用累乘法求递推数列的通项公式

合集下载

求数列通项公式、前n项和sn常用方法F

求数列通项公式、前n项和sn常用方法F

求数列通项公式常用方法1.归纳法:由给出已知项寻找规律 ,求同存异,猜想通项公式2.公式法:等差数列与等比数列.3.作差法:利用⎩⎨⎧≥-==-)2()1(11n S S n S a n n n , 求n a特别的:已知前n 项积,求n a 使用(作商法).4、累加法:数列}{n a 的递推公式为)(1n f a a n n =-+型时,且{)(n f }中n 项和可求。

5、累乘法:数列}{n a 的递推公式为)(1n f a a n n =+型时,且{)(n f } 中n 项积可求。

6、构造法:形如q a p a n n+∙=-1(q p 、为常数)的形式,往往变为)(1λλ-=--n n a p a ,构成等比数列,求}{λ-na 的通项公式,再求n a .7、倒数法:形如)()()(n h a n g a n f n n++,可取倒数后换元,变为q a p a n n +∙=-18.周期法:计算出前n 项,寻找周期精题自测(1)已知数列}{n a 满足)1(23-=n n a S ,则n a =_____________(2)已知数列}{n a 满足11=a ,n n n a a 21+=+,则n a =_____________(3)已知数列}{n a 满足11=a ,)11ln(1na a n n ++=+,则n a =_____________(4)已知数列}{n a 满足11=a ,n nn a a 21=+,则n a =_____________(5)已知数列}{n a 满足11=a ,0>n a ,0)1(1221=∙+-+++n n n n a a na a n ,则n a =____________(6)已知数列}{n a 满足11=a ,121+=+n nn a a a ,则n a =_____________(7)已知数列}{n a 满足31=a ,62=a ,n n n a a a -=++12,则2013a =_____________(8)已知数列}{n a 满足333313221na a a a n n =∙++∙+∙+- ,则n a =_____________(9)已知数列的前n 项积为2n ,则当≥n 2时,则n a =_____________求前n 项和nS 常用方法1、公式法:等差数列的前n 项和公式: 等比数列的前n 项和公式:①d n n na a a n S n n 2)1(2)(11-+=+= ②⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q qq a a q q a q na S n n nn )1(211+=∑=n n k nk∑=nk k 12=)12)(1(613212222++=++++n n n n 213)]1(21[+=∑=n n k nk 例1:已知3log 1log 23-=x ,求 +++++n x x x x 32的前n 项和.2、分组求和法:把一个数列分成几个可直接求和的数列.例2:求数列211,413,815,…,⎥⎦⎤⎢⎣⎡+-n n 2112)(的前n 项和。

数列求通项的方法总结

数列求通项的方法总结

数列求通项的方法总结数列求通项的方法总结按一定次序排列的一列数称为数列,而将数列{an} 的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。

为大家总结数列求通项的方法,一起来看看吧!一、累差法递推式为:an+1=an+f(n)(f(n)可求和)思路::令n=1,2,…,n-1可得a2-a1=f(1)a3-a2=f(2)a4-a3=f(3)……an-an-1=f(n-1)将这个式子累加起来可得an-a1=f(1)+f(2)+…+f(n-1)∵f(n)可求和∴an=a1+f(1)+f(2)+ …+f(n-1)当然我们还要验证当n=1时,a1是否满足上式例1、已知数列{a}中,a1=1,an+1=an+2,求an解:令n=1,2,…,n-1可得a2-a1=2a3-a2=22a4-a3=23……an-an-1=2n-1将这个式子累加起来可得an-a1=f(1)+f(2)+…+f(n-1)∵f(n)可求和∴an=a1+f(1)+f(2)+…+f(n-1)当n=1时,a1适合上式故an=2n-1二、累商法递推式为:an+1=f(n)an(f(n)要可求积)思路:令n=1,2, …,n-1可得a2/a1=f(1)a3/a2=f(2)a4/a3=f(3)……an/an-1=f(n-1)将这个式子相乘可得an/a1=f(1)f(2) …f(n-1)∵f(n)可求积∴an=a1f(1)f(2) …f(n-1)当然我们还要验证当n=1时,a1是否适合上式例2、在数列{an}中,a1=2,an+1=(n+1)an/n,求an解:令n=1,2, …,n-1可得a2/a1=f(1)a3/a2=f(2)a4/a3=f(3)……an/an-1=f(n-1)将这个式子相乘后可得an/a1=2/1×3/24×/3×…×n/(n-1)即an=2n当n=1时,an也适合上式∴an=2n三,构造法1、递推关系式为an+1=pan+q (p,q为常数)思路:设递推式可化为an+1+x=p(an+x),得an+1=pan+(p-1)x,解得x=q/(p-1)故可将递推式化为an+1+x=p(an+x)构造数列{bn},bn=an+q/(p-1)bn+1=pbn即bn+1/bn=p,{bn}为等比数列.故可求出bn=f(n)再将bn=an+q/(p-1)代入即可得an例3、(06重庆)数列{an}中,对于n>1(nN)有an=2an-1+3,求an 解:设递推式可化为an+x=2(an-1+x),得an=2an-1+x,解得x=3 故可将递推式化为an+3=2(an-1+3)构造数列{bn},bn=an+3bn=2bn-1即bn/bn-1=2,{bn}为等比数列且公比为3bn=bn-1·3,bn=an+3bn=4×3n-1an+3=4×3n-1,an=4×3n-1-12、递推式为an+1=pan+qn(p,q为常数)思路:在an+1=pan+qn两边同时除以qn+1得an+1/qn+1=p/qan/qn+i/q构造数列{bn},bn=an/qn可得bn+1=p/qbn+1/q故可利用上类型的解法得到bn=f(n)再将代入上式即可得an例4、数列{an}中,a1+5/6,an+1=(1/3)an+(1/2)n,求an解:在an+1=(1/3)an+(1/2)n两边同时除以(1/2)n+1得2n+1an+1=(2/3)×2nan+1构造数列{bn},bn=2nan可得bn+1=(2/3)bn+1故可利用上类型解法解得bn=3-2×(2/3)n2nan=3-2×(2/3)nan=3×(1/2)n-2×(1/3)n3、递推式为:an+2=pan+1+qan(p,q为常数)思路:设an+2=pan+1+qan变形为an+2-xan+1=y(an+1-xan) 也就是an+2=(x+y)an+1-(xy)an,则可得到x+y=p,xy= -q解得x,y,于是{bn}就是公比为y的等比数列(其中bn=an+1-xan)这样就转化为前面讲过的类型了.例5、已知数列{an}中,a1=1,a2=2,an+2=(2/3)·an+1+(1/3)·an,求an解:设an+2=(2/3)an+1+(1/3)an可以变形为an+2-xan+1=y(an+1-xan)也就是an+2=(x+y)an+1-(xy)an,则可得到x+y=2/3,xy= -1/3 可取x=1,y= -1/3构造数列{bn},bn=an+1-an故数列{bn}是公比为-1/3的`等比数列即bn=b1(-1/3)n-1b1=a2-a1=2-1=1bn=(-1/3)n-1an+1-an=(-1/3)n-1故我们可以利用上一类型的解法求得an=1+3/4×[1-(-1/3)n-1](nN*)例题1、利用sn和n的关系求an思路:当n=1时,an=sn当n≥2 时, an=sn-sn-1例6、已知数列前项和s=n2+1,求{an}的通项公式.解:当n=1时,an=sn=2当n≥2 时, an=sn-sn-1=n+1-[(n-1)2+1]=2n-1而n=1时,a1=2不适合上式∴当n=1时,an=2当n≥2 时, an=2n-12、利用sn和an的关系求an思路:利用an=sn-sn-1可以得到递推关系式,这样我们就可以利用前面讲过的方法求解例7、在数列{an}中,已知sn=3+2an,求an解:即an=sn-sn-1=3+2an-(3+2an-1)an=2an-1∴{an}是以2为公比的等比数列∴an=a1·2n-1= -3×2n-12、用不完全归纳法猜想,用数学归纳法证明.思路:由已知条件先求出数列前几项,由此归纳猜想出an,再用数学归纳法证明例8、(2002全国高考)已知数列{an}中,an+1=a2n-nan+1,a1=2,求an解:由已知可得a1=2,a2=3,a3=4,a4=5,a5=6由此猜想an=n+1,下用数学归纳法证明:当n=1时,左边=2,右边=2,左边=右边即当n=1时命题成立假设当n=k时,命题成立,即ak=k+1则 ak+1=a2k-kak+1=(k+1)2-k(k+1)+1=k2+2k+1-k2-2k+1=k+2=(k+1)+1∴当n=k+1时,命题也成立.综合(1),(2),对于任意正整数有an=n+1成立即an=n+1。

十类递推数列的通项公式的求法

十类递推数列的通项公式的求法
十类递推数列的通项公式的求法
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&
文!黄爱民
一、an+1= an+ f(n)型 这类递推数列可通过累加法求得其通项公式.当 f(n)
为常数时,通过累加法可求得等差数列的通项公式;当
f(n)为等差数列形式时,an+1= an+ f(n)为二阶等差数列, 它的通项公式的形式为 an=an2+bn+c.同时要注意它与等 差数列求和公式的一般形式的区别,后者是 Sn=an2+bn, 它的常数项一定为 0.
对数,得 lgan=lg2an4- 1 ,则有 lgan=4lgan-1+lg2.
∴lgan+
1 3
lg2=4(lgan-
1+
1 3
lg2).从而知{lgan+
1 3
lg2}是
首项为 1 lg2,公比为 4 的等比数列. 3
∴lgan=
(4n-1- 1)lg2 3
=(4n-1- 1)lg#3 2
,即
高中生·高考指导 13
×(3 2
)n- 1=(3 2
)n,即
an=
2n 3n- 2n

九、a n+1=
Aan+B Can+D
(A,B,C,D 为非零常数)型
这类递推数列的通项公式是利用函数的不动点来
求的.尽管这个知识点高考不作要求,但考题往往就从
这些地方出,只需增加一些铺垫.
例 9 若 f(x0)=x0,则称 x0 为 f(x)的不动点.已知函 数 f(x)= 2x+3 .
+1 2
.令
bn=
an 2n
,则有
bn+1=
3 2
bn+

求数列通项公式的七种模型

求数列通项公式的七种模型

一、高考数列求通项公式模型【简便记忆】二.高考数列求通项公式【详细解读】1.【归纳法】 适用于:列举法给出的数列模型即1234,a a a a ,,···; 【模型特征】:给出数列的前几项,通过归纳、猜想、找规律。

【求解方法】根据1(2)34⎧⎪⎪⎨⎪⎪⎩()相邻项的特征分式中分子、分母的特征()拆项后的特征()各项的序号与项之间的变与不变特征例1.根据数列前几项,写出下列各数列的一个通项公式。

(1)—1,7,—13,19,···; (2)0.8, 0.88,0.888,···; (3)115132961,,,,,248163264--,···; ●点评:该法属于不完全归纳法,仅用来解选择、填空题,对于大题,用此法还要用数学归纳法进行证明,另外求得的通项公式一定要代值检验,以防出错。

2.【累加法】 适用于:1()n n a a f n +=+模型(先累后求和) 【模型特征】:1()n n a a f n +、系数相同,作差,是关于n 的函数。

【求解方法】221()(()()-=()()()1()()(1)n n f n pn q f n pn qn r a a f n f n pq r f n n n +=+⇒⎧⎪=++⇒⎪⎪=+⇒⎨⎪⎪=⇒+⎪⎩一次型)等差求和二次型分组求和指数型等比求和分式型裂项求和化为例2. 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

(一次型) 答案:等差求和2n a n =例3. 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

(指数型) 答案:等比求和31n n a n =+-练习1.已知数列{}n a 的首项为1,且写*12()n n a a n n N +=+∈出数列{}n a 的通项公式. (一次型)答案:等差求和21n a n n =-+练习2.已知数列}{n a 满足13a =,11(2)(1)n n a a n n n -=+≥-,求此数列的通项公式.答案:裂项求和12n a n=-3.【累乘法】 适用于: 1()n n a f n a += 模型(先累后求商)【模型特征】1()n n a a f n +、系数相同,作商,是关于n 分式型的函数。

递推数列求通项的常用方法

递推数列求通项的常用方法

求递推数列通项公式的常用方法一、 累加法:利用1211()()n n n a a a a a a -=+-+⋅⋅⋅-求通项公式的方法称为累加法。

累加法是求“1()n n a a f n +=+”型的递推数列通项公式的基本方法(()f n 可求前n 项和).例1. 在数列{}n a 中,11111,(1)2n n n n a a a n ++==++ (I )设n n a b n=,求数列{}n b 的通项公式 (II )求数列{}n a 的前n 项和n S二、累乘法:利用恒等式321121(0,2)n n n n a a a a a a n a a a -=⋅⋅⋅≠≥求通项公式的方法称为累乘法,累乘法是求: “1()n n a g n a +=”型的递推数列通项公式的基本方法(数列()g n 可求前n 项积). 例2.已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式. .三、构造新数列:(一) 数列形式及构造方法1.形式1:n+1n a pa q =+(,p q 为常数,0p ≠,0q ≠)构造1:通过待定系数法,1()()n n a x p a x ++=+,反解x ,可得{}n a x +为等比数列,进而求解{}n a 构造2:由n+1n a pa q =+得n 1n a pa q -=+,两式作差:“11()n n n n a a p a a +--=-”,可得1{}n n a a --为等比数列,进而求解{}n a例3.1 已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.2.形式2:)(1n f pa a n n +=+构造1:1(1)[()]n n a g n p a g n +++=+;构造2:等式左右同除以1n p +,得111()n n n n n a a f n P p p +++=+; 例3.2设数列{}n a :)2(,123,411≥-+==-n n a a a n n ,求n a .例3.3已知数列{}n a 中,651=a ,11)21(31+++=n n n a a ,求n a 。

累加累乘法求通项

累加累乘法求通项
+1

=
2
.
(+1)
11.设数列{an }是首项为 1 的正项数列,且(n+1)·an+12-nan2+an+1an=0(n∈N*),
1
则它的通项公式是 an=________.
n
an+1
n
解析 原式可化为[(n+1)an+1-nan](an+1+an)=0.∵an+1+an>0,∴

.
an n+1
9.已知数列{an}满足 a2=6,
解析∵a2=6,
+1-
由累乘法得 an=
+
-
=n(n∈N*),求数列{an}的通项公式.
=n(n∈N*),∴a1=3
2
· ·…· ·a1=
-1
-1
-2
1
-1
2
-2
1
=
· ·…· ·a1=na1=3n(n≥2).
-1
又 a1=3 满足上式,∴an=3n(n∈N*).
an n-1
a2 1 a3 2 a4 3
a 1
则 = , = , = ,…,

(n≥2),逐项相乘,得 n= ,又 a1=1,
a1 2 a2 3 a3 4
a1 n
an-1
n
1
1
故 an= . a1=1 也符合上式,故 an= .
n
n
12.已知数列{an}的前 n 项和为 S n ,首项 a1=1,且满足 3Sn =(n+2)an ,则
- =4n,所以当 n≥2 时,
+
1
-
1
-1
+…+
-2
1-4

常见递推数列通项公式的求法

常见递推数列通项公式的求法

(5)累乘法:
an1 an

f (n) ( f (1) f (2)
i 1
f (n)可求)
(6)构造法 an1 kan b
(7)作商法( a1a2 an cn 型);
(8)数学归纳法.
类型1 an1 an f (n)
类型1 an1 an f (n)
求法:累加法
类型3 an1 pan q( p 0, p 1)
求法 : 待定系数法.令an1 p(an ), 其中为待定系数,化为等比数列 {an }求通项.
例3 已知数列{an }中,若a1 1, an1 2an 3(n 1),求数列{an }的通项公式.
为首项, 公比为
(1)n1. 2
1 2
的等比数列.

an

1 2
an1

1,
an 2 21n.
【1】设数列{an}的前 n 项和为 Sn , 已知 a1 5 ,且 nSn1 2n(n 1) (n 1)Sn (n N ) , 则数列 an 的通项公式 是( A)
1 3 (an1 2an2 )(n 3,4, ) (1)求证 : 数列{an1 an }是等比数列; (2)求数列{an }的通项公式an .
【1】已知数列 {an} 中,
a1=1,
an+1=
1 2
an+1 (nN*),
则an =___2___2__1_n____.
Q
an1
类型6
an1

pan qan
r
(
p, q,
r均不为零)
类型6
an1

通项公式的求法

通项公式的求法

(条件:若 {an }的相邻两项关系式可化为: 条件: Aan+1 ⋅ an + Ban+1 + Can + D = 0 (A ≠ 0) 可用这种方法;(其中方程 Ax + (B + C)x + D = 0 可用这种方法; 其中方程
2
该数列的特征根) 的根称为该数列的特征根)
可视an +1与an都为x得到x的一元二次方程求出特 征根
6
三、待定系数法
类型:an +1 = k ⋅ an + b
例 6:在数列{an}中,a1 = 1, an+1 = 3 ⋅ an − 1, 求 an .
7
四 Sn与 n及 的 系 , 通 an .知 a n 关 式 求 项
(n =1 ) S1 类 :应 公 an = 型 用 式 求 解 Sn − Sn−1(n ≥ 2)
17
七、对数法
q an +1 = pan ( p > 0) 类型七 类型七:

2 a1 = 2, an +1 = 3an + 6an + 2 ,求 17:数列 {a n }满足 :
数列 {a n }的通项公式
18
七、对数法
q an +1 = pan ( p > 0) 类型七 类型七:
的图象上,其中n = 1, 2,3,⋯,求数列{an }的通项公式。
13
引 拓 :an+1 = qan + An + Bn +C 伸 展
2
例13 :已知数列{an } 满足a1 = 1, 且an +1 = 2an + n − n + 1,

数列通项公式的九种求法

数列通项公式的九种求法

数列通项公式的九种求法各种数列问题在很多情形下,就是对数列通项公式的求解。

特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。

笔者总结出九种求解数列通项公式的方法,希望能对大家有帮助。

一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,255a S =.求数列}a {n 的通项公式解:设数列}a {n 公差为)0d (d >∵931a ,a ,a 成等比数列,∴9123a a a =, 即)d 8a (a )d 2a (1121+=+,得d a d 12=∵0d ≠,∴d a 1=……………………①∵255S a =∴211)d 4a (d 245a 5+=⋅⨯+…………②由①②得:53a 1=,53d =∴n5353)1n (53a n =⨯-+= 点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。

二、累加法求形如1()n n a a f n --=(f(n)为等差或等比数列或其它可求和的数列)的数列通项,可用累加法,即令n=2,3,…n —1得到n —1个式子累加求得通项。

例2.已知数列{a n}中,a 1=1,对任意自然数n 都有11(1)n n a a n n -=++,求n a . 解:由已知得11(1)n n a a n n --=+,121(1)n n a a n n ---=-,……,32134a a -=⨯,21123a a -=⨯,以上式子累加,利用111(1)1n n n n =-++得n a -1a =1111...23(2)(1)(1)(1)n n n n n n ++++⨯---+ =1121n -+,3121n a n ∴=-+ 点评:累加法是反复利用递推关系得到n —1个式子累加求出通项,这种方法最终转化为求{f(n)}的前n —1项的和,要注意求和的技巧.三、迭代法求形如1n n a qa d +=+(其中,q d 为常数) 的数列通项,可反复利用递推关系迭代求出。

数列求通项公式的五种重要方法

数列求通项公式的五种重要方法

求通项公式的5种重要方法一、Sn 法,根据等差数列、等比数列的定义求通项an=Sn-S n-1*121{}(1)()3(1),;(2):{}.n n n n n a n S S a n N a a a =-∈ 已知数列的前项为,求求证数列是等比数列二、累加、累乘法1、累加法 适用于:1()n n a a f n +=+若1()n n a a f n +-=(2)n ≥,则 21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

例3 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

例12、累乘法 适用于: 1()n n a f n a += 若1()n n a f n a +=,则31212(1)(2)()n na a a f f f n a a a +=== ,,, 两边分别相乘得,1111()n n k a a f k a +==⋅∏ 例4 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。

例5 已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式.例6 已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥ ,,求{}n a 的通项公式。

三、待定系数法 适用于1()n n a qa f n +=+分析:通过凑配可转化为1121()[()]n n a f n a f n λλλ++=+;解题基本步骤:1、确定()f n2、设等比数列{}1()n a f n λ+,公比为2λ3、列出关系式1121()[()]n n a f n a f n λλλ++=+4、比较系数求1λ,2λ5、解得数列{}1()n a f n λ+的通项公式6、解得数列{}n a 的通项公式例7 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。

几种求数列通项公式的方法

几种求数列通项公式的方法

几种求数列通项公式的常用方法一、公式法:1、等差数列公式例1(1). 已知等差数列{a n }满足a 2=0,a 6+a 8=-10,求数列{a n }的通项公式;解:设等差数列{}n a 的公差为d ,由已知条件可得110,21210,a d a d +=⎧⎨+=-⎩解得11,1.a d =⎧⎨=-⎩ 故数列{}n a 的通项公式为2.n a n =-2、等比数列公式例1(2).设{}n a 是公比为正数的等比数列,12a =,324a a =+,求{}n a 的通项公式解:设q 为等比数列{}n a 的公比,则由21322,4224a a a q q ==+=+得,即220q q --=,解得21q q ==-或(舍去),因此 2.q =所以{}n a 的通项为1*222().n n n a n N -=⋅=∈ 3、通用公式:若已知数列的前n 项和n S 的表达式,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥-==-211n S S n S a n nn n 求解。

一般先求出a1=S1,若计算出的a n 中当n=1适合时可以合并为一个关系式,若不适合则分段表达通项公式。

例1(3).已知数列}{n a 的前n 项和12-=n s n ,求}{n a 的通项公式。

解:011==s a ,当2≥n 时12]1)1[()1(221-=----=-=-n n n s s a n n n由于1a 不适合于此等式 。

∴⎩⎨⎧≥-==)2(12)1(0n n n a n 二、叠加法(逐差相加法):对于已知形如)(1n f a a n n +=+类的递推公式求通项,且)()2()1(n f f f +++ 的和比较好求的题型,可把原递推公式转化为)(1n f a a n n =-+,利用叠加法(逐差相加法)求通项公式.例2. 已知数列{}n a 满足11211,2n n a a a n n+==++,求数列{}n a 的通项公式。

六种常见数列递推公式

六种常见数列递推公式
课题导入
已知a1=1/2, 3an+1-2an=an+公式求通项公式 方法(2)
目标引领
• (1)可变型为“an+1=an∙f(n)"数列递推公式 求通项公式 • (2)可变型为“pan+1-pan=an+1∙an"(p不为 0,p为常数)的数列递推公式求通项公式。 • (3)可变型为‘‘pan+1-qan=an+1∙an’’ (p、q不相等,且均不为0的常数)的数列 递推公式求通项公式。
当堂诊学(10分钟)
【必做题】
1 an an=_______. n
2 n
1.设{an}是首项为1的正项数列,且满足 2 2 (n 1)an na ,2,3) ,则 1 n an1an 0(n 1
2. 数列{an}中a1=1,当 n 2 时,其前n项和
1 Sn满足S an ( S n ), 求{an }的通项公式 . 21 (n 1) an 2 ( n 2) (2n 1)(2n 3)
( pq 0, p q, p、q为常数)
目标再现
• (1)可变型为“an+1=an∙f(n)"(p不为0,p为常数)的数列递 推公式求通项公式 方法1:迭代 方法2:累乘 • (2)可变型为“pan+1-pan=an+1∙an"(p不为0,p为常数)的数 列递推公式求通项公式。 1 方法:两边同除pan+1an,则{ } 成等差.
1
(n 1)
强化补请
• 完成《全品》上的题目.(晚自习)
当堂诊学(10分钟)
• 【提高题】 • 设Sn为数列{bn}的前n项和,且满足
2bn b1=1, 1(n 2). 2 bn S n S n

专题二 递推公式求数列的通项

专题二 递推公式求数列的通项

专题二 数 列 的 通 项递推数列的题型多样,求递推数列的通项公式的方法也非常灵活,往往可以通过适当的策略将问题化归为等差数列或等比数列问题加以解决(即构造等差、等比的辅助数列),因而求递推数列的通项公式问题成为了高考命题中颇受青睐的考查内容。

常见的求法有:1、 公式法:由等差,等比定义,写出通项公式(一般求m a d q 、、,再用通项或变形公式)2、 累加法:)(1n f a a n n =-+型; 累乘法:)(1n f a a nn =+型; 迭代法 3、待定系数法:1()n n a pa f n +=+型;q pa a n n +=+1型(p q 、为常数,且1,0p p ≠≠) 特别提醒:一阶递推q pa a n n +=+1,我们通常将其化为111n n q q a p a p p +⎛⎫⎛⎫+=+ ⎪ ⎪--⎝⎭⎝⎭{b n }的等比数列 (常考查)4、不动点法:1n a +与n a 的递推公式中,不含()f n 。

5、特征根的方法:n n n qa pa a +=++12(其中p ,q 均为常数)。

6、对数变换法:rn n pa a =+1)0,0(>>n a p7、换元法:对含a n 与S n 的题,利用⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n nn 消去n S ,转换为n a 的推公式,再用前面的方法特别提醒:对含a n 与S n 的题,在求和的问题时,也可以用这样的方法消去n a ,得到关于n S 的递推公式,同样采用上述求通项地方法求出n S8、周期数列:n T n a a +=9、数学归纳法:(以后学)说明:① 仔细辨析递推关系式的特征,准确选择恰当的方法,是迅速求出通项公式的关键。

② 其中方法3、4、5、6、7都属于构造辅助数列:构造{}()n f a 为等差(等比)数列,求出()n f a ,然后就可以求出n a 了。

用累乘法求递推数列的通项公式

用累乘法求递推数列的通项公式

用累乘法求递推数列的通项公式
累乘法,也称为增进法,是一种用来求解递推数列的通项公式的方法。

这种方法的基本原理是由已知条件来推出未知条件,利用公式试探法,用累
乘法找出一个条件,用累乘来表示不同条件之间的关系。

实质上,累乘法是对递推数列的一种求解方式,主要思想是用累乘法提
取公式中的每一项,并根据所给条件,将每一项累加并求解公式的未知数。

以等差数列来说明累乘法的用法:
假设我们需要求解an=3n+2的通项公式。

我们可以用以下的算法来解决
这一问题:第一步,找出a1的值为a1=2;第二步用累乘法来求出累乘系数,比如:a2=a1*3+2=8,a3=a2*3+2=14,以此类推;第三步,将第二步中求出
的系数进行累乘,由此可以推得需要求解的公式为:an=3^n-1*2+2。

由上述可知,累乘法可以帮助我们很好地求解递推数列的通项公式,这
是一种比较简便的方法。

与其他递推函数求解公式的方法相比,它具有更强
的独特性。

此外,它也可以帮助我们解决复杂的数学问题,使数学的求解更
加容易。

用累乘法求递推数列的通项公式

用累乘法求递推数列的通项公式

用累乘法求递推数列的通项公式累乘法,也被称为累乘法则,是一种用于求解递推数列的通项公式的方法。

这种方法适用于递推数列具有一定的规律性,并且每一项与前一项之间有一定的关系。

在使用累乘法求解递推数列的通项公式时,我们首先要确定数列的初始项,并推导出数列中每一项与前一项的关系,然后利用这个关系来求解数列的通项公式。

下面,我们将通过一个具体的例子来详细介绍累乘法的应用过程。

例子:求解递推数列1、2、4、8、16、32……的通项公式。

解析:首先,我们可以观察到这个数列的每一项都是前一项乘以2得到的,即第n项等于第n-1项乘以2、这样的关系可以写作a_n=2*a_(n-1)。

接下来,我们需要找到数列的初始项。

根据数列的前几项可知,第一项为1、因此,我们可以得到初始条件a_1=1现在,我们可以利用累乘法来求解这个递推数列的通项公式了。

首先,将递推关系式a_n=2*a_(n-1)两边同时除以a_(n-1),得到a_n/a_(n-1)=2接下来,我们再次应用递推关系式,得到a_(n-1)/a_(n-2)=2将这两个等式联立起来,我们可以得到:(a_n/a_(n-1))*(a_(n-1)/a_(n-2))*...*(a_(k+1)/a_k)=(2*2*...*2)=2^(n-k)。

其中,k为我们选择的起始项。

在我们的例子中,我们选择a_1作为起始项。

因此,我们可以得到:(a_n/a_1)=2^(n-1)。

将初始条件代入,即可得到递推数列的通项公式:a_n=a_1*2^(n-1)。

现在,我们已经成功地通过累乘法求解出了递推数列1、2、4、8、16、32……的通项公式。

这个通项公式可以用来计算数列中的任意一项。

综上所述,累乘法是一种求解递推数列通项公式的有效方法。

通过观察数列的规律,推导出数列中每一项与前一项的关系,并利用累乘法则进行计算,我们可以得出递推数列的通项公式。

累乘法在数学和应用问题中都具有重要的应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档