为3,则a =(14)椭圆5x 2 +ky 2 = 5的一个焦点是(0,2) ,那么k =(15)(x 2 +1)(x - 2)7 展开式中x 3 的系数是2232 n n +1 n n Qx 2(16)已知 f (x ) = ,那么 f (1) + f (2) + f ( 1 + x 21 ) + f (3) + f (2 1) + f (4) + f (3 1 ) =4三、解答题:本大题共 6 小题,共 74 分,解答应写出文字说明、证明过程或演算步骤. (17)已知sin 22α+ sin 2αcos α- cos 2α= 1,α∈ (0,π2,求sin α、tg α的值(18)如图,正方形 ABCD 、ABEF 的边长都是 1,而且平面 ABCD 、ABEF 互相垂直 点 M 在 AC 上移动, 点 N 在 BF 上移动, 若 CM = BN = a C( 0 < a < ) D(1)求 MN 的长;P(2) a 为何值时, MN 的长最小;M(3)当 MN 的长最小时,求面 MNA 与面 MNB 所成二面角α的 BE大小NAF(19)设点 P 到点(-1,0)、(1,0) 距离之差为 2m ,到 x 、 y 轴的距离之比为 2,求 m 的取值范围(20)某城市 2001 年末汽车保有量为 30 万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同 为保护城市环境,要求该城市汽车保有量不超过 60 万辆, 那么每年新增汽车数量不应超过多少辆?(21)设 a 为实数,函数 f (x ) = x 2+ | x - a | +1, x ∈ R(1)讨论 f (x ) 的奇偶性;(2)求 f (x ) 的最小值(22)设数列{a }满足: a = a 2- na + 1, n = 1,2,3, (I )当 a 1 = 2 时,求 a 2 , a 3 , a 4 并由此猜测 a n 的一个通项公式; (II )当 a 1 ≥ 3时,证明对所的 n ≥ 1,有 (i ) a n ≥ n + 2(ii )11 + a 1 + 1 1 + a2 + 1 1 + a3 + + 1 ≤ 1 1 + a n 2)参考答案一、选择题题号12345678910 11 12 答案A C D C B B C B A B B C(13)2 (14)1 (15)1008 (16)72三、解答题(17)解:由sin 2 2α+ sin 2αcosα- cos 2α= 1,得4 sin 2 αcos 2 α+ 2 sinαcos 2 α- 2 cos 2 α= 02 cos 2 α(2 sin 2 α+ sinα- 1) = 02 cos 2 α(2 sinα- 1)(sinα+ 1) = 0π∵α∈ (0, )2∴sinα+1 ≠ 0,cos 2 α≠= 01∴ 2sinα-1 = 0,即sinα=2π∴α=6∴tgα=3(18)解(I)作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且MP =NQ ,即MNQP 是平行四边形∴ MN =PQ由已知CM =BN =a , CB =AB =BE = 1∴ AC =BF = ,CP =BQ =2a 232452 (1 - a )2 + ( a )2MN = PQ === =(0 < a < 2)(II )由(I )MN =所以,当 a =时, MN = 2 2即当 M 、 N 分别为 AC 、 BF 的中点时, MN 的长最小,最小值为 2(III )取 MN 的中点G ,连结 AG 、 BG , ∵ AM = AN , B M = BN , G 为 MN 的中点∴ AG ⊥ MN , BG ⊥ MN ,即∠AGB 即为二面角的平面角α又 AG = BG = ,所以,由余弦定理有 4( 6 )2 + ( 6)2 - 1cos α= 4 4 = - 1 2 ⋅ 6 ⋅ 63 4 41故所求二面角为α= π- arccos3| y |(19)解:设点 P 的坐标为(x , y ),依题设得| x |= 2 ,即 y = ±2x , x ≠ 0因此,点 P (x , y ) 、 M (-1,0) 、 N (1,0) 三点不共线,得|| PM | - | PN ||<| MN |= 2∵ || PM | - | PN ||= 2 | m |> 0∴ 0 <| m |< 12 (1 - CP )2 + BQ 2 (a - 2 2 )2 +12(a -2 2 )2 + 1 2 2 2 2665 = - n -1 2- = 22 > 因此,点 P 在以 M 、 N 为焦点,实轴长为 2 | m |的双曲线上,故x y 2m 2 1 - m 2 1将 y = ±2x 代入 x m2- y 2 1 - m 2 = 1,并解得m 2 (1 - m 2 ) x ,因1 m 01 - 5m 2所以1 - 5m 2> 0解得0 <| m |<5即 m 的取值范围为(-,0) (0, ) 5 5(20)解:设 2001 年末汽车保有量为b 1 万辆,以后各年末汽车保有量依次为b 2 万辆,b 3 万辆,…,每年新增汽车 x 万辆,则b 1 = 30 , b 2 = b 1 ⨯ 0.94 + x对于 n > 1,有b n +1 = b n ⨯ 0.94 + x= b ⨯ 0.942+ (1+ 0.94)x所以bn +1 = b 1 ⨯ 0.94n + x (1 + 0.94 + 0.942 + + 0.94n)= b 1 ⨯ 0.94 1 - 0.94nx 0.06= x 0.06 + (30 - x 0.06 ) ⨯ 0.94n当30 - x0.06≥ 0 ,即 x ≤ 1.8 时b n +1 ≤ b n ≤ ≤ b 1 = 30 当30 - x 0.06< 0 ,即 x > 1.8时5 5 2n+7数列{b n }逐项增加,可以任意靠近x 0.06lim b = lim [ x + (30 - x ) ⨯ 0.94n -1] = x n →+∞ n n →+∞ 0.06 0.06 0.06因此,如果要求汽车保有量不超过 60 万辆,即b n ≤ 60 ( n = 1,2,3, )x 则 0.06≤ 60 ,即 x ≤ 3.6 万辆 综上,每年新增汽车不应超过3.6万辆(21)解:(I )当 a = 0 时,函数 f (-x ) = (-x )2+ | -x | +1 =f (x )此时, f (x ) 为偶函数当 a ≠ 0 时, f (a ) = a 2+ 1, f (-a ) = a 2+ 2 | a | +1,f (a ) ≠ f (-a ) , f (a ) ≠ - f (-a )此时 f (x ) 既不是奇函数,也不是偶函数(II )(i )当 x ≤ a 时, f (x ) = x 2- x + a + 1 = (x - 1 )2 + a + 324当 a ≤ 1,则函数 f (x ) 在 (-∞, a ]上单调递减,从而函数 f (x ) 在 (-∞, a ]上的最小值为2 f (a ) = a 2 + 1.若 a > 1 2,则函数 f (x ) 在(-∞, a ]上的最小值为 f ( 1 ) = 2 3 + a ,且 f ( 4 1 ) ≤ 2f (a ).(ii )当 x ≥ a 时,函数 f (x ) = x 2+ x - a + 1 = (x + 1 )2 - a + 32 4若 a ≤ - 1 ,则函数 f (x ) 在(-∞, a ]上的最小值为 f (- 1 ) = 3 - a ,且 f (- 1) ≤ f (a )2 2 4 2 若 a > - 1,则函数 f (x ) 在[a ,+∞) 上单调递增,从而函数 f (x ) 在[a ,+∞) 上的最小值为2 f (a ) = a 2 + 1.综上,当 a ≤ - 1 时,函数 f (x ) 的最小值为 3- a2 4 当 - 1 < a ≤ 1 时,函数 f (x ) 的最小值为 a 2+ 12 2 当 a > 1 时,函数 f (x ) 的最小值为 3+ a .2 482 3 2 2 3 4 3 3 nk (22)解(I )由 a = 2 ,得 a = a 2- a+ 1 = 31211由 a = 3,得 a = a 2- 2a + 1 = 4 由 a = 4 ,得 a = a 2- 3a +1 = 5由此猜想 a n 的一个通项公式: a n = n + 1( n ≥ 1) (II )(i )用数学归纳法证明:①当 n = 1时, a 1 ≥ 3 = 1 + 2 ,不等式成立.②假设当 n = k 时不等式成立,即 a k ≥ k + 2 ,那么a k +1 = a k (a k - k ) + 1 ≥ (k + 2)(k + 2 - k ) + 1 = 2k + 5 ≥ k + 3 . 也就是说,当 n = k + 1时, a k +1 ≥ (k + 1) + 2据①和②,对于所有 n ≥ 1,有 a n ≥ n + 2.(ii )由 a n +1 = a n (a n - n ) + 1及(i ),对 k ≥ 2 ,有a k = a k -1 (a k -1 - k + 1) + 1≥ a k -1 (k - 1 + 2 - k + 1) + 1 = 2a k -1 + 1……a ≥ 2k -1a + 2k -2 + + 2 + 1 = 2k -1 (a + 1) - 11于是1 + a k ≤ 1 1+ a 1 ⋅ 12k -1 , k ≥ 2∑ 1 ≤ 1 + 1 ∑n 1 = 1 ∑n 1 ≤ 2 ≤ 2 = 1k =1 1 + a k1 + a 1 1 + a 1 k =2 2k -1 1 + a 1 k =1 2k -1 1 + a 1 1 +3 2 1 1。
2023年高考真题及答案解析《数学理》(全国甲卷)
甲卷理科2023年普通高等学校招生全国统一考试(全国甲卷)理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A =x x =3k +1,k ∈Z ,B =x x =3k +2,k ∈Z ,U 为整数集,则∁U A ∪B =()A.x x =3k ,k ∈ZB.x x =3k -1,k ∈ZC.x x =3k -2,k ∈ZD.∅2.若复数(a +i )(1-a i )=2,则a =()A.-1B.0C.1D.23.执行下面的程序框图,输出的B =()n ≤3n =1,A =1,B =2开始A =A +B B =A +B n =n +1结束输出B否A.21B.34C.55D.894.向量a =b =1,c =2,且a +b +c =0,则cos a -c ,b -c =()A.-15B.-25C.25D.455.已知等比数列a n 中,a 1=1,S n 为a n 前n 项和,S 5=5S 3-4,则S 4=()A.7B.9C.15D.306.有50人报名报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报名足球俱乐部,则其报名乒乓球俱乐部的概率为()A.0.8B.0.4C.0.2D.0.17.“sin 2α+sin 2β=1”是“sin α+cos β=0”()A.充分条件但不是必要条件 B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件8.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为5,其中一条渐近线与圆(x -2)2+(y -3)2=1交于A ,B 两点,则AB =()A.15B.55C.255D.4559.有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有一人连续参加两天服务的选择种数为()A.120B.60C.40D.3010.已知f (x )为函数y =cos 2x +π6 向左平移π6个单位所得函数,则y =f (x )与y =12x -12的交点个数为()A.1B.2C.3D.411.在四棱锥P -ABCD 中,底面ABCD 为正方形,AB =4,PC =PD =3,∠PCA =45°,则△PBC 的面积为()A.22B.32C.42D.5212.已知椭圆x 29+y 26=1,F 1,F 2为两个焦点,O 为原点,P 为椭圆上一点,cos ∠F 1PF 2=35,则OP =()A.25B.302C.35D.352二、填空题:本题共4小题,每小题5分,共20分。
2000年高考.全国卷.理科数学试题及答案
2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页.第II卷3至9页.共150分。
考试时间120分钟。
第I卷(选择题共60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素,则在映射f下,象20的原象是()(A)2 (B)3(C)4(D)5(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6(D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα〉tgβ(C)若α、β是第三象限角,则cosα>cosβ(D)若α、β是第四象限角,则tgα〉tgβ(5)函数y=-xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算。
全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%……某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A)800~900元(B)900~1200元(C)1200~1500元(D)1500~2800元(7)若a>b〉1,,则(A)R〈P〈Q(B)P<Q<R(C)Q〈P<R(D)P<R〈Q (8)以极坐标中的点(1,1)为圆心,1为半径的圆的方程是(A)(B)(C)(D)(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A)(B)(C)(D)(10)过原点的直线与圆相切,若切点在第三象限,则该直线的方程是(A)(B)(C)(D)(11)过抛物线(a〉0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ 的长分别是p、q,则等于(A)2a(B)(C)4a(D)(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A)(B)(C)(D)第II卷(非选择题共90分)注意事项:1.第II卷共7页,用钢笔或圆珠笔直接答在试题卷中.2.答卷前将密封线内的项目填写清楚.题号二三总分17 18 19 20 21 22分数二、填空题:本大题共4小题,每小题4分,共16分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2002年普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.(1)圆1)1(22=+-y x 的圆心到直线y x =的距离是 (A )21(B )23 (C )1 (D )3(2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππY (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππY (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M I(6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )43 (B )54 (C )53 (D )53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b (10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D )20种 (12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. (13)函数xa y =在]1,0[上的最大值与最小值这和为3,则a = (14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k (15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(xx x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.(17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值(18)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直点M 在AC 上移动,点N 在BF 上移动,若a BN CM ==(20<<a )(1)求MN 的长;(2)a 为何值时,MN 的长最小;(3)当MN 的长最小时,求面MNA 与面MNB 所成二面角α的大小(19)设点P 到点)0,1(-、)0,1(距离之差为m 2,到x 、y 轴的距离之比为2,求m 的取值范围(20)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?(21)设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值(22)设数列}{n a 满足:121+-=+n n n na a a ,Λ,3,2,1=n (I )当21=a 时,求432,,a a a 并由此猜测n a 的一个通项公式; (II )当31≥a 时,证明对所的1≥n ,有 (i )2+≥n a n (ii )2111111111321≤++++++++n a a a a Λ ADE参考答案(13)2 (14)1 (15)1008 (16)27 三、解答题(17)解:由12cos cos 2sin 2sin 2=-+αααα,得0cos 2cos sin 2cos sin 42222=-+ααααα0)1sin sin 2(cos 222=-+ααα 0)1)(sin 1sin 2(cos 22=+-ααα∵)2,0(πα∈∴01sin ≠+α,0cos 2≠=α ∴01sin 2=-α,即21sin =α ∴6πα=∴33=αtg (18)解(I )作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且NQ MP =,即MNQP 是平行四边形∴PQ MN =由已知a BN CM ==,1===BE AB CB ∴2==BF AC ,a BQ CP 22== )20( 21)22( )2()21( )1(22222<<+-=+-==+-==a a a a BQ CP PQ MN(II )由(I )21)22( 2+-=a MN 所以,当22=a 时,22=MN 即当M 、N 分别为AC 、BF 的中点时,MN 的长最小,最小值为22(III )取MN 的中点G ,连结AG 、BG , ∵BN BM AN AM ==,,G 为MN 的中点∴MN BG MN AG ⊥⊥,,即AGB ∠即为二面角的平面角α又46==BG AG ,所以,由余弦定理有 31464621)46()46(cos 22-=⋅⋅-+=α 故所求二面角为31arccos -=πα(19)解:设点P 的坐标为),(y x ,依题设得2||||=x y ,即x y 2±=,0≠x 因此,点),(y x P 、)0,1(-M 、)0,1(N 三点不共线,得2||||||||=<-MN PN PM∵0||2||||||>=-m PN PM ∴1||0<<m因此,点P 在以M 、N 为焦点,实轴长为||2m 的双曲线上,故112222=--my m x 将x y 2±=代入112222=--m y m x ,并解得222251)1(mm m x --=,因012>-m 所以0512>-m 解得55||0<<m 即m 的取值范围为)55,0()0,55(Y -(20)解:设2001年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,…,每年新增汽车x 万辆,则301=b ,x b b +⨯=94.012对于1>n ,有Λ)94.01(94.0 94.0211x b xb b n n n ++⨯=+⨯=-+ 所以)94.094.094.01(94.0211nn n x b b +++++⨯=+Λx b nn06.094.0194.01-+⨯=n x x 94.0)06.030(06.0⨯-+= 当006.030≥-x,即8.1≤x 时 3011=≤≤≤+b b b n n Λ当006.030<-x,即8.1>x 时 数列}{n b 逐项增加,可以任意靠近06.0x 06.0]94.0)06.030(06.0[lim lim 1x x x b n n n n =⨯-+=-+∞→+∞→ 因此,如果要求汽车保有量不超过60万辆,即60≤n b (Λ,3,2,1=n )则6006.0≤x,即6.3≤x 万辆 综上,每年新增汽车不应超过6.3万辆(21)解:(I )当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(II )(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43 当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.(22)解(I )由21=a ,得311212=+-=a a a 由32=a ,得4122223=+-=a a a 由43=a ,得5133234=+-=a a a由此猜想n a 的一个通项公式:1+=n a n (1≥n ) (II )(i )用数学归纳法证明:①当1=n 时,2131+=≥a ,不等式成立. ②假设当k n =时不等式成立,即2+≥k a k ,那么3521)2)(2(1)(1+≥+=+-++≥+-=+k k k k k k a a a k k k .也就是说,当1+=k n 时,2)1(1++≥+k a k 据①和②,对于所有1≥n ,有2n a n ≥+. (ii )由1)(1+-=+n a a a n n n 及(i ),对2≥k ,有1)1(11++-=--k a a a k k k121)121(11+=++-+-≥--k k a k k a……1)1(2122211211-+=++++≥---a a a k k k k Λ于是11211111-⋅+≤+k k a a ,2≥k2131212211121111111111121111=+≤+≤+=+++≤+∑∑∑=-=-=a a a a a nk k nk k nk k。