转炉冶炼过程概述

合集下载

炼钢工艺流程简介

炼钢工艺流程简介

这是火焰切割的场景。
★铸坯的输送
经切割的铸坯利用辊道输送至冷床。这是铸坯 在运输辊道上的场景。
★铸坯的收集(冷床,推钢)
连铸坯通过步进式翻转冷床冷却,然后由推钢 机收集。这就是步进式冷床场景。
★铸坯堆垛
用夹钳将铸坯从冷床上吊至指定的堆放 场地码放成垛,等待外运。
这就是成品铸坯垛场景。
★铸坯外运
★测温取样
每炉钢出钢前必须符合工艺规定的温 度和化学成分的要求,因此冶炼到一定阶 段需要倒炉进行测温取样。温度在现场大 屏幕和主控室计算机上均有显示,试样则 需送到炉前化验室经直读光谱仪分析再报 出结果。
这就是炉前工正在测温取样的场景。
★转炉出钢
出钢过程中要实现的目标是脱氧、脱碳、 脱硫、合金化,为此要向钢包中加入铁合 金、脱氧剂、脱硫剂、覆盖剂等。为了实 现无渣或少渣出钢还得投抛挡渣球。
★向混铁炉兑入铁水
混铁炉是一种贮存铁水的容器,通过 多包铁水混兑可以均匀铁水温度和成分, 为转炉冶炼创造更好的原料条件。此外由 于混铁炉容量较大,它还是调节高炉和转 炉生产节奏的缓冲器。
这就是向混铁炉兑入铁水的场景。
★混铁炉出铁
根据转炉生ห้องสมุดไป่ตู้的需要,混铁炉随时可提供一定量的铁 水。这是混铁炉出铁的场景。出铁量通过铁水车上的电子 秤称量并在大屏幕上显示。
电弧炉炼钢是除转炉炼钢以外最主要的炼钢 方法,与转炉炼钢相比主要区别在于使用的原料 不一样:转炉主原料是铁水,有足够的热源,故 只要吹氧就可以了;而电炉则不同,其主要原料 是废钢,必须输入足够的能量才能将其熔化,而 电弧加热是很成熟的工业化大生产加热方法,故 电弧炉就自然成为以废钢为主原料的炼钢工艺所 选择的炉型了。除此而外现代化超高功率电炉炼 钢与转炉炼钢有许多相似之处,如吹氧氧化、挡 渣出钢、炉外精炼、连铸等二者无大差别。另外, 很多有电炉的厂也建高炉,采取向电炉加入一定 量铁水(一般为30%左右)代替废钢,这就是电 炉工艺与转炉更拉近一步。

转炉炼铜生产

转炉炼铜生产

转炉炼铜生产1. 引言转炉炼铜是一种重要的冶炼工艺,用于将铜矿石转化为高纯度的铜金属。

在转炉炼铜生产过程中,铜矿石首先经过破碎、磨矿和浮选等预处理工序,然后进入转炉冶炼装置进行冶炼。

本文将详细介绍转炉炼铜的生产过程、工艺参数以及相关设备。

2. 转炉炼铜工艺流程转炉炼铜的工艺流程主要包括矿石破碎、磨矿、浮选、转炉冶炼等步骤。

以下是典型的转炉炼铜工艺流程:2.1 矿石破碎铜矿石经过采矿后,首先需要进行破碎工序。

破碎的目的是将较大的矿石块破碎成较小的颗粒,以便于后续的磨矿和浮选工艺。

常用的破碎设备包括颚式破碎机、冲击式破碎机等。

2.2 磨矿磨矿是将破碎后的铜矿石进一步细化,以提高其表面积,方便浸出和浮选。

常用的磨矿设备包括球磨机、研磨机等,通过不断地碾磨铜矿石,使其达到所需的细度要求。

浮选是将磨矿后的铜矿石浸出铜矿石中的铜和其他有价值的金属。

在浮选过程中,通过加入药剂和气泡,使铜矿石中的铜矿和副矿分离出来,并且获得所需的铜精矿。

浮选过程需要考虑浮选剂的选择、药剂浓度、气泡的生成等参数。

2.4 转炉冶炼在转炉炼铜的冶炼阶段,将铜精矿放入转炉中,通过高温加热使其熔化。

在冶炼过程中,铜精矿中的铜被还原为纯铜,并通过炉底的出口排出。

转炉冶炼的参数包括冶炼温度、矿石的加入量、冶炼时间等。

3. 转炉炼铜设备转炉炼铜生产中需要使用一系列的设备,包括破碎机、磨矿机、浮选机、转炉等。

以下是常用的转炉炼铜设备:3.1 破碎机破碎机主要用于将铜矿石破碎成适合后续工艺处理的颗粒。

常用的破碎机有颚式破碎机、冲击式破碎机等。

3.2 磨矿机磨矿机用于将破碎后的铜矿石细化,以提高其表面积,便于浸出和浮选。

常用的磨矿机有球磨机、研磨机等。

浮选机用于将磨矿后的铜矿石进行浮选分离,获得铜精矿。

常用的浮选机有机械式浮选机、气浮选机等。

3.4 转炉转炉是将铜精矿进行冶炼的关键设备。

转炉冶炼的过程通过加热和还原使铜精矿中的铜被还原成纯铜,并通过炉底的出口排出。

转炉工艺操作规程

转炉工艺操作规程

温馨小提示:本文主要介绍的是关于转炉工艺操作规程的文章,文章是由本店铺通过查阅资料,经过精心整理撰写而成。

文章的内容不一定符合大家的期望需求,还请各位根据自己的需求进行下载。

本文档下载后可以根据自己的实际情况进行任意改写,从而已达到各位的需求。

愿本篇转炉工艺操作规程能真实确切的帮助各位。

本店铺将会继续努力、改进、创新,给大家提供更加优质符合大家需求的文档。

感谢支持!(Thank you for downloading and checking it out!)阅读本篇文章之前,本店铺提供大纲预览服务,我们可以先预览文章的大纲部分,快速了解本篇的主体内容,然后根据您的需求进行文档的查看与下载。

转炉工艺操作规程(大纲)一、转炉概述1.1转炉的定义与分类1.2转炉的构造及工作原理二、转炉工艺流程2.1原料准备2.2炉料投入2.3熔炼过程2.4炼钢操作2.5出钢与浇铸三、转炉操作要点3.1装炉操作3.2熔炼过程控制3.3炼钢操作技巧3.4出钢操作3.5常见问题及处理方法四、转炉设备维护与保养4.1设备检查与维修4.2易损件更换4.3设备润滑4.4电气设备维护五、转炉安全生产5.1安全操作规程5.2消防安全5.3环保与职业病防治5.4应急处理六、转炉工艺优化与新技术应用6.1工艺优化方向6.2新技术应用6.3节能减排措施七、转炉操作人员培训与管理7.1操作人员培训7.2操作技能考核7.3操作人员管理八、转炉工艺发展趋势与展望8.1行业发展现状8.2技术发展趋势8.3市场前景分析一、转炉概述1.1 转炉的定义与分类转炉是一种用于钢铁冶炼的重要设备,主要用于铁合金、不锈钢、普通钢等金属的冶炼和精炼。

转炉以其独特的炉体结构和冶炼方式,在全球钢铁工业中占据着举足轻重的地位。

按照转炉的炉役材料和工作温度,可以将转炉分为碳钢转炉、不锈钢转炉、真空转炉、铝转炉等。

1.2 转炉的构造及工作原理转炉主要由炉体、炉盖、炉裙、炉底、炉衬、炉帽、传动系统、操作系统等部分组成。

转炉工艺流程

转炉工艺流程

转炉工艺流程转炉工艺是一种重要的冶炼工艺,广泛应用于钢铁生产中。

通过转炉工艺,可以将废钢、废铁等回收材料和生铁一起冶炼,生产出高质量的钢铁产品。

本文将详细介绍转炉工艺的流程及其各个环节的工作原理。

1. 原料准备在转炉工艺中,主要原料包括废钢、废铁、生铁等。

在进行冶炼之前,需要对这些原料进行准备工作。

首先是对废钢、废铁进行分类和清洁,去除杂质和污染物。

然后对生铁进行配比,确定合适的比例。

2. 转炉炉前准备在进行转炉冶炼之前,需要对转炉进行炉前准备工作。

首先是清理炉膛,确保炉膛内部干净。

然后是检查炉体和炉底的状况,确保设备完好。

接着是加入燃料和预热炉体,使炉体达到适宜的工作温度。

3. 转炉冶炼转炉冶炼是整个工艺的核心环节。

在冶炼过程中,首先将原料加入转炉中,然后通过吹氧工艺进行氧化还原反应,使原料中的杂质和有害元素得以去除,同时控制合金元素的含量。

在冶炼过程中,需要控制冶炼温度、氧气流量等参数,确保冶炼过程的稳定性和高效性。

4. 炉渣处理在转炉冶炼过程中,会产生大量炉渣。

炉渣中含有大量的有价金属和合金元素,需要进行有效的处理和回收。

通常采用炉渣精炼工艺,通过冷却、浇铸和破碎等步骤,将炉渣中的有价金属和合金元素分离出来,实现资源的综合利用。

5. 钢水处理在转炉冶炼过程中,产生的钢水需要进行进一步的处理。

主要包括脱氧、脱硫、合金调整等工艺。

通过加入适量的脱氧剂和脱硫剂,可以有效地降低钢水中的氧含量和硫含量,提高钢水的质量。

同时,根据产品要求,可以加入适量的合金元素,调整钢水的成分和性能。

6. 连铸经过上述工艺处理后的钢水,可以进行连铸工艺,将其铸造成板坯、方坯、圆坯等不同形状的铸坯。

连铸工艺是钢铁生产中的关键环节,直接影响产品的成形质量和生产效率。

7. 精炼对连铸坯进行精炼处理,通过真空处理、气体吹扫等工艺,进一步提高钢水的纯净度和均匀度,确保最终产品的质量。

8. 成品质检最后,对精炼后的钢材进行成品质检,包括化学成分分析、力学性能测试、表面质量检测等。

炼钢工艺流程

炼钢工艺流程

炼钢工艺流程【导读】:转炉炼钢是把氧气鼓入熔融的生铁里,使杂质硅、锰等氧化。

在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。

因此转炉炼钢不需要另外使用燃料。

炼钢的基本任务是脱碳、脱磷、脱硫、脱氧,去除有害气体和非金属夹杂物,提高温度和调整成分。

归纳为:“四脱”(碳、氧、磷和硫),“二去”(去气和去夹杂),“二调整”(成分和温度)。

采用的主要技术手段为:供氧,造渣,升温,加脱氧剂和合金化操作。

本专题将详细介绍转炉炼钢生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。

由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。

转炉冶炼目的:将生铁里的碳及其它杂质(如:硅、锰)等氧化,产出比铁的物理、化学性能与力学性能更好的钢。

【相关信息】钢与生铁的区别:首先是碳的含量,理论上一般把碳含量小于2.11%称之钢,它的熔点在1450-1500℃,而生铁的熔点在1100-1200℃。

在钢中碳元素和铁元素形成Fe3C固熔体,随着碳含量的增加,其强度、硬度增加,而塑性和冲击韧性降低。

钢具有很好的物理、化学性能与力学性能,可进行拉、压、轧、冲、拔等深加工,其用途十分广泛。

转炉冶炼原理简介:转炉炼钢是在转炉里进行。

转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。

开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。

这时液态生铁表面剧烈的反应,使铁、硅、锰氧化 (FeO,SiO2 , MnO,) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。

几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。

炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。

最后,磷也发生氧化并进一步生成磷酸亚铁。

转炉冶炼工艺流程

转炉冶炼工艺流程

转炉冶炼工艺流程
1. 按照配料要求,将废钢等原料装入炉内,然后倒入铁水,并加入适量的造渣材料,如生石灰等。

2. 将氧气喷枪从炉顶插入炉内,吹入纯度大于99%的高压氧气流,使其与高温的铁水发生氧化反应,以除去杂质。

3. 在冶炼过程中,根据炉况变化,加入剩余造渣材料,如石灰、白云石、铁皮球、矿石、萤石等,以调节炉况,控制熔池温度和成分。

4. 在脱碳速度降低、熔池温度上升、炉口烟气变得稀疏透明时,确定冶炼终点,通过经验法或副枪系统判断碳、硫、磷、温度等是否满足要求。

5. 当冶炼终点满足要求时,停止吹炼,提升喷枪,准备出钢。

出钢时使炉体倾斜,钢水从出钢口注入钢水包里,同时加入脱氧剂进行脱氧和调节成分。

6. 钢水合格后,可以浇成钢的铸件或钢锭,钢锭可以再轧制成各种钢材。

在转炉冶炼过程中,还会产生大量棕色烟气,主要成分是氧化铁尘粒和高浓度的一氧化碳气体等,需要进行净化回收,以防止污染环境。

此外,炼钢时生成的炉渣也可以综合利用,如用来做钢渣水泥,含磷量较高的炉渣可加工成磷肥等。

转炉冶炼过程概述

转炉冶炼过程概述

转炉冶炼过程概述【本章学习要点】本章学习转炉炼钢的装⼊制度、供氧制度、造渣制度、温度制度及其操作,终点控制及出钢,脱氧及合⾦化,转炉吹损与喷溅,顶底复合吹炼,转炉操作事故及处理。

第⼀节转炉冶炼过程概述氧⽓顶吹转炉炼钢过程,主要是降碳、升温、脱磷、脱硫以及脱氧和合⾦化等⾼温物理化学反应的过程,其⼯艺操作则是控制装料、供氧、造渣、温度及加⼊合⾦材料等,以获得所要求的钢液,并浇成合格钢锭或铸坯。

从装料起到出完钢、倒完渣为⽌,转炉⼀炉钢的冶炼过程包括装料、吹炼、脱氧出钢、溅渣护炉、倒渣等⼏个阶段。

⼀炉钢的吹氧时间通常为l2~18min ,冶炼周期(相邻两炉之间的间隔时间,即从装料开始到装料开始或者从出钢毕到出钢毕)通常为30~40min。

表10—1为氧⽓顶吹转炉⽣产⼀炉钢的操作过程,图10—1为转炉吹炼⼀炉钢过程中⾦属和炉渣成分的变化。

吹炼的前l/3—1/4时间,硅、锰迅速氧化到很低的含量。

在碱性操作时,硅氧化较彻底,锰在吹炼后期有回升现象;当硅、锰氧化的同时,碳也被氧化。

当硅、锰氧化基本结束后,随着熔池温度升⾼,碳的氧化速度迅速提⾼。

碳含量<0.15%以后,脱碳速度⼜趋下降。

在开吹后不久,随着硅的降低,磷被⼤量氧化,但在吹炼中后期磷下降速度趋缓慢,甚⾄有回升现象。

硫在开吹后下降不明显,吹炼后期去除速度加快。

熔渣成分与钢中元素氧化、成渣情况有关。

渣中CaO含量、碱度随冶炼时间延长逐渐提⾼,中期提⾼速度稍慢些;渣中氧化铁含量前后期较⾼,中期随脱碳速度提⾼⽽降低;渣中Si02,Mn0,P205含量取决于钢中Si,Mn,P氧化的数量和熔渣中其他组分含量的变化。

在吹炼过程中⾦属熔池升温⼤致分三阶段:第⼀阶段升温速度很快,第⼆阶段升温速度趋缓慢,第三阶段升温速度⼜加快。

熔池中熔渣温度⽐⾦属温度约⾼20-1000C。

根据熔体成分和温度的变化,吹炼可分为三期:硅锰氧化期(吹炼前期)、碳氧化期(吹炼中期)、碳氧化末期(吹炼末期)。

转炉炼钢工艺流程

转炉炼钢工艺流程

转炉炼钢工艺流程转炉炼钢是一种常用的钢铁冶炼工艺,通过高温炼炉将生铁和废钢进行冶炼,以生产高品质的钢材。

下面将详细介绍转炉炼钢的工艺流程。

1. 原料准备转炉炼钢的原料主要包括生铁和废钢。

生铁是从高炉中得到的铁水,含有较高的碳含量,而废钢则是来自废旧钢材的回收利用。

在进行炼钢之前,需要对原料进行严格的筛选和分类,确保原料的质量符合生产要求。

2. 转炉炉前准备在进行转炉炼钢之前,需要对转炉进行一系列的准备工作。

首先是清理转炉内部的残渣和杂质,确保转炉内部的清洁。

然后对转炉进行加热,使其达到适宜的工作温度。

同时,还需要准备氧气、燃料和炉渣等辅助材料,以保障炼钢过程中的顺利进行。

3. 转炉炼钢过程转炉炼钢的主要过程包括炉前处理、吹炼、脱硫、脱磷、合金加入和出钢等环节。

首先是炉前处理,将预先准备好的生铁和废钢装入转炉中。

然后启动吹炼工艺,通过吹入高压氧气和燃料,使炉内的温度迅速升高,生铁和废钢开始熔化并发生氧化还原反应。

在这个过程中,炉内的温度可以达到数千摄氏度,将原料中的杂质和不纯物质燃尽,确保钢水的纯净度。

接下来是脱硫和脱磷的过程,通过向炉内加入适量的脱硫剂和脱磷剂,将钢水中的硫和磷等有害元素去除,提高钢材的质量和纯度。

在炼钢的过程中,根据需要还可以向炉内加入一定比例的合金元素,如铬、锰、钼等,以调整钢材的化学成分和性能。

最后是出钢过程,当炼钢结束后,通过倾炉口将炼好的钢水倒入钢包中,再经过连铸、轧制等工艺,最终得到成品钢材。

4. 转炉炼钢的优点转炉炼钢相比其他炼钢工艺具有以下优点:一是能够利用废钢资源,实现资源的循环利用;二是生产成本较低,能够生产出高品质的钢材;三是炼钢过程中能够控制钢材的化学成分和性能,满足不同用途的需要。

总之,转炉炼钢是一种成熟、高效的钢铁冶炼工艺,通过严格的工艺流程和操作规范,能够生产出优质的钢材产品,满足市场和用户的需求。

炼钢工艺流程简介

炼钢工艺流程简介

炼钢工艺流程简介炼钢厂目前共有大小转炉11座,其中炼钢一厂8座,分别为40吨转炉4座,80吨转炉1座,100吨转炉3座;炼钢二厂150 吨转炉3座。

炼钢系统的主要工艺流程为:转炉兑铁——冶炼——出钢——钢包吹氩——LF精炼炉——方坯连铸工艺。

•铁水供应转炉炼钢所需铁水用钢包或鱼雷罐由炼铁厂运往炼钢厂。

高炉运来的铁水除一部分兑入混铁炉贮存外,其余铁水经倒包调整和称量作业,保证入炉铁水控制在所需的范围。

需要进行脱硫处理的铁水,由天车运往脱硫站进行脱硫处理,不需处理的铁水,直接兑入转炉。

转炉兑铁铁水是转炉炼钢最主要的金属料,一般占转炉金属料70%以上。

铁水的成分、温度是否适当和稳定,对简化、稳定转炉操作,保证冶炼顺行以及获得良好的技术经济指标都十分重要。

•废钢供应在炼钢厂设有废钢库,外来的废钢由汽车运到废钢库存放。

废钢铁通过磁盘吊车按不同配比和装料顺序装入废钢料槽,由天车加入转炉。

转炉加冷料转炉炼钢时,由于热量富裕,可以加入多达30%的废钢,作为调整吹炼温度的冷却剂。

采用废钢冷却,可以降低铁水量、造渣材料和氧气的消耗,而且比用铁矿石冷却的效果稳定,喷溅少。

•散状原料供应(石灰、铁皮球、镁球等)1、100吨转炉炼钢散状原料上料系统选用皮带上料工艺。

散状原料通过汽车运到地下受料仓,由垂直皮带运送到42m平台,再由水平皮带运输机和布料小车装入相应的料仓。

转炉加料画面2、加料系统布置在转炉的上方,每座转炉有一套炉顶料仓,每套有10个炉顶料仓,分别为调渣剂、脱硫剂、石灰、铁皮球、镁球、萤石、包渣料仓等。

料仓中的散状料分别通过振动给料器→称量斗→汇总斗→下料溜管,加入转炉。

•铁合金供应100吨转炉设有一组铁合金料仓,由10个铁合金料仓组成.,为3座转炉供应合金料。

铁合金是脱氧及合金化材料。

用于钢液脱氧的铁合金叫做脱氧剂;用于调整钢液成分的铁合金叫做合金剂。

炼钢常用的铁合金有:硅铁、锰铁、钒铁、钼铁、硅钙合金等。

•转炉冶炼炼钢是通过氧化反应脱碳、升温、合金化的过程。

转炉炼钢工艺简介

转炉炼钢工艺简介

18
萤石作用及要求
• 作用
造渣加入萤石可以加速石 灰的溶解,萤石的助熔作 用是在很短的时间内能够 改善炉渣的流动性,但过 多的萤石用量,会加剧炉 衬的损坏,并污染环境。
• 质量要求 • CaF2≥75%, SiO2≤23%,S≤0.20%, P≤0.08%,H2O≤3.0% • 粒度:5-60mm
渣量=(石灰+镁球或熟白)×(2-3)
8
铁水成分及温度影响
• Mn的影响 • 锰是弱发热元素,铁水中Mn氧化后形成的(MnO)可促 进石灰溶解,加快成渣;减少氧枪粘钢,终点钢中余 锰高,能够减少合金用量,利于提高金属收得率;锰 在降低钢水硫含量和硫的危害方面起到有利作用。 Mn/Si的比值为0.8~1.00时对转炉的冶炼操作控制最 为有利。当前使用较多的为低锰铁水,一般铁水中 [Mn]=0.20%~0.40%。
6.设备少,投资节省。
4
炉顶料仓 振动给料器 电子称 带式运输机 密封料仓 传动机构 实 心 轴
汽包 氧 枪 风 机 不 回 收 时 放 空 回收煤气 进入煤气柜
烟 道
文氏管 脱水器
溜 槽
洗 涤 塔
沉淀池
电动机 渣 罐 转 炉 吸 滤 池
水封逆止阀 送往高炉利用
支架Hale Waihona Puke 氧气顶吹转炉工艺流程示意图
5
二 、转炉炼钢用主要原材料
28
2.1装料制度:废钢量的确定
• 热量来源于:
• 转炉炼钢不需要外来热源;
铁水物理热及元素氧化化学热。 铁水及废钢的合理配比须根据炉子的热平衡计算确定。 • 硅的作用 优点:因发热量大,增大废钢加入量,一般铁水中Si增 加0.1%,废钢比增大1%。 缺点:增大渣量,侵蚀炉衬一般控制在0.3-0.5%。

转炉冶炼摇炉心得

转炉冶炼摇炉心得

竭诚为您提供优质文档/双击可除转炉冶炼摇炉心得篇一:转炉冶炼过程概述【本章学习要点】本章学习转炉炼钢的装入制度、供氧制度、造渣制度、温度制度及其操作,终点控制及出钢,脱氧及合金化,转炉吹损与喷溅,顶底复合吹炼,转炉操作事故及处理。

第一节转炉冶炼过程概述氧气顶吹转炉炼钢过程,主要是降碳、升温、脱磷、脱硫以及脱氧和合金化等高温物理化学反应的过程,其工艺操作则是控制装料、供氧、造渣、温度及加入合金材料等,以获得所要求的钢液,并浇成合格钢锭或铸坯。

从装料起到出完钢、倒完渣为止,转炉一炉钢的冶炼过程包括装料、吹炼、脱氧出钢、溅渣护炉、倒渣等几个阶段。

一炉钢的吹氧时间通常为l2~18min,冶炼周期(相邻两炉之间的间隔时间,即从装料开始到装料开始或者从出钢毕到出钢毕)通常为30~40min。

表10—1为氧气顶吹转炉生产一炉钢的操作过程,图10—1为转炉吹炼一炉钢过程中金属和炉渣成分的变化。

吹炼的前l/3—1/4时间,硅、锰迅速氧化到很低的含量。

在碱性操作时,硅氧化较彻底,锰在吹炼后期有回升现象;当硅、锰氧化的同时,碳也被氧化。

当硅、锰氧化基本结束后,随着熔池温度升高,碳的氧化速度迅速提高。

碳含量熔渣成分与钢中元素氧化、成渣情况有关。

渣中cao 含量、碱度随冶炼时间延长逐渐提高,中期提高速度稍慢些;渣中氧化铁含量前后期较高,中期随脱碳速度提高而降低;渣中si02,mn0,p205含量取决于钢中si,mn,p氧化的数量和熔渣中其他组分含量的变化。

在吹炼过程中金属熔池升温大致分三阶段:第一阶段升温速度很快,第二阶段升温速度趋缓慢,0第三阶段升温速度又加快。

熔池中熔渣温度比金属温度约高20-100c。

根据熔体成分和温度的变化,吹炼可分为三期:硅锰氧化期(吹炼前期)、碳氧化期(吹炼中期)、碳氧化末期(吹炼末期)。

表10—1氧气顶吹转炉一炉钢的操作吹炼时间%图10—1转炉吹炼一炉钢过程中金属和炉渣成分的变化第二节装入制度与装入操作一、装入量装入量指炼一炉钢时铁水和废钢的装入数量,它是决定转炉产量、炉龄及其他技术经济指标的重要因素之一。

转炉高冰镍冶炼工艺流程

转炉高冰镍冶炼工艺流程

转炉高冰镍冶炼工艺流程转炉高冰镍冶炼那点事儿。

咱今天就来唠唠转炉高冰镍冶炼的工艺流程。

这转炉高冰镍冶炼啊,就像是一场奇妙的化学魔术表演呢。

一、原料准备。

这就好比是做饭前先准备食材一样。

转炉高冰镍冶炼需要镍精矿之类的原料。

这些原料可得是高质量的呀,要是原料不行,那后面可就麻烦大了。

就像你做菜,食材不新鲜,做出来的菜肯定不好吃。

镍精矿里得有足够的镍含量,还不能有太多杂质。

要把这些原料处理一下,弄成合适的粒度和状态,这样才能放进转炉里开始冶炼。

二、转炉熔炼。

这可是整个工艺流程的重头戏呢。

把准备好的原料放进转炉里,就像把食材放进锅里开始煮一样。

转炉里面可是超级热的,温度高得吓人。

在这么高的温度下,原料开始发生各种奇妙的化学反应。

那些镍呀、铁呀、硫呀,都开始重新组合,就像一群小伙伴在热热闹闹地开派对。

在这个过程中,氧气也会参与进来,它就像是一个调皮的小捣蛋鬼,在里面搅和,让反应变得更加复杂。

转炉不停地转动,就像是在给里面的原料做按摩,让它们充分反应。

这个时候,会产生很多的气体,这些气体可不能小瞧,得好好处理,要是随便排放,那可就对环境不友好啦。

三、造锍熔炼。

这一步也很关键哦。

在转炉熔炼的基础上,会进行造锍熔炼。

这时候会形成一种特殊的熔体,就像是一种超级浓稠的液体。

这个熔体里面包含着很多有用的东西,比如说高冰镍。

这个过程就像是在大海里捞珍珠一样,要把高冰镍从众多的物质中分离出来。

这个熔体的成分和性质得控制得很好,如果控制不好,高冰镍的质量就会受到影响。

四、精炼。

精炼就像是给高冰镍来一次大变身。

高冰镍从转炉里出来的时候,虽然已经有了基本的模样,但是还不够完美。

精炼就是要把里面的杂质进一步去除,让高冰镍的纯度更高。

这个过程可能会用到一些特殊的试剂或者方法,就像给高冰镍做美容一样。

把高冰镍变得更纯净,这样它的价值就更高啦。

就像一个人经过精心打扮之后,变得更加出众一样。

五、产品处理。

高冰镍经过精炼之后,就到了最后的产品处理阶段啦。

转炉炼钢工艺流程

转炉炼钢工艺流程

转炉炼钢工艺流程转炉炼钢工艺是一种重要的钢铁生产工艺,常用于中小型钢铁企业。

下面将为大家介绍转炉炼钢工艺的基本流程。

转炉炼钢是一种冶炼方法,它的主要原理是利用高温将生铁中的杂质氧化并脱除,使得铁中含碳量减少,从而生产出合格的钢铁产品。

该工艺主要分为以下几个步骤:首先,将生铁预处理。

生铁经过预处理之后,可以去除一部分含硫、磷等杂质。

预处理包括短暂的高温还原、碳酸钙煅烧等过程。

然后,将预处理后的生铁装入转炉内。

转炉是一个直立式圆形容器,内壁有耐火材料保护。

生铁装入转炉后,开始吹氧气。

吹氧气的目的是将生铁中的碳氧化为二氧化碳,使得含碳量降低。

接着,通过添加石灰石和硅石等脱硫剂。

这些脱硫剂被放入炉内,与融化的生铁反应,吸附并氧化掉生铁中的硫。

硫气随着炉排出,从而达到去除硫杂质的目的。

然后,再进行除磷。

除磷是利用石灰石、蛋白石等物质进行,它们可以与熔融的生铁反应,将磷杂质转化为更容易被吸附和排出的化合物。

通过这种方式,可以有效降低钢中的磷含量。

接下来,加入适量的合金元素。

根据需要生产的不同钢种,可以加入一些合金元素,如锰、铬、镍等。

这些合金元素的加入可以提升钢的性能和品质。

最后,进行温度调整和取样分析。

钢液需要在一定的温度范围内冷却,然后将一定的钢液放入真空状态下进行取样分析,以确定钢液中主要成分的含量。

根据取样分析结果,可以对转炉炼钢过程进行调整,以获得所需的合格产品。

总而言之,转炉炼钢工艺流程包括生铁预处理、吹氧、脱硫、除磷、加入合金元素、温度调整和取样分析等步骤。

通过这些步骤,可以将生铁中的杂质去除,并得到合格的钢铁产品。

这种工艺流程简单可行,因此被广泛应用于中小型钢铁企业。

转炉炼钢流程

转炉炼钢流程

转炉炼钢流程
转炉炼钢是一种常用的钢铁冶炼方法,通过将生铁和废钢放入转炉中,加入适
量的废钢和铁合金,然后进行氧气吹炼,最终得到所需的钢铁产品。

下面将详细介绍转炉炼钢的流程。

首先,将生铁和废钢装入转炉。

生铁是从高炉中得到的铁水,含有较高的碳含量,而废钢是回收利用的废旧钢铁制品。

将这些原料装入转炉后,需要按照一定的比例加入适量的废钢和铁合金,以调整炉料的成分和温度。

接下来是转炉的氧气吹炼过程。

在炉料准备好后,通过转炉底部的氧气鼓风装
置向炉内吹入高压氧气。

氧气与炉内的炉料发生化学反应,使得炉内温度迅速升高,同时氧气氧化了炉料中的杂质和碳,使其逐渐融化。

这个过程需要严格控制氧气的流量和时间,以确保炉内的温度和化学反应达到理想状态。

随着氧气吹炼的进行,炉内的炉料逐渐熔化,形成熔体。

在这个过程中,需要
不断搅拌炉料,以保证炉内温度和成分的均匀性。

同时,根据所需的钢铁品种,可以在这个阶段适量加入合金元素,以调整钢铁的成分和性能。

最后,是炉渣处理和出钢过程。

在炉料完全熔化后,炉内会生成一层炉渣,这
是氧气吹炼过程中产生的氧化物和其他杂质的混合物。

通过合理的炉渣处理方法,可以将炉渣与熔体分离,最终得到所需的钢铁产品。

同时,需要注意控制出钢的速度和温度,以保证钢水的质量和成分符合要求。

总的来说,转炉炼钢流程是一个复杂而精密的过程,需要严格控制各个环节,
以确保最终产品的质量和性能。

通过合理的操作和管理,可以实现高效、低成本的钢铁生产,满足不同领域的需求。

转炉炼钢原理及工艺介绍

转炉炼钢原理及工艺介绍

锰的氧化反应有三种情况:
(1)锰与气相中的氧直接作用
[Mn]+ 1/2{O2}=(MnO)
(2)锰与溶于金属中的氧作用
[Mn]+ [O2] =(MnO)
(3)锰的氧化与还原
3)锰与炉渣中氧化亚铁作用
[Mn]+(FeO)=(MnO)+ [Fe]
第三个反应在炉渣——金属界面上迸行,是锰氧化的主要反应。
锰的氧化还原与硅的氧化还原相比有以下基本特点:
1)在冶炼初期锰和硅一样被迅速大量氧化,但锰的氧化程度要低些
,这是由于硅与氧的结合能力大于锰与氧的结合能力;
2)MnO为弱碱性氧化物,在碱性渣中( MnO)大部分呈自由状态存
在。因此,在一定条件下可以被还原。由于锰的氧化反应是放热反应,故
温度升高有利于锰的还原。所以在生产实践中冶炼后期熔池中会出现回锰
1)在某一温度下,几种元素同时和氧相遇时,位置低的元素先氧化。如1500℃ 时,氧化顺序为Al、Si、C、V、Mn。
2)位置低的元素可将位置高的氧化物还原。炼钢过程中脱氧就是利用Al、Si等 元素将FeO还原。
3)CO的分解压曲线的斜率与其它氧化物的不同,它与Si、Mn、V等的氧化物分 解与压CO曲分线解有压一曲交线点相,交此点点对所应对的应温的度温为度15称30为℃氧,化当转t>化15温30度℃。时例,如Si,先S于iOC2被分氧解化压;曲当线 t<1530℃时,则C先于Si被氧化。1530℃即为Si、C的氧化转化温度。
• 所谓炼钢,就是通过冶炼降低生铁中的 碳和去除有害杂质,在根据对钢性能的要求 加入适量的合金元素,使其成为具有高的强 度、韧性或其他特殊性能的钢。
•二、炼钢基本原理
• 因此,炼钢的基本任务可归纳为:

转炉炼钢工艺

转炉炼钢工艺

转炉炼钢工艺引言转炉炼钢工艺是一种常用的钢铁生产工艺,其原理是使用巨大的转炉进行冶炼,通过高温燃烧将生铁中的杂质熔化分离,得到高品质的钢铁产品。

本文将详细介绍转炉炼钢工艺的过程、设备和优势。

工艺过程转炉炼钢工艺主要由以下几个步骤组成:1.加炉:在转炉中加入一定数量的生铁和废钢,根据不同的钢种和质量要求控制添加比例。

2.预热:通过燃料燃烧加热炉体,将炉体温度升至一定的范围,为后续冶炼做准备。

3.唤氧:将预先加入的氧气注入转炉中,氧气与炉内的碳、硫等元素发生反应,使其氧化生成气体冒出炉口。

4.碱性脱硫:在钢水中加入一定量的含碱性物质的脱硫剂,使浸渍在钢水中的硫元素氧化为气体并脱出。

5.酸性脱磷:在钢水中加入一定量的含酸性物质的脱磷剂,使浸渍在钢水中的磷元素氧化为气体并脱出。

6.合金化:根据需要,在钢水中加入一定量的合金元素,如铬、锰等,以调节钢的性能。

7.保温装钢:将炉中冶炼好的钢水倒入铸钢坑、铸型等装置中进行冷却和凝固。

设备转炉炼钢工艺需要使用专用的转炉设备,该设备主要由以下几个组成部分:1.转炉本体:转炉本体是整个工艺最关键的部分,它承载着冶炼过程的全部任务。

转炉一般采用大型圆筒形设计,底部有一定数量的喷孔以供氧气进入。

2.转炉支承:转炉支承是将转炉本体固定在地基上的部分,以保证炉体的稳定运行。

3.强制鼓风系统:由鼓风机、风箱等组成,用于向转炉中供给氧气,促进燃烧和炉内反应的进行。

4.喷吹系统:包括氧枪、煤粉喷吹器等,用于将氧气、燃料喷入转炉中,以调节炉内的温度和氧气含量。

5.出渣系统:用于将炉内产生的渣料排出转炉,保持炉内清洁。

工艺优势转炉炼钢工艺相比于其他炼钢工艺具有以下优势:1.生产能力强大:转炉炼钢工艺灵活可调,产能大。

转炉设备可以进行批量生产,快速完成大批量的钢水冶炼,满足市场需求。

2.冶炼效率高:转炉炼钢工艺采用高温燃烧和强制鼓风系统,能够快速将生铁中的杂质熔化脱除,同时还可以进行合金化调节,提高钢的质量和性能。

转炉炼钢工艺流程汇总

转炉炼钢工艺流程汇总

转炉炼钢工艺流程这种炼钢法使用的氧化剂是氧气。

把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。

在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。

因此转炉炼钢不需要另外使用燃料。

转炉炼钢是在转炉里进行。

转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。

开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。

这时液态生铁表面剧烈的反应,使铁、硅、锰氧化 (FeO,SiO2 , MnO,) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。

几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。

炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。

最后,磷也发生氧化并进一步生成磷酸亚铁。

磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。

当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。

这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。

整个过程只需15分钟左右。

如果空气是从炉低吹入,那就是低吹转炉。

随着制氧技术的发展,现在已普遍使用氧气顶吹转炉(也有侧吹转炉)。

这种转炉吹如的是高压工业纯氧,反应更为剧烈,能进一步提高生产效率和钢的质量。

转炉一炉钢的基本冶炼过程。

顶吹转炉冶炼一炉钢的操作过程主要由以下六步组成:(1)上炉出钢、倒渣,检查炉衬和倾动设备等并进行必要的修补和修理;(2)倾炉,加废钢、兑铁水,摇正炉体(至垂直位置);(3)降枪开吹,同时加入第一批渣料(起初炉内噪声较大,从炉口冒出赤色烟雾,随后喷出暗红的火焰;3~5min后硅锰氧接近结束,碳氧反应逐渐激烈,炉口的火焰变大,亮度随之提高;同时渣料熔化,噪声减弱);(4)3~5min后加入第二批渣料继续吹炼(随吹炼进行钢中碳逐渐降低,约12min后火焰微弱,停吹);(5)倒炉,测温、取样,并确定补吹时间或出钢;(6)出钢,同时(将计算好的合金加入钢包中)进行脱氧合金化。

转炉炼钢的生产流程

转炉炼钢的生产流程

转炉炼钢的生产流程转炉炼钢是一种重要的冶金工艺,被广泛应用于钢铁行业。

它通过加热和加氧化剂引入熔融金属中来减少金属的碳含量,从而得到高品质的钢材。

本文将介绍转炉炼钢的生产流程,包括前处理、炉区处理、后处理等环节,总共约2000字。

一、前处理1. 取样转炉炼钢首先需要取样,用于对生铁进行分析。

根据分析结果,生产人员可以得出目标钢品的成分和质量等要求,进而调整转炉冶炼过程。

2. 预热生铁虽然已经经过高温处理,但与转炉的温度相差较大,如果直接加入炉中容易导致转炉窑身破裂。

因此需要对生铁进行预热,以逐渐提高温度,减缓温度差,从而防止炉身爆裂。

3. 拉钢拉钢是指将电炉或其他熔炼炉中的钢水,利用转炉进行进一步脱碳脱硫,调整成分等处理的一种前处理技术。

在拉钢时,还会掺入一些铁合金、废钢和矿渣等材料,以改变金属的成分和质量。

二、炉区处理1. 装料装料是指将经过预处理的生铁/钢水和其他掺杂物料等投入到转炉中进行炉区处理的一种操作。

转炉一般采用叶片式料斗,使得物料能够均匀地分布在炉身中。

2. 加料加料在转炉炼钢中也是一种常规操作,用于控制钢水的碳含量和改变金属的成分。

一般的加料包括生铁、废钢、蒸馏铁等,它们都会影响炉内的氧化还原反应和金属的物理性能。

3. 加热加热是指将转炉炉内的物料进行预热和加热,以达到合适的操作温度。

炉胆内的加热方式主要有三种:氧燃烧加热、燃气加热和电炉加热。

氧燃烧加热的方式最为常见,可以在短时间内提高炉内的温度。

4. 氧吹氧吹是指向转炉炉内喷氧并形成氧气流,以使炉内物料氧化、燃烧和熔化的过程。

氧吹的目的是通过加入氧气来移除金属中的不想要的杂质(如碳、硅、锰等)。

氧吹还可以逐渐提高炉内物料的温度和浓度,并促进金属内部组织的再分布。

5. 碱度/酸度控制炉区处理过程中,炉内物料的碱度或酸度也需要得到控制。

通过氧化反应,转炉炉内会产生一定量的氧化钙、氧化铁等碱性物质。

这些碱性物质需要与掺入的酸性物料(如蒸馏铁、锰矿等)进行反应,以控制炉内物料的酸碱程度。

转炉冶炼的基本过程

转炉冶炼的基本过程
详细描述
冶炼周期优化主要涉及装入制度、供氧制度、造渣制度、温度制度和终点控制等方面的改进。通过科 学合理地安排装入量、供氧强度、造渣材料和温度控制策略,可以有效缩短冶炼时间,提高生产效率 。
合金加入量优化
总结词
合金加入量优化是实现转炉高效、低成本冶炼的重要手段,通过精确控制合金加入量,提高产品质量和降低成本 。
详细描述
合金加入量优化主要依赖于精确的化学成分分析和实时监测技术。通过实时监测钢水成分,及时调整合金加入量 ,确保钢水成分符合要求,同时减少合金浪费和降低生产成本。
温度与成分控制策略
总结词
温度与成分控制策略是转炉冶炼过程的关键环节,通过对温度和成分的精确控制,提高 产品质量和降低能耗。
详细描述
温度与成分控制策略涉及对钢水温度和化学成分的监测与调节。通过实时监测钢水温度 和成分,调整供氧和冷却水流量等参数,实现对温度和成分的精确控制。这有助于提高
精炼
通过真空处理、电渣重熔等方法进一步净化钢水,提高钢的质量。
03
CATALOGUE
转炉冶炼的设备与操作
转炉本体
转炉本体是转炉冶炼的核心设备,通常由炉壳、炉衬、炉底、炉口等部分组成。
转炉本体设计应满足高温、高压、耐腐蚀等要求,以确保冶炼过程的稳定性和安全 性。
转炉本体的材质和结构需要根据不同的冶炼工艺和原料进行选择和优化。
THANKS
感谢观看
产品质量、降低能耗并减少环境污染。
终点控制与拉碳出钢
总结词
终点控制与拉碳出钢是转炉冶炼过程的 最后环节,通过对终点碳含量的准确控 制和出钢操作的优化,提高钢水质量和 降低生产成本。
VS
详细描述
终点控制与拉碳出钢主要依赖于精确的碳 含量检测和自动化控制系统。通过实时监 测钢水碳含量,准确判断终点状态,并采 取相应的拉碳出钢操作,确保钢水碳含量 符合要求。同时,优化出钢操作可以提高 钢水纯净度和减少氧化损失,从而提高产 品质量和降低生产成本。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【本章学习要点】本章学习转炉炼钢的装入制度、供氧制度、造渣制度、温度制度及其操作,终点控制及出钢,脱氧及合金化,转炉吹损与喷溅,顶底复合吹炼,转炉操作事故及处理。

第一节转炉冶炼过程概述氧气顶吹转炉炼钢过程,主要是降碳、升温、脱磷、脱硫以及脱氧和合金化等高温物理化学反应的过程,其工艺操作则是控制装料、供氧、造渣、温度及加入合金材料等,以获得所要求的钢液,并浇成合格钢锭或铸坯。

从装料起到出完钢、倒完渣为止,转炉一炉钢的冶炼过程包括装料、吹炼、脱氧出钢、溅渣护炉、倒渣等几个阶段。

一炉钢的吹氧时间通常为l2~18min ,冶炼周期(相邻两炉之间的间隔时间,即从装料开始到装料开始或者从出钢毕到出钢毕)通常为30~40min。

表10—1为氧气顶吹转炉生产一炉钢的操作过程,图10—1为转炉吹炼一炉钢过程中金属和炉渣成分的变化。

吹炼的前l/3—1/4时间,硅、锰迅速氧化到很低的含量。

在碱性操作时,硅氧化较彻底,锰在吹炼后期有回升现象;当硅、锰氧化的同时,碳也被氧化。

当硅、锰氧化基本结束后,随着熔池温度升高,碳的氧化速度迅速提高。

碳含量<0.15%以后,脱碳速度又趋下降。

在开吹后不久,随着硅的降低,磷被大量氧化,但在吹炼中后期磷下降速度趋缓慢,甚至有回升现象。

硫在开吹后下降不明显,吹炼后期去除速度加快。

熔渣成分与钢中元素氧化、成渣情况有关。

渣中CaO含量、碱度随冶炼时间延长逐渐提高,中期提高速度稍慢些;渣中氧化铁含量前后期较高,中期随脱碳速度提高而降低;渣中Si02,Mn0,P205含量取决于钢中Si,Mn,P氧化的数量和熔渣中其他组分含量的变化。

在吹炼过程中金属熔池升温大致分三阶段:第一阶段升温速度很快,第二阶段升温速度趋缓慢,第三阶段升温速度又加快。

熔池中熔渣温度比金属温度约高20-1000C。

根据熔体成分和温度的变化,吹炼可分为三期:硅锰氧化期(吹炼前期)、碳氧化期(吹炼中期)、碳氧化末期(吹炼末期)。

表10— 1 氧气顶吹转炉一炉钢的操作吹炼时间 %图10—1 转炉吹炼一炉钢过程中金属和炉渣成分的变化第二节装入制度与装入操作一、装入量装入量指炼一炉钢时铁水和废钢的装入数量,它是决定转炉产量、炉龄及其他技术经济指标的重要因素之一。

在转炉炉役期的不同时期,有不同的合理装入量。

对于公称容量一定的转炉,金属装入量在一定范围内变化。

转炉公称容量有三种表示方法:平均炉金属料(铁水和废钢)装入量,平均炉产良锭(坯)量,平均炉产钢水量。

这三种表示方法因出发点不同而各有特点,均被采用,其中以炉产钢水量使用较多。

用铁水和废钢的平均炉装入量表示公称容量,便于做物料平衡与热平衡计算。

装入量中铁水和废钢配比是根据热平衡计算确定的。

通常,铁水配比为70%~90%,其值取决于铁水温度和成分、炉容量、冶炼钢种、原材料质量和操作水平等。

在确定装入量时,必须考虑以下因素:1.要保证合适的炉容比。

炉容比是指转炉内自由空间的容积(V)与金属装入量(t)之比(V/t,m3/t)。

它通常波动在0.7~1.0。

我国转炉炉容比一般不小于0.5。

合适的炉容比是从实践中总结出来的,它与铁水成分、冷却剂类型、氧枪喷头结构和供氧强度等因素有关,应视具体条件加以确定。

表10—2列出了我国一些钢厂转炉的炉容比。

2.要有合适的熔池深度。

合适的熔池深度应大于顶枪氧气射流对熔池的最大穿透深度的一定尺寸,以保证生产安全、炉底寿命和冶炼效果。

表10—3为一些大、中型氧气顶吹转炉的熔池深度。

3.应与钢包容量、浇铸吊车起重能力、转炉倾动力矩大小、铸机拉速及模铸锭重等相适应。

二、装入制度装入制度是指一个炉役期中装入量的安排。

装入制度有三种:定量装入、定深装入和分阶段定量装入法。

1.定量装入定量装入是指在整个炉役期间,保持每炉的金属装入量不变。

优点是生产组织简便,操作稳定,有利于实现过程自动控制,多为大型钢厂采用。

缺点是容易造成炉役前期装入量偏大而熔池偏深,炉役后期装入量偏小而熔池偏浅。

2.定深装入定深装入是:指在整个炉役期间,保持每炉的金属熔池深度不变。

优点是氧枪操作稳定,有利于提高供氧强度和减少喷溅,不必当心氧气射流冲击炉底,可以充分发挥转炉的生产能力。

但它使装人量和出钢量变化较频繁,给组织生产带来困难。

3.分阶段定量装入分阶段定量装入是指在一个炉役期中,按炉膛扩大的程度划分为若干阶段,每个阶段实行定量装入。

它兼有前两者的优点,是生产中最常见的装入制度。

三、装入操作上炉出钢完毕,溅渣护炉后,炼钢工检查炉衬情况,若各部位完好,便可以组织装料,继续炼钢。

装料的程序一般是先加废钢,后兑铁水。

1.加废钢由于顶吹转炉主要靠铁水的物理热和化学热来炼钢,为了合适地掌握冶炼过程和终点温度,根据铁水条件需配加一定数量的废钢作为冷却剂。

加废钢一般由炉前摇炉工指挥,转炉向前倾30°至45°指挥天车对正转炉,将废钢料槽的前沿落在转炉的炉口上。

然后指挥天车起付钩将废钢倒入转炉。

2.兑铁水混铁炉工将本炉所要铁水跟随天车送至炉前,为了节约时间,应在上一炉出钢前就把铁水准备好。

炉前工指挥天车的位置应转炉的侧面,在天车工和摇炉工都能看见的地方,哨音和手势要清楚。

向转炉兑铁前应指挥天车对正转炉。

转炉应向前倾+30°左右,指挥天车高度适宜后,缓慢向炉内兑铁水。

随着天车小钩的上升,缓慢向下摇炉至+60°左右结束。

在兑铁水时要防止洒铁。

3.废钢比废钢装入量和总装入量之比称为废钢比。

增加废钢比可以降低铁水消耗,降低转炉生产成本,还可以降低散状料的加入量,减少渣量,从而降低炉渣对炉衬的机械冲刷。

转炉炼钢厂根据各自的铁水条件和冶炼品种来确定废钢比,一般在10%-15%。

第三节供氧制度与供氧操作氧气顶吹转炉在一炉钢的吹炼过程中,元素的氧化,造渣去除磷硫,熔池升温等主要任务都是通过氧气流股与金属熔池的作用——供氧来完成的。

通过供氧制度可以控制熔池元素氧化速度,控制造渣和炉渣的氧化性,所以供氧制度对造渣去除硫磷,喷溅量、以及炉衬寿命等均有直接影响。

供氧制度的主要内容包括合理确定喷头结构、供氧压力、供氧强度、喷枪高度以及在吹炼中如何调节枪位。

一、氧射流及其与熔池的相互作用1.氧气射流无论对哪一种转炉,顶部氧流都是最重要的供氧渠道。

顶氧射流是从出口马赫数远大于l的喷头中喷出的超音速射流。

它由超音速段、音速段和亚音速段组成,其射程随出口气流马赫数增大而延长。

除超音速段外,射流断面不断扩大。

与自由射流相比,喷入炉膛的氧射流与炉内介质存在温度差、浓度差和密度差,此外还存在反向流动介质和化学反应。

炉膛内的氧射流实质上是一种复杂的扩张流,是具有化学反应的逆向流中的非等温超音速湍流射流。

氧射流的能量主要用于搅动熔池,克服阻力及能量损失。

研究表明,用于搅动熔池的能量约占射流初始能量的20%,克服浮力的能量约占5%~l0%,非弹性碰撞的能量损失约占70%~80%。

多孔喷头的设计是基于分散氧流,增加它与熔池的接触面积,使吹炼更趋平稳;它对熔池搅拌力减小,但使成渣速度加快。

2.氧射流与熔池的相互作用。

氧射流与熔池接触时在液面上形成冲击区——凹坑,凹坑实际上是高温反应区。

热模拟实验表明,高温反应区呈火焰状,亦称火点。

它由光亮较强的中心(一次反应区)和光亮软弱的狭窄的外围(二次反应区)所构成。

据测定,反应区的温度在2000 ~27000C之间。

通常,一次反应区直接氧化反应优先得到发展,二次反应区间接氧化反应得到发展。

穿透深度和冲击面积是凹坑特征的主要标志,弗林等人在0.05~90t转炉上得出了确定穿透深度的公式。

实验条件下发现,驱动压力对冲击面积的影响不明显。

当冲击速度增加到一定值后,冲击面积随驱动压力的升高而增加,但在高于设计压力的附近变化平缓;无论是多孔喷头还是单孔喷头,枪位对冲击面积的影响规律相同。

冲击面积随枪位的变化,对应于不同的冲击速度存在一个最佳位置,对应于最大冲击面积下的枪位可由公式来确定。

熔池的搅拌程度与氧射流的冲击强度密切相关。

氧射流冲击力大(硬吹),则射流的穿透深度大,冲击面积小,对熔池的搅拌强烈;反之(软吹),则射流的穿透深度小,冲击面积大,对熔池搅拌弱。

在氧射流的作用下,熔池将受到搅拌,产生环流、喷溅、振荡等复杂运动在不同的吹炼方式下,熔池的化学反应形式也不同。

硬吹时,载氧射流大量进入钢中,碳的氧化反应激烈,而熔渣氧化性弱;反之,则进入钢中氧少,熔渣氧化性提高。

定性得到证实的元素氧化机理为:第一,当C,Mn,Si,P等元素含量大于0.1%—0.3%时,它们优先在金属—气体界面上氧化,此时氧由气相内部向金属表面的传质是反应过程的限制环节。

第二,在上述条件下可以进行下述一系列反应:铁的氧化反应的发展程度取决于C,Mn,Si 的浓度。

第三,当这些元素的含量高时,其氧化速度很少与温度有关。

碳和锰的反应主要受氧的传质控制,其活化能为16.8~18.9kJ/mol。

硅的氧化则可能不仅如此,它的活化能为25.0~33.5kJ/mol,这说明硅的氧化不是在纯外部扩散状态下进行,而是在外部和内部扩散之间的某种过渡状态下进行。

这是由于在金属表面上形成的硅质炉渣、对氧向液体金属界面的扩散造成附加阻力所致。

第四,元素的氧化次序取决于化学反应自由能变化的比值,还与该元素在钢中的浓度及其氧化物在渣中或气相中浓度有关,而与元素的表面活性关系不大。

研究表明,氧射流能量如果全部用于搅拌熔池,仅仅是C0搅拌能量的10%~20%。

因此,顶吹转炉的缺点之一就是吹炼前、末期搅拌不足,因为此时产生C0气泡数量有限。

3.乳化和泡沫现象。

由于氧射流对熔池的强烈冲击和C0气泡的沸腾作用,使熔池上部金属、熔渣和气体三相剧烈混合,形成了转炉内发达的乳化和泡沫状态。

冶金中准确的乳化概念是金属液滴或气泡弥散在炉渣中,若液滴或气泡量较小而且在炉渣中可以自由运动,则该现象叫渣钢或渣气乳化;若炉渣中仅有气泡,而且数量多或气泡大,气泡无法自由运动,则该现象叫炉渣泡沫化。

可见,炉渣泡沫化是渣气乳化体系的一种特例。

由于渣滴或气泡也能进入到金属熔体中,因此转炉中还存在金属熔体中的乳化体系。

渣钢乳化是冲击坑上沿流动的钢液被射流撕裂成金属滴所造成的。

如图10—2所示,液滴形成由下述关系所决定:图10—2 液滴生成示意图第一,如果在相界面上液滴的惯性力大于表面力和浮力的总和时,在金属液层上缘形成滴。

第二,形成液滴所需要的力是由流动钢液的动能转化而来。

吹炼时金属和炉渣紧密相混,仅把冲击坑表面看成氧气—金属接触面是不适宜的。

通过估算,lOOt转炉吹炼时的凹坑体积约10L,表面积约为0.1m2,而反应区内液滴的总表面积却超过lm2,至少比凹坑表面积大一个数量级。

巴普基兹曼斯基曾用不同方法对金属与炉渣的总接触面积进行估算,有意义的是估算结果相差不大,即金属和炉渣的接触面积约为30~60m2/t金属。

相关文档
最新文档