流体力学-流体第三章作业答案
流体力学习题及答案-第三章
第三章 流体运动学3-1粘性流体平面定常流动中是否存在流函数? 答:对于粘性流体定常平面流动,连续方程为:()()0=∂∂+∂∂yv x u ρρ; 存在函数:v t y x P ρ-=),,(和()u t y x Q ρ=,,,并且满足条件:()()yP x Q ∂∂=∂∂。
因此,存在流函数,且为:()()()dy u dx v Qdy Pdx t y x ρρψ+-=+=⎰⎰,,。
3-2轴对称流动中流函数是否满足拉普拉斯方程?答:如果流体为不可压缩流体,流动为无旋流动,那么流函数为调和函数,满足拉普拉斯方程。
3-3 就下面两种平面不可压缩流场的速度分布分别求加速度。
(1)22222 ,2yx ym v y x x m u +⋅=+⋅=ππ (2)()()()222222222 ,yxKtxyv yxx y Kt u +-=+-=,其中m ,K 为常数。
答:(1)流场的加速度表达式为:yv v x v u t v a y u v x u u t u a x ∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=y ,。
由速度分布,可以计算得到:0 ,0=∂∂=∂∂tvt u ,因此: ()222222y x x y m x u +-⋅=∂∂π,()22222y x xy m y u +-⋅=∂∂π;()22222y x xy m x v +-⋅=∂∂π,()222222y x y x m y v +-⋅=∂∂π。
代入到加速度表达式中:()()()22222222222222222222220y x x m y x xym y x y m y x x y m y x x m a x +⋅⎪⎭⎫⎝⎛-=+-⋅⋅+⋅++-⋅⋅+⋅+=πππππ()()()22222222222222222222220y x y m y x y x m y x y m y x xym y x x m a y +⋅⎪⎭⎫⎝⎛-=+-⋅⋅+⋅++-⋅⋅+⋅+=πππππ(2)由速度分布函数可以得到:()()()322222222 ,y x Kxyt v y x x y K t u +-=∂∂+-=∂∂ ()()3222232y x y x Ktx x u +-⋅=∂∂,()()3222232y x y x Kty y u +-⋅=∂∂; ()()3222232y x x y Kty x v +-⋅-=∂∂,()()3222232yx y x Ktx y v +-⋅-=∂∂。
流体力学第二版课后习题答案
第一章习题答案选择题(单选题)1.1 按连续介质的概念,流体质点是指:(d )(a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
1.2 作用于流体的质量力包括:(c )(a )压力;(b )摩擦阻力;(c )重力;(d )表面张力。
1.3 单位质量力的国际单位是:(d )(a )N ;(b )Pa ;(c )kg N /;(d )2/s m 。
1.4 与牛顿内摩擦定律直接有关的因素是:(b )(a )剪应力和压强;(b )剪应力和剪应变率;(c )剪应力和剪应变;(d )剪应力和流速。
1.5 水的动力黏度μ随温度的升高:(b )(a )增大;(b )减小;(c )不变;(d )不定。
1.6 流体运动黏度ν的国际单位是:(a )(a )2/s m ;(b )2/m N ;(c )m kg /;(d )2/m s N ⋅。
1.7 无黏性流体的特征是:(c )(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RT p=ρ。
1.8 当水的压强增加1个大气压时,水的密度增大约为:(a )(a )1/20000;(b )1/10000;(c )1/4000;(d )1/2000。
1.9 水的密度为10003kg/m ,2L 水的质量和重量是多少? 解:10000.0022m V ρ==⨯=(kg )29.80719.614G mg ==⨯=(N )答:2L 水的质量是2kg ,重量是19.614N 。
1.10 体积为0.53m 的油料,重量为4410N ,试求该油料的密度是多少? 解:44109.807899.3580.5m G g V V ρ====(kg/m 3) 答:该油料的密度是899.358kg/m 3。
1.11 某液体的动力黏度为0.005Pa s ⋅,其密度为8503/kg m ,试求其运动黏度。
流体力学--第3章习题
4. 图示两根完全相同的长管道,只是安装高度 不同,两管道的流量关系为: C A.Q1<Q2; B.Q1>Q2; C.Q1=Q2; D.不定。
1-1断面、2-2断面的伯努利方程为
H1 H 2 h f
Q l hf 2 K
2
其中, K f (d , ) 称为流量模数
5. 两水池水位差为H,用两根等径等长、沿程阻 力系数均相同的管道连接,按长管考虑,则: B A.Q1>Q2; B.Q1=Q2; C.Q1<Q2; D.Q2=0。
3. 圆管层流,实测管轴线上流速为4m/s,则断面平 均流速为: C A. 4m/s B. 3.2m/s C. 2m/s D. 1m/s
二、计算题
1. ρ=0.85g/cm3、v=0.18cm2/s的油在管径为100mm的 管中以 v =6.35cm/s的速度作层流运动, 求(1)管中心处的最大流速; (2)在离管中心r=20mm处的流速; (3)沿程阻力系数λ ; (4)管壁切应力τ0及每1000km管长的水头损失。
hf H
L
h
解:管路输送功率为:
2 N Qh Q H 3
∴ 输送流量
3N 3 1000 1000 Q 1.2 m 3 s 2H 2 1000 9.81 127.4
沿程水头损失
H l v2 l 1 4Q hf 2 3 d 2g d 2 g d
等式右边 2 log(
3.7d
2.15 Re
) 7
可认为等式两边相等,解得λ=0.02。 气流的压强损失
l v p gh f 540Pa d 2
2
管路的水力计算
一、选择题
流体力学第三章课后习题答案
流体力学第三章课后习题答案流体力学第三章课后习题答案流体力学是研究流体运动和流体力学性质的学科。
在学习流体力学的过程中,课后习题是巩固知识和提高理解能力的重要环节。
本文将为大家提供流体力学第三章的课后习题答案,帮助读者更好地掌握流体力学的相关知识。
1. 一个液体的密度为1000 kg/m³,重力加速度为9.8 m/s²,求其比重。
解答:比重定义为物体的密度与水的密度之比。
水的密度为1000 kg/m³,所以比重为1。
因此,该液体的比重也为1。
2. 一个物体在液体中的浮力与物体的重力相等,求物体在液体中的浸没深度。
解答:根据阿基米德原理,物体在液体中的浮力等于物体所排除液体的重量。
浮力的大小等于液体的密度乘以物体的体积乘以重力加速度。
物体的重力等于物体的质量乘以重力加速度。
根据题目条件,浮力等于重力,所以液体的密度乘以物体的体积等于物体的质量。
浸没深度可以通过浸没体积与物体的底面积之比来计算。
3. 一个圆柱形容器中盛有液体,容器的高度为10 cm,直径为5 cm,液体的密度为800 kg/m³,求液体的压强。
解答:液体的压强等于液体的密度乘以重力加速度乘以液体的深度。
容器的高度为10 cm,所以液体的深度为10 cm。
重力加速度为9.8 m/s²,所以液体的压强为800 kg/m³乘以9.8 m/s²乘以0.1 m,即784 Pa。
4. 一个水龙头的出水口半径为2 cm,水流速度为10 m/s,求水龙头出水口附近的压强。
解答:根据质量守恒定律,水流速度越大,压强越小。
根据伯努利定律,水流速度越大,压强越小。
因此,水龙头出水口附近的压强较小。
5. 在一个垂直于水平面的圆柱形容器中,盛有密度为900 kg/m³的液体。
容器的半径为10 cm,液体的高度为20 cm。
求液体对容器底部的压力。
解答:液体对容器底部的压力等于液体的密度乘以重力加速度乘以液体的高度。
最新《流体力学》徐正坦主编课后答案第三章解析资料
第三章习题简答_ 2 23-1已知流体流动的速度分布为5 = X - y , U y =/xy ,求通过x-hy.的一条流线。
解:由流线微分方程d ^= dy 得U ydx =u xdy 则有U x U y32 2 2 2y-2xydx = (x -y )dy 两边积分可得 -yx= x yC即 y 3「6x 2y C = 0将x=1,y=1代入上式,可得 C=5,则 流线方程为y 3 -6x 2y • 5 =03-3 已知流体的速度分布为Ux = _c^y = Y°ty U yY xx o tx'(⑷ >o ,鈕 >o )试求流线方程,并画流线图。
解:由流线微分方程dx - dy 得U y dx =u x dy 则有U xU y2 2;o txdx - - ;o tydy 两边积分可得x y C流线方程为x 2 y 2 =C3-5 以平均速度v =1.5m/s 流入直径为D=2cm 的排孔管中的液体,全部经 8个直径 d=1mm 的排孔流出,假定每孔出流速度依次降低 2%,试求第一孔与第八孔的出流速度各为多少?题3-5图解:由题意得:V 2=V I (1-2%) , V 3=V I (1-2%)2,…,V 8=V I (1-2%)7 根据质量守恒定律可得Q 二 Q 1 Q 2 Q 3QfTFfTFfTFiTFfTF2■ 2■ 2■ 2■ 2v _D一d ■ v 2 一dv 3 一d 打 咲 V 8 _d44 44 4题3-6图解:取1-1和2-2断面,并以2-2断面为基准面 列1-1、2-2断面的伯努利方程2 2H 邑工"匹匕电 2gPg 2g3-8 利用毕托管原理测量输水管的流量如图示。
已知输水管直径d=200mm ,测得水银差压计读书h p =60mm ,若此时断面平均流速 v = 0.84U max ,这里U max 为毕托管前管轴上 未受扰动水流的流速。
工程流体力学第三章部分习题答案
概念题
伯努利方程的适用条件
伯努利方程适用于不可压缩、无粘性、无热传导的理想流体在重力场作稳定流动时,流体的动能、势能和内能相互转化的守 恒定律。
概念题
流体阻力的类型
流体阻力包括摩擦阻力和形状阻力。摩擦阻力是由于流体内 部摩擦而产生的阻力,形状阻力是由于流体流经物体时,因 流体速度变化而产生的阻力。
工程流体力学第三章部 分习题答案
contents
目录
• 习题一:基础概念理解 • 习题二:流体运动分析 • 习题三:流体压力和阻力 • 习题四:流体的无损检测技术
习题一:基础概念理
01
解
概念题
理解概念 题目:解释流线、迹线、流管、流束、流量等基本概念。
概念题
流线
表示某一瞬时流场中流体质点的 运动轨迹线,流线上各点的方向 与流速方向一致。
概念题
流体阻力的影响因素
流体阻力的影响因素包括流体的性质、 流速、物体的形状和大小、流道表面 的粗糙度等。
计算题
流体静压力的计算
根据流体静压力的定义,流体静压力的大小可以用流体深 度和当地的重力加速度计算得出。如果已知流体的密度和 重力加速度,也可以用流体质量和重力加速度计算得出。
计算题
伯努利方程的应用
计算题
题目
计算流体通过某一管道的流量。
答案
根据流量公式,流体通过某一管道的流量Q可以表示为Q = A × v,其中A为管 道截面积,v为流体在管道中的平均流速。如果已知管道截面积A和流速v,可以 直接计算出流量Q。
03
习题三:流体压力和
阻力
概念题
流体静压力的概念
流体静压力是指流体在静止状态下,由于重力作用在单位面积上的力,其大小与深度有关,深度越大 ,压力越大。
流体力学课后习题答案
第一章习题答案选择题(单选题)1.1 按连续介质的概念,流体质点是指:(d )(a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
1.2 作用于流体的质量力包括:(c )(a )压力;(b )摩擦阻力;(c )重力;(d )表面张力。
1.3 单位质量力的国际单位是:(d )(a )N ;(b )Pa ;(c )kg N /;(d )2/s m 。
1.4 与牛顿内摩擦定律直接有关的因素是:(b )(a )剪应力和压强;(b )剪应力和剪应变率;(c )剪应力和剪应变;(d )剪应力和流速。
1.5 水的动力黏度μ随温度的升高:(b )(a )增大;(b )减小;(c )不变;(d )不定。
1.6 流体运动黏度ν的国际单位是:(a )(a )2/s m ;(b )2/m N ;(c )m kg /;(d )2/m s N ⋅。
1.7 无黏性流体的特征是:(c )(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RT p=ρ。
1.8 当水的压强增加1个大气压时,水的密度增大约为:(a )(a )1/20000;(b )1/10000;(c )1/4000;(d )1/2000。
1.9 水的密度为10003kg/m ,2L 水的质量和重量是多少? 解: 10000.0022m V ρ==⨯=(kg )29.80719.614G mg ==⨯=(N )答:2L 水的质量是2 kg ,重量是19.614N 。
1.10 体积为0.53m 的油料,重量为4410N ,试求该油料的密度是多少? 解: 44109.807899.3580.5m G g V V ρ====(kg/m 3) 答:该油料的密度是899.358 kg/m 3。
1.11 某液体的动力黏度为0.005Pa s ⋅,其密度为8503/kg m ,试求其运动黏度。
流体力学课后作业答案
v1
2
2g
h2
v2
2
2g
1
v1 2.572m/s, v2 =4.287m/s
F P P Q( 2v2 1v1 ) 1 2
1 2
列动量方程
P ghC1 A1 1 1 2
2
gh1 B 13.23kN P2 ghC 2 A2
gh2 B 4.763kN
26
4-20 环形断面管道中水温10℃,流量Q=400L/min, 流 当量粗糙高度K=0.15mm,d=75mm,D=100mm。求 体 在管长l=300m管段上的沿程水头损失。 力 Q 4Q 查水温得 解: v 1.94m/s 学 2 2 A (D d ) 6 2 1.308 10 m /s 2 2
流 2-7 测压管中水银柱差Δh=100mm,在水深h=2.5m处安 体 装测压表M,求其读数,并图示测压管水头线的位置。 力 学
测压管水头线 p0 h’ h M
解: p p0 w gh
Hg g h w gh (13.6 0.1 1 2.5) 9.8 37.83kPa
P Px Pz 121.85kN
2 2
=arctg
Pz Px
78.4
P指向圆柱中心
50
作图题1. 画出图中AB 面上的静压强分布图 形。 pa
ρgh1 ρgh2 ρgh3 pa+ρgh2 ρgh ρgh1 ρg(h-h2) ρgh pa+ρgh1
流 体 力 学
ρg(h-h2)
ρg(h+R)
/ 25 10
3
0.006
2 lg
吴望一《流体力学》第三章习题参考答案
吴望一《流体力学》第三章习题参考答案1.解:CV CS d V s dt tτϕϕδτδτϕδ∂=+⋅∂⎰⎰⎰ 由于t 时刻该物质系统为流管,因而侧面上ϕ的通量=0,于是(1)定常流动0t ϕ∂=∂,222111dV d V d dt τϕδτϕσϕσ=-⎰,设流速正方向从1端指向2端。
(2)非定常流动222111CV d V d V d dt t τϕϕδτδτϕσϕσ∂=+-∂⎰⎰2.解:取一流体微团,设其运动方程为(,,,)(,,,)(,,,)x x a b c t y y a b c t z z a b c t =⎧⎪=⎨⎪=⎩,由质量守恒得,在0t =和t 时刻()(),,,0,,,a b c dadbdc a b c t dxdydz ρρ=利用积分变换可知()(),,,,x y z dxdydzJ dadbdc a b c ∂==∂(雅可比行列式),于是 ()(),,(,,,0)(,,,),,x y z a b c dadbdc a b c t dadbdc a b c ρρ∂=∂()()()(),,,,,0,,,,,x y z a b c a b c t a b c ρρ∂=∂3.(控制体内流体质量的增加率)=-(其表面上的质量通量)(2)球坐标系下选取空间体元(控制体)2sin r r δτθδδθδϕ=。
单位时间内该空间内流体质量的增量为2sin r r t tρρδτθδδθδϕ∂∂=∂∂ 该控制体表面上的质量通量:以r e 和-r e 为法向的两个面元上的质量通量为()2sin |sin |sin r r r r r r v r v r r v r r r rδρρδθθδϕρδθθδϕδδθδϕθ+∂-+=∂以e θ和-e θ为法向的两个面元上的质量通量为()sin sin |sin |v v rr v rr r r θθθθθδθρθρδθδϕρδθδϕδδθδϕθ+∂-+=∂以e ϕ和-e ϕ为法向的两个面元上的质量通量为()||v v r r v r r r r ϕϕϕϕϕδϕρρδθδρδθδδδθδϕϕ+∂-+=∂ 所以()()()22sin sin sin 0r v r v vr r r t rϕθρρρθρθθθϕ∂∂∂∂+++=∂∂∂∂即()()()22sin 110sin sin r v r v v t r r r rϕθρρρθρθθθϕ∂∂∂∂+++=∂∂∂∂ (3)柱坐标系下选取空间体元(控制体)r r z δτδθδδ= 单位时间内该空间内流体质量的增量为 ()r r z r r z t tρδδθδρδδθδ∂∂=∂∂该控制体表面上的质量通量为()()()r z rv v v r z r z r r z r zθρρρδδθδδδθδδδθδθ∂∂∂++∂∂∂ 所以()()()0r z rv v v r r t r zθρρρρθ∂∂∂∂+++=∂∂∂∂ 即()()()0r z v r v v t r r r zθρρρρθ∂∂∂∂+++=∂∂∂∂ (4)极坐标系下选取面元(控制体)s r r δδθδ=,可认为该面元对应以该面元为底面的单位高度的柱体。
(完整版)流体力学第三章课后习题答案
一元流体动力学基础1.直径为150mm 的给水管道,输水量为h kN /7.980,试求断面平均流速。
解:由流量公式vA Q ρ= 注意:()vA Q s kg h kN ρ=⇒→//A Qv ρ=得:s m v /57.1=2.断面为300mm ×400mm 的矩形风道,风量为2700m 3/h,求平均流速.如风道出口处断面收缩为150mm ×400mm,求该断面的平均流速 解:由流量公式vA Q = 得:A Q v =由连续性方程知2211A v A v = 得:s m v /5.122=3.水从水箱流经直径d 1=10cm,d 2=5cm,d 3=2.5cm 的管道流入大气中. 当出口流速10m/ 时,求(1)容积流量及质量流量;(2)1d 及2d 管段的流速解:(1)由s m A v Q /0049.0333==质量流量s kg Q /9.4=ρ (2)由连续性方程:33223311,A v A v A v A v ==得:s m v s m v /5.2,/625.021==4.设计输水量为h kg /294210的给水管道,流速限制在9.0∽s m /4.1之间。
试确定管道直径,根据所选直径求流速。
直径应是mm 50的倍数。
解:vA Q ρ= 将9.0=v ∽s m /4.1代入得343.0=d ∽m 275.0 ∵直径是mm 50的倍数,所以取m d 3.0= 代入vA Q ρ= 得m v 18.1=5.圆形风道,流量是10000m 3/h,,流速不超过20 m/s 。
试设计直径,根据所定直径求流速。
直径规定为50 mm 的倍数。
解:vA Q = 将s m v /20≤代入得:mm d 5.420≥ 取mm d 450= 代入vA Q = 得:s m v /5.17=6.在直径为d 圆形风道断面上,用下法选定五个点,以测局部风速。
设想用和管轴同心但不同半径的圆周,将全部断面分为中间是圆,其他是圆环的五个面积相等的部分。
流体力学答案(3,4)
第三、四章 习题及答案3-8已知流速场u x =xy 2, 313yuy=-, u z =xy, 试求:(1)点(1,2,3)的加速度;(2)是几维流动;(3)是恒定流还是非恒定流;(4)是均匀流还是非均匀流? 解:(1)411633x x x x x xyzu u u u a u u u xy txyz∂∂∂∂=+++==∂∂∂∂2533321331323331216 3 . 06m /sy y z x y a y u y a yu xu xy xy xy a =-===+=-====(2)二元流动 (3)恒定流 (4)非均匀流41xy33-11已知平面流动速度分布为xy 2222cx uu x ycy x y=-=++,, 其中c 为常数。
求流线方程并画出若干条流线。
解:2222-x d x =yd yxyd x d y d x d y c y c x u u xyxy=⇒-=⇒++积分得流线方程:x 2+y 2=c方向由流场中的u x 、u y 确定——逆时针3-17下列两个流动,哪个有旋?哪个无旋?哪个有角变形?哪个无角变形?(1)u x =-ay,u y =ax,u z =0 (2)z2222,,0,a c xycy cxu u u x y x y =-==++式中的、为常数。
z 2222,,0,a c x y cy cx u u u x yx y=-==++式中的、为常数。
解:(1)110 ()()22y xx y z u u a a ax y ωωω∂∂===-=+=∂∂有旋流动xy 11()()0 22y x xy zx u u a a x y εεε∂∂=+=-==∂∂ 无角变形(2)222222222222222222211()2()2()22()()12()2()0 0 2()y x z x y u u x y c cx x y c cy x y x y x y c x y c x y x y ωωω∂⎡⎤∂+-+-=-=+⎢⎥∂∂++⎣⎦⎡⎤+-+====⎢⎥+⎣⎦无旋流动2222xy22222112()()()022()()y x u u c x y c x y x y x y x y ε∂⎡⎤∂---=+==-≠⎢⎥∂∂++⎣⎦ 有角变形4—7变直径管段AB ,d A =0.2m,d B =0.4m ,高差△h=1.5m ,测得p A =30kPa ,p B =40kPa ,B 点处断面平均流速v B =1.5m/s ,试判断水在管中的流动方向。
流体力学第三章答案
流体⼒学第三章答案第三章流体动⼒学及其应⽤⼀、填空题1.研究流体运动的两种⽅法分别是(拉格朗⽇法)和(欧拉法)2.拉格朗⽇法以运动着的(质点)为研究对象3.欧拉法以充满流体的空间中各个固定的(空间点)为研究对象4.理想流体:既没有(粘性)⼜不可(压缩)的流体,将其称为理想流体5.运动流体空间任⼀点的运动参数都不随(时间)的改变⽽改变的运动流体叫稳定流;6.运动流体空间任⼀点的运动要素的全部或部份随时间的变化⽽变化的运动流体叫(不稳定流)7.在运动流体中,表⽰流体质点瞬时(⽅向)的曲线称为流线8.流体质点在某段时间内运动的轨迹称为(迹线)9.流线既不能(相交)也不能突然(转折)10.在运动流体中,(垂直)流线的横截⾯称为过流断⾯,⼀般⽤符号A 表⽰。
11.流量有两种表⽰⽅法分别是(体积流量)和(质量流量)12.⼀般情况下,以单位时间流过过流断⾯的(体积)计量的流量称为体积流量(或简称流量),⽤符号V 表⽰,单位m 3/s :。
13.以单位时间流过过流断⾯的(质量)计量的流量称为质量流量14.连续性⽅程的公式为(v 1A 1=v 2A 2)15.根据连续性⽅程,(流速)与(过流断⾯)⾯积成反⽐ 16.实际流体总流的伯努利⽅程为(212222211122-+++=++L h gv g p z g v g p z ρρ) 17.实际流体总流的伯努利⽅程式反映了实际流体在运动过程中(机械能)守恒和各种能量之间(相互转化)的定量关系。
18.在流体⼒学中,将液柱⾼度称为(⽔头)。
这样,流体过流断⾯上的三种能量z 、g p ρ和g v 22,分别称为(位置⽔头)、(压⼒⽔头)和(速度⽔头)。
19.液流⼀般具有三种能量:z 、g p ρ和g v 22,分别表⽰单位重⼒流体所具有的(位能)、(压能)和(动能) 20.运动流体总机械能的⼤⼩决定了流体的运动⽅向,流体总是从总能量(较⼤)的过流断⾯流向总能量(较⼩)的过流断⾯。
流体力学第二版课后习题答案
第一章习题答案选择题(单选题)1.1 按连续介质的概念,流体质点是指:(d )(a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
1.2 作用于流体的质量力包括:(c )(a )压力;(b )摩擦阻力;(c )重力;(d )表面张力。
1.3 单位质量力的国际单位是:(d )(a )N ;(b )Pa ;(c )kg N /;(d )2/s m 。
1.4 与牛顿内摩擦定律直接有关的因素是:(b )(a )剪应力和压强;(b )剪应力和剪应变率;(c )剪应力和剪应变;(d )剪应力和流速。
1.5 水的动力黏度μ随温度的升高:(b )(a )增大;(b )减小;(c )不变;(d )不定。
1.6 流体运动黏度ν的国际单位是:(a )(a )2/s m ;(b )2/m N ;(c )m kg /;(d )2/m s N ⋅。
1.7 无黏性流体的特征是:(c )(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RT p=ρ。
1.8 当水的压强增加1个大气压时,水的密度增大约为:(a )(a )1/20000;(b )1/10000;(c )1/4000;(d )1/2000。
1.9 水的密度为10003kg/m ,2L 水的质量和重量是多少? 解:10000.0022m V ρ==⨯=(kg )29.80719.614G mg ==⨯=(N )答:2L 水的质量是2kg ,重量是19.614N 。
1.10 体积为0.53m 的油料,重量为4410N ,试求该油料的密度是多少? 解:44109.807899.3580.5m G g V V ρ====(kg/m 3) 答:该油料的密度是899.358kg/m 3。
1.11 某液体的动力黏度为0.005Pa s ⋅,其密度为8503/kg m ,试求其运动黏度。
李玉柱流体力学课后题答案第三章
李玉柱流体力学课后题答案第三章第三章流体运动学3-1 已知某流体质点做匀速直线运动,开始时刻位于点A(3,2,1),经过10秒钟后运动到点B(4,4,4)。
试求该流体质点的轨迹方程。
tt3t解:3-2 已知流体质点的轨迹方程为试求点A(10,11,3)处的加速度α值。
解:由10,解得15.2把代入上式得-3 已知不可压缩流体平面流动的流速场为,其中,流速、位置坐标和时间单位分别为m/s、m和s。
求当t,l s时点A(1,2)处液体质点的加速度。
解:根据加速度的定义可知:当t,l s时点A(1,2) 处液体质点的加速度为:于是,加速度a加速度a与水平方向(即x方向)的夹角: 的大小:-4 已知不可压缩流体平面流动的流速分量为。
求(1) t,0时,过(0,0)点的迹线方程;(2) t,1时,过(0,0)点的流线方程。
解:(1) 将带入迹线微分方程dt得 uvt2解这个微分方程得迹线的参数方程:将时刻,点(0,0)代入可得积分常数:。
将代入得:t3所以:,将时刻,点(0,0)代入可得积分常数:。
6 联立方程,消去得迹线方程为:(2) 将带入流线微分方程dxdy得y2t被看成常数,则积分上式得,c=0 2y2时过(0,0)点的流线为3-5 试证明下列不可压缩均质流体运动中,哪些满足连续性方程,哪些不满足连续性方程(连续性方程的极坐标形式可参考题3—7)。
解:对于不可压缩均质流体,不可压缩流体的连续方程为。
直角坐标系中不可压缩流体的连续性方程为:。
,因,满足,因,满足,因,满足,满足,因,满足,因,满足,因在圆柱坐标系中不可压缩流体的连续性方程为:。
,满足,因,满足,因,不满足,因,仅在y=0处满足,因其中,k、α和C均为常数,式(7)和(8)中3-6 已知圆管过流断面上的流速分布为,umax为管轴处最大流速,r0为圆管半径,r为某点到管轴的距离。
试求断面平均流速V与umax之间的关系。
2解:断面平均速度Ar0Ar02r04r3r024r0umax3-7 利用图中所示微元体证明不可压缩流体平面流动的连续性微分方程的极坐标形式为解:取扇形微元六面体,体积,中心点M密度为,速度为,r向的净出质量dmr 为类似有若流出质量,控制体内的质量减少量dmV可表示为。
《流体力学》徐正坦主编课后答案第三章
第三章习题简答3-1 已知流体流动的速度分布为22y x u x -= ,xy u y 2-=,求通过1,1==y x 的一条流线。
解:由流线微分方程yx u dyu dx =得dy u dx u x y =则有 dy y x xydx )(222-=-两边积分可得C y y x yx +-=-3322即0623=+-C y x y将x=1,y=1代入上式,可得C=5,则 流线方程为05623=+-y x y3-3 已知流体的速度分布为⎭⎬⎫==-=-=tx x u ty y u y x 00εωεω(ω>0,0ε>0)试求流线方程,并画流线图。
解:由流线微分方程yx u dyu dx =得dy u dx u x y =则有 tydy txdx 00εε-=两边积分可得C y x +-=22流线方程为C y x =+223-5 以平均速度s m v /5.1=流入直径为D=2cm 的排孔管中的液体,全部经8个直径d=1mm 的排孔流出,假定每孔出流速度依次降低2%,试求第一孔与第八孔的出流速度各为多少?题3-5图解:由题意得:v 2=v 1(1-2%),v 3=v 1(1-2%)2,…,v 8=v 1(1-2%)7 根据质量守恒定律可得282322212832144444dv d v d v d v D v Q Q Q Q Q πππππ⋅+⋅⋅⋅+⋅+⋅+⋅=⋅+⋅⋅⋅+++=sm d vD v v d v v v v d D v /4.80)98.01(001.002.002.05.1)98.01()98.01(98.01)98.01(4)(448228221812832122=-⨯⨯⨯=--⋅=∴--⋅=+⋅⋅⋅+++⋅=⋅πππ则 v 8=v 1(1-2%)7=80.4×(1-2%)7=69.8m/s3-6 油从铅直圆管向下流出。
管直径cm d 101=,管口处的速度为s m v /4.11=,试求管口处下方H=1.5m 处的速度和油柱直径。
流体力学作业3答案
流体力学作业3答案作业3 答案 (第5章、第6章)第5章一、选择题1. 管道中液体的雷诺数与( D )无关。
A. 温度B. 管径C. 流速D. 管长2. 某圆管直径d=30mm ,其中液体平均流速为20cm/s 。
液体粘滞系数为0.0114cm 3/s ,则此管中液体流态为( B )。
A. 层流B. 层流向紊流过渡C.紊流3.等直径圆管中紊流的过流断面流速分布是( D )A 呈抛物线分布 B. 呈对数线分布C.呈椭圆曲线分布D. 呈双曲线分布4.等直径圆管中的层流,其过流断面平均流速是圆管中最大流速的( C )A 1.0倍 B.1/3倍 C. 1/4倍 D. 1/2倍5.圆管中的层流的沿程损失与管中平均流速的( B )成正比.A. 一次方B. 二次方C. 三次方D. 四次方6.圆管的水力半径是 ( A )A. d/2B. d/3C. d/4D. d/5.7、谢才公式中谢才系数的单位是( C )A. 无量纲B.s m 21C. s m 23D. m 28. 判断层流和紊流的临界雷诺数是( C )A.上临界雷诺数B.下临界雷诺数C.上下临界雷诺数代数平均D.上下临界雷诺数几何平均二、判断题1. 层流的沿程水头损失系数仅与雷诺数有关。
( 正确 )2. 壁面光滑的管道一定是水力光滑管。
( 错误 )3. 在过流断面突变处一般发生局部水头损失。
( 正确 )4. 等直径圆管中的层流,其过流断面平均流速是圆管中最大流速的1/2倍(正确) 5.流体内切应力方向与流体运动方向相同。
(错误)6.阻力平方区内阻力系数与雷诺数无关。
(正确)三、简答题1. 圆管中层流与紊流,其流速分布有什么不同?答: 层流为抛物线分布,紊流为对数曲线分布.(也可以画图)2. 简述尼古拉兹实验中沿程阻力系数λ的变化规律。
答: 尼古拉兹实验揭示了沿程阻力系数λ的变化规律,文字表述或数学公式表述.层流:(Re)f =λ;水力光滑区: (Re)f =λ;过渡粗糙区: )(Re,d K f =λ 粗糙区(阻力平方区) : )(dK f =λ . 3.写出管流和明渠水流雷诺数的表达式,并说明其层流、紊流的判别标准?答: 管流:νvd=Re 2000Re <(层流) 2000Re > (紊流)明渠水流: νvR=Re 500Re <(层流) 500Re > (紊流)4.雷诺数Re 的物理意义?它为什么能用来判别流态?答: 雷诺数实质是反映粘性力与惯性力之比。
流体力学标准化作业答案第三章
流体力学标准化作业(三)——流体动力学本次作业知识点总结1.描述流体运动的两种方法 (1)拉格朗日法;(2)欧拉法。
2.流体流动的加速度、质点导数流场的速度分布与空间坐标(,,)x y z 和时间t 有关,即(,,,)u u x y z t =流体质点的加速度等于速度对时间的变化率,即Du u u dx u dy u dza Dt t x dt y dt z dt ∂∂∂∂==+++∂∂∂∂投影式为x x x x x x y z y y y y y x y zz z z z z x y zu u u u a u u u t x y z u u u u a u u u t x y z u u u u a u u u t x y z ∂∂∂∂⎧=+++⎪∂∂∂∂⎪∂∂∂∂⎪=+++⎨∂∂∂∂⎪⎪∂∂∂∂=+++⎪∂∂∂∂⎩或 ()du u a u u dt t ∂==+⋅∇∂ 在欧拉法中质点的加速度du dt 由两部分组成, ut∂∂为固定空间点,由时间变化引起的加速度,称为当地加速度或时变加速度,由流场的不恒定性引起。
()u u⋅∇为同一时刻,由流场的空间位置变化引起的加速度,称为迁移加速度或位变加速度,由流场的不均匀性引起。
欧拉法描述流体运动,质点的物理量不论矢量还是标量,对时间的变化率称为该物理量的质点导数或随体导数。
例如不可压缩流体,密度的随体导数D D u t tρρρ∂=+⋅∇∂() 3.流体流动的分类(1)恒定流和非恒定流 (2)一维、二维和三维流动 (3)均匀流和非均匀流 4.流体流动的基本概念 (1)流线和迹线流线微分方程x y zdx dy dz u u u ==迹线微分方程x y zdx dy dz dt u u u === (2)流管、流束与总流(3)过流断面、流量及断面平均流速体积流量 3(/)A Q udAm s =⎰ 质量流量 (/)mAQ udAkg s ρ=⎰断面平均流速 AudA Qv AA==⎰(4)渐变流与急变流 5. 连续性方程(1)不可压缩流体连续性微分方程0y x zu u u x y z∂∂∂++=∂∂∂ (2)元流的连续性方程121122dQ dQ u dA u dA =⎧⎨=⎩ (3)总流的连续性方程1122u dA u dA =6. 运动微分方程(1)理想流体的运动微分方程(欧拉运动微分方程)111xx x x x y z yy y y x y z zz z z x y z u u u u p X u u u x t x y zu u u u p Y u u u x t x y z u u u u p Z u u u x t x y z ρρρ∂∂∂∂∂⎫-=+++⎪∂∂∂∂∂⎪∂∂∂∂⎪∂-=+++⎬∂∂∂∂∂⎪⎪∂∂∂∂∂-=+++⎪∂∂∂∂∂⎭矢量表示式1()uf p u u tρ∂+∇=+⋅∇∂ (2)粘性流体运动微分方程(N-S 方程)222111x x x x x x y z y y y y y x y z z z z z z x y z u u u u pX u u u u x t x y zu u u u pY u u u u x t x y z u u u u p Z u u u u x t x y z νρνρνρ∂∂∂∂∂⎫-+∇=+++⎪∂∂∂∂∂⎪∂∂∂∂⎪∂-+∇=+++⎬∂∂∂∂∂⎪⎪∂∂∂∂∂-+∇=+++⎪∂∂∂∂∂⎭矢量表示式 21()uf p u u u tνρ∂+∇+∇=+⋅∇∂ 7.理想流体的伯努利方 (1)理想流体元流的伯努利方程22p u z C g gρ++=(2)理想流体总流的伯努利方程221112221222p v p v z z g g g gααρρ++=++8.实际流体的伯努利方程 (1)实际流体元流的伯努利方程2211221222w p u p u z z h g g g gρρ++=+++(2)实际流体总流的伯努利方程2211122212w 22p v p v z z h g g g gααρρ++=+++10.恒定总流的动量方程()2211F Q vv ρββ=-∑投影分量形式()()()221122112211xx x y y y z z z F Q v v F Q v v F Q v v ρββρββρββ⎫=-⎪⎪=-⎬⎪=-⎪⎭∑∑∑标准化作业(5)——流体运动学选择题1. 用欧拉法表示流体质点的加速度a 等于( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业答案:
3.1 什么是流线?流线有什么特性?
答:流线:流场中的瞬时光滑曲线,曲线上各点的切线方向与该点的瞬时速度方向一致。
流线特性:1)定常流动中流线不随时间变化,而且流体质点的轨迹与流线重合。
2)实际流场中除驻点或奇点外,流线不能相交,不能突然转折。
3.2 理想流体微小流束伯努利方程各项的意义是什么?导出条件是什么?基准面为什么要取水平面?
答:(1)方程形式:2
2p
v g g z c ρ++=
物理意义:z ----单位(重力流体具有的)位能;
p
g
ρ----单位压能; 2
2v g ----单位动能。
几何意义:z ----位置水头;
p
g
ρ----压强水头; 2
2v g ----流速水头。
(2)导出条件:1)质量力只有重力; 2)定常流; 3)沿流线; 4)不可压缩流体
(或C ρ=)。
(3)因为基准面是在重力场中衡量位置势能大小的,因此要以水平面为基准。
3.3 总流伯努利方程是什么形式?导出条件及应用条件是什么?
答:形式: 221112221222w p V p V Z Z h g g g g
ααρρ++=+++ 导出条件及应用条件:
1)质量力只有重力;
2)定常流动;
3)断面必须是均匀流断面或缓变流断面;
4)不可压缩流体。
3.5 题略
答:当阀门A 开度一定,各管段是稳定流;
阀门A 逐渐关闭的过程中,各点运动参数随时间发生变化,管中流动为非稳定流动。
3.8题略
解:坐标取在叶片上,则流动为定常流
取水平向右为X 轴正向,以射流及叶片围成的流体为研究对象,列X 方向动量方程:
21()X Vr X X F q V V ρ=-∑ (1)
式中,在所建坐标系下的初速度,也即射流的相对速度:1x V V u =-,
相对流量: Vr V V u q q V
-= 由伯努利方程,可知射流从叶片流出的相对速度大小21x V V V u ==-
则22cos ()cos x V V V u αα=-⨯=--
流体所受外力X x F R =-∑
把各项代入式(1),有
[(V u)cos ()]x V V u R q V u V
ρα--=---- 即 2
()[(V u)cos ()](1cos )x V V V u V u R q V u q V V
ραρα--=-+-=+ 所以,叶片所受力 2
()(1cos )x V V u F R q V
ρα-==+,方向向右 可知,在有射流冲击力的情况下,当u 增大时,F 减小。
3.37题略
解:列自由液面1与水泵吸水管接头断面2的伯努利方程,不计损失,故有:
2211221222p V p V z z g g g g
ρρ++=++ 以自由液面1为基准,代入相关条件,上式可简化为:
22202s p V H g g
ρ=++ (1) 式中, 2a 39997p p =-;
224
V q V d π=, 其中33160m /m /s,150mm=0.15m 60
V q h d === 可得: 20.94m/s V =
代入式(1),求得 4.03m s H =
3.38题略
解:列空气初始状态1与接有测压装置处的过流断面2的伯努利方程,不计损失,
2211221222p V p V z z g g g g
ρρ++=++ (1)
忽略12z z 及,初始状态 110,0p V ==;
过流断面2处的压强 2g 10009.810.252452.5Pa p H ρ=-=-⨯⨯=-水
空气密度 3
1.29kg/m ρ=
把相关数据代入式(1),求得 261.66m/s V =
因此,风机每分钟吸取的空气量
2
2
32 3.140.261.66 1.936m /s 44
V d q V π⨯=⨯=⨯=
3.45(第一版3.46)题略
解:这是一个有相对运动的问题,应将坐标系选在运动体上。
选取射流与平板间的流体为研究对象,建立如图所示坐标X (取在平板上)
则射流相对速度:0r V V V =+
相对流量: 00
Vr V V V q q V += 设平板对对液流的作用力为x R ,列X 方向的动量方程:
21()X Vr X X F q V V ρ=-∑
X 方向初速度 10sin (V)sin x r V V V θθ=⨯=+,末速度 20x V =,
X X F R =-∑ 因此,可得()000
0()sin X V V V R q V V V ρθ+-=-+
可求得2
00()sin X V V V R q V ρθ+= 射流冲击力与x R 是作用力与反作用力关系,所以射流对小车冲击力
2
00
()sin V V V F q V ρθ+=冲 F 冲的水平分力与F 平衡,即 2
200
()sin sin V V V F F q V θρθ+=⨯=冲 所以使平板运动所需的功率 2
200()sin V V V V P F V q V ρθ+=⨯=。