必修五_解三角形_题型归纳

合集下载

数学必修五知识点与题型

数学必修五知识点与题型

高中数学必修5知识点第一章 解三角形1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有 正弦定理的变形公式:①a=_________,b=_________,c=_________; ②sinA=_________,sinB=_________,sinC=_________; ③::_________a b c =; ④_________sin sin sin a b cC++=A +B +.在正弦定理中,已知两边和一角或已知两角和一边,可以求出其它所有的边和角。

注明:正弦定理的作用是进行三角形中的边角互化,在变形中,注意三角形中其他条件的应用:(1)三内角和为180° (2)两边之和大于第三边,两边之差小于第三边(3)面积公式:S=21absinC=Rabc 4=2R 2sinAsinBsinC (4)三角函数的恒等变形。

如:sin(A+B)=sinC ,cos(A+B)=-cosC ,sin2B A +=cos 2C ,cos 2BA +=sin 2C 使用正弦定理解三角形共有三种题型题型1 利用正弦定理公式原型解三角形 题型2 利用正弦定理公式的变形(边角互化)解三角形:关于边或角的齐次式可以直接边角互化。

例如:22sin 3s iA B C a +=⇒+题型3 三角形解的个数的讨论 方法一:画图看方法二:通过正弦定理解三角形,利用三角形内角和与三边的不等关系检验解出的结果是否符合实际意义,从而确定解的个数。

2、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .3、余弦定理:在C ∆A B 中,有2_________a =,2_________b =, 2_________c =.4、余弦定理的推论:cos _________A =,cos _________B =,cos _________C =.使用余弦定理解三角形共有三种现象的题型题型1 利用余弦定理公式的原型解三角形 题型2 利用余弦定理公式的变形(边角互换)解三角形:凡在同一式子中既有角又有边的题,要将所有角转化成边或所有边转化成角,在转化过程中需要构造公式形式。

解三角形解答题十大题型总结(解析版)--2024高考数学常考题型精华版

解三角形解答题十大题型总结(解析版)--2024高考数学常考题型精华版

解三角形解答题十大题型总结【题型目录】题型一:利用正余弦定理面积公式解题题型二:解三角形与三角恒等变换结合题型三:三角形面积最大值,及取值范围问题题型四:三角形周长最大值,及取值范围问题题型五:角平分线相关的定理题型六:有关三角形中线问题题型七:有关内切圆问题(等面积法)题型八:与向量结合问题题型九:几何图形问题题型十:三角函数与解三角形结合【典例例题】题型一:利用正余弦定理面积公式解题【例1】△ABC 的内角、、A B C 的对边分别为a b c 、、,已知△ABC 的面积为23sin a A(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长.【答案】(1)2sin sin 3B C =(2)3+.【详解】:(1)由题设得21sin 23sin a ac B A=,即1sin 23sin a c B A =.由正弦定理得1sin sin sin 23sin A C B A =.故2sin sin 3B C =.(2)由题设及(1)得1cos cos sin sin ,2B C B C -=-,即()1cos 2B C +=-.所以23B C π+=,故3A π=.由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即()239b c bc +-=,得b c +=.故ABC 的周长为3【例2】的内角的对边分别为,,a b c ,已知2sin()8sin 2B AC +=.(1)求cos B ;(2)若6a c +=,ABC ∆面积为2,求b .【答案】(1)1517;(2)2.【详解】:(1)()2sin 8sin 2B A C +=,∴()sin 41cos B B =-,∵22sin cos 1B B +=,∴()22161cos cos 1B B -+=,∴()()17cos 15cos 10B B --=,∴15cos 17B =;(2)由(1)可知8sin 17B =,∵1sin 22ABC S ac B =⋅=,∴172ac =,∴()2222222217152cos 2152153617154217b ac ac B a c a c a c ac =+-=+-⨯⨯=+-=+--=--=,∴2b =.【例3】ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(1)求角C ;(2)若c =332ABC S ∆=,求ABC ∆的周长.【答案】(1)3C π=(2)5+【详解】:(1)由已知可得2cos (sin cos sin cos )sin C A B B A C +=12cos sin()sin cos 23π∴+=⇒=⇒=C A B C C C(2)11sin 6222∆=⇒=⋅⇒=ABC S ab C ab ab 又2222cos +-= a b ab C c 2213a b ∴+=,2()255∴+=⇒+=a b a b ABC ∆∴的周长为5+【例4】已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对边,c ccosA =-.(Ⅰ)求A ;(Ⅱ)若a =2,ABC ∆,求b ,c .【答案】(1)3A π=(2)b c ==2【详解】(Ⅰ)由sin cos c C c A =-及正弦定理得sin cos sin sin A C A C C-=由于sin 0C ≠,所以1sin 62A π⎛⎫-= ⎪⎝⎭,又0A π<<,故3A π=.(Ⅱ)ABC ∆的面积S =1sin 2bc A ,故bc =4,而2222cos a b c bc A =+-故22c b +=8,解得b c ==2【例5】(2022·陕西·安康市教学研究室高三阶段练习(文))在ABC 中a ,b ,c 分别为内角A ,B ,C 的对边.sin sin 2A C c b C +=.(1)求角B 的大小;(2)若112,2tan tan tan b A C B+==,求ABC 的面积.,【题型专练】1.已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,(1)求角A (2)若2a =,ABC ∆的面积为;求,b c .【答案】(1)(2)b=c=2【解析】:(1)由及正弦定理得sin cos sin sin sin 0A C A C B C --=,因为B A C π=--sin cos sin sin 0A C A C C --=.由于sin 0C ≠,所以1sin(62A π-=.又0A π<<,故3A π=.(2)ABC ∆的面积1sin 2S bc A ==4bc =,而2222cos a b c bc A =+-,故228b c +=.解得2b c ==.2.已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(1)若a b =,求cos ;B(2)若90B = ,且a =求ABC ∆的面积.【答案】(1)14;(2)1【解析】:(1)由题设及正弦定理可得22b ac=又a b =,可得2,2b c a c==由余弦定理可得2221cos 24a cb B ac +-==(2)由(1)知22b ac=因为90B = ,由勾股定理得222a cb +=故222a c ac +=,得c a ==所以的面积为13.(2021新高考2卷)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.【详解】(1)因为2sin 3sin C A =,则()2223c a a =+=,则4a =,故5b =,6c =,2221cos 28a b c C ab +-==,所以,C 为锐角,则37sin 8C ==,因此,11sin 452284ABC S ab C ==⨯⨯⨯=△;(2)显然c b a >>,若ABC 为钝角三角形,则C 为钝角,由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===++,解得13a -<<,则0<<3a ,由三角形三边关系可得12a a a ++>+,可得1a >,a Z ∈ ,故2a =.4.(2022·广东佛山·高三阶段练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos sin B a B =+.(1)求角A 的大小;(2)若2sin a B C ==,求ABC 的面积.5.(2022·安徽省宿松中学高二开学考试)在ABC 中,角,,A B C 的对边分别为,,,tan sin a b c B A C B ==.(1)求角C 的大小;(2)若ABC 的面积为196,求ABC 外接圆的半径.题型二解三角形与三角恒等变换结合【例1】ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a ,b ,求ABC 的面积;(2)若sin A C =22,求C .【答案】(1;(2)15︒.【分析】(1)由余弦定理可得2222282cos1507b a c ac c ==+-⋅︒=,2,c a ABC ∴==∴△的面积1sin 2S ac B ==;(2)30A C +=︒ ,sin sin(30)A C C C∴=︒-+1cos sin(30)222C C C =+=+︒=,030,303060C C ︒<<︒∴︒<+︒<︒ ,3045,15C C ∴+︒=︒∴=︒.【例2】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ;(2)若33b c a -=,证明:△ABC 是直角三角形.【答案】(1)3A π=;(2)证明见解析【分析】(1)因为25cos cos 24A A π⎛⎫++=⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=,解得1cos 2A =,又0A π<<,所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==,即222b c a bc +-=①,又33b c a -=②,将②代入①得,()2223b c b c bc +--=,即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC 是直角三角形.【例3】在ABC ∆中,满足222sin cos sin cos A B A B C -+=-.(1)求C ;(2)设()()2cos cos cos cos 5cos 5A B A B ααα++==,,求tan α的值.【详解】(1)∵221cos B sin B =-,221cos C sin C =-,∴222sin A cos B cos C -=-变形为22211sin A sin B sin C --+=--()(),即222sin A sin B sin C ++=,利用正弦定理可得:222a b c ++=,由余弦定理可得cosC=22-,即C=34π.(2)由(1)可得cos (A+B )=2,A+B=4π,又cosAcosB=cos()cos 3225A B A B ++-=(),可得72cos(A B)10-=,同时cos (αA +)cos (αB +)=72cos(2α)cos(2αA B)cos A B 41022π+++++-=(),∴22272272cos(2α)sin2αcos(αA)cos(αB)410210222cos cos cos πααα++-+++===222222722sinαcosα2102cos sin cos sin cos ααααα--++()=222622552cos sin cos ααα+-=2510tan α+- 2tan α=5,∴2tan 5tan 62αα-+=,∴ 1tan α=或4.【题型专练】1.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .【答案】(1)3A π=;(2)sin 4C +=.【分析】【详解】(1)()2222sin sin sin 2sin sin sin sin sin sin B C B B C C A B C-=-+=-即:222sin sin sin sin sin B C A B C+-=由正弦定理可得:222b c a bc +-=2221cos 22b c a A bc +-∴==()0,A π∈ 3A π∴=(2)2b c +=,由正弦定理得:sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1cos sin 2sin222C C C ++=整理可得:3sin C C22sin cos 1C C += (()223sin 31sin C C ∴=-解得:62sin 4C =或624因为sin 2sin 2sin 02B C A C ==->所以sin 4C >,故62sin 4C +=.(2)法二:2b c += sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1cos sin 2sin222C C C ++=整理可得:3sin C C ,即3sin 6C C C π⎛⎫=- ⎪⎝⎭sin 62C π⎛⎫∴-= ⎪⎝⎭由2(0,),(,)3662C C ππππ∈-∈-,所以,6446C C ππππ-==+62sin sin()464C ππ=+=.2.(2022·重庆巴蜀中学高三阶段练习)已知在锐角ABC 中,sin tan 1cos B A B =+.(1)证明:2B A =;(2)求tan tan 1tan tan B A A B-的取值范围.,再逆用正切的差角公式,结合第一问的结论得到3.在ABC 中,已知223sin cos sin cos sin 222A CB +=.(1)求证:2a c b +=;(2)求角B 的取值范围.【详解】证明:(1)223sin cossin cos sin 222C A A C B += 1cosC 1cos 3sin sin sin 222A A C B++∴+=()()sin 1cosC sin 1cos 3sin A C A B ∴+++=sin sin sin cosC sin cos 3sin A C A C A B∴+++=()sin sin sin C 3sin A C A B ∴+++=C A B π++= A C B π∴+=-()sin sin A C B∴+=sin sin 2sin A C B∴+=根据正弦定理得:2a c b +=,得证.(2)由(1)知在ABC 中,2a c b+=又222cos 2a c b B ac +-=消去b 化简得:()2231611cos 84842a c ac B ac ac +=-≥-=当且仅当a c =时取等号,又B 为三角形的内角,0,3B π⎛⎤∴∈ ⎥⎝⎦题型三:三角形面积最大值,及取值范围问题【例1】在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若()tan tan 2AB C +=,且2a =,则ABC 的面积的最大值为A .33B .32CD.【答案】A【解析】:因为()tan tan2AB C +=,且B C A +=π-,所以()22tan2tan tan 1tan 2A B C A A +=-=--tan 02A =>,所以tan 2A =,则2π3A =.由于2a =为定值,由余弦定理得222π42cos 3b c bc =+-,即224b c bc =++.根据基本不等式得22423b c bc bc bc bc =++≥+=,即43bc ≤,当且仅当b c =时,等号成立.所以11433sin 22323ABC S bc A =≤⨯⨯=.故选:A【例2】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sinsin 2A Ca b A +=.(1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.【答案】(1)3B π=;(2)33(,)82.【分析】(1)根据题意sinsin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sin sin 2A CB +=.0<B π<,02AC π+<<因为故2A C B +=或者2A CB π++=,而根据题意A BC π++=,故2A C B π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=.(2)解法一:因为ABC 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=,故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =,由三角形面积公式有:222sin()111sin 33sin sin sin 222sin 4sin ABC C a A S ac B c B c B c C Cπ-=⋅=⋅==⋅22sin cos cos sin 2123133(sin cos )4sin 43tan 38tan 8C C C C C ππππ-=⋅=⋅-=+.又因3,tan 623C C ππ<<>,故3313388tan 82C <+<,故3382ABC S <<.故ABC S 的取值范围是33,82解法二:若ABC ∆为锐角三角形,且1c =,由余弦定理可得b ==,由三角形ABC 为锐角三角形,可得2211a a a +-+>且2211a a a +-+>,且2211a a a +>-+,解得122a <<,可得ABC ∆面积1sin 23S a π==∈.【例3】在ABC △中,a ,b ,c 分别为内角A ,B ,C 的对边,若4a c +=,2sin sin sin B A C =+,则ABC △的面积的最大值为()AB .2C.D .4【答案】A 【解析】因为2sin sin sin B A C =+,所以2b a c =+,因4a c +=,所以2=b ,由余弦定理得()acacac ac ac b ac c a ac b c a B 221224216222cos 22222-=--=--+=-+=所以ac B ac 212cos 2-=,所以acacB -=6cos ,所以()()()()acac ac ac ac B B 22222661cos 1sin --=--=-=因11sin 22ABCa c ac a c Sac B ac ac ∆==⋅==因为ac c a 2≥+,所以()442=+≤c a ac,ABC S ∆=≤=注:此题也可用椭圆轨迹方程做【例4】在ABC △中,a ,b ,c 分别为内角A ,B ,C的对边,若2a =,b =,则ABC △的面积的最大值为()AB .2C .D .4【答案】A 【解析】因为2a =,b =,由余弦定理得()2222222324432432cos c c cc cc bcac b A -=⋅-+=-+=所以()()2244244222223216324121632161232441cos 1sin c c c c c c c cc A A -+-=-+-=--=-=因21sin 2ABCS bc A ∆===设t c =2,则ABCS∆==≤注:此题也可用圆轨迹方程做【题型专练】1.已知分别为三个内角的对边,,且,则面积的最大值为____________.【解析】:由,且,故()()()a b sinA sinB c b sinC +-=-,又根据正弦定理,得()()()a b a b c b c +-=-,化简得,222b c a bc +-=,故222122b c a cosA bc +-==,所以060A =,又224b c bc bc +-=≥,故12BAC S bcsinA ∆=≤2.已知,,分别为△ABC 角,,的对边,cos 2−cos 2−cos 2=cosvos +cos −cos2,且=3,则下列结论中正确的是()A.=3B.=23C.△ABC D.△ABC 【答案】B【解答】解∵cos 2−cos 2−cos 2=cosvos +cos −cos2,∴(1−sin 2p −(1−sin 2p −(1−sin 2p =cosvos −cos(+p −(1−2sin 2p ,∴sinLin +sin 2+sin 2−sin 2=0,由正弦定理可得B +2+2−2=0,∴cos =2+2−22B=−12,又0<<,∴=23,即2=3=2+2−23=2+2+B⩾2B +B =3B ,当且仅当==1时取等号,∴B⩽1,∴=12Bsin 故选:B .3.ABC 的内角,,A B C 的对边分别为,,a b c ,已知B c C b a sin cos +=.(Ⅰ)求B ;(Ⅱ)若2=b ,求ABC 面积的最大值.【详解】(1)∵Bc C b a sin cos +=∴由正弦定理知B C C B A sin sin cos sin sin +=①在三角形ABC 中,()C B A +-=π∴()B C C B C B A sin sin cos sin sin sin +=+=②由①和②得C B C B sin cos sin sin =而()π,0∈C ,∴0sin ≠C ,∴B B cos sin =又()π,0∈B ,∴4π=B (2)ac B ac S ABC 42sin 21==∆,由已知及余弦定理得:4=a 2+c 2﹣2ac cos 4π≥2ac ﹣2ac 22⨯,整理得:ac≤,当且仅当a =c 时,等号成立,则△ABC 面积的最大值为(1212222⨯=+1=+4.△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,设sin A cos B =sin B (2﹣cos A ).(1)若b +c =3a ,求A ;(2)若a =2,求△ABC 的面积的最大值.【解析】(1)∵sin A cos B =sin B (2﹣cos A ),结合正、余弦定理,可得a •2+2−22B=b •(2−2+2−22B),化简得,c =2b ,代入b +c =3a ,得a =3b ,由余弦定理知,cos A =2+2−22B =2+42−322δ2=12,∵A ∈(0,π),∴A =3.(2)由(1)知,c =2b ,由余弦定理知,cos A =2+2−22B =52−442=5412,∴△ABC 的面积S =12bc sin A =b 21−c 22=b 2=16=当b 2=209时,S 取得最大值,为43.5.在ABC ∆中,内角、、A B C 所对的边分别为,,a b c ,D 是AB 的中点,若1CD =且1()sin ()(sin sin )2a b A c b C B -=+-,则ABC ∆面积的最大值是___【答案】5如图,设CDA θ∠=,则CDB πθ∠=-,在CDA ∆和C D B ∆中,分别由余弦定理可得22221144cos ,cos()c c b a c cθπθ+-+-=-=,两式相加,整理得2222()02c a b +-+=,∴2222()4c a b =+-.①由()()1sin sin sin 2a b A c b C B ⎛⎫-=+- ⎪⎝⎭及正弦定理得()()1c b 2a b a c b ⎛⎫-=+- ⎪⎝⎭,整理得2222aba b c +-=,②由余弦定理的推论可得2221cos 24a b c C ab +-==,所以sin 4C =.把①代入②整理得2242aba b ++=,又222a b ab +≥,当且仅当a b =时等号成立,所以54222ab ab ab ≥+=,故得85ab ≤.所以118sin 22545ABCab C S ∆=≤⨯=.即ABC ∆面积的最大值是5.故答案为5.6.(2023·全国·高三专题练习)在ABC 中,角,,A B C 的对边分别为,,a b c,且cos sin a b C B -=.(1)求B ;(2)若2a =,且ABC 为锐角三角形,求ABC 的面积S 的取值范围.题型四:三角形周长最大值,及取值范围问题【例1】在锐角ABC 中,内角A ,B ,C 所对的边分别为a,b ,c ,若ABC 的面积为()2224a b c +-,且4c =,则ABC 的周长的取值范围是________.【答案】4,12]+【解析】因为ABC 的面积为()2224a b c +-,所以()2221sin 42a b c ab C +-=,所以222sin 2a b c C ab +-=.由余弦定理可得222cos 2a b c C ab +-=,sin C C =,即tan C ,所以3Cπ=.由正弦定理可得sin sin sin 3a b c A B C ===,所以83832(sin sin )sin sin 8sin 3336a b A BA A A ππ⎡⎤⎛⎫⎛⎫+=+=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.因为ABC 为锐角三角形,所以62A ππ<<,所以sin 126A π⎛⎫<+ ⎪⎝⎭,则ssin()86A π<+,即8a b <+≤.故ABC 的周长的取值范围是4,12]+.【例2】在锐角ABC 中,内角,,A B C 所对的边分别为,,a b c sin sin cos sin B CC C A++=(1)求A ;(2)若ABC 的外接圆的半径为1,求22b c +的取值范围.c【例3】(2022·重庆八中高三阶段练习)在锐角ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sinsin ,2A Ca b A b +==(1)求角B 的大小;(2)求2a c -的取值范围.【例4】(2022·四川省仁寿县文宫中学高三阶段练习(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且()sin sin 2B Ca A B c ++=.(1)求角A 的大小;(2)若角B 为钝角,求b的取值范围.【题型专练】1.在ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知222cos sincos sin sin A B C A B =++.(1)求角C 的大小;(2)若c ,求ABC ∆周长的取值范围.【答案】(1)23π;(2)(2+(1)由题意知2221sin sin 1sin sin sin A B C A B -=+-+,即222sin sin sin sin sin A B C A B +-=-,由正弦定理得222a b c ab+-=-由余弦定理得2221cos 222a b c ab C ab ab +--===-,又20,3C C ππ<<∴=.(2)2,2sin ,2sin 2sin sin sin sin3a b c a A b BA B C π====∴==,则ABC ∆的周长()2sin sin 2sin sin 2sin 33L a b c A B A A A ππ⎡⎤⎛⎫⎛⎫=++=++++++ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦230,,sin 1333323A A A πππππ⎛⎫<<∴<+<<+≤ ⎪⎝⎭ ,2sin 23A π⎛⎫∴<++≤ ⎪⎝⎭,ABC ∴∆周长的取值范围是(2+.2.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+【分析】【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=.(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=,即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+,ABC ∴ 周长的最大值为3+.3.已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,(cos )a C C b c +=+.(1)求角A ;(2)若5a =,求ABC △的周长的最大值.【详解】(1)由题意知()(cos )sin cos sin sin a C C b c A C C B C =+⇒+=+,所以()()sin cos sin sin A C C A C C +=++,即sin cos sin sin cos cos sin sin A C A C A C A C C+=++sin cos sin sin A C A C C =+,因0sin ≠C cos 1A A -=,即2sin 16A π⎛⎫-= ⎪⎝⎭又50,,666A A ππππ⎛⎫<<∴-∈- ⎪⎝⎭ ,所以66A ππ-=,所以3π=A (2)由余弦定理得:222222cos 25a b c b c A b c bc =+-⋅=+-=,即()2325b c b c +-⋅=.22b c b c +⎛⎫⋅≤ ⎪⎝⎭ (当且仅当b c =时取等号),()()()22221253324b c b c b c b c b c +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:10b c +≤(当且仅当b c =时取等号),ABC ∴ 周长51015L a b c =++≤+=,ABC ∴ 周长的最大值为15.题型五:角平分线相关的定理【例1】在中ABC △,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒,BD BC ⊥交AC 于点D ,且1BD =,则2a c +的最小值为.【详解】由题意知ABC ABD BCD S S S ∆∆∆=+ ,所以111sin sin sin 222ac B cBD ABD aBD CBD ∴=∠+∠,即1311111122222ac c a ∴⨯=⨯⨯+⨯⨯即2c a =+,所以12a c =+,所以))12422224333a c a c a c a c c a ⎛⎫⎫+++=+++≥+=⎪⎪⎝⎭⎝⎭【例2】△ABC 中D 是BC 上的点,AD 平分∠BAC,BD=2DC .(Ⅰ)求sin sin BC∠∠;(Ⅱ)若60BAC ∠= ,求B ∠.【详解】(Ⅰ)由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD==∠∠∠∠因为AD 平分∠BAC,BD=2DC,所以sin 1.sin 2B DC C BD ∠==∠.(Ⅱ)因为()180,60,C BAC B BAC∠=-∠+∠∠=所以()31sin sin cos sin .22C BAC B B B ∠=∠+∠=∠+∠由(I )知2sin sin B C ∠=∠,所以3tan ,30.3B B ∠=∠= 【例3】(河南省豫北名校普高联考2022-2023学年高三上学期测评(一)文科数学试卷)在ABC 中,内角,,A B C的对边分别为,,a b c ,且______.在①cos cos 2b C B π⎛⎫-= ⎪⎝⎭;②2ABC S BC =⋅△ ;③tan tan tan A C A C +-这三个条件中任选一个,补充在上面的问题中,并进行解答.(1)求角B 的大小;(2)若角B 的内角平分线交AC 于D ,且1BD =,求4a c +的最小值.ABC ABD BCD S S S =+ ,12π1sin 232ac c ∴=⋅即333444ac c a =+,a c ac ∴+=,a ac +∴()11444552a c a c a c ac c a ⎛⎫∴+=++=++≥+ ⎪⎝⎭【题型专练】1.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,23BAC π∠=,BAC ∠的平分线交BC 于点D ,1AD =,则b c +的最小值为.【详解】ABC ABD BCD S S S ∆∆∆=+ ,所以111sin sin sin 222bc A cAD BAD bAD CAD ∴=∠+∠,即11111222222bc c ∴⨯=⨯⨯+⨯⨯,即bc b c =+,所以111b c ∴=+,所以()111124b cb c b c b c c b ⎛⎫+=++=+++≥+= ⎪⎝⎭2.ABC ∆中,D 是BC 上的点,AD 平分∠BAC ,ABD ∆面积是ADC ∆面积的2倍.(1)求sin sin BC;(2)若AD =1,DC =22,求BD 和AC 的长.【详解】,1sin 2ACD S AC AD CAD ∆=⋅⋅∠,∵2ABD ACD S S ∆∆=,BAD CAD ∠=∠,∴2AB AC =.由正弦定理可知sin 1sin 2B AC C AB ∠==∠.(2)∵::2:1ABD ACD BD DC S S ∆∆==,22DC =,∴BD =.设AC x =,则2AB x =,在△ABD 与△ACD中,由余弦定理可知,2222cos 2AD BD AB ADB AD BD +-∠==⋅222232cos 2x AD CD AC ADC AD CD -+-∠==⋅∵ADB ADC π∠+∠=,∴cos cos ADB ADC ∠=-∠,2232x -=,解得1x =,即1AC =.题型六:有关三角形中线问题遇到角平分线问题一般有两种思路:思路一:中线倍长法思路二:利用平面向量【例1】在ABC ∆中,,,a b c 分别是内角,,A B C 所对的边,且满足cos 0cos 2B bC a c+=+,(1)求角B 的值;(2)若2c =,AC 边上的中线32BD =,求ABC ∆的面积.【详解】(1)cos cos sin 00cos 2cos 2sin sin B b B BC a c C A C+=⇔+=++,()cos 2sin sin sin cos 0B A C B C ⇒++=2sin cos cos sin sin cos 0A B B C B C ⇒++=()2sin cos sin 0A B B C ⇒++=.()1sin 2cos 10,sin 0,cos 2A B A B ⇒+=≠∴=-.所以23B π=,(2)解法一:中线倍长法:延长BD 到E ,使BD=DE ,易知四边形AECD 为平行四边形,在BEC ∆中,EC=2,,因为23ABC π∠=,所以3BCE π∠=,由余弦定理2222cos BE EC BC EC BC BCE =+-⋅⋅∠,即223222cos3a a π=+-⋅⋅,2210a a -+=,解得1a =,所以1133sin 122222ABC S ac B ∆==⋅⋅⋅=解法二:BC BA BD +=,所以()22BC BA BD +=B+=即︒++=⎪⎪⎭⎫ ⎝⎛120cos 223222ac a c ,即⎪⎭⎫⎝⎛-⨯⨯++=21424432a a ,2210a a -+=,解得1a =,所以1133sin 122222ABC S ac B ∆==⋅⋅⋅=【例2】(2022·广东佛山·高三阶段练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2π3A =.(1)若6a =,ABC的面积为D 为边BC 的中点,求AD 的长度;(2)若E 为边BC上一点,且AE =,:2:BE EC c b =,求2b c +的最小值.【题型专练】1.(2022·广东广州·一模)在ABC 中,内角A ,B ,C 所对边的长分别为a ,b ,c ,且满足cos sin 2B Cb a B +=.(1)求A ;(2)若a =,3BA AC ⋅=,AD 是ABC 的中线,求AD 的长.2.(2022·黑龙江·哈师大附中高三阶段练习)在①()()()()sin sin sin a c A B a b A B -+=-+;②2S BC =⋅;③cos sin b C a c B =;这三个条件中任选一个,补充在下面的问题中,并解答问题.问题:在ABC 中,角、、A B C 的对边分别为,,a b c ,且______.(1)求角B 的大小;(2)AC 边上的中线2BD =,求ABC 的面积的最大值.题型七:有关内切圆问题(等面积法)【例1】在▵B中,sin2=B=1,B=5,则A.B=25B.▵B 的面积为32C.▵BD.▵B【答案】B【解答】解:∵sin2=∴cos=1−2sin22=1−2×2=35,又B=1,B=5,∴由余弦定理,B2=B2+B2−2B⋅B⋅cos=52+12−2×5×1×(35)=20,∴B=25,故A正确;∵cos=35且为三角形内角,∴sin=1−cos2=45,所以△B的面积为=1=12×1×5×45=2,故B错误;根据正弦定理B sin=2o其中表示外接圆的半径)得:2=45=即△B C正确;如图,设△B内切圆圆心为,半径为,连接B,B,B,因为内切圆与边B ,B ,B 相切,故设切点分别为,,,连接B ,B ,B ,可知:B =B =B =,且B ⊥B ,B ⊥B ,,根据题意:△B =12B ⋅B ⋅sin =12×5×1×45=2,利用等面积可得:△B +△B +△B =△B ,即:12B ⋅+12B ⋅+12=2,∴=4B+B+B==D 正确.故选ACD .【例2】(2022·四川·绵阳中学高二开学考试(理))已知在ABC 中,()254cos 4sin A B C ++=.(1)求角C 的大小;(2)若ABC 的内切圆圆心为O ,ABC 的外接圆半径为4,求ABO 面积的最大值.【题型专练】1.三角形有一个角是︒60,夹在这个角的两边长分别为8和5,则()A.三角形另一边长为6B.三角形的周长为20C.三角形内切圆面积为3D.【答案】B【解答】解:因为三角形有一个角是︒60,夹在这个角的两边长分别为8和5,A .由余弦定理得:三角形另一边长为82+52−2×8×5×cos60°=7,故A 错误;B .三角形的周长为8+5+7=20,故B 正确;C .设三角形内切圆的半径为,由面积法得到:12×8×5×sin60°=12×20×,解得=3,所以内切圆的面积为,故C 正确;D .设三角形外接圆的半径为,则由正弦定理得到7sin60°=2,解得=,故D 错误.故选BC .2.(2022·全国·清华附中朝阳学校模拟预测)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos a cC Cb-=.(1)求角B 的大小;(2)若2b =,记r 为ABC 的内切圆半径,求r 的最大值.题型八:与向量结合问题【例1】锐角ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,向量()m a =与(cos ,sin )n A B = 平行.(1)求角A ;(2)若a =ABC ∆周长的取值范围.【解析】解:(1)因为://m n,所以:sin cos 0a B A =,由正弦定理,得:sin sin cos 0A B B A -=,又因为:sin 0B ≠,从而可得:tan A =,由于:0A π<<,所以:3A π=.(2)因为:由正弦定理知sin sin sin 3b c aB C A====,可得:三角形周长sin )3l a b c B C =++=+,又因为:23C B π=-,所以:2sin sin sin sin()36B C B B B ππ+=+-=+,因为:ABC ∆为锐角三角形,所以:62B ππ<<,2(,)633B πππ+∈,3sin sin (2B C +∈,所以:l ∈.【例2】(2022·河北沧州·高三阶段练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知(2)cos cos ,3b c A a C a -==.(1)求角A ;(2)若点D 满足1233BD BA BC =+,求BCD △面积的最大值.【题型专练】1.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且a c >.已知2BA BC = ,1cos 3B =,3b =.求:(1)a 和c 的值;(2)cos()B C -的值.【解析】解:(1)2BA BC= ,1cos 3B =,3b =,可得cos 2ca B =,即为6ac =;2222cos b a c ac B =+-,即为2213a c +=,解得2a =,3c =或3a =,2c =,由a c >,可得3a =,2c =;(2)由余弦定理可得2229947cos 22339a b c C ab +-+-===⨯⨯,sin C ==,sin B ==,则17224223cos()cos cos sin sin 393927B C B C B C -=+=⨯+⨯.2.ABC ∆中,a 、b 、c 分别是三内角A 、B 、C 的对边,若1AB AC BA BC ==.解答下列问题:(1)求证:A B =;(2)求c 的值;(3)若||AB AC +=ABC ∆的面积.【解析】证明:(1)因AB AC BA BC =,故cos cos bc A ac B =,即cos cos b A a B =.由正弦定理,得sin cos sin cos B A A B =,故sin()0A B -=,因为A B ππ-<-<,故0A B -=,故A B =.⋯(4分)(2)因1AB AC = ,故cos 1bc A =,由余弦定理得22212b c a bc bc+-=,即2222b c a +-=;又由(1)得a b =,故22c =,故c =.⋯(10分)(3)由||AB AC += 22||||2||6AB AC AB AC ++=,即2226c b ++=,故224c b +=,因22c =,故b =,故ABC ∆是正三角形,故面积23342ABC S ∆=⨯=.⋯(16分)题型九:几何图形问题【例1】在ABC ∆中,3B π∠=,15AB =,点D 在边BC 上,1CD =,1cos 26ADC ∠=.(1)求sin BAD ∠;(2)求ABC ∆的面积.【解析】解:(1)由1cos 26ADC ∠=,可得153sin 26ADC ∠==,则11sin sin()sin cos cos sin 333226BAD ADC ADC ADC πππ∠=∠-=∠-∠=-⨯.(2)在ABD ∆中,由正弦定理可得sin sin BD AB BAD ADB =∠∠=,解得7BD =,所以718BC =+=,所以ABC ∆的面积11sin 158sin 223S AB BC ABD π=⋅⋅∠=⨯⨯⨯=【例2】如图,在ABC ∆中,6B π∠=,AB =,点D 在BC 边上,且2CD =,1cos 7ADC ∠=.(1)求sin BAD ∠;(2)求BD ,AC 的长.【解析】解:(1)在ADC ∆中,因为1cos 7ADC ∠=,所以sin 7ADC ∠=,所以sin sin()BAD ADC B ∠=∠-∠sin cos cos sin ADC B ADC B=∠-∠433117272=-⨯1114=.(2)在ABD ∆中,由正弦定理得11sin 1411sin 437AB BADBD ADB⋅∠===∠,在ABC ∆中,由余弦定理得:222222cos 13213492AC AB BC AB BC B =+-⋅⋅=+-⨯⨯.所以7AC =.【例3】如图,在ABC ∆中,2AB =,1cos 3B =,点D 在线段BC 上.(1)若34ADC π∠=,求AD 的长;(2)若2BD DC =,ACD ∆sin sin BADCAD∠∠的值.【解析】解:(1)ABC ∆ 中,1cos 3B =,22sin 3B ∴=.34ADC π∠= ,4ADB π∴∠=.ABD ∆=,83AD ∴=;(2)设DC a =,则2BD a =,2BD DC = ,ACD ∆,1222323a ∴=⨯⨯⨯,2a ∴=AC ∴==由正弦定理可得42sin sin BAD ADB=∠∠,sin 2sin BAD ADB ∴∠=∠.242sin sin CAD ADC =∠∠,2sin 4CAD ADC ∴∠=∠,sin sin ADB ADC ∠=∠ ,∴sin sin BADCAD∠=∠【例4】如图,在平面四边形ABCD 中,45A ∠=︒,90ADC ∠=︒,2AB =,5BD =.(1)求sin ADB ∠;(2)若DC =,求BC .【解析】解:(1)ABD ∆中,45A ∠=︒,2AB =,5BD =,由正弦定理得sin sin AB BDADB A=∠,即25sin sin 45ADB =∠︒,解得2sin 5ADB ∠=;(2)由90ADC ∠=︒,所以2cos sin 5BDC ADB ∠=∠=,在BCD ∆中,由余弦定理得:222222cos 52525BC BD DC BD DC BDC =+-⋅⋅∠=+-⨯⨯,解得5BC =.【例5】在平面四边形ABCD 中,90ADC ∠= ,45A ∠= ,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =,求BC .【答案】(1)5;(2)5.【分析】(1)在ABD ∆中,由正弦定理得sin sin BD ABA ADB=∠∠.由题设知,52sin45sin ADB =∠o,所以2sin 5ADB ∠=.由题设知,90ADB ∠<o ,所以cos 5ADB ∠==;(2)由题设及(1)知,2cos sin 5BDC ADB ∠=∠=.在BCD ∆中,由余弦定理得22222cos 25825255BC BD DC BD DC BDC =+-⋅⋅⋅∠=+-⨯⨯=.所以5BC =.【题型专练】1.如图,在平面四边形ABCD 中,1AD =,2CD =,AC =(1)求cos CAD ∠的值;(2)若cos BAD ∠=21sin 6CBA ∠=,求BC 的长.【解析】解:1AD =,2CD =,AC =(1)在ADC ∆中,由余弦定理,得222cos 2AC AD CD CAD AC AD+-∠= .∴cos CAD ∠=;(2)设BAC α∠=,则BAD CAD α=∠-∠,cos 21sin 7321sin 143sin 2CAD BAD CAD BAD α∠=∠=-∴∠=∠=∴=,在ABC ∆中,由正弦定理,sin sin BC ACCBAα=∠,解得:3BC =.即BC 的长为3.2.在平面四边形ABCD中,,2,2,AB BC AB BD BCD ABD ABD ⊥==∠=∠∆的面积为2.(1)求AD 的长;(2)求CBD ∆的面积.【解析】解:(1)由已知11sin 2sin 222ABD S AB BD ABD ABD ∆=∠=⨯∠= ,所以sin ABD ∠=(0,2ABD π∠∈,所以cos ABD ∠=在ABD ∆中,由余弦定理得:2222cos 5AD AB BD AB BD ABD =+-∠= ,所以AD =.(2)由AB BC⊥,得2ABD CBD π∠+∠=,所以5sin cos 5CBD ABD ∠=∠=,又42,sin 2sin cos 5BCD ABD BCD ABD ABD ∠=∠∠=∠∠=,()222BDC CBD BCD ABD ABD ABD CBD ππππ∠=-∠-∠=--∠-∠=-∠=∠,所以CBD ∆为等腰三角形,即CB CD =,在CBD ∆中,由正弦定理得:sin sin BD CDBCD CBD=∠∠,所以sin 51155455,sin 4sin 42244585CBDBD CBDCD S CB CD BCD BCD∆∠====∠=⨯⨯⨯=∠.3.如图,在平面四边形ABCD 中,2AB =,6BC =,4AD CD ==.(1)当四边形ABCD 内接于圆O 时,求四边形ABCD 的面积S ;(2)当四边形ABCD 的面积最大时,求对角线BD的长.【解析】(本题满分为14分)解:(1)连接BD ,由余弦定理可得:222222cos 24224cos BD AB AD AB AD A A =+-=+-⨯⨯⨯ ,222222cos 46246cos BD BC CD BC CD C C =+-=+-⨯⨯⨯ ,可得:2016cos 5248cos A C -=-,2⋯分又四边形ABCD 内接于圆O ,则又A C π+=,所以:2016cos 5248cos()A A π-=--,化简可得:1cos 2A =-,又(0,)A π∈,所以23A π=,3C π=,4⋯分所以12124sin 46sin 2323ABD BCD S S S ππ∆∆=+=⨯⨯⨯+⨯⨯⨯=,6⋯分(2)设四边形ABCD 的面积为S ,则11sin sin 22ABD BCD S S S AB AD A BC CD C ∆∆=+=+ ,可得:222222cos 2cos BD AB AD AB AD A BC CD BC CD C =+-=+- ,8⋯分可得:22221124sin 46sin 2224224cos 46246cos S A C A C ⎧=⨯⨯+⨯⨯⎪⎨⎪+-⨯⨯=+-⨯⨯⎩,可得:sin 3sin 423cos cos S A CC A⎧=+⎪⎨⎪=-⎩,平方后相加,可得:24106sin sin 6cos cos 16S A C A C +=+-,即:266cos()16S A C =-+,10⋯分又(0,2)A C π+∈,当A C π+=时,216S 有最大值,即S 有最大值.此时,A C π=-,代入23cos cos C A =-,可得:1cos 2C =,又(0,)C π∈,可得:3C π=,12⋯分在BCD ∆中,可得:222222cos 46246cos 283BD BC CD BC CD C π=+-=+-⨯⨯⨯= ,可得BD =.14⋯分4.如图所示,已知圆内接四边形ABCD ,记tan tan tan tan 2222A B C D T =+++.(1)求证:22sin sin T A B=+;(2)若6AB =,3BC =,4CD =,5AD =,求T 的值及四边形ABCD 的面积S.【解析】解:(1)sincos sin cos222222tan tan tan tan tan cot tan cot 22222222sin sin cos sin cos sin 2222A AB BA B A B A A B B T A A B B A Bππ--=+++=+++=+++=+.(2)由于:6AB =,3BC =,4CD =,5AD =,由题知:cos cos 0BAD BCD ∠+∠=,可得:22222222470227AB AD BD BC CD BD BD AB AD BC CD +-+-+=⇒= ,则3cos 7A =,sin A =则1()sin 2S AD AB CD BC A =+= ,则1610()sin sin 219S AB BC AD CD ABC ABC =+∠=∠=,22sin sin T A B =+==5.如图,角A ,B ,C ,D 为平面四边形ABCD 的四个内角,6AB =,3BC =,4CD =.(1)若60B =︒,30DAC ∠=︒,求sin D ;(2)若180BAD BCD ∠+∠=︒,5AD =,求cos BAD ∠.【解析】解:(1)在ABC ∆中,222361cos 2362AC B +-==⨯⨯,222363627AC ∴=+-⨯=,AC ∴=ACD ∆中,由正弦定理sin sin DAC D CD AC∠=,sin sin sin 30AC D DAC CD ∴=⋅∠=︒=.(2)在ABD ∆中,22256cos 256BD BAD +-∠=⨯⨯,在BCD ∆中,22234cos 234BD BCD +-∠=⨯⨯,180BAD BCD ∠+∠=︒ ,cos cos 0BAD BCD ∴∠+∠=,∴22222256340256234BD BD +-+-+=⇒⨯⨯⨯⨯可得:222(2536)5(916)0120BD BD +-++-=,可得:22261252550BD BD ⨯-+⨯-=,可得27247BD =,则BD =22224725365637cos 256607BDBAD +-+-∴∠===⨯⨯.6.某市欲建一个圆形公园,规划设立A ,B ,C ,D 四个出入口(在圆周上),并以直路顺次连通,其中A ,B ,C 的位置已确定,2AB =,6BC =(单位:百米),记ABC θ∠=,且已知圆的内接四边形对角互补,如图,请你为规划部门解决以下问题.(1)如果4DC DA ==,求四边形ABCD 的区域面积;(2)如果圆形公园的面积为283π万平方米,求cos θ的值.【解析】解:(1)连结BD ,可得四边形ABCD 的面积为:11sin sin 22ABD CBD S S S AB AD A BC CD C ∆∆=+=+ , 四边形ABCD 内接于圆,180A C ∴+=︒,可得sin sin A C =.11sin sin 22S AB AD A BC CD C =+ 1()sin 2AB AD BC CD A =+1(2464)sin 2A =⨯+⨯16sin A =.(*)⋯在ABD ∆中,由余弦定理可得:222222cos 24224cos 2016cos BD AB AD AB AD A A A =+-=+-⨯⨯=- ,同理可得:在CDB ∆中,222222cos 64264cos 5248cos BD CB CD CB CD C C C =+-=+-⨯⨯=- ,2016cos 5248cos A C ∴-=-,结合cos cos(180)cos C A A =︒-=-,得64cos 32A =-,解得1cos 2A =-,(0,180)A ∈︒︒ ,120A ∴=︒,代入(*)式,可得四边形ABCD面积16sin120S =︒=.(2) 设圆形公园的半径为R ,则面积为283π万平方米,可得:2283R ππ=,可得:2213R =,∴由正弦定理2sin AC R B ==sin θ==由余弦定理可得:AC ==sin θ∴==214sin 159cos θθ=-,22sin cos 1θθ+= ,∴2159cos cos 114θθ-+=,整理可得:2214cos 9cos 10θθ-+=,∴解得:1cos 7θ=,或12.7.ABC ∆的内角,,A B C 的对边分别为,,,a b c已知sin 0,2A A a b +===.(1)求角A 和边长c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD ∆的面积.【答案】(1)23π,4;(2)3.【解析】(1)sin 3cos 0,tan 3A A A +=∴=- ,20,3A A ππ<<∴=,由余弦定理可得2222cos a b c bc A =+-,即21284222c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,即22240c c +-=,解得6c =-(舍去)或4c =,故4c =.(2)2222cos c b a ab C =+- ,162842272cos C ∴=+-⨯⨯⨯,22cos ,72cos 77AC C CD C∴=∴===,12CD BC ∴=,1134223222ABC S AB AC sin BAC ∆∴=⋅⋅∠=⨯⨯⨯=,132ABD ABC S S ∆∆∴==.8.四边形的内角与互补,.(1)求和;(2)求四边形的面积.【答案】(1)60C =︒,7BD =;(2)23.【详解】:(1)连接BD .在ABD ∆和CBD ∆中,利用余弦定理列等式2222BD BC CD BC=+-cos CD C ⋅和2222cos BD AB DA AB DA A =+-⋅,且cos cos C A =-,代入数据得54cosC +,求cos C 的值,进而求C 和的值;(2)由(1)知ABD ∆和CBD ∆的面积可求,故四边形等于ABD ∆和CBD ∆的面积.(1)由题设及余弦定理得2222cos BD BC CD BC CD C=+-⋅.①2222cos BD AB DA AB DA A =+-⋅54cosC =+.②。

(完整版)必修五-解三角形-题型归纳

(完整版)必修五-解三角形-题型归纳

构成三角形个数问题1在 ABC 中,已知a x,b 2,B 45°,如果三角形有两解,则x 的取值范围是( )A.2 x 2\f2 B. X 2 血 C . V2 x 2 D. 0x22 •如果满足 ABC 60 , AC 12 , BC k 的厶ABC 恰有一个,那么k 的取值范围是3.在 ABC 中,根据下列条件解三角形,其中有两个解的是()A* CJ = S J fr = 10^ A = 45" E ・ 口 = 60 r £* = S1 B = 6(T * C. a — 7 > £> = 5 ? A - &0=D ・ 口二 14# 6 - 20 , -4-45"心求边长问题A. 5 B5•在△ ABC 中, a 1,B 450, S ABC 2,则 b = _________________三. 求夹角问题6.在ABC中, ABC -, AB 2,BC 3,则 sin BAC () 410 103 10 5 A. 10B 5C 10D57 .在厶ABC 中,角A , B , C 所对的边分别a,b,C,S 为表示△ ABC 的面积,若4.在 ABC 中,角 A, B,C 所对边 a,b,c ,若 a 3,C1200,ABC的面积S15 3 41 2 2 2 acosB bcosA csinC, S -(b c a ),则/ B=()4A. 90° B . 60° C . 45° D . 30°四.求面积问题&已知△ ABC中,内角A,B, C所对的边长分别为a,b,c.若a 2bcosA, B -,c 1,则3 △ ABC的面积等于( )书书书书A B------B ■C iD i +118 6 4 2A9.锐角ABC中,角A、B、C的对边分别是a、b、c,已知cos2C j(i)求sinC的值;(n)当a 2, 2si nA si nC时,求b的长及| ABC的面积.10•如图,在四边形ABCD 中,AB 3,BC 7J3,CD 14, BD 7, BAD 120(1 )求AD边的长;(2)求ABC的面积.11.(本小题满分12分)已知ABC中,角A, B,C对边分别为a,b,c,已知c 2,C(1 )若ABC的面积等于3 ,求a,b(2)若si nC si n( B A) 2 si n2A,求ABC 的面积.12 .在ABC中,角A, B,C对边分别为a,b,c已知C 一 .3外接圆的面积;五.判定三角形形状问题若a 2,b 3,求ABC的13.在ABC中,a, b , c分别为角A, B , C所对边, a 2bcosC,则此三角形一定是()A.等腰直角三角形B.C.等腰三角形D.直角三角形等腰或直角三角形1 1 114. ABC中三边上的高依次为丄,丄,丄,贝U ABC为(13 5 11A.锐角三角形 B •直角三角形 C •钝角三角形D)•不存在这样的三角形19.在锐角 ABC 中,内角A,B,C 的对边分别为a,b,c ,且2asi nB ..3b . (1)求角A 的大小;(2 )若a 4,b c 8,求 ABC 的面积.15.在 ABC 中,若 0 tanA tanB A.锐角三角形B .钝角三角形那么 ABC 一定是 •直角三角形 D) .形状不确定16.在△ ABC 中, 2B a c cos ----------- 2 2c(a , b , c 分别为角A , B , C 的对边),则△ ABC 勺形状 为 A.正三角形B .直角三角形()等腰三角形或直角三角形D •等腰直角三角形17•在 ABC 中,如果工一cosB.直角三角形A.等腰三角形bcosA'C则该三角形是.等腰或直角三角形D .以上答案均不正确六. 综合问题 18.在锐角厶ABC 中, a, b, c 是角 A , B , C 的对边,且,3a 2csin A .(1)求角C 的度数;(2)若 C .7,且△ ABC 的面积为3 3,求a b 的值。

必修5解三角形知识点归纳总结

必修5解三角形知识点归纳总结

第一章解三角形一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 —=—=—=2R (其中R 是三角形外接圆的半径) sin A sin B sinC a + b + c a b c = = = . sin A + sin B + sin Csin A sin B sin C 2)化边为角: a : b : c = sin A : sin B : sin C . a sin A b sin B a sin Ab sin B ,c sin C ,csin C 3)化边为角:a = 2R sin A , b = 2R sin B , c = 2R sin Csin A a sin B b sin A a • —— •sin B b ' sin C c ' sin C c 'abc sin A =——, sin B =——, sin C =—— 2 R 2 R 2 R3.利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意一边,求其他两边和另一角;例:已知角B,C,a,解法:由A+B+C=180o ,求角A,由正弦定理a =空A ;-=把B b sin B c sin C a sin A = ------- ;求出b 与c c sin C②已知两边和其中一边的对角,求其他两个角及另一边。

例:已知边a,b,A,解法:由正弦定理a =竺4求出角B,由A+B+C=180o 求出角C,再使用正 b sin B弦定理a = sn A 求出c 边 c sin C 4.△ABC 中,已知锐角A,边b,则①a < b sin A 时,B 无解;②a = b sin A 或a > b 时,B 有—个解③b sin A < a < b 时,B 有两个解。

2.变形:1) 4)化角为边: 5)化角为边:如:①已知A :60。

必修五-解三角形-题型归纳

必修五-解三角形-题型归纳

一.构成三角形个数问题1.在AABC中,已知a二x,b二2,B=45°,如果三角形有两解,则x的取值范围是()A2<x<2^2B x<2迈C近<x<2D.<x<22.如果满足ZABC二60,AC=12,BC=k的厶ABC恰有一个,那么k的取值范围是3.在AABC中,根据下列条件解三角形,其中有两个解的是()A.£?=Sj£i=10;A.=45^B.£?=60;i=S1;B=60=+-1C.a=l b=5?,4=8D=D.£7=14,h二20,卫二心二.求边长问题4.在A ABC中,角A,B,C所对边a,b,c,若a二3,C二1200,A ABC的面积S二,贝产=()4A.5B.6C.©39D.75.在△ABC中,a二1,B二45o,S二2,则b=A ABC三.求夹角问题6.在AABC中,ZABC二上,AB42BC二3,则sinZBAC=()v10<103帀A.10B.5C.10D.57.在△ABC中,角A,B,C所对的边分别a,b,c,S为表示△ABC的面积,若acosB+bcosA=csinC, S二(b2+c2-a2),贝yZB=()4A.90°B.60°C.45D.30°四.求8.已知△ABC中,内角A,B,兀C所对的边长分别为a,b,c•若a=2b cosA,B=—△ABC的面积等于(A.—8B.—619.锐角AABC中,角A、B、C的对边分别是a、b、c,已知cos2C二—「4 (I)求sin C的值;(II)当a=2,2sin A=sin C时,求b的长及AABC的面积.10.如图,在(1)求AD边的长;(2)求AABC的面积.兀11.(本小题满分12分)已知A ABC中,角A,B,C对边分别为a,b,c,已知c=2,C=丁.(1)若AABC的面积等于j3,求a,b(2)若sinC+sin(B一A)=2sin2A,求AABC的面积.A.等腰直角三角形 C.等腰三角形B.直角三角形 D.等腰或直角三角形兀12.在AABC 中,角A,B,C 对边分别为a,b,c 已知C =-.若a=2,b =3,求AABC 的外接圆的面积;五.判定三角形形状问题13.在A ABC中,a,b,c分别为角A ,B ,C所对边,若a=2b cos C,则此三角形一定是(111 14.A A BC 中三边上的高依次为右,:,则A ABC 为()13511A.锐角三角形B.直角三角形C.钝角三角形D.不存在这样的三角形15.在AABC 中,若0<tan A-tan B <1,那么AABC 一定是() A.锐角三角形B.钝角三角形C.直角三角形D.形状不确定Ba +c16. 在△ABC 中,cos 2二,(a,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为22c()A.正三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形word 格式-可编辑-感谢下载支持321.如图,在AABC 中,血Z B =一,AB =8,点D 在BC 边上,且CD =2cos Z ADC =1.7ab17.在AABC 中,如果=,则该三角形是cosBcosAA.等腰三角形B.直角三角形C.等腰或直角三角形D.以上答案均不正确六.综合问题18.在锐角厶ABC 中,a,b,c 是角A,B,C 的对边,且J3a =2csin A . (1)求角C 的度数;_.3:'3 (2)若c=、门,且△ABC 的面积为一-—,求a +b 的值。

必修五-解三角形-题型归纳

必修五-解三角形-题型归纳

一.构成三角形个数问题1.在ABC 中,已知a x,b 2,B 45 ,如果三角形有两解,则x的取值范围是()A.2 x 2 2 B. x 2 2 C . 2 x 2 D. 0 x 22.如果满足ABC 60 ,AC 12 ,BC k 的△ABC 恰有一个,那么k 的取值范围是__________.3.在ABC 中,根据下列条件解三角形,其中有两个解的是()二.求边长问题4.在ABC 中,角A, B,C 所对边a,b,c ,若a3,C 1200 ,ABC 的面积15 3S ,4则c()A.5 B .6 C .39 D .75.在△ABC中,0a 1, B 45 ,S2,则b =_______________.ABC三.求夹角问题6.在ABC 中,ABC , 2, 3 ,则sin BAC ()AB BC 410 10 3 10 5 A.10 B . 5 C .10 D .57 .在△ABC 中,角A,B,C 所对的边分别a, b, c, S 为表示△ABC 的面积,若1 2 2 2a cos Bb cos Ac sin C, S (b c a ) ,则∠B=( )4A.90° B .60° C .45° D .30°四.求面积问题8.已知△ABC中,内角A,B,C所对的边长分别为a,b,c . 若 2 cos , , 1a b A B c ,则3 △ABC的面积等于()9.锐角ABC 中,角A、B、C 的对边分别是a、b、c,已知(Ⅰ)求sin C 的值;1 cos2C .4(Ⅱ)当 a 2,2 sin A sin C 时,求 b 的长及ABC 的面积.10.如图,在四边形ABCD 中,AB 3, BC 7 3, CD 14, BD 7, BAD 120 .(1)求AD 边的长;(2)求ABC 的面积.11.(本小题满分12 分)已知ABC 中, 角A, B,C 对边分别为a,b, c , 已知c 2,C .3 (1)若ABC 的面积等于3, 求a,b(2)若sin C sin( B A) 2 sin 2A, 求ABC 的面积.12.在ABC 中,角A, B, C 对边分别为a,b,c 已知外接圆的面积;C .若a 2,b 3,求ABC 的3五.判定三角形形状问题13.在ABC 中,a,b ,c分别为角A ,B ,C 所对边,若 a 2b cos C,则此三角形一定是()A.等腰直角三角形B. 直角三角形C. 等腰三角形D. 等腰或直角三角形14.ABC 中三边上的高依次为1 1 1, ,13 5 11,则ABC 为()A.锐角三角形 B .直角三角形 C .钝角三角形 D .不存在这样的三角形15.在ABC 中,若0 tan A tan B 1,那么ABC 一定是()A.锐角三角形 B .钝角三角形 C .直角三角形 D .形状不确定16.在△ABC 中, 2cos B a c2 2c,(a,b,c 分别为角A,B,C 的对边),则△ABC的形状为( )A.正三角形 B .直角三角形 C .等腰三角形或直角三角形 D .等腰直角三角形17.在ABC 中,如果a bcos B cos A,则该三角形是A.等腰三角形 B .直角三角形 C .等腰或直角三角形 D .以上答案均不正确六.综合问题18.在锐角△ABC中,a,b,c 是角A,B,C的对边,且3a 2csin A .(1)求角C的度数;(2)若c7 ,且△A BC的面积为3 32,求a b 的值。

必修五解三角形常考题型

必修五解三角形常考题型

必修五解三角形常考题型1.1 正弦定理和余弦定理1.1.1正弦定理【典型题剖析】考察点1:利用正弦定理解三角形例1在ABC 中,已知A:B:C=1:2:3, 求a :b :c.例2在ABC 中,已知c= 2+ 6 ,C=30°,求a+b 的取值范围。

考察点2:利用正弦定理判断三角形形状例3 在△ABC中, 2a ·tanB=2b ·tanA ,判断三角形ABC的形状。

例 4 在△ABC中,如果lg a lgc lgsin B lg 2 ,并且B 为锐角,试判断此三角形的形状。

考察点 3:利用正弦定理证明三角恒等式 例 5 在△ABC 中,求证222222a b b c c acos A cos B cos B cos C cos C cos A0 .例 6 在△ABC 中,a,b,c 分别是角 A,B,C 的对边, C=2B ,求证2 2c b ab .考察点 4:求三角形的面积例 7 在△ABC 中,a,b,c 分别是三个内角 A,B,C 的对边,若B 2 5a 2,C,cos , 求425△ABC 的面积 S.例 8已知△ ABC 中a,b,c 分别是三个内角 A,B,C 的对边,△ABC 的外接圆半径为 12,且求△ABC 的面积 S 的最大值。

C,3考察点5:与正弦定理有关的综合问题例9 已知△ABC的内角A,B 极其对边a,b 满足a b a cot A b c ot B, 求内角 C例10 在△ABC中,A,B,C所对的边分别为a,b,c, 且c=10, 的内切圆半径。

c os A b 4cos B a 3,求a,b 及△ABC『易错疑难辨析』易错点利用正弦定理解题时,出现漏解或增解【易错点辨析】本节知识在理解与运用中常出现的错误有:(1)已知两边和其中一边的对角,利用正弦定理求另一边的对角时,出现漏解或增解;(2)在判断三角形的形状时,出现漏解的情况。

高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。

高中数学必修五__第一章___解三角形知识点归纳及测试题

高中数学必修五__第一章___解三角形知识点归纳及测试题

第十二讲 解三角形1、三角形三角关系:A+B+C=180°;C=180°—(A+B);3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sincos ,cos sin ,tan cot 222222A B C A B C A B C+++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B .7、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A 等,变形: 222cos 2b c a bc+-A =等,8、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。

②已知三边求角) 9、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B . 10、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =;②若222a b c +>,则90C <;③若222a b c +<,则90C >. 11、三角形的四心:垂心——三角形的三边上的高相交于一点重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等)12.坡角和坡比坡角:坡面与水平面的夹角(如图④,角θ为坡角).坡比:坡面的铅直高度与水平长度之比(如图④,i 为坡比).1. △ABC 中,45B =,60C =,1c =,则最短边的边长等于 ( )A 63B 62C 12D 322. △ABC 中,cos cos cos a b cA B C ==,则△ABC 一定是 ( )A 直角三角形B 钝角三角形C 等腰三角形D 等边三角形3.△ABC 中,若60A =,3a =,则sin sin sin a b cA B C +-+-等于 ( )A 2B 12C 3D 324. △ABC 中,:1:2A B =,C 的平分线CD 把三角形面积分成3:2两部分,则cos A =( )A13 B 12 C 34D 0 5.在钝角△ABC 中,已知1a =,2b =,则最大边c 的取值范围是 。

必修五第一章解三角形知识点总结及经典习题

必修五第一章解三角形知识点总结及经典习题

必修五第一章解三角形知识点总结及经典习题(数学教研组)一、知识点总结 1 •正弦定理:一 ab c2R (R:外接圆半径)sin A sin B sinC或变形: a: b :c sin A:sin B:sin C .结论:①定理:在三角形中,a 、B 为其内角,则a<p ② 判断三角形大小关系时,可以利用如下原理: sin A > sin B A > B a > bcos A cos B A B a < b111③ 三角形的面积公式: S = - absin C= - bcsin A= - acsin B2 2 2cosAa 2b 2c 22bccos A2. 余弦定理: b 2 a 2 c 2 2ac cosB 或 cosB2 2 2c b a 2ba cosCcosC3. 利用正弦定理和余弦定理分别能解决的问题:(1) 正弦定理:1、已知两角和一边(如 A 、B 、c),由A+B+C= n 求C,由正弦定理求a 、b.(ASA 或 AAS)2 、已知两边和其中一边的对角(如 a 、b 、A),应用正弦定理求B,由A+B+C= n 求C,再由正弦定理或余弦定理求 c 边,要注意解可能有多种情况.(SSA) (2) 余弦定理:1、已知三边a 、b 、c,应余弦定理求 A B,再由A+B+C = n ,求角C.(SSS)2 、已知两边和夹角(如a 、b 、C),应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后利用 A+B+C= n ,求另一角.(SAS)主流思想:利用正、余弦定理实现边角转化,统一成边的形式或角的形式 . 5.三角形中的基本关系: sin(A B) si nC, cos(A B)cosC, tan (A B) tanC,.A B C ABC+AB +C sin cos ,cossin ,ta ncot —2 2 2 2 2 26.求解三角形应用题的一般步骤: (1) 分析:分析题意,弄清已知和所求;(2) 建模:将实际问题转化为数学问题,写出已知与所求,并画出示意图; (3) 求解:正确运用正、余弦定理求解;(4)检验:检验上述所求是否符合实际意义b 22c 2 a2bc2 a 2 c b 22ac222ba c sin sin ,等号当且当a =3时成立。

必修五解三角形常考题型

必修五解三角形常考题型

必修五解三角形常考题型1.1正弦定理和余弦定理1.1.1正弦定理【典型题剖析】考察点1:利用正弦定理解三角形例1 在ABC 中,已知A:B:C=1:2:3,求a :b :c.例2在ABC 中,已知,C=30°,求a+b 的取值范围。

考察点2:利用正弦定理判断三角形形状例3在△ABC 中,2a ·tanB=2b ·tanA ,判断三角形ABC 的形状。

例4在△ABC 中,如果lg lg lg sin a c B -==-,并且B 为锐角,试判断此三角形的形状。

考察点3:利用正弦定理证明三角恒等式例5在△ABC 中,求证2222220cos cos cos cos cos cos a b b c c a A B B C C A---++=+++.例6在△ABC 中,a,b,c 分别是角A,B,C 的对边,C=2B ,求证22c b ab -=.考察点4:求三角形的面积例7在△ABC 中,a,b,c 分别是三个内角A,B,C 的对边,若2,,cos42B a C π===求△ABC 的面积S.例8已知△ABC 中a,b,c 分别是三个内角A,B,C 的对边,△ABC 的外接圆半径为12,且3C π=,求△ABC 的面积S 的最大值。

考察点5:与正弦定理有关的综合问题例9已知△ABC 的内角A,B 极其对边a,b 满足cot cot ,a b a A b B +=+求内角C例10在△ABC 中,A ,B ,C 所对的边分别为a,b,c,且c=10,cos 4cos 3A bB a ==,求a,b 及△ABC 的内切圆半径。

『易错疑难辨析』易错点 利用正弦定理解题时,出现漏解或增解【易错点辨析】本节知识在理解与运用中常出现的错误有:(1)已知两边和其中一边的对角,利用正弦定理求另一边的对角时,出现漏解或增解;(2)在判断三角形的形状时,出现漏解的情况。

例1(1) 在△ABC 中,6,30,;a b A B ===︒求(2) 在△ABC 中,2,60,;a b A B ===︒求易错点 忽略三角形本身的隐含条件致错【易错点解析】解题过程中,忽略三角形本身的隐含条件,如内角和为180°等造成的错误。

解三角形知识点总结及典型例题

解三角形知识点总结及典型例题

课前复习两角和与差的正弦、余弦、正切公式1两角和与差的正弦公式,sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ.2两角和与差的余弦公式,cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcos+sinαsinβ3两角和、差的正切公式tan(α+β)=,tan tan 1tan tan βαβα-+ (()()tan tan tan 1tan tan αβαβαβ-=-+); tan(α-β)=.tan tan 1tan tan βαβα+-(()()tan tan tan 1tan tan αβαβαβ+=+-). 简单的三角恒等变换二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-= ⑶22tan tan 21tan ααα=- 默写上述公式,检查上次的作业 课本上的!解三角形知识点总结及典型例题2+=(A x c恒成立,所以其图像与x轴没有交点。

中,分别根据下列条件解三角形,其中有两解的是=30A;︒B;=30︒S=ABC题型4 判断三角形形状5] 在【解析】把已知等式都化为角的等式或都化为边的等式。

高中数学必修五--常见题型归类

高中数学必修五--常见题型归类

高中数学必修五必修五第一章 解三角形1.1解三角形题型1三角形解的个数1.△ABC 中,已知===B b x a ,2, 60°,如果△ABC 两组解,则x 的取值范围 A 2>x B .2<x C .3342<<x D 3342≤<x ( )2.在△ABC 中,若b=22,a=2,且三角形有解,则A 的取值范围是 ( )A.0°<A <30°B.0°<A ≤45°C.0°<A <90°D.30°<A <60°题型2 判断三角形的形状1.∆ABC 中,a = 2 b cosC ,则这个三角形一定是 ( ) A 等腰三角形 B 直角三角形 C 等腰直角三角形 D 等腰或直角三角形2.△ABC 中,cos cos sin a b c A B C==,则△ABC 一定是 ( ) A 直角三角形 B 钝角三角形 C 等腰三角形 D 等边三角形3.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC ______________.4.在△ABC 中,若()B A C B A cos cos sin sin sin +=+,判断△ABC 的形状________。

题型3 三角形中求值问题1.边长为5、7、8的三角形的最大角与最小角之和为 ( ) A 90°B 120° C 135° D 150°2.在△ABC 中,若B a b sin 2=,则A 等于 ( ) A .06030或 B 06045或 C 。

060120或 D .015030或3. 在∆ABC 中,三边a ,b ,c 与面积s 的关系式为222),s a b c =+-则角C 为 A30 B45 C60 D90 ( )4.在△ABC 中,A =60°,b =1,其面积为3,则CB A cb a sin sin sin ++++等于A .33B .3392 C .338 D . 239( )5.在ΔABC 中,A=60°, c:b=8:5,内切圆的面积为12π,则外接圆的半径为_____.6.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且8 sin 22B C+-2 cos 2A =7. (1)求角A 的大小;(2)若a b +c =3,求b 和c 的值.7.△ABC 的内角A,B,C 所对的边长为a,b,c,且acosB=3,bsinA=4 (1)求a(2)若三角形的面积为10,求其周长题型4 三角形的取值范围问题1.已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是 ( ) A.51<<x B .135<<x C .50<<x D .513<<x2.已知∆ABC 中, AB=1,BC=2,则角 C 的取值范围是 ( ) A 60π≤<C B 20π<<C C 26ππ<<C D 36ππ≤<C3.在△ABC 中,角A,B,C 所对的边分别为a,b,c ,且满足csinA=acosC . (Ⅰ)求角C 的大小;(B+4π)的最大值,并求取得最大值时角A 、B 的大小。

解三角形(总结+题+解析)

解三角形(总结+题+解析)

解三角形一.正弦定理:A a sin =B b sin =C csin =2R ,其中R 是三角形外接圆半径.正弦定理的如下变形常在解题中用到1.(1) a=2RsinA(2) b=2RsinB(3) c=2RsinC2.(1) sinA=a/2R(2) sinB=b/2R(3) sinC=c/2R3.a :b :c=sinA :sinB:sinC适用类型(1)AAS(2)SSA二.余弦定理:1. a^2 = b^2 + c^2 - 2·b ·c ·cosA2. b^2 = a^2 + c^2 - 2·a ·c ·cosB3. c^2 = a^2 + b^2 - 2·a ·b ·cosC余弦定理的如下变形常在解题中用到1. cosC = (a^2 + b^2 - c^2) / (2·a ·b)2. cosB = (a^2 + c^2 - b^2) / (2·a ·c)3. cosA = (c^2 + b^2 - a^2) / (2·b ·c )适用类型1.SSA2.SAS3.SSS三.余弦定理和正弦定理的面积公式S △ABC =21absinC=21bcsinA=21acsinB(常用类型:已知三角形两边及其夹角)判断解的个数判断三角形的形状有两种途径:(1)将已知的条件统一化成边的关系,用代数求和法求解(2)将已知的条件统一化成角的关系,用三角函数法求解三.解三角形的实际应用测量中相关的名称术语仰角:视线在水平线以上时,在视线所在的垂直平面内,视线与水平线所成的角叫做仰角。

俯角:视线在水平线以下时,在视线所在的垂直平面内,视线与水平线所成的角叫俯角方向角:从指定方向线到目标方向的水平角测距离的应用测高的应用(一)已知两角及一边解三角形例1已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.∠B=180°-30°-45°=105°a=10sin45°/sin30°=10√2sin105°=sin(60+45)=√2/2(√3/2+1/2)=(√6+√2)/41/sin105=√6-√2b=10sin45°/sin105°=5√2(√6-√2)=10(√3-1)(二)已知两边和其中一边对角解三角形例2在△ABC中,已知角A,B,C所对的边分别为a,b,C,若a=2√3,b =√6,A=45°,求边长C由余弦定理,得b²+c²-2bccosA-a²=06+c²-2√3c-12=0c²-2√3c-6=0根据求根公式,得c=√3±3又c>0所以c=3+√3(三)已知两边及夹角,解三角形例3△ABC中,已知b=3,c=33,B=30°,求角A,角C和边a.解:由余弦定理得∴a2-9a+18=0,得a=3或6当a=3时,A=30°,∴C=120°当a=6时,由正弦定理∴A=90°∴C=60°。

必修五解三角形重难点题型归纳梳理非常完美

必修五解三角形重难点题型归纳梳理非常完美

专题02 解三角形【重难点知识点网络】:【正弦定理】 2sin sin sin a b c R A B C===(R 为ABC ∆外接圆的半径). 【正弦定理的变形】①2sin ,2sin ,2sin a R A b R B c R C ===②2sin sin sin sin sin sin a b c a b c R A B C A B C ++====++【三角形常用结论 】(1)B A B A B A b a cos cos sin sin <⇔>⇔>⇔>(2)在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. (3)面积公式: ①111222a b c S ah bh ch ===,②111sin sin sin 222S ab C bc A ca B ===. 【三角恒等变换公式】()()()()1.sin sinC,cos =-cos tan =-tan A B A B C A B C +=++,(其中,,A B C 是三角形的三个内角) ()()2.sin sin cos cos sin αβαβαβ+=+()()3.sin -sin cos -cos sin αβαβαβ=()()4.sinx cosx ,tan b y a b x aϕϕ=+=+=其中 【内角和定理】三角形三角和为π,这是三角形中三角函数问题的特殊性,解题可不能忘记!任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.A>B a>b sinA>sinB ⇔⇔,60⇔A,B,C 成等差数列B=题型一:正余弦定理选择例1.(1)中,角所对的边分别为.若,则边【解析】,即,解得或(舍去).(2).在中,,,则的外接圆面积为【解析】因为在中,,,所以,又,设三角形外接圆半径为,则,因此的外接圆面积为. (3).(2020·四川省都江堰中学高一期中)在ABC中,已知60,B b==sin sina bA B+=+().A.2 B.12C D.3【详解】由题意知60,B b==2sin sin60bB==根据正弦定理,可得2sin sina bA B===,所以2sin sin sina b aA B A+==+.故选:A.【变式训练】.(1)(2020·四川成都市·高一期末(理))在ABC中,若角π4B=,AC=AB=C=()A.π6B.π3C.π6或5π6D.π3或2π3【详解】由正弦定理可得:sin sinAC ABB C=,则sinsin22AB BCAC===,ABC∆,,A B C,,a b c3,60a b A===︒c= 2222cosa cb cb A=+-213923cos60c c⇒=+-⨯⨯︒2340c c--=4c= 1c=-ABC c=75A=︒45B=︒ABCABC75A=︒45B=︒60C=︒2c=r21sincrC===ABC214S rππ==因为AC AB <,所以B C <, 故3C π=或23π.故选:D . (2)已知分别为三个内角的对边且,则=____【解析】因为,所以,所以,,.故答案为. (3)在中,角,,的对边分别为,,,若,,,则此三角形的外接圆的面积为______.【解析】在中,由余弦定理可得:解得:;再由正弦定理可得:,解得, 由圆面积公式解得外接圆面积为:.故答案为:. 题型二:边角互换 例2.(1)(2020·全国高二课时练习)在ABC 中,若cos sin c A a C =,则角A 的值为( )A .6πB .4πC .3πD .2π 【详解】cos sin sin cos sin sin c A a C C A A C =⇒=,0C π<<,sin 0C ∴≠,cos sin A A ∴=,0A π<<,且2A π≠,tan 1A ∴= ,4A π∴=,故选:B (2)(2021·四川成都市·高三月考(文))在ABC 中,a ,b ,c 分别为A ∠,B ∠,C ∠的对边,如果sin sin sin A b c B C b a+=--,那么cos C 的值为( ) A .12 B .2 C .23 D .2【详解】∵sin sin sin A b c B C b a +=--,由正弦定理可得a b c b c b a+=--,即:()()()a b a b c b c -=+- ,,a b c ABC ,,A B C 222b c a +=A ∠222b c a +-=222b c a +-=cos A =6A π∴=6πABC ∆A B C a b c 8b =3c =60A =︒ABC ∆222249a b c bccosA =+-=7a =2a R sinA =R =2493S R ππ==493π整理得:222c a b ab =+-,对照余弦定理可得1cos 2C =故选:A . (3)中,分别是角对边,若,且,则的值为__ 【解析】在中,因为,且,由正弦定理得,因为,则,所以,即,解得, 由余弦定理得,即,解得. 【变式训练】.(1)(2020·四川成都市·树德怀远中学高一期中)在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若2cos 2b C c a +=,且3b c ==,则a =( )A .1 BC. D .4【详解】2cos 2,b C c a += 由正弦定理可得()2sin cos sin 2sin 2sin 2sin cos 2cos sin ,B C C A B C B C B C +==+=+sin 2cos sin ,sin 0,0,.3C B C C B B ππ∴=≠<<∴=由余弦定理可得2222cos ,13,3b a c ac B b c =+-== ,解得 4.a = 故选D(2)(2019·四川成都市·双流中学高二期中(文))在ABC ∆中,内角A ,B ,C 所对应的边分别为a ,b ,c ,若cos cos 2cos a C c A b B +=,且cos22sin sin 1B A C +=,则a cb +的值为() A .1B C D .2 【详解】cos cos 2cos a C c A b B +=,由正弦定理可得sin cos sin cos 2sin cos A C C A B B +=,()sin 2sin cos sin A C B B B ∴+==,sin 0B ≠,1cos 2B ∴=, ABC ∆,,a b c ,,A B C sin cos 0b A B =2b ac =a c b +ABC ∆sin cos0b A B =2b ac =sin sin cos 0B A A B-=(0,)A π∈sin 0A>sin 0B B =tan B =3B π=222222222cos ()3()3b a c ac B a c ac a c ac a c b =+-=+-=+-=+-()224b a c =+2a c b+=0B π<<,3B π∴=,cos22sin sin 1B A C +=,32sin sin 2A C ∴=, 232sin sin 34A A π⎛⎫∴-= ⎪⎝⎭23cos sin 2A A A +=,11sin 2cos 2222A A -=,sin 216A π⎛⎫∴-= ⎪⎝⎭,3ABC π∴===, ∴ABC ∆为正三角形,则2a c b +=.故选:D(3)(2020·全国高一课时练习)在ABC ∆2sin b A =,则B 等于( )A .30B .60C .30或150D .60或120【详解】32sin a b A =2sin sin A A B =,0180A <<,sin 0A ∴>,可得sin B =,0180B <<,60B ∴=或120.故选:D. 题型三:三角形面积例3.(1)(2019·四川成都市·双流中学高三月考(文))在ABC ∆中,,,A B C 的对边分别是,,a b c ,且2,60,b B ABC ==︒∆a c +=( )A B .4 C .2 D .4+【详解】因为ABC ∆中,2,60b B ==︒,所以ABC ∆的面积为11sin 222S ac B ac ==⋅=,则4ac =又2222cos b a c ac B =+-,即()()22224312a c ac a c ac a c =+-=+-=+-即()216a c +=,解得4a c +=,故选:B(2)(2020·四川宜宾市·高三二模(文))在ABC 中,角A 的平分线交边BC 于D ,4AB =,8AC =,2BD =,则ABD △的面积是( )A B . C .1 D .3【详解】()sin sin sin ADC ADB ADB π∠=-∠=∠,在ABD △中,由正弦定理得sin sin BD AB BAD ADB=∠∠,同理可得sin sin CD AC CAD ADC =∠∠, 因为ABC 中,角A 的平分线交边BC 于D ,上述两个等式相除得BD AB CD AC =, 4AB =,8AC =,2BD =,8244AC BD CD AB ⋅⨯∴===,6BC ∴=.2222224681cos 22464AB BC AC B AB BC +-+-∴===-⋅⨯⨯,sin 4B ==. 1sin 2ABDS AB BD B ∴=⋅⋅=A . (3)(2020·四川省成都市第十七中学高一期中)在ABC ∆中,a 、b 、c 分别为角A 、B 、C 的对边,它的面积为2224a b c --,则角A 等于( ) A .30 B .45︒ C .60︒ D .135︒ 【详解】因为2224a b c --12bcsinA =,且2222a b c bccosA =+-, 故可得sinA cosA =-,即1tanA =-,又因为()0,A π∈,故可得34A π=.故选:D. 【变式训练】.(1)(2021·全国高三专题练习(理))已知ABC 中,内角,,ABC 的对边分别为,,a b c ,若2,23A b π==,且ABC a 的值为( )A .B .8C .2D .12【详解】11sin 2222ABC S bc A c ==⨯⨯=,解得2c =,由余弦定理:22212cos 44222122a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,a ∴=故选:A.(2)中,,,,,则__________. 【解析】由题意,在中,, 所以的面积为,解得, 由余弦定理得,又由,所以. (3)在中,、、分别是角、、的对边,若,,则的面积为【解析】由余弦定理可得, 即,解得,因此,题型四:三角形形状判断例4.(1)(2020·成都市实验外国语学校(西区)高一期中)ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos sin sin B A C =,则ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形【详解】因为2cos sin sin B A C =,所以22222a c b a c ac+-⋅⋅=, 所以22a b =,所以a b =,所以三角形是等腰三角形,故选:B.(2)(2020·四川省泸县第四中学高一期中)在ABC 中,cos cos a b A B c ++=,则ABC 是( )A .等腰直角三角形B .等腰或直角三角形C .等腰三角形D .直角三角形ABC ∆AB =1AC =30B =ABC ∆C =ABC ∆01,30AB AC B ===ABC ∆111sin 222S AB BC B BC =⋅⋅=⨯=2BC =2221431cos 22142AC BC AB C AC BC +-+-===⋅⨯⨯0(0,180)C ∈60C =︒ABC ∆a b c A B C 2b c =a =3A π=ABC ∆2222212cos 4222a b c bc A c c c c =+-=+-⨯⨯⨯236c =c =2b c ==11sin 22ABC S bc A ∆==⨯=【详解】因为cos cos a b A B c ++=,sin sin sin a b A B c C++= 所以sin sin cos cos sin A B A B C++=,所以sin cos sin cos sin sin C A C B A B +=+ 因为A B C π++=,所以()()sin sin sin sin A B B C A C +=+++即()()sin cos sin cos sin sin C A C B B C A C +=+++所以sin cos sin cos sin cos cos sin sin cos cos sin C A C B B C B C A C A C +=+++所以sin cos sin cos 0B C A C +=,因为sin sin 0B A +≠,所以cos 0C =因为()0,C π∈,所以2C π=,即ABC 是直角三角形,故选:D(3)(2020·四川成都市·成都外国语学校高一期中(文))△ABC 中,如果tan a A =tan b B =tan c C ,那么△ABC 是( )A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形 【详解】因为tan a A =tan b B =tan c C ,所以由正弦定理可得sin sin sin tan tan tan A B C A B C ==, 所以cos cos cos A B C ==,又函数cos y x =在(0,)π上为递减函数,且(0,),(0,),(0,)A B C πππ∈∈∈,所以A B C ==,所以△ABC 为等边三角形,故选:B【变式训练】.(1)(2020·四川成都市·双流中学高一开学考试)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且cos b c A =,则ABC 的形状为( ).A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形【详解】因为cos b c A =且222cos 2b c a A bc+-=,所以222222cos 22b c a b c a b c A c bc b +-+-==⨯=, 即有222c a b =+,所以可判断ABC 为直角三角形,故选:B(2)(2020·绵阳市·四川省绵阳江油中学高一月考)在ABC ∆中,若cos cos a A b B =,则ABC 的形状一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰或直角三角形 【详解】已知:cos cos a A b B =,利用正弦定理:2sin sin sin a b c R A B C===, 解得:sin cos sin cos A A B B =,即sin 2sin 2A B =,所以:22A B =或21802A B =︒-, 解得:A B =或90A B +=︒,所以:ABC 的形状一定是等腰或直角三角形,故选:D .(3)(2020·四川省宜宾市第四中学校高一期中)已知ABC 中,()()sin sin sin 2B A B A A ++-=,则ABC 的形状为( )A .等腰三角形B .等腰直角三角形C .等腰三角形或直角三角形D .无法确定.【详解】因为()()sin sin sin 2B A B A A ++-=,由两角和差的正弦公式可得2sin cos sin 2B A A =,所以sin cos sin cos B A A A =,若cos =0A ,即2=A π时,此时ABC 是直角三角形;若cos 0A ≠,即sin sin B A =,所以A B =,所以ABC 是等腰三角形;综上,ABC 是等腰三角形或直角三角形;故选:C.题型五:三角形个数例5.(1)(2020·四川成都市·成都外国语学校高一期末(理))满足60ABC ∠=︒,12AC =,BC k =的ABC 恰有一个,那么k 的取值范围是( )A.k = B .012k <≤ C .12k ≥ D .012k <≤或k =【详解】由题意得,sin6012k ︒=或012k <≤时,满足的三角形恰有一个,解得12sin 60k ===︒012k <≤,故选:D (2)(2020·遂宁市·高一期末)已知ABC中,4a b B π===,那么满足条件的ABC( )A .有一个解B .有两个解C .不能确定D .无解【详解】由题可知:4a b B π===,sin 2==a B <=<b a 所以可知ABC 有两个解,故选:B(3).8.(2020·四川成都市·成都外国语学校高一期末(理))满足60ABC ∠=︒,12AC =,BC k =的ABC 恰有一个,那么k 的取值范围是( )A .k =B .012k <≤C .12k ≥D .012k <≤或k =【详解】如图,由题意得,sin6012k ︒=或012k <≤时,满足的三角形恰故选:D【变式训练】.(1)(2020·四川成都市·高一期中(理))在ABC ∆中,角A ,B ,C 所对的边分别为a ,b,c ,已知60A =︒,b =a 满足的条件是( )A .0a <<B .0<<3aC .3a <<D .a ≥3a =【详解】C 到AB 的距离d=bsinA=3,∴当3<a <2时,符合条件的三角形有两个,故选C .(2)(2019·四川成都市·成都外国语学校高一期中(文))在ABC ∆中,已知,45,1,2 ===B c b 则此三角形有几个解 ( )A .0B .1C .2D .不确定【解析】因为sin 12c B b ⋅=<<=,所以三角形只有一个解,故选B. (3)(2020·重庆市黔江新华中学校高一期中)已知满足30C =,4AB =,AC b =的ABC ∆恰有一个,那么b 的取值范围是_________. 【详解】根据正弦定理,sin sin 8b C bB c ==,若三角形有一解,即B 仅有一个解,所以0sin sin B C <≤ 或sin 1B =,即0b c <≤或18b=,解得(]{}0,48b ∈⋃.因此,b 的取值范围是(]{}0,48⋃.题型六:取值范围例6.(1)(2020·全国高三专题练习)在锐角..ABC 中, 2,2a B A ==,则b 的取值范围是( )A .(2, B .C .4) D .【详解】由题得3C B A A ππ=--=-,因为三角形是锐角三角形,所以0202,,cos 26422032A B A A A C A ππππππ⎧<<⎪⎪⎪<=<∴<<<<⎨⎪⎪<=-<⎪⎩. 由正弦定理得22,,4cos sin sin sin 22sin cos sin b b b b A B A A A A A=∴==∴=.所以b ∈.选:B. (2).(2020·四川省绵阳南山中学高二开学考试)设锐角三角形ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若2a =,2B A =,则b 的取值范围为( )A .(0,4)B.(2,C.D.4)【详解】在锐角三角形中, 022A π<<,即04A π<<,且3B A A +=,则32A ππ<<,即63A ππ<<,综上64A ππ<<,则cos 22A <<,因为2a =,2B A =, 所以由正弦定理得sin sin 2sin cos a b b A B A A ==,得4cos b A =,因为cos 22A <<,所以4cos A <<b <<b的取值范围为.故选:C.【变式训练】.(1)在锐角△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且a 2ab +b 2=1,c =1,a ﹣b 的取值范围为_____.【解析】因为,,所以.. 因为,所以.又因为,所以,,.因为,所以.,所以(3)在中,,,则角的取值范围是( )A .B.C .D .【解析】,∴,∴,因,必为锐角,故题型七:射影定理221a b +=1c =222a b c +-=222cos 2a b c C ab +-===02C <<π6C π=12sin sin sin 6a b A B π===2sin a A =2sin bB =56B A π=-2sin b A B -=-52sin()6A A π=--552(sin cos cos sin )66A A A ππ=--cos 2sin()6A A A π=-=-025062A A πππ⎧<<⎪⎪⎨⎪<-<⎪⎩32A ππ<<663A πππ<-<1sin()262A π<-<b -∈ABC ∆1AB =2BC =C 0,6π⎛⎤⎥⎝⎦,42ππ⎛⎫ ⎪⎝⎭,62ππ⎡⎫⎪⎢⎣⎭,62ππ⎛⎫ ⎪⎝⎭sin sin AB BC C A =1sin sin 2C A =10sin 2C <≤AB BC <C 0,6C π⎛⎤∈ ⎥⎝⎦例7.(2020·四川省广元市八二一中学高一期中)在ABC ∆中,角A B C ,,所对应的边分别为a b c ,,.已知cos cos 2b C c B b +=,则ba=______ . 【详解】将cos cos 2b C c B b +=,利用正弦定理可得:sin cos sin cos 2sin B C C B B +=, 即()sin 2sin B C B +=,∵()sin sin B C A +=,∴sin 2sin A B =,可得:2a b =,则12b a =,故答案为12. 【变式训练】.(2020·四川眉山市·仁寿一中高二开学考试)在ABC ∆中,内角A ,B ,C 所对应的边长分别为a ,b ,c,且cos 3C =,cos cos 2b A a B +=,则ABC ∆的外接圆面积为__________. 【详解】由正弦定理知:cos cos 2sin cos 2sin cos 2b A a B R B A R A B +=⋅⋅+⋅=,即()1sin sin A B C R +==,cos 3C =,1sin 3C =,即3R =.故29S R ππ==.故答案为9π 题型八:解析几何中运用例8.(1)如图,在,已知点在边上,,,,则的长为【解析】由题意, ∴,.(2)的两边长分别为1,第三边上的中线长为1,则其外接圆的直径为【解析】,设,在中,,即,①ABC ∆D BC AD AC ⊥sin 3BAC ∠=AB =3AD =BD sin()cos 23BAD BAD π∠+==∠2222cos BD AB AD AB AD BAD =+-⋅∠2232333=+-⨯⨯=BD =ABC ∆1,1AB AC AD ===BD CD x ==ABD ∆2222cos AB AD BD AD BD ADB =+-⋅∠2112cos x x ADB =+-∠在中,同理可得,②,①+②得,为等边三角形,,的外接圆直径为 .(3)(2020·全国高三专题练习)在ABC ∆中,5AB =,BAC ∠的平分线交边BC 于D .若45ADC ∠=.BD sin C =___________.【详解】ABD ∆中,由正弦定理可得,5sin sin135BAD =∠,所以sin 10BAD ∠=AD 为BAC ∠的平分线即sin sin BAD CAD ∠=∠=,()10sin sin45C DAC ∴=∠+∠==.【变式训练】.(1)如图,,,,为平面四边形的四个内角,若,,,,,则四边形面积是______.【解析】连接BD ,在中,, 在中,,所以=ACD ∆2312cos x x ADC =+-∠,cos cos 0ADB ADC ADB ADC π∠+∠=∠+∠=2422,1,x x ABD =+=∆3Bπ=ABC ∆2sin BCB==A B C D ABCD 180A C +=︒6AB =4BC =5CD =5AD =ABCD ABD ∆2222cos 6060cos BD AB AD AB AD A A =+-⋅=-BCD ∆2222cos 4141cos BD BC CD BC CD C C =+-⋅=-6060cos A -,因为,所以,所以,则, 所以四边形面积(2)四边形中,,,,,,则的长为______【解析】连接AC ,设,则,故在中,,, 又在中由余弦定理有,解得即.(3)在中,已知,是边上一点,如图,,则__________.【解析】,根据余弦定理,,,,根据正弦定理,则4141cos C -180A C +=︒cos cos A C =-1cos 5A =sin 5A =ABCD 11sin sin 22ABD BCD S S S AB AD A BC CD C ∆∆=+=⨯⨯+⨯⨯1165452525=⨯⨯⨯+⨯⨯⨯=ABCD 4AB =5BC =3CD =90ABC ∠=︒120BCD ∠=︒AD ACB θ∠=120ACD θ∠=-Rt ABC ∆sin θθ==()11cos 120cos sin 2222θθθ-=-+=-+=ACD ∆()2223cos 120AD θ+--==265AD =-AD =ABC ∆45B =︒D BC 75,1,BAD DC AC ∠=︒==AB =0120ADC ∠=22202cos120AC AD DC AD DC =+-⋅⋅260AD AD +-=2AD =060ADC ∠=00sin 60sin 45AB AD=. 考点八:综合运用例8.(1)在中,,向量 在上的投影的数量为,则 【解析】∵向量 在上的投影的数量为,∴.①∵,∴,∴.② 由①②得,∵为的内角,∴,∴. 在中,由余弦定理得,∴(2)(2020·四川省成都市盐道街中学高一期中)已知A 、B 、C 为ABC 的三内角,且其对边分别为a 、b 、c ,若cos (2)cos 0a C c b A ++=.(1)求A .(2)若a =4b c +=,求ABC 的面积.【详解】(1)cos (2)cos 0a C c b A ++=,由正弦定理可得:sin cos (sin 2sin )cos 0A C C B A ++=,sin cos sin cos 2sin cos 0A C C A B A ++=,sin()2sin cos 0A C B A ++=,sin 2sin cos 0B B A +=,sin 0B ≠,1cos 2A ∴=-,(0,)A π∈,23A π∴=. (2)由a =4b c +=,由余弦定理得2222cos a b c bc A =+-,2212()22cos3b c bc bc π∴=+--,即有1216bc =-,4bc ∴=, 故ABC 的面积为112sin 4sin 223S bc A π==⨯⨯= 02sin 60sin 45AD AB ===ABC ∆3AC =AB AC 2,3ABC S ∆-=BC =AB AC 2-||cos 2AB A =-3ABC S ∆=13||||sin ||sin 322AB AC A AB A ==||sin 2AB A =tan 1A =-A ABC ∆34A π=2||3sin 4AB π==ABC ∆2222232cos323(294BC AB AC AB AC π=+-⋅⋅⋅=+-⨯⨯=BC =(3)(2020·四川成都市·树德中学高一月考)已知向量(sin ,1)m x =,1(3cos ,)2n x =,函数()()f x m n m =+⋅.(1)求函数()f x 单调递增区间;(2)已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,a =3c =,且5()2f A =,求角C. 【详解】(1)231cos23()()sin cos 222x f x m n m x x x -=+⋅=+⋅+=++cos 22sin(2)226x x π=-+=-+ 由222()26263k x k k x k k Z πππππππππ-≤-≤+⇒-≤≤+∈,所以单调递增区间是[,]()63k k k Z ππππ-+∈(2)由(1)知,51()sin(2)2sin(2)6262f A A A ππ=-+=⇒-=, a c <,(0,)2A π∴∈52(,)666A πππ∴-∈-,266A ππ∴-=,6A π∴=,于是,由正弦定理,3sin sin sin sin 2a c C A C C =⇒=⇒=,3sin 2c A a c ⨯=<<,∴两个解均成立,3C π∴=或23π 【变式训练】.(1)(2020·四川成都市·(理))在ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,且满足tan 2sin a C c A =. (1)求C∠的大小;(2)若2c a b ==,求ABC 的面积.【详解】(1)由tan 2sin a C c A =得sin 2sin cos a CA c C⋅=, 由正弦定理得sin sin 2sin sin cos A CA C C⋅=,又(0,),sin 0A A π∈≠, ∴1cos 2C =,∵0C π<<, ∴3C π=(2)∵2222cos c a b ab C =+-,且2a b =.∴2222142232b b b b b =+-⋅⋅⋅=,∴2b =,∴4a =,∴1sin 2ABCSab C ==(2)(2020·沙坪坝区·重庆南开中学高三月考(理))已知函数()()()cos sin f x x x x x =∈R .(1)求()f x 的最小正周期和单调增区间;(2)ABC 中,角,,A B C 的对边分别为,,a b c .若22B f ⎛⎫=- ⎪⎝⎭,6b =,求ABC 的面积的取值范围.【详解】(1)()211cos2cos sin sin 222xf x x x x x +==1sin 22sin 223x x x π⎛⎫==- ⎪⎝⎭,∴()f x 的周期T π=, 由222,232k x k k Z πππππ-+≤-≤+∈,得5,1212k x k k Z ππππ-+≤≤+∈ 所以()f x 的单调递增区间是5,1212k k ππππ⎛⎫-+⎪⎝⎭,k Z ∈.(2)∵sin 2322B f B π⎛⎫⎛⎫=--=-⎪ ⎪⎝⎭⎝⎭,即sin 03B π⎛⎫-= ⎪⎝⎭,又(0,)B π∈,∴3B π=,由正弦定理有6sin sin sin sin 3a cb A C B π====∴11sin sin sin 22ABC S ac B A C B A C ==⋅⋅=△221sin (sin )18sin cos 322A A A A A A A Aπ⎛⎫=-=+=+ ⎪⎝⎭1cos29sin 2226A A A π-⎛⎫=+=-+ ⎪⎝⎭∵203A π<<,∴72666A πππ-<-<,∴(ABC S ∈△ (3)(2020·四川成都市·高一期末(理))在ABC 中,三角A ,B ,C 的对边分别为a ,b ,c,且cos 5A =,sin B C =. (1)求tan C 的值;(2)若a =ABC 的面积.【详解】在ABC 中,A B C π++=,0A π<<,sin 0A >,因为cos A =,得sin 5A ===①.(1()()sin sin sin sin cos cos sin C B A C A C A C A C π==-+=+=+⎡⎤⎣⎦,C C C =+.所以sin 3cos C C =②. 如果cos 0C =,则sin 0C =与22sin cos 1C C +=③矛盾,所以cos 0C ≠.所以sin tan 3cos CC C==. (2)因为0C π<<,由tan 30C =>,得02C <<π,则sin 0C >,cos 0C >.将(1)中②代入(1)中③解得:sin10C=,cos10C=.于是sin102B C===.将a=1)①代入正弦定理sin sina cA C==3c=.所以ABC的面积11sin33222S ac B==⨯⨯=.课后训练1.(2020·宜宾市叙州区第二中学校高二开学考试(理))在ABC∆中,若sin cosA Ba b=,则角B为()A.6πB.4πC.3πD.2π【解析】因为sin cosA Ba b=,所以cos sin,tan1,4B BB Bb bπ=∴=∴=.2.(2020·四川成都市·成都七中高三开学考试(理))设ABC∆的内角A,B,C的对边分别为a,b,c,且22cosb cBa+=,则A∠的大小为()A.30B.60︒C.120︒D.150︒【详解】根据题意,由正弦定理可得:sin2sin2cossinB CBA+=,即sin2sin2cos sinB C B A+=,因为()C A Bπ=-+,∴sin2sin()sin2sin cos2cos sin2cos sinB A B B A B A B B A++=++=,sin2cos sin0B A B∴+=,sin0B ≠,12cos0A∴+=,解得1cos2A=-,(0,180)A∈︒︒,120A∴=︒.故选:C3.(2020·四川省成都市盐道街中学高一期中)在ABC中,60B=︒,1a=,ABCABC 外接圆面积为( )A .4πB .2πC .πD .3π【详解】在ABC 中,11sin 1sin 60222S ac B c ==⨯⨯⨯︒=,则2c =, 根据余弦定理:2222cos b a c ac B =+-2212212cos603=+-⨯⨯⨯︒=,则b =2sin sin 60b R B ==︒,则1R =, ∴外接圆面积221S R πππ==⨯=.故选:C4.(2020·四川眉山市·高一期末)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos 2cos a B b Ac C ,2CB =CB 在CA 方向上的投影为( )A .1B .2C .3D .4【详解】因为cos cos 2cos a B b A c C ,所以sin cos sin cos sin cos A B B A C C += ,即()sin cos A B C C +=, 即sin sin cos C C C =, 因为()0,C π∈,所以sin 0C ≠,所以cos C =,所以CB 在CA 方向上的投影为:cos 451BC C ⋅=︒=. 故选:A . 5.(2020·四川成都市·双流中学高三月考(理))ABC 的内角,,A B C 的对边分别为,,a b c ,若(2)cos cos a b C c B -=,则内角C =( )A .6πB .4π C .3π D .2π 【详解】∵(2)cos cos a b C c B -=,由正弦定理可得(2sin sin )cos sin cos A B C C B -=,∴2sin cos sin cos sin cos sin()sin A C B C C B B C A =+=+=,三角形中sin 0A ≠,∴1cos 2C =,∴3C π=.故选:C . 6.(2019·四川成都市·树德中学高二开学考试)如果满足条件:3ABC π∠=,12AC =,BC k =的ABC ∆恰有两个,那么实数k 的取值范围是( )A .012k <≤B .12k ≥C .12k <<D .012k <≤或k = 【详解】要使满足条件的ABC ∆恰有两个,只需满足sin 12k ABC k ∠<<,即12k k <<,所以12k <<C 7.(2020·四川绵阳市·三台中学实验学校高一开学考试)在ABC 中,内角、、A B C 的对边分别为a b c 、、,若cos cos B Ab a=,则ABC 的形状一定是( ) A .等腰三角形 B .直角三角形 C .等边三角形 D .等腰直角三角形【详解】因为cos cos B A b a=,由正弦定理得cos cos sin sin B AB A =, 所以sin cos cos sin A B A B =,即sin cos cos sin 0A B A B -=,所以in 0()s A B -=,又,(0,)A B π∈,所以0A B -=,即A B =,所以ABC 为等腰三角形,故选:A8.(2020·四川省成都市第十七中学高一期中)在△ABC 中,角,,A B C 的对边分别是,,a b c ,若2a =,2A B =,则cos B =( )A .3B C D .6【解析】∵在ABC 中a =,∴由正弦定理可得sin A B =①,又∵2A B =,∴sin sin22sin cos A B B B ==②,由①②可得2sin cos B B B =,可得cos B =,故选B.9.(2020·四川成都市·高一期末)我国南宋著名数学家秦九韶发现了由三角形三边求三角形面积的“三斜公式”,设ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,则“三斜求积”公式为ABCS =△7a =,8b =,9c =,则ABC 的内切圆半径为( )A BCD【详解】由已知条件可知:ABCS =△7a =,8b =,9c =,所以ABCS ==△()12ABC S a b c r =++⨯△,则()17892r ++⨯=r =故选:D. 10.(2020·四川成都市·棠湖中学高一月考)如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18 km ,速度为1000km/h ,飞行员先看到山顶的俯角为30︒,经过1 min 后又看到山顶的俯角为75︒,则山顶的海拔高度为(精确到0.1 km 1.732≈)A .11.4 kmB .6.6 kmC .6.5 kmD .5.6 km【详解】在ABC ∆中,15030,753045.1000603o o o oBAC ACB AB ∠=∠=-==⨯=根据正弦定理,503sin 45sin 30o o BC BC =∴=,sin 75sin(4530)11.5oo o BC ∴=+≈ 所以:山顶的海拔高度为18-11.5=6.5 km .故选:C11.(2020·四川成都市·成都外国语学校高一期末(理))如图,在ABC 中,D 是边AC 上的点,且AB AD =,2AB =,2BC DB =,则sin C 的值为( )AB.6CD.6【详解】设AB x =,则,,AD x BD x BC x ===, 在ABD △中,由余弦定理可得,2222224213cos 223x x AB AD BD A AB AD x -+-===⋅, 所以sin =A ,在ABD △中,由正弦定理得,sin sin AB BD ADB A=∠,则sin sin 233AB x ADB A x BD ∠==⨯=,所以sin BDC ∠=在BDC 中,由正弦定理得sin sin BD BC C BDC =∠,则sin sin x BD BDC C BC ⋅∠===D11.(2020·广西南宁市·南宁三中高三其他模拟(理))已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若1cos 3A =,23b c =,且ABC ∆,a =___________.【详解】1cos 3A =,sin 3A ∴==,23b c =,且ABC ∆1sin 2ABC S bc A ∆∴=,12233c c =⨯⨯,2c ∴=,b =由余弦定理得2229192cos 222322a b c bc A =+-=+-=,2a ∴=.故答案为2. 12.(2019·四川省成都市第八中学校高二期中(理))已知ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且1c =,π3C =,若()sin sin C A B +-=sin 2B ,则ABC 的面积为______. 【详解】∵在ABC 中,()sin sin sin 2C A B B +-=,则()()sin sin 2sin cos B A A B A B ++-=,∴2sin cos 2sin cos A B B B =,故有sin sin A B =或cos 0B =.①sin sin A B =,则有a b =,又1c =,π3C =. 在ABC 中,由余弦定理可得2222cos c a b ab C =+-,代入整理可得,21a =即1a b ==,此时,1sin 24ABC S ab C ==△.②cos 0B =即π2B =,ABC 为直角三角形,又1c =,π3C =,∴3a =,3b =,此时11236ABC S =⨯⨯=△.故答案为:413.(2020·四川成都市·高一期中(理))已知函数()2cos(2)2cos 213f x x x π=+-+,若ABC 为锐角三角形且()0f A =,则b c的取值范围为_____.【详解】()2cos 2cos2sin 2sin2cos 2133f x x x x ππ=⋅-⋅-+2cos 212sin 216x x x π⎛⎫=-+=-++ ⎪⎝⎭()2sin 2106f A A π⎛⎫=-++= ⎪⎝⎭,即1sin 262A π⎛⎫+= ⎪⎝⎭,02A π<<,72666A πππ∴<+<则5266A ππ+=,3A π=,1sin sin sin 1322sin sin sin 2tan 2C C C b B c C C C C π⎛⎫++ ⎪⎝⎭====+ 62C ππ<<,tan C ⎫∴∈+∞⎪⎪⎝⎭,则302<<,11,222⎛⎫+∈ ⎪⎝⎭ 即bc 的取值范围为1,22⎛⎫ ⎪⎝⎭故答案为:1,22⎛⎫ ⎪⎝⎭14.(2020·成都市·四川电子科大实验中学高一期中)如图,海上某货轮在A 处看灯塔B 在货轮的北偏东75︒,距离为A 处看灯塔C 在货轮的北偏西30,距离为A 处行驶到D 处时,若灯塔B 在方位角120︒的方向上,则灯塔C 与D 处之间的距离为_______海里.【详解】在ABD∆中,75,60,45AB DAB ADB ABD =∠=∠=∠=由正弦定理可得sin sin AB AD ADB ABD =∠∠,代入可得sin 60sin 45AD=解得sin 4524sin 60AD ==在ACD ∆中AC =,由余弦定理可得2222cos CD AC AD AC AD CAD =+-⋅∠代入可得21925762242CD =+-⨯⨯2192CD = 所以CD=:15.(2020·四川省泸县第一中学高一月考)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,2cos cos cos a C b C c B =+.(1)求角C ;(2)若8b =,4c a =+,求ABC 的面积. 【详解】(1)在ABC 中,根据正弦定理sin sin sin a b cA B C==, 由2cos cos cos a C b C c B =+,可得2sin cos sin cos sin cos A C B C C B =+, 所以()2sin cos sin sin A C B C A =+=,因为A 为ABC 内角,所以sin 0A >,所以1cos 2C =因为C 为ABC 内角,所以3C π=, (2)在ABC 中,8b =,4c a =+,由余弦定理得2222cos c a b ab C =+-()2224828cos3a a a π+=+-⨯⨯,解得3a =,所以11sin 38sin 223ABCSab C π==⨯⨯⨯=. 16.(2020·四川成都市·高一期末)在ABC 中,角,,A B C 的对边分别是,,a b c ,且角C 是锐角,若ABC的外接圆半径为R ,c =.(1)求角C ;(2)若4ABC S =△,求ABC 的周长.【详解】(1)由题知:2sin c R C =,所以sin =C解得1sin 2C =,又角C 是锐角,所以6C π=.(2)因为1sin 26△π==ABC S ab ,所以ab =.又因为2222cos 6c a b ab π=+-,所以()22232=+=+-a b a b ab ,即()(22123+=+=a b ,3+=+a b所以ABC 的周长为3a b c ++=+17.在中,,,分别为角,,所对边,若. (1)求角的大小.(2)若,求周长的取值范围.【解析】(1)由正弦定理知:,即由余弦定理知:,因此(2)由正弦定理知:,则,故,则,故,因此18.(2020·宜宾市叙州区第一中学校高一月考)在ABC∆中,角A,B,C所对的边分别为a,b,c,已知满足(2)cos cosa c Bb C-=.(Ⅰ)求角B的大小;(Ⅱ)若2b=,求ABC∆的面积的取值范围.【详解】(Ⅰ)()2cos cosa c Bb C-=,由正弦定理得:()2sin sin cos sin cosA CB B C-=()2sin cos sin cos sincos sin sinA B C B B C B C A∴=+=+=()0,Aπ∈,sin0A∴≠,1cos2B∴=,()0,Bπ∈,3Bπ∴=(Ⅱ)由正弦定理得:sinsinb AaB=,a A∴==,同理:c C=ABC∆a b c A B C(sin sin)sin sina A B c Cb B+=-C c=ABC∆22()a abc b+=-222a b c ab+-=-2221cos22a b cCab+-==-23Cπ=4sin sin sina b cA B C====4sina A=4sinb B=4sin4sinABCC a b c A B∆=++=++24sin4sin()4sin4sin3A A C A Aπ⎛⎫=+++=+++⎪⎝⎭2sin4sin3A A Aπ⎛⎫=++=++⎪⎝⎭0,3Aπ⎛⎫∈ ⎪⎝⎭2,333Aπππ⎛⎫+∈ ⎪⎝⎭sin3Aπ⎫⎛⎫+∈⎪⎪⎝⎭⎝⎭ABCC∆∈+1sin 1s in sin 233in 223ABC A C A ac C S B ∆=⨯⨯=∴=⨯21sin sin sin 32C C C C C π⎫⎛⎫=-=+⎪ ⎪⎪⎝⎭⎝⎭1112cos 2sin 24462C C C π⎫⎫⎛⎫=-+=-+⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭203C π<<,72666C πππ∴-<-<,1sin 2126C π⎛⎫∴-<-≤ ⎪⎝⎭10sin 2362C π⎫⎛⎫∴<-+≤ ⎪⎪⎝⎭⎝⎭ABC ∆∴的面积的取值范围为:(19.(2020·四川成都市·棠湖中学高一月考)如图,在平面四边形ABCD 中,已知A =2π,B =23π,AB =6.在AB 边上取点E ,使得BE =1,连接EC ,ED .若∠CED =23π,EC .(1)求sin ∠BCE 的值;(2)求CD 的长.【详解】(1)在△BEC 中,由正弦定理,知sin BE BCE ∠=sin CE B,因为B =23π,BE =1,CE ,所以sin ∠BCE =sin BE B CE ⋅=14.(2)因为∠CED =B =23π,所以∠DEA =∠BCE ,所以cos ∠DEA =14.因为2A π=,所以△AED 为直角三角形,又AE =5,所以ED =cos AEDEA∠.在△CED 中,CD 2=CE 2+DE 2-2CE ·DE ·cos ∠CED =7+28-2××12⎛⎫-⎪⎝⎭=49.所以CD =7.20.(2020·四川成都市·高一期末(文))如图,在ABC ∆中,30B ∠=,AC =D 是边AB 上一点.(1)求ABC ∆的面积的最大值;(2)若2,CD ACD =∆的面积为4,ACD ∠为锐角,求BC 的长.【详解】(1)因为在ABC ∆中,30,B AC D ∠==是边AB 上一点, 所以由余弦定理得:(22222202cos 2AC AB BC AB BC ABC AB BC BC AB BC ==+-⋅∠=+-⋅≥⋅所以(202AB BC ⋅≤=+,所以(1sinB 522ABCS AB BC =⋅≤+所以ABC ∆的面积的最大值为5(2+ (2)设ACD θ∠=,在ACD ∆中,因为2,CD ACD =∆的面积为4,ACD ∠为锐角,所以11sin 2sin 422ABC S AC CD θθ=⋅=⨯=,所以255sin ,cos θθ,由余弦定理,得,2222cos 204816AD AC CD AC CD θ=+-⋅=+-=所以4=AD ,由正弦定理,得sin sin AD CD A θ=,所以42sin sin A θ=,所以sin A =, 此时sin sin BC AC A B=,所以sin 4sin AC A BC B ==.所以BC 的长为4 21.(2020·四川成都市·双流中学高一开学考试)如图,在平面四边形ABCD 中,23D π∠=,CD =ACD ∆的面积为2.⑴求AC 的长;⑵若AB AD ⊥,4B π∠=,求BC 的长.【详解】⑴∵23D π∠=,CD =ACD ∆∴11sin 22ACD S AD CD D AD ∆=⋅⋅=⨯=,∴AD =∴由余弦定理得22212cos 6626()182AC AD CD AD CD D =+-⋅⋅=+-⨯⨯-=,∴AC =⑵由(1)知ACD ∆中AD =CD =23D π∠=∴6DAC ,∵AB AD ⊥,∴3BAC π∠=,又∵4B π∠= ,AC =∴在ABC ∆中,由正弦定理得sin sin BC AC BAC B =∠,2=,∴BC =。

必修五解三角形章节总结范文与题型

必修五解三角形章节总结范文与题型

必修五解三角形章节总结范文与题型章末整合提升知识梳理abc1.正弦定理:inA=inB=inC=2R,其中R是三角形外接圆半径.b2c2a22222222bc.2.余弦定理:a=b+c-2bccoA,b=a+c-2accoB,coA=111abcS(Sa)(Sb)(Sc)23.S△ABC=2abinC=2bcinA=2acinB,S△==Sr(S=,r为abc内切圆半径)=4R(R为外接圆半径).4.在三角形中大边对大角,反之亦然.5.射影定理:a=bcoC+ccoB,b=acoC+ccoA,c=acoB+bcoA.6.三角形内角的诱导公式CCABAB(1)in(A+B)=inC,co(A+B)=-coC,tanC=-tan(A+B),co2=in2,in2=co2在△ABC中,熟记并会证明tanA+tanB+tanC=tanA·tanB·tanC;(2)A、B、C成等差数列的充要条件是B=60°;(3)△ABC是正三角形的充要条件是A、B、C成等差数列且a、b、c成等比数列.7.解三角形常见的四种类型abc(1)已知两角A、B与一边a,由A+B+C=180°及inA=inB=inC,可求出角C,再求b、c.(2)已知两边b、c与其夹角A,由a=b+c-2bccoA,求出a,再由余弦定理,求出角B、C.(3)已知三边a、b、c,由余弦定理可求出角A、B、C. 222ab(4)已知两边a、b及其中一边的对角A,由正弦定理inA=inB,求出另一边b的对角B,acab由C=π-(A+B),求出c,再由inA=inC求出C,而通过inA=inB求B时,可能出一解,两解或无解的情况,其判断方法,如下表:9.三角形的分类或形状判断的思路,主要从边或角两方面入手.专题一:正、余弦定理的应用1.正弦定理主要有两个方面的应用:(1)已知三角形的任意两个角与一边,由三角形内角和定理,可以计算出三角形的第三个角,由正弦定理可以计算出三角形的另两边;(2)已知三角形的任意两边和其中一边的对角,应用正弦定理,可以计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边和角.2.余弦定理有两方面的应用:(1)已知三角形的两边和它们的夹角可以由余弦定理求出第三边,进而求出其他两角;(2)已知三角形的三边,利用余弦定理求出一个角,进而求出其他两角.例1.在ABC中,已知a,c,B60,求b及A;222bac2accoB解析:(1)∵=222COS4502121)=8=∴b求A可以利用余弦定理,也可以利用正弦定理:b2c2a22221,解法一:∵coA∴A600.a0AinBin45,解法二:∵in2.41.43.8,∴a<<21.83.6,c,即00<A<900,A60.∴针对练习:1.(2022上海文数)18.若△ABC的三个内角满足inA:inB:inC5:11:13,则△ABC(A)一定是锐角三角形.(B)一定是直角三角形.(C)一定是钝角三角形.(D)可能是锐角三角形,也可能是钝角三角形.解析:由inA:inB:inC5:11:13及正弦定理得a:b:c=5:11:13521121320,所以角C为钝角由余弦定理得coc25112.(2022湖南文数)7.在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=a,则A.a>bB.a<bC.a=bD.a与b的大小关系不能确定【命题意图】本题考查余弦定理,特殊角的三角函数值,不等式的性质,比较法,属中档题例2..(2022北京理)在ABC中,角A,B,C的对边分别为a,b,c,B3,4coA,b(Ⅰ)求inC的值;(Ⅱ)求ABC的面积.5【解析】本题主要考查三角形中的三角函数变换及求值、诱导公式、三角形的面积公式等基础知识,主要考查基本运算能力.解(Ⅰ)∵A、B、C为△ABC的内角,且B∴C3,coA4,523A,inA,35∴inCin12.AAinA323,inC5(Ⅱ)由(Ⅰ)知inA又∵B,bABC中,由正弦定理,得3binA6.∴ainB5∴△ABC的面积S针对练习:3.设△ABC的内角A、B、C所对的边长分别为a、b、c,且acoB=3,binA=4.(1)求边长a;(2)若△ABC的面积S=10,求△ABC的周长l.解:(1)将acoB=3与binA=4两式相除,得116336abinC.22510503acoBacoBbcoB1==·=·=.4binAinAbinBbtanB又由acoB=3知coB>0,34∴coB=,inB=,即a=5.551(2)由S=acinB,得c=5.2a2+c2-b2由coB=,解得b=25.2ac∴l=a+b+c=10+25.理解并掌握正弦定理与三角形面积计算公式的结合.要掌握面积与角或边的转换方法.4.(2022天津理数)(7)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2b2,inCB,则A=(A)30(B)60(C)120(D)15000【答案】A【解析】本题主要考查正弦定理与余弦定理的基本应用,属于中等题。

必修五解三角形整理+例题+练习+答案

必修五解三角形整理+例题+练习+答案

第一章 解三角形一、知识点总结 1.正弦定理:()2,sin sin sin a b cC R R A B ===为三角形外接圆的半径变形:例(1)(2012·广东高考)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( )A .4 3B .2 3 C. 3 D.322.余弦定理:例(2)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b 2=3ac ,则角B 的值_(3)2012·北京高考)在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.3.面积公式例(4)△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 4.射影定理(了解):a=bcosC+ccosB,b=acosC+ccosA,c=acosB+bcosA5.三角形中的常用结论:2sin ,2sin ,2sin sin =,sin ,sin 222::sin :sin :sin ++=2sin sin sin sin +sin +sin sin sin sin A B C a b a R A b R B c R C a b cA B C R R R a b c A B Ca b c a b cR A B A B C C C A B c >===⎫⎪⎬==>⇔>>⇔>>⎪⎭====边角互化(大角对大边:)①②③④2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩222222222cos 2cos 2cos 2⎧+-=⎪⎪+-⎪⇒=⎨⎪⎪+-=⎪⎩b c a A bc a c b B ac b a c C ab 111222∆===ABC a b c S ah bh ch 111sin sin sin =2224ABC abc S ab C bc A ac B R ∆===或(1),(+>-<a b c a b c 即两边之和大于第三边,两边之差小于第三边)二、常见题型 1、解三角形利用正弦定理:①已知两角和任意一边(AAS 、ASA ),求其他的两边及一角(只有一解) ②已知两边和其中一边的对角(SSA ),求其他边角(无解,一解,两解) 利用余弦定理:①已知三边(SSS )求三角(只有一解)②已知两边及夹角(SAS ),求第三边和其他两角(只有一解)③已知两边和其中一边的对角(SSA ),求其他边角(无解,一解,两解) 已知“SSA ”利用正弦定理与余弦定理求解的区别:(2)sin sin cos cos ∆>⇔>⇔>⇔<ABC A B a b A B A B在中,(3)222sin()sin ,cos()cos tan()tan ,sin cos ,cos sin ,2222A B CA B C A B C A B C A B C A B C A B A B C C πππ+++=⇒⇒=-+=+=-+=-+=-++==三角形中的诱导公式:,A.32或 3B.32或34C.3或34D. 32、判断三角形形状或求值方法一:确定最大角(只要知道三边的关系,就可以利用余弦定理的推论求出角) 方法二:边化角(统一化成角)方法三:角化边(统一化成边)❖常见的形式:例(6)ABC ∆中,若C B A B A 22222sin sin cos cos sin =-,判断ABC ∆的形状例 (7) 在△ABC 中,若cos A cos B =b a =43,试判断三角形的形状.3、构成三角形三边的问题2222222sin ,2sin ,2sin ,2cos sin sin sin 2sin sin cos a R A b R B c R C a b c bc A A B C B C A====+-⇒=+-⋅①常用公式:222222222sin ,sin ,sin ,222cos ,cos ,cos ,222a b cA B C R R R b c a a c b a b c A B C bc ac ab ===+-+-+-===①常用公式:sin =sin ()(sin sin +22)sin 2=sin 2()()2A B A B k k A B A B A B αβαβπαπβππ⇒=⎫⎪=⇔==-+⎬⇒=+=⎪⎭②常见结论:等腰三角形原理:或等腰三角形或直角三角形2222222222222229090a b c A a b c A a b c b a c c a b>+⇒>=+⇒=⎧<+⎪<+⇒⎨⎪<+⎩②常见结论:(钝角三角形)(直角三角形)锐角三角形cos cos ()()cos cos cos cos ()sin 2sin cos ())()3,sin 2sin cos ()a Ab B a bc A B C b a C A B C a b c b c a bc A B C =====+++-==①等腰三角形或直角三角形②等边三角形③直角三角形④等腰三角形⑤(且等边三角形21,,1()2.a a a a +-【例8】设为钝角三角形的三边,求实数考虑最大角为钝角和两边之和大于取值范围第三边的4、周长面积问题(记得同时利用两个公式:余弦定理和完全平方公式)5、正、余弦定理的综合应用【例11】在ABC ∆中,角,,A B C 所对应的边分别为,,a b c,a =tan tan 4,22A B C++= 2sin cos sin B C A =,求,A B 及,b c特别提醒:(1)求解三角形中的问题时,一定要注意A B C π++=这个特殊性:,sin()sin ,sincos 22A B CA B C A B C π++=-+==;(2)求解三角形中含有边角混合关系的问题时,常运用正弦定理、余弦定理实现边角互化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(Ⅰ)求 的值和 的面积;
(Ⅱ)求 的值.
一.构成三角形个数问题
1.在 中,已知 ,如果三角形有两解,则 的取值围是( )
A. B. C. D.
2.如果满足 , , 的△ABC恰有一个,那么 的取值围是__________.
3.在 中,根据下列条件解三角形,其中有两个解的是( )
二.求边长问题
4.在 中,角 所对边 ,若 , 的面积 ,则 ( )
(Ⅰ)求B的大小;
(Ⅱ)若 求△ABC的面积.
24.(本小题满分12分)已知在 ABC中,角A,B,C的对边分别为 .且 .
(Ⅰ)求 的值;
(Ⅱ)若 , ,求 的面积S。
25.(本题满分15分)在 中,角 所对的边长分别为 , .
(Ⅰ)求角 的大小;
(Ⅱ)已知 不是钝角三角形,且 , 求 的面积.
26.(本题满分13分)在 中,角 所对的边分别为 . , , .
15.在 中,若 ,那么 一定是( )
A.锐角三角形 B.钝角三角形 C.直角三角形 D.形状不确定
16.在△ABC中, ,(a,b,c分别为角A,B,C的对边),则△ABC的形状为 ( )
A.正三角形 B.直角三角形 C.等腰三角形或直角三角形 D.等腰直角三角形
17.在 中,如果 ,则该三角形是
12.在 中,角 对边分别为 已知 .若 ,求 的外接圆的面积;
五.判定三角形形状问题
13.在 中, , , 分别为角 , , 所对边,若 ,则此三角形一定是( )
A.等腰直角三角形 B. 直角三角形
C. 等腰三角形 D. 等腰或直角三角形
14. 中三边上的高依次为 ,则 为( )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.不存在这样的三角形
(1)求角 的大小;
(2)若 ,且 的面积为 ,求 .
21.如图,在 中, , ,点 在 边上,且 , .
(I)求 ;
(II)求 的长.
22.在 中, 分别是角 的对边,已知 .
(1)求 的值;
(2)若 的面积 ,且 ,求 和 的值.
23.(12分)在△ABC中,a,b,c分别是角A,B,C的对边,且2cosAcosC+1=2sinAsinC.
A.5 B.6 C. D.7
5.在△ABC中, ,则 =_______________.
三.求夹角问题
6.在 中, ,则 ( )
A. B. C. D.
7.在△ABC中,角A,B,C所对的边分别 为表示△ABC的面积,若 ,则∠B=( )
A.90° B.60° C.45° D.30°
四.求面积问题
8.已知△ABC中,角A,B,C所对的边长分别为 .若 ,则
A.等腰三角形 B.直角三角形 C.等腰或直角三角形 D.以上答案均不正确
六.综合问题
18.在锐角△ABC中, 是角A,B,C的对边,且 .
(1)求角C的度数;
(2)若 ,且△ABC的面积为 ,求 的值。
19.在锐角 中,角 的对边分别为 ,且 .
(1)求角 的大小;
(2)若 ,求 的面积.
20.在 中,角 对边分别是 ,且满足 .
△ABC的面积等于 ( )
9.锐角 中,角 的对边分别是 ,已知 .
(Ⅰ)求 的值;
(Ⅱ)当 , 时,求 的长及 的面积.
10.如图,在四边形 中, .
(1)求 边的长;
(2)求 的面积.
11.(本小题满分12分)已知 中, 角 对边分别为 ,已知 .
(1)若 的面积Байду номын сангаас于 ,求
(2)若 ,求 的面积.
相关文档
最新文档