数集 确界原理(经典课件).

合集下载

1.1实数,1.2数集.确界原理

1.1实数,1.2数集.确界原理

例1 证明数集 S {2n | n N } 无上界, 有下界. 证 取 L = 1, 则 x 2n S, x L, 故 S 有下界.
M R, 若 M 1, 取 x0 21 M;若 M 1,
取 x0 2[M ]1 [M ] 1 M , 因此 S 无上界.
数学分析研究的对象是实 数集上 定义的函数, 因此我们首先要掌握实 数的基本概念与性质.
记号与术语
R : 实数集 R+ : 正实数集 R :负实数集 Q : 有理数集 Z : 整数集
N :自然数集(包含0)
N+ : 正整数集 : 任意 : 存在
一、实数的十进制小数表示
1. 任何一个实数都可以用十进制小数表示. 若 x R+ , 则 x a0 .a1a2 an ; x R , 则 x a0 .a1a2 an . 其中 a0 N, an {0, 1, 2, , 9}, n 1, 2,.
满足 x r y.
证明 因为 x y,由命题存在非负整数 n 使得,
xn yn,显然 xn,yn 均为有理数,令
r

1
2
xn

yn ,
则 r 是有理数,且
x

xn

1 2

xn

yn
r

yn

y.
即 x y.
四、实数的四则运算
有理数集 Q 对加、减、乘、除(除数不为 0)是 封闭的. 实数集 R 对加、减、乘、除(除数不为 0)亦是 封闭的. 实数的四则运算与大小关系, 还满足:
(1) 若 S 不是有上界的数集, 则称 S 无上界, 即 M R, x0 S,使得 x0 M . (2) 若 S 不是有下界的数集, 则称 S 无下界, 即 L R, x0 S,使得 x0 L. (3) 若 S 不是有界的数集, 则称 S 无界集, 即 M 0, x0 S, 使得 | x0 | M .

数集·确界原理

数集·确界原理

设 2)不成立,则 0 0, 使得 x E ,均有 x M 0 ,与 M 是上确界矛盾.
充分性, 用反证法.设 M 不是 E 的上确界,即 M 是上界,但 M M .令 M M 0 ,
x E , 由 2) , 使得 x M M , 与M 是E
例4 设 A, B为非空数集,满足: x A, y B有x y.
证: 由假设,数集B中任一数 y 都是数集A的上界,
A中任一数 x 都是B的下界, 故有确界原理知,数集A有上确界,数集B有下确界.
y B, y是数集A的一个上界,而由上确界的定义知
试证明:
x inf A


x inf B. x min inf A , inf B .
min inf A , inf B 是数集 S 的下界,
inf S min inf A , inf B .
3.数集与确界的关系: 确界不一定属于原集合. 以例1⑵为例做解释.
(a, b) (a, b 为有限数) a, b 、 、 邻域等都是有界数集; 集合 E y y sin x, x ( , )也是有界数集.
( , ) , ( , 0 ) , ( 0 , ) 等都是无界数集,
1 例1 证明集合 E y y , x ( 0 , 1 ) x 是无界数集. 1 (0, 1) , 证明: 对任意的M 0,x M 1 1
supA 是数集A的最小上界, 故有 supA y.
而此式又表明数
supA 是数集B的一个下界,
故由下确界的定义证得
sup A inf B.
例5
A 和 B 为非空数集, S A B.

1-02-数集与确界原理

1-02-数集与确界原理
o a
( −∞ , b ) = { x x < b}
无限区间
x o
b
x
区间长度的定义: 区间长度的定义: 两端点间的距离(线段的长度 称为区间的长度 两端点间的距离 线段的长度)称为区间的长度 线段的长度 称为区间的长度.
3.邻域: 设a与δ是两个实数 , 且δ > 0. .邻域:
数集{ x x − a < δ }称为点a的δ邻域 ,
中的一个数集, 满足: 定义 2 设 S 是 R 中的一个数集,若数ξ 满足: 的下界) (1)对一切 x ∈ S , 有 x ≥ ξ (即ξ 是 S 的下界) ) ; 存在 (2) ) 对任何β>ξ ,存在 x0 ∈ S , 使得 x0 < β (即ξ 是 S 的下界中最大的一个)则称数 ξ 为数集 S 的下 的下界中最大的一个) , 确界, 确界,记作 ξ = inf S .
∴sup S ≤ max{sup A,sup B} ; 同理又有sup B ≤ sup S. ∴sup S ≥ max{sup A,sup B} ; ∴sup S = max{sup A,sup B} . 从而有x ≤ max{sup A,sup B} , 又: ∀x ∈ A, x ∈ S ⇒ x ≤ sup S ⇒sup A ≤ sup S,
数集S有上界 数集 有上界 ⇔ ∃M ∈ R, ∀x ∈ S有x ≤ M. 数集S无上界 数集 无上界 ⇔ ∀M ∈ R, ∃x0 ∈ S有x0 > M. 数集S有下界 数集 有下界 数集S无下界 数集 无下界
[ a , b ] , ( a , b ),(a , b 为有限数)是有界数集 为有限数)是有界数集;
+
Β为非空数集 满足: 为非空数集, 例4 设 Α, Β为非空数集,满足: ∀x ∈ A, ∀y ∈ B有 ≤ y x 证明: 有上确界, 有下确界,且 证明:数集 A有上确界 数集 有下确界 且sup A ≤ inf B 有上确界 数集B有下确界 由假设,数集 数集B中任一数 都是数集A的上界 的上界, 证: 由假设 数集 中任一数 y 都是数集 的上界 A中任一数 x 都是 的下界 中任一数 都是B的下界 的下界, 故由确界原理知,数集A有上确界 数集 有下确界 有上确界,数集 有下确界. 故由确界原理知 数集 有上确界 数集B有下确界 确界原理 是数集A的一个上界 的一个上界,而由上确界的定义知 ∀y∈B, y是数集 的一个上界 而由上确界的定义知 是数集A的最小上界, supA 是数集 的最小上界, 故有 supA ≤ y 是数集Β的一个下界, 而此式又表明数 supA 是数集Β的一个下界, 故由下确界的定义证得

数集,确界原理

数集,确界原理
o
a
x
(, b) { x x b}
o
b
x
(, ) { x x < }
x
2、邻域
定义1 设a与 是两个实数 , 且 0. 数集
{ x x a }称为点a 的δ邻域 , 点 a 叫做这邻
域中心, 叫做这邻域的半径 . 记作
U (a, ) { x a x a }.
存在某个正整数n0 N+ , 使得n0 M .
事实上,对任何正数M,取 n0 M 1,
则n0 N , 且n0 M , 这就证明了N 无上界.
1 例 2 证明集合E y / y , x (0, 1) 是无界集. x
证明
对任何M 0,
0

a

a
a
x

a 的 左邻域 和 点 a 的空心 左邻域
U (a, ) { x a x a } (a , a]
U (a, ) { x a x a } (a , a)
0
邻域
U ( ) x | x | M , U ( ) x x M , U ( ) x x M
即 又是S 的最大下界, 则 称 数 为数集 S 的
下确界, 记为 inf S .

x0

S
(ii) 对任意 0, 存在x0 S , 使得x0 即 是 S 的最大下界.
的确界. 例3 讨论数集 S {x | x为(0, 1)中的有理数}
supS = 1
上确界, 记为 sup S . S

1_2数集确界原理

1_2数集确界原理

例5 设A、B 为非空有界数集,S A B. 证明: (i) sup S = max{sup A, sup B}; (ii) inf S = min{inf A, inf B}; 证: (ii)由题设易知数集A , B及S的确界都存在。
inf A x or inf B x 从而有 min inf A, inf B x, 即 min inf A, inf B 是 S的
上页 下页 返回 结束
EX2 设A、B 为非空有界数集,T A B. 证明: sup T ≤ min{sup A, sup B}; 证: 由题设易知数集A , B及T的确界都存在。不妨设
min sup A, sup B sup A
由上确界定义知 0, x0 T , s.t. x0 sup T .
y B, y是A的一个上界,从而sup A存在; x A, x是B的一个下界,从而inf B存在。
再证sup A ≤ inf B.
y B, y是A的一个上界,∴sup A≤y 。
由此可知sup A 是 B的一个下界,从而由下确界定义又有
sup A inf B
上页 下页 返回 结束
上页 下页 返| 0 x a a, a 点a的δ左邻域: U (a; ) x | x a 0 a , a
∞邻域:
U () x | x | M , M为充分大的正数
x b 称为半开区间, 记作 [a , b)
称为半开区间, 记作 (a , b]
上页 下页 返回
有 限 区 间
结束
[a ,) { x a x }
o
a
x
( , b) { x x b}

数集确界原理

数集确界原理

作业 :
P9: 1, 2, 3, 4, 5.
§2 数集.确界原理
1.区间和邻域 有限区间 数集{x|a<x<b}称为开区间, 记为(a, b), 即 (a, b){x|a<x<b}. [a, b]{x|axb}——闭区间.
[a, b){x|ax<b}——半开区间, (a, b]{x|a<xb}——半开区间. 上述区间都是有限区间, 其中 a和b称为区间的端点, b-a 称为区 间的长度.
S
确界原理 设S为非空数集,若S有上界,则S必有上确界;若S有下界, 则S必有下确界. 例3 设 A, B为非空数集,满足: x A, y B有x y. 证明数集 A有上确界, 数集B有下确界,且
sup A inf B.
证: 由假设,数集B中任一数 y 都是数集A的上界, A中任一数 x 都是B的下界, 故有确界原理知,数集A有上确界,数集B有下确界.
证明 用反证法.假若结论不成立 ,则根据实数的有序性
有a > b.令e a - b, 则e为正数且 a b e , 这与假设 a < b e矛盾.从而必有 a b.
3.小结 (1), 两个实数的大小关系; (2), 实数的性质; (3), 区间和邻域的概念; (4), 确界原理.
直积(笛卡儿乘积) 设A、B是任意两个集合, 则有序对集合 AB{(x, y)|xA且yB} 称为集合A与集合B的直积. 例如, RR{(x, y)| xR且yR }即为xOy面上全体点 的集合, RR常记作R2.
3.实数集 两个实数的大小关系 • 定义1
给定两个非负实数 x a0 .a1a2 L an L, y b0 .b1b2 Lbn L, 其中a0 , b0为非负整数, ak , bk (k 1,2,L)为整数, 0 ak 9,0 bk 9. 若有ak bk , k 1,2,L, 则称x与y相等,记为x y; 若a0 > b0或存在非负整数l , 使得ak bk (k 1,2Ll )而al 1 > bl 1 则称x大于y或y小于x,分别记为x > y或y < x.

§2.数集.确界原理.

§2.数集.确界原理.
5
§2.数集.确界原理 一. 区间与邻域 2.邻域(neighborhood)
(5) 邻域,邻域与 邻域 : 设M是一个充分大的正数 ,则
邻域:U: x R x M ,M M ,;
邻域:U: xR x M ,M ; 邻域:U : xR x M M,.
6
§2.数集.确界原理 一. 区间与邻域
例2(P6) 设S x x为区间(0,1)中的有理数,试按上,下
[思考题](PP6 7) 证明:
(1) 设S [0,1], 则supS 1, inf S 0;
(2)
设E
1n
n
n 1,2,,
则sup E
1, 2
inf
E
1;
(3) 对于正整数集N 1,2,, 则inf N 1, 而没有上确界.
a
a
a
x
4
§2.数集.确界原理 一. 区间与邻域 2.邻域(neighborhood)
设a R, 0. (3) a的右邻域与a的空心右邻域 :
Ua; : xR a x a a,a ; U0a; : xR a x a a,a .
(4) a的左邻域与a的空心左邻域 :
Ua; : xR a x a a ,a; U0a; : xR a x a a ,a.
设a R, 0.
(1) a的邻域 : 集合 x R x a 称为以a为中心为半径的邻域 ,
简称为a的邻域,记为U a; ,即
Ua; : x R x a a , a ;
(2)a的空心邻域 : 点a的邻域去掉中心" a"后所得到的集合, 记为
U 0a; ,即
U 0a; : x R 0 x a a , a a, a .
(i)x S, x ,即是S的一个下界;

第二节--数集--确界原理ppt课件

第二节--数集--确界原理ppt课件
若S为既有上界、又有下界的数集,则称S 为有界集。
若S没有上界或没有下界,则称S为无界集。
7
若 S有 上 ( 下 ) 界 , 则 一 定 有 无 限 多 个 上 ( 下 ) 界 。
若对于任意的数M,都存在一个
∈S,使得 >M, 则称S是一个无上
界的数集。
请同学写出“S是无下界的数集”的定义。
8
有下界(可取1),无上界。 下界可取1/2,上界可取1。
28
作业 p9. 2,
4 (1) (3).
29
18
证: 仅证上确界的结论。 不妨设S有非负数。由于S有上界,故可找
到非负整数n,使得: (1)对于任何x ∈S,有x<n+1;
对[n,n+1)作10等分,分点为n.1,n.2,…,n.9, 则存在0 ,1 ,2, … , 9中的一个数 ,使
19
则存在0 ,1 ,2, … , 9中的一个数 ,使
3
邻域:
4
右邻域: 左邻域:
5
二、有界集、确界原理 定义1 设S是实数集R中的一个数集,若存在
数M,使得对一切的x ∈S, 都有
则称S为有上界的数集,称M为S的一个上
界。
6
定义2 设S是实数集R中的一个数集,若
存在数L,使得对一切的x ∈S, 都有
x L,则称S为有下界的数集,称L为S的一个 下界。
继续下去,则对任意的k=1,2,3,…,存在 0,1,2,3,…,9中的一个数 ,使
20
现在证明 = supS. 为此要证:
21
从而于是(ⅠBiblioteka 得证 。矛盾!22
于是(Ⅱ)得证。
从而
23
例4:求A={x|x>0, <2, x 是有理数}的上下 确界,并证明上确界不属于有理数集.

华师大版数学分析第一章实数集与函数1.2数集与确界原理ppt

华师大版数学分析第一章实数集与函数1.2数集与确界原理ppt

1、设S为R中的一个数集。 若存在数M(L),使得对一切x∈S,都有x≤M(x≥L), 则称S为有上界(下界)的数集, 数M(L)称为S的一个上界(下界)。 若数集S既有上界又有下界,则称S为有界集。 若S不是有界集,则称S为无界集。
证明数集N+={n|n为正整数}有下界而无上界。 证:任何一个不大于1的实数都是的N+下界, ∴N+为有下界的数集; ∀M>0,取n0=[M]+1,则n0∈N+, 且n0> M,∴N+为无上界的数集。
又对任何x∈A,有x∈S=>x≥inf S=>inf A≥inf S; 同理inf B≥inf S,故得inf S≥min{inf A, inf B} ∴inf S=min{inf A, inf B}
若数集S无上界,则 定义+∞为S的非正常上确界,记作sup S=+∞; 若数集S无下界,则 定义-∞为S的非正常下确界,记作inf S= -∞.
又对任何x∈A,有x∈S=>x≤sup S=>sup A≤sup S; 同理sup B≤sup S,故得sup S≥max{sup A, sup B} ∴sup S=max{sup A, sup B}
设A、B为非空数集,S=AUB. 证明: 1) sup S=max{sup A, sup B}; 2) inf S=min{inf A, inf B}. 证:依题意,S为非空有界,sup S,inf S都存在. 2)对任何x∈S,有x∈A或x∈B=>x≥inf A或x≥inf B, 从而有x≥min{inf A, inf B}, 故得inf S≤min{inf A, inf B}
1、用区间表示下列不等式的解: (1)|1-x|-x≥0;(2)|x+ |≤6; (3)sinx≥ ; (4)(x-a)(x-b)(x-c)>0 (a,b,c为常数,且a<b<c); 解:(1) 1-x≥x或1-x≤- x;即x≤ ; ∴原不等式的解为:x∈(-∞, ]. (2) -6≤x+ ≤6,且x≠0; 当x>0时,-6x≤x2+1≤6x;解得3-2 ≤x≤3+2 ; 当x>0时,-6x≤x2+1≤6x;解得3-2 ≤x≤3+2 ; ∴x∈[3-2 , 3+2 ]∪[-3-2 , -3+2 ]

高等数学第1章第2节数集确界原理.

高等数学第1章第2节数集确界原理.

1、能源计量网络图或统计分析表2、能源计量器具一览表(台帐)[包括进出用能单位、主要次级用能单位]3、用能单位能源计量组织机构图4、主要次级用能单位核定表5、主要用能设备核定表6、输入输出用能单位一览表7、能源计量器具配备率计算表三、企业提供软件资料8、能源计量管理制度[至少包含以下制度]●能源计量器具采购、验收、使用、维护保养制度●能源计量人员岗位职责●能源计量器具溯源和周期检定制度●能源计量数据采集制度●能源计量数据统计制度三、企业提供软件资料9、能源计量器具档案[仪器说明书、连续2个周期检定证书/校准报告、使用和维修记录、报废记录]10、量值传递/溯源图11、能源计量管理人员上岗证书12、能源计量器具周期检定计划表13、能源统计报表14、能源计量数据原始采集记录四、工作程序1、确定输入输出用能单位的能源种类2、核定主要次级用能单位3、核定主要用能设备4、画出能源计量网络图5、编制和整理软件资料6、配备能源计量器具7、能源计量器具周期检定表1 主要次级用能单位能源消耗量(或功率)限定值能源电力煤炭焦炭原油成品油重油、渣油煤气、蒸汽热水水其它种类石油液化气天然气单位kW t/a t/a t/a m3/a GJ/a t/a GJ /a限定值10 100 40 80 100005 000 5 000 2 926注1: 表中a是法定计量单位中“年”的符号。

注2: 表中m3指在标准状态下,表2同。

注3: 2 926 GJ相当于100 t标准煤。

其它能源应按等价热值折算,表2类推。

表2 主要用能设备能源消耗量(或功率)限定值能源电力煤炭、焦炭原油、成品油、重油、渣油煤气、蒸汽、热水水其它种类石油液化气天然气单位kW t/h t/h t/h m3/h MW t/h GJ/h限定值100 1 0.5 1 100 7 1 29.26注1: 对于可单独进行能源计量考核的用能单元(装置、系统、工序、工段等),如果用能单元已配备了能源计量器具,用能单元中的主要用能设备可以不再单独配备能源计量器具。

第二节 数集 确界原理

第二节  数集  确界原理

点a叫做这邻域的中心, 叫做这邻域的半径 .
U(a; ) {x | x a } (a ,a )
a
a
a x
点a的去心的邻域 :
Uo(a; ) { x | 0 x a }
右邻域: U (a; ) [a,a )
左邻域: U (a; ) (a ,a]
U
o
(a;
)
设p=2k,得q2=2k2,
于是q也是偶数,这与p/q是既约分数矛盾。
第二节 数集 确界原理
一、区间与邻域
(a,b), [a,b], (a,b], [a,b)
(, a), (, a], (a,),[a,), (,)
邻域: 设a与是两个实数 , 且 0.
数集{ x x a }称为点a的邻域 ,
确界,并证明上确界不属于有理数集.
证: 首先证明inf A 0,sup A 2.
先证 infA=0.
(1)x A, 则x 0.
0 x0
a
(2)若a>0, 分两种情况考虑。
()若a 2, 则x A,有x a.
()若0 a 2, 取x0为大于0小于a的有理数, 则x02 a2 2, 即x0 A,但x0 a. 故infA=0.
(1)x
S , 有x
n.n1n2
nk
1 10k
;
(2) ak S,使 ak n.n1n2 nk .
无限进行下去,得到实数 n.n1n2 nk .
现在证明 = supS. 为此要证:
()x S,有x ;
() ,x S,使 x.
若()不成立,即x S,有x ,
则可以找到x的k位不足近似xk ,使
;
(2) a1 S,使 a1 n.n1 .

§2.数集.确界原理.

§2.数集.确界原理.
例4(P8) 设A, B为非空数集 , 满足 : x A和y B有x y.证明 : 数集 A有上确界 , 数集 B有下确界 , 且 sup A inf B.
例5(P8) 设A, B为非空有界数集 , S A B.证明 : (i) sup S maxsup A, sup B; (ii) inf S mininf A, inf B.


U a; : x R x a a , a ;


(2)a的空心 邻域 : 点a的邻域去掉中心 " a" 后所得到的集合 , 记为 U 0 a; , 即
U 0 a; : x R 0 x a a , a a, a .
[思考题 ](P21/1 )设a, b R.证明 : 1 (1) maxa, b a b a b ; 2 1 (2) mina, b a b a b . 2
17
§2.数集.确界原理 三. 确界与确界原理 1.确界的定义
例3(P7) 设数集 S有上确界 .证明 :
14
§2.数集.确界原理 三. 确界与确界原理 1.确界的定义
几点说明(P7) (1)并非每个数集 S都存在上 (下)确界;
[问题]如何用正面的语言定义 ( )不是数集 S的上(下)确界 ?
15
§2.数集.确界原理 三. 确界与确界原理 1.确界的定义
几点说明(P7) (1)并非每个数集 S都存在上 (下)确界; (2)(P7)由上(下)确界的定义可知 , 若数集 S存在上 (下)确界, 则必唯一 ; (3)(P7)若数集 S存在上 , 下确界 , 则有 inf S sup S ; (4)(P7)数集S的上(下)确界可能属于 S , 也可能不属于 S;

§2--数集-·-确界原理--数学分析(华师大-四版)课件-高教社ppt-华东师大教材配套课件

§2--数集-·-确界原理--数学分析(华师大-四版)课件-高教社ppt-华东师大教材配套课件

一、有界集二、确界三、确界的存在性定理四、非正常确界*点击以上标题可直接前往对应内容记号与术语(;){|||}:U a x x a a δδδ=-<点的邻域;(;){|0||}:U a x x a a δδδ=<-<点的空心邻域; (;){|0}:U a x x a a δδδ+=≤-<点的右邻域; (;){|0}:U a x a x a δδδ-=≤-<点的左邻域; (;){|||}:U M x x M M ∞=>∞的邻域;(;){|}:U M x x M M +∞=>+∞的邻域; (;){|}:U M x x M M -∞=<-∞的邻域;. ; max :S S 数集的最大值min:S S 数集的最小值后退 前进 目录 退出定义1 有界集R,.S S 设⊂≠∅(1)R,,,M x S x M M 若使得则称为∃∈∀∈≤,.S S 的一个上界称为有上界的数集(2)R,,,L x S x L L 若使得则称为∃∈∀∈≥,.S S 的一个下界称为有下界的数集.S 则称为有界集(3),S 若既有上界又有下界:0,,||.M x S x M ∃>∀∈≤其充要条件为使有(1),,S S '若不是有上界的数集则称无上界00R,,.M x S x M ∀∈∃∈>使得(2),,S S '若不是有下界的数集则称无下界00R,,.L x S x L ∀∈∃∈<使得(3),,S S '若不是有界的数集则称无界集000,,||.M x S x M ∀>∃∈>使得即 即 即[]102[]1,M x M M +=>+>取证 取 L = 1, {2|N },.nS n +=∈证明数集无上界有下界例1 例2 2+31N .2n S n n ⎧⎫-=∈⎨⎬⎩⎭证明数集有界证 2+31N ,2n n n -∀∈.S 因此有界,,2L x S x n ≥∈=∀则故 S 有下界. 因此 S 无上界.,1,<∈∀M R M 若;210M x >=取,若1≥M 233122n n n ≤+111,22≤+=定义2确界:R . R,满足若设∈≠⊂η∅S S .sup ,S S =ηη记为的上确界是则称;,)i (η≤∈∀x S x ,,(ii)0S x ∈∃<∀ηα0,x α>使得若数集 S 有上界, 则必有无穷多个上界, 而其中 最小的一个具有重要的作用. 确界. 确界.最小的上界称为上 同样,若S 有下界,则最大的下界称为下定义3R,.R :S S ξ设若满足⊂≠∅∈(i),;x S x ξ∀∈≥00(ii),,;x S x βξβ∀>∃∈<.inf ,S S =ξξ记为的下确界是则称00,.x S x εξε∀>∃∈<+0,(ii)下确界定义中的亦可换成注2 注1 由定义,下确界是最大的下界.注4 (ii)显然,条件亦可换成:00,.x S x εηε∀>∃∈>-0,注3 条件(i) 说明 是 的一个上界, S η比 小的数都不是 的上界,从而是最小的上界 S ηη界, 条件(ii )说明即上确界是最小的上界.证 先证 sup S =1.;111,i)(≤-=∈∀n x S x .,211000αα>∈-=≤x S x ,则取若(ii) 1.α<设例3 11,1,2,,S x x n n ⎧⎫==-=⎨⎬⎩⎭设证明.0inf 1sup ==S S ,.1sup =S 因此,00,10,,,n αεα若令由阿基米德性>=->∃01.n ε使得<00011,1.x S x n εα取则=-∈>-=.0inf =S 因此.0inf =S 再证00(ii)0,0,.x S x αα∀>∃=∈<;011,)i (≥-=∈∀nx S x 以下确界原理作为公理,不予证明.虽然我们定义了上确界, 但并没有证明上确界的 存在性, 不一定有最小值, 例如 (0, ∞) 无最小值.这是由于上界集是无限集, 而无限数集确界存在性定理定理1.1(确界原理)设若有上界则必有上确界⊂≠∅S S S SR,.,;若有下界则必有下确界,.S S.,,y x B y A x ≤∈∀∈∀有:.,满足为非空数集设B A 例4 .inf sup B A ≤且证明:数集 A 有上确界,数集 B 有下确界,由定义, 上确界 sup A 是最小的上界, 因此, 任意 证 由假设, B 中任一数 y 都是 A 的上界, A 中的任界, B 有下确界.y ∈B ; sup A ≤ y . 而 inf B 是最大的下界, 因此 sup A ≤inf B.一数 x 都是 B 的下界.因此由确界原理, A 有上确 这样, sup A 又是 B 的一个下界,例5 ,R 中非空有上界的数集是设S (i)R,{|},a S a x a x S ∈+=+∈若定义则sup {}sup ;S a S a +=+=∈(ii)>0,{|},b bS bx x S 若定义则sup {}sup .bS b S =⋅证 ,)i (a S a x +∈+∀,S x ∈其中必有 ,sup S x ≤于是 .sup a S a x +≤+,,00S x ∈∃>∀ε对于使 ,sup 0ε->S x 从而,0a S a x +∈+且 ,)(sup 0ε-+>+a S a x 因此.sup )sup(a S a S +=+,)ii (bS bx ∈∀其中 ,S x ∈必有 ,sup S x ≤于是.sup S b bx ≤0,0,b εεε'∀>=>令则存在 ,0S x ∈使 0sup ,x S ε'>-因此 0sup sup .bx b S b b S εε'>-=-这就证明了.sup }sup{S b bS =非正常确界;R,)i (.1+∞<<∞-∈∀a a 规定supN ,inf{2|N }.nn +=+∞-∈=-∞2. 推广的确界原理: 非空数集必有上、下确界. .sup ,)ii (+∞=S S 记无上界若.inf ,-∞=S S 记无下界若例2 设数集 1R ,.A B x A x +⎧⎫⊂=∈⎨⎬⎩⎭求证:sup inf 0.A B 的充要条件是=+∞=例1,M ε1令=001,,.x B x M εε=∃∈<令于是0001,.y A y M x 且=∈>证 设 sup .A 若=+∞,0.x B x ∀∈>显然0,ε∀>于是 0001,.y B y x ε=∈<且因此 inf 0.B =sup .A 因此=+∞反之,若 inf 0,B =则0,M ∀>求证:sup inf 0.A B 的充要条件是=+∞=sup ,A =+∞则由于00,.x A x M ∃∈>复习思考题2. 1212,,S S S S ⊂和都是数集且21sup sup S S 和比较.inf inf 21的大小和及S S .sup S a =其中形式一定为,),[∞+a 1. 数集 S 有上界,则 S 的所有上界组成的集合是否 3. 在上确界的定义中, 00(ii),,x S x αηα使∀<∃∈>能否改为 00(ii ),,?x S x αηα'∀<∃∈≥使或改为 00(ii ),,?x S x αηα使''∀≤∃∈≥。

实数集与函数数集确界原理

实数集与函数数集确界原理
前页 后页 返回
二、确界
若数集 S 有上界, 则必有无穷多个上界, 而其
中最小的一个具有重要的作用. 最小的上界称为
上确界. 同样, 若S 有下界, 则最大的下界称为下 确界. 定义2 设 S R, S . 若 R满足 :
(i ) x S , x ; (ii) , x0 S , 使得 x0 ,

x0
点击上图动画演示

x
前页 后页 返回
定义3 设 S R, S . 若 R 满足 :
(i) x S , x ;
(ii) , x0 S , x0 ; 则称 是 S 的下确界, 记为 inf S .
注1 由定义,下确界是最大的下界.
(3) 若 S 既有上界又有下界, 则称 S 为有界集.
其充要条件为 : M 0, 使 x S , 有 | x | M .
前页 后页 返回
(1) 若 S 不是有上界的数集, 则称 S 无上界, 即 M R, x0 S , 使得 x0 M . (2) 若 S 不是有下界的数集, 则称 S 无下界, 即 L R, x0 S , 使得 x0 L. (3) 若 S 不是有界的数集, 则称 S 无界集, 即 M 0, x0 S , 使得 | x0 | M .
§2 数集 · 确界原理
确界原理本质上体现了实数的完备 性,是本章学习的重点与难点. 一、有界集 二、确界 三、确界的存在性定理
四、非正常确界
前页 后页 返回
记号与术语
U (a; ) { x | | x a | } : 点 a 的 邻域
U (a; ) { x | 0 | x a | }: 点 a 的 空心邻域

数集确界原理

数集确界原理

• 例5 设A、B为非空有界数集, S=A∪B.证明:
• (1) sup S =max{sup A , supB};(2) inf S = min{inf A, inf B}.
• 证 由于S=A∪B,显然也是非空有界数集,因此S的上 下确界都存在.
• (1)对任何x∈S ,有x∈A或x∈B,故x≤sup A 或
上、下确界的另一精确定义
定义2 设S是R中的一个数集,若数 满足以下两条: (1)对一切 x S, 有 x , 即 是数集S的上界;
(2)对任意 e 0, 存在 x0 S 使得 x0 e ,
(即η是S的最小上界)
则称数η为数集S的上确界。记作 sup S.
e
U (a)与U (a)去除点a后,分别为点a的空心 左,
右邻域,
简记为U
0
(a)与U
0
(a)
邻域U () {x x M},其中M为充分大的正数;
邻域U() {x x M},其中M为充分大的正数;
邻域U() {x x M},其中M为充分大的正数;
二、有界集 确界原理
定义1 设S为R中的一个数集。若存在数M(L),使得对一 切x∈S,都有x≤M(x≥L),则称S为有上界(下界)的数 集,数M(L)称为S的一个上界(下界).
若数集S既有上界又有下界,则称S为有界集.若S不是 有界集,则称S为无界集。
例1: 证明数集N {n n为正整数}有下界而无上界.
证 由假设,数集B中任一数y都是数集A的上界,
数集A中任一数x都是数集B的下界, 由确界原理可知数集A有上确界,数集B有下确界。 对任何y∈B, y是数集A的一个上界, 又由上确界的定义知 supA 是数集A的最小上界, 故有supA ≤ y。 而此式表明数supA 是数集B的一个下界, 由下确界的定义知, supA≤infB。

第二节数集确界原理

第二节数集确界原理

确界原理的扩充
若把 和 补充到实数集中, 并规定一实数 a 与 、 的大小关系为 a , a , , 则确界概念可扩充为 若 S 无上界, 则定义 + 为 S 的非正常上确界,记作 sup ; 若 S 无下界, 则定义 - 为 S 的非正常下确界, 记作 inf .
相应地,前面定义2和定义3中所定义的确界分别称为正 常上、下确界. 推广的确界原理 任一非空数集必有上、下确界(正常的或非 正ቤተ መጻሕፍቲ ባይዱ的).

正整数N+有
S y y 2 x 2 , x R 的 inf , sup 2.

inf N+ =1,sup N+ = +∞.

是S的下界中最大的一个) ,则称数 为数集S 的下确界,记作 inf S .
命题 2 inf S 的充要条件: 1) 是S下界; 2) >0, x0 S, 有x0 < .
例3 设S { x | x为区间(0,1)中的有理数}.试按上、 下确界的定义验证: sup S 1,inf S 0.
2.邻域: 设a与 是两个实数 , 且 0.
U (a) {x a x a }.
U 0 (a) {x 0 x a }.

a

a
a
x
U () {x x M }.
二 有界集 确界原理
(一)有界集
定义1 S为R中的一个数集,若 M R, x S有x M .
注1 确界若存在则必唯一 注2 S sup S inf S 注3 S 的确界可能 S 可能 S
定义4 最大数与最小数

数集确界原理

数集确界原理

a
a
a x
点a 旳 右邻域 和 点 a 旳空心 右邻域
U (a, ) {x a x a } [a, a ) U 0(a, ) {x a x < a } (a,a )
a
a
a x
点 a 旳 左邻域 和 点 a 旳空心 左邻域
U(a, ) {x a x a } (a ,a] U 0(a, ) {x a x a } (a ,a)
2、数集与确界的关系:确界不一定属于原集合.
3、确界与最值的关系:设E为数集. E 的最 值必属于E,但确界未必, 确界是一种临 界点. 非空有界数集必有确界, 但未必有 最值. 若max E存在, 必有 max E = supE, 对下确界有类似的结论.
思索题
1、任何有限数集是否一定都存在上、下确界? 若都存在,它们分别是数集中的什么数?
上确界
M
上界
M1
M2
下界 下确界
m2 m1 m
确界旳精拟定义
定义3 设 S 是 R 中旳一种数集,若数 满足
(i) 对一切 x S, 有x , 即 是 S 的上界; (ii) 对任何 , 存在 x0 S, 使得 x0 , 即 又是 S 的最小上界,则称数 为数集 S 旳
上确界,记为 sup S.
例1 证明数集 N+{n / n为正整数}有下界而无上界.
证 显然,任何一个不大于1 的实数都是N 的下界,
பைடு நூலகம்故N
为有下界的数集
下证 N+ 无上界
按照无界集定义, 只须证:即对任意M 0,
存在某个正整数n0 N+ , 使得n0 M .
事实上,对任何正数M,取 n0 M 1,
则n0 N , 且n0 M , 这就证明了N无上界.

§1.2确界

§1.2确界

《数学分析》(1)
§1.2 数集 确界原理
四、非正常确界
1. 规定 (i ) a R, a ; (ii )若 S 无上界, 记 sup S . 若 S 无下界, 记 inf S .
2. 推广的确界原理: 非空数集必有上、下确界.
例1 sup N , inf{2n | n N } .

a
a
x
点a的去心的邻域 :
U (a; ) { x | 0 x a }
o
华北科技学院理学院
2017年11月29日星期三
4
《数学分析》(1)
§1.2 数集 确界原理
右邻域: U (a; ) [a, a ) 左邻域: U (a; ) (a , a]
• 对下确界有类似的结论.
华北科技学院理学院
2017年11月29日星期三
17
《数学分析》(1)
§1.2 数集 确界原理
定理1.1
(确界原理)
设S R, S . 若 S 有上界, 则 S 必有上确界; 若 S 有下界, 则 S 必有下确界.
华北科技学院理学院
2017年11月29日星期三
18
上确界 M 上界
M1
M2
同样, 若S 有下界, 则最大的下界称为S的下确界.
下界 m2 m1 m
下确界
华北科技学院理学院
2017年11月29日星期三
11
《数学分析》(1)
§1.2 数集 确界原理
1. 是 上 界 ; 最小上界的定义2. 小 一 点 不 再 是 上 界 .
定义2 设 S R, S . 若 R满足:
14
《数学分析》(1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2数集•确界原理教学内容:1.实数集的有关概念;2.确界的概念和确界原理。

教学目的:1.使学生知道区间与邻域的表示方法;2.使学生深刻理解确界的与确界原理,并在有关命题的证明中正确地加以运用。

教学重点:确界的概念及其有关性质(确界原理)。

教学难点:确界的定义及其应用。

教学方法:讲授为主。

教学学时:2学时。

引言:为了以后表述的方便,本节课我们先定义实数集R中的两类重要的数集——区间邻域;并讨论有界集与无界集;最后再由有界集的界引出确界定义及确界存在性定理(确界原理)。

后者是我们以后关于实数理论研究的基础,应给予充分重视。

一、区间与邻域:1.区间(用来表示变量的变化范围):设,a b R ∈且a b <。

{}{}{}{}{}{}{}{}{}|(,).|[,].|[,)|(,]|[,).|(,].|(,).|(,).|.x R a x b a b x R a x b a b x R a x b a b x R a x b a b x R x a a x R x a a x R x a a x R x a a x R x R ⎧⎧⎪⎪∈<<=⎪⎪⎪⎪∈≤≤=⎨⎪∈≤<=⎧⎪⎪⎨⎪∈<≤=⎪⎩⎩⎨⎧∈≥=+∞⎪∈≤=-∞⎪⎪∈>=+∞⎨⎪∈<=-∞⎪⎪∈-∞<<+∞=⎩开区间: 有限区间闭区间: 闭开区间:半开半闭区间开闭区间:区间无限区间⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩注:∞+读作正无穷大;∞-读作负无穷大。

2.邻域:联想字面意思:“邻近的区域”。

设a 为任一给定实数,δ(Delta----德耳塔)为一给定正实数。

(1) 点a 的δ邻域:{}(;)||(,)U a x x a a a δδδδ=-<=-+(2)点a 的空心δ邻域:{}),(),(||0)(δδδδ+⋃-=<-<a a a a a x x a U =;(3)点a 的δ右邻域和点a 的空心δ右邻域:{})[)(δδδ+=+<≤+a a a x a x a U ;=; {})()(δδδ+=+<<+a a a x a x a U;=; (4)点a 的δ左邻域和点a 的空心δ左邻域:{}]()(a a a x a x a U ;=;δδδ-=≤<-- {})()(a a a x a x a U;=;δδδ-=<<--注:以后在没有必要指出邻域半径δ的大小时,以上领域我们可以分别简记为:)(),(),(),(),(U ),(a U a U a U a U a a U --++(5)∞邻域,+∞邻域,-∞邻域:(其中M为充分大的正数){}()||,U x x M ∞=>{}(),U x x M +∞=> {}()U x x M -∞=<-二、有界集与无界集:什么是“界”?――范围。

定义1(上、下界): 设S 为R 中的一个数集。

若存在数()M L ,使得对一切x S ∈都有()x M x L ≤≥,则称S为有上(下)界的数集,数()M L 称为S的上界(下界)。

若数集S既有上界,又有下界,则称S为有界集。

若数集S不是有界集,则称S为无界集。

[问题]:(1)上(下)界若存在,唯一吗?(2)上(下)界与S的关系如何?看下例:例1 讨论数集{}|N n n +=为正整数的有界性。

分析:有界或无界←上界、下界?下界显然有,如取1L =;上界似乎无,但需要证明。

解:任取0n N +∈,显然有01n ≥,所以N +有下界1;但N +无上界。

证明如下:假设N +有上界M,则M>0,按定义,对任意0n N +∈,都有0n M ≤,这是不可能的,如取0[]1,n M =+则0n N +∈,且0n M >.综上所述知:N +是有下界无上界的数集,因而是无界集。

这里[x ]表示不超过x 的最大整数,如:.5]5[,3]5.2[,5]5[,2]5.2[-=--=-==[可以看到]: (1)若数集有(上、下)界,则它不唯一,且有无限多个;(2)同一数集的上界必大于等于其下界。

三、确界与确界原理:1、定义:(最小的上界和最大的下界)定义2(上确界) 设S是R中的一个数集,若数η满足:(1) 对一切,x S ∈有x η≤(即η是S的上界);(2) 对任何αη<,存在0x S ∈,使得0x α>(即η是S的上界中最小的一个),则称数η为数集S的上确界,记作 sup .S η=定义3(下确界)设S是R中的一个数集,若数ξ满足:(1)对一切,x S ∈有x ξ≥(即ξ是S的下界);(2)对任何βξ>,存在0x S ∈,使得0x β<(即ξ是S的下界中最大的一个),则称数ξ为数集S的下确界,记作inf S ξ=.上确界与下确界统称为确界。

克西)-艾塔,---Ksai Yita ξη(例2 讨论数集{}S x x =为区间(0,1)中的有(无)理数的确界。

分析:通过数轴看有无上、下界,进一步讨论上、下确界。

提示:利用有理数集在实数集中的稠密性。

sup 1,inf 0.S S ==解 先证1sup =S(ⅰ)对一切S x ∈,显然有1≤x ,即1是x 的S 上界。

(ⅱ) 对任何1<α,若0≤α,则任取S x ∈0都有α>0x ;若0>α,则由有理数集在实数集中的稠密性,在)1,(α中必有有理数0x ,即存在S x ∈0,使得α>0x 。

类似可以验证.0inf =S例3 (1) [0,1],sup 1,inf 0.S S S === (2) (1)11,2,,sup ,inf 1.2n S n S S n ⎧⎫-====-⎨⎬⎩⎭(3) ,sup ,inf 1.N N N +++=不存在2、确界的性质:● 唯一性:若数集S存在上(下)确界,则一定是唯一的;● 若数集S存在上、下确界,则有inf sup S S ≤;● 数集S的确界可能属于S,也可能不属于S;● 存在性——定理1.1(确界原理)设S为非空数集,若S有上界,则S必有上确界;若S有下界,则S必有下确界。

定理1.1(确界原理)设S为非空数集,若S有上界,则S必有上确界;若S有下界,则S必有下确界。

证 这里只证明定理的前半部分,后半部分可类似的证之。

为叙述方便起见,不妨设S含有非负数,由于S有上界,故可以找到非负整数n ,使得:(1) 对任何S x ∈,有1+<n x ;(2) 存在S a ∈0,使n a ≥0.对区间)1,[+n n 作10等分,分点为:9.,,2.,1.n n n ,则存在9,,2,1,0 中的一个数1n ,使得:(1) 对任何S x ∈,有101.1+<n n x ; (2) 存在S a ∈1,使11.n n a ≥.对区间)101.,.[11+n n n n 作10等分,分点为:9.,,2.,1.111n n n n n n ,则存在9,,2,1,0 中的一个数2n 使得:(1)对任何S x ∈,有221101.+<n n n x ;(2)存在S a ∈2,使212.n n n a ≥.如此不断10等分前一步骤所得区间,可知对任何 ,2,1=k 存在9,,2,1,0 中的一个数k n ,使得:(1)对任何S x ∈,有k k n n n n x 101.21+< ; (2)存在S a k ∈,使k k n n n n a 21.≥.将以上步骤无限进行下去,得到实数 k n n n n 21.=η,以下证明S sup =η,即证:(ⅰ)对一切S x ∈,有η≤x ;(ⅱ)对任何ηα<,存在S x ∈0使得S x >0. 先证(ⅰ): (反证)假设存在S x ∈,使η>x ,则可找到非负整数k ,使k k x η>,而k x x >且k k k n n n n 101.21+= η,故kk n n n n x 101.21+> 与(1)矛盾,故对一切S x ∈,有η≤x . 再证(ⅱ): 由ηα<知存在非负整数k ,使k k αη>,而k k n n n n 21.=η,αα>k ,故α>k n n n n 21., 由(2)便知存在S x ∈0使α>≥k n n n n x 210.确界原理是数学分析极限理论的基础,因此具有极其重要的地位,应对定理的内容充分理解,给予充分重视。

例4 设数集S有上界,证明:sup max .S S S ηη=∈⇔=分析:由确界原理,sup S 意义,按确界定义证明。

证:(必要性)∵S sup =η ∴对一切S x ∈有η≤x ,又S ∈η,故S max =η。

(充分性)设S max =η,则:对一切S x ∈,有η≤x ;对任何ηα<,只需取S x ∈=η0,则α>0x ,故S sup =η。

例5 设A、B为非空数集,满足:对一切x A ∈和y B ∈有x y ≤. 证明:数集A有上确界,数集B有下确界,且sup inf .A B ≤分析:首先,证明sup ,inf .A B 有意义,用确界原理。

其次,证明sup inf .A B ≤证:由假设,数集B中任一数y 都是数集A的上界,A中任一数x 都是B的下界,故由确界原理推知数集A有上确界,数集B有下确界.对任何B y ∈,y 是数集A的一个上界,而由上确界的定义知,A sup 是数集A的最小上界,故有y A ≤sup .而此式又表明A sup 是数集B的一个下界,故由下确界定义证得sup inf .A B ≤例6 设A、B为非空有界数集,S A B =⋃,证明:(1){}sup max sup ,sup S A B =;(2){}inf min inf ,inf S A B =。

分析:首先,由S A B =⋃及A、B的性质知,S也是非空有界集。

其次,证明(1)、(2)。

证:由于B A S ⋃=显然也是非空有界数集,因此S 的上、下确界都存在.(ⅰ) 对任何S x ∈,有A x ∈或B x ∈⇒A x sup ≤或B x sup ≤,从而有{}B A x sup ,sup m ax ≤,故得{}B A S sup ,sup m ax sup ≤.另一方面,对任何A x ∈,有S x ∈⇒S x sup ≤⇒A sup S sup ≤;同理又有B sup S sup ≤.所以{}B A S sup ,sup m ax sup ≥.综上,即得{}sup max sup ,sup S A B =. (ⅱ) 可类似于(ⅰ)证之.。

相关文档
最新文档