2020年陕西省西安市雁塔区中考数学一模试卷(含答案解析)
2020届陕西省中考数学模拟试卷(一)(含解析)
2020届陕西省中考数学模拟试卷(一)一、选择题(本大题共10小题,共30.0分)1.下列说法中错误的是()A. (3.14−π)0=1B. 若x2+1x2=9,则x+1x=±3C. a−n(a≠0)是a n的倒数D. 若a m=2,a n=3,则a m+n=62.如图所示,一只纸杯放置在一个长方体盒子上,则其主视图是()A.B.C.D.3.下列四个数中,最大的是()A. −1B. 0C. 52D. √54.直线l1和l2在同一直角坐标系中的位置如图所示,点P1(x1,y1)在直线l1上,点P2(x2,y2)在直线l2上,点P3(x3,y3)为直线l1、l2的交点,其中x3<x1,x3<x2,则()A. y1<y3<y2B. y2<y1<y3C. y2<y3<y1D. y3<y1<y25.如图,有一条直的等宽纸带按图折叠时,则图中∠α是()A. 40°B. 140°C. 70°D. 80°6.在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A. 1cm<AB<4cmB. 5cm<AB<10cmC. 4cm<AB<8cmD. 4cm<AB<10cm7.将一次函数y=−2x的图象绕点(2,3)逆时针方向旋转90°后得到的图象对应的函数表达式为()A. y=−2x+3B. y=−2x−3C. y=−12x−32D. y=12x−328.如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为()A. 2√2B. √2C. 2√3D. 3√39.如图,在学习“四边形”一章时,小明的书上有一图因不小心被滴上墨水,看不清所印的字,请问被墨迹遮盖了的文字应是()A. 四边形B. 梯形C. 矩形D. 菱形10.已知二次函数y=−(x−b)2+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是()A. b≥−1B. b≤−1C. b≥1D. b≤1二、填空题(本大题共4小题,共12.0分)11.分解因式:2a2−2=______.12.如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC边上,且AB′=CB′,则旋转角的度数为______.(k>0)图象上的三点,则y1,y2,y3的大小13.若A(−3,y1),B(1,y2),C(2,y3)是反比例函数y=kx关系是______ (用“<”号连接).14.如图,在矩形ABCD中,AD=13,AB=12,点F在边BC上且AF=AD,∠DAF的平分线交边DC于点E,则DE=______.三、解答题(本大题共11小题,共88.0分)15.计算题(1)(−1)2019−(3.14−π)0+(1)−2;2(2)(−2x3y)2⋅(3xy2)÷(6x4y3);(3)(2x+3)2−(2x+1)(2x−1).16.(1)计算:√82(π−2009)0−4sin45∘(−1)3;(2)解方程:1x−21−x2−x=2.17.利用三角板也能画出一个角的平分线,画法如下:①利用三角板在∠AOB的两边上分别取OM=ON;②分别过点M、N画OM、ON的垂线,交点为P;③画射线OP,所以射线OP为∠AOB的角平分线.请你评判这种作法是否正确,并说明理由.18.在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.(1)如图1,若∠DAB=120°,且∠B=90°,求证:AD+AB=AC;(2)如图2,若将(1)中的条件“∠B=90°”去掉,(1)中的结论是否成立?如果成立,请证明这个结论.(3)如图3,若∠DAB=90°,请直接写出AD、AB与对角线AC的数量关系.19.南宁市某校七年级实行小组合作学习,为了解学生课堂发言情况,随机抽取该年级部分学生,对他们每天在课堂上发言的次数进行调查和统计,统计表如下,并绘制了两幅不完整的统计图.已经知A、B两组发言人数直方图高度比为1∶5.发言次数nA0≤n<5B5≤n<10C10≤n<15D15≤n<20E20≤n<25F25≤n<30请结合图中相关的数据回答下列问题:(1)A组的人数是多少?本次调查的样本容量是多少?(2)求出C组的人数并补全直方图.(3)该校七年级共有250人,请估计全年级每天在课堂上发言次数不少于15次的人数.20.向阳中学校园内有一条林荫道叫“勤学路”,道路两边有如图所示的路灯(在铅垂面内的示意图),灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°,路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D,E两处测得路灯A的仰角分别为α和45°,且tanα=6,求灯杆AB的长度.21.某种黄金饰品在A.B两个金店销售,A商店标价420元/克,按标价出售,不优惠,B商店标价450元/克,但若购买的黄金饰品重量超过3克,则;超出部分可打八折出售,若购买的黄金饰品重量为x克.(1)分别列出到A、B商店购买该种黄金饰品所需的费用(用含式的代数式表示);(2)王阿姨要买一条重量11克的此种黄金饰品,到哪个商店购买最合算?22.一个不透明的口袋里装着分别标有数字−2,−1,1,2的四个小球,除数字不同外,小球没有任何区别,每次实验时把小球搅匀.(1)从中任取一球,求所抽取的数字恰好为负数的概率为______;(2)从中任取一球,将球上的数字记为x,然后再从剩余的球中任取一球,将球上的数字记为y,试用画树状图(或列表法)表示出点(x,y)所有可能的结果,并求点(x,y)在反比例函数y=−2图x 象上的概率.23.(1)如图1,AC和BD相交于点O,OA=OC,OB=OD,求证:DC//AB.(2)如图2,在⊙O中,直径AB=6,AB与弦CD相交于点E,连接AC、BD,若AC=2,求cos D的值.x+1与抛物线y=ax2+bx−3交于A,B两点,点A 24.如图,在平面直角坐标系中,直线y=12在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与A,B重合),过点P 作x轴的垂线交直线AB与点C,作PD⊥AB于点D.(1)①求抛物线的解析式;②求sin∠ACP的值;(2)设点P的横坐标为m.①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;②连接PB,线段PC把△PDB分成两个三角形,求出当这两个三角形面积之比为9:10时的m值;③是否存在适合的m值,使△PCD与△PBD相似?若存在,直接写出m值;若不存在,说明理由.25.如图,在直角△ABC中,∠C=90°,AB=5,作∠ABC的平分线交AC于点D,在AB上取点O,以点O为圆心经过B、D两点画圆分别与AB、BC相交于点E、F(异于点B).(1)求证:AC是⊙O的切线;(2)若点E恰好是AO的中点,求BF⏜的长;(3)若CF的长为34①求⊙O的半径长;②点F关于BD轴对称后得到点F′,求△BFF′与△DEF′的面积之比.【答案与解析】1.答案:B解析:解:任何不为0的0次幂均等于1,因此选项A正确;当x2+1x2=9时,x+1x=±√11,因此选项B不正确;因为a−n=1a n,因此选项C正确;因为a m+n=a m⋅a n=3×2=6,因此选项D正确;故选:B.根据0次幂的意义,负指数次幂的意义以及同底数幂的乘法分别进行判断即可.考查0次幂的意义,负指数次幂的意义以及同底数幂的乘法的计算方法等知识,掌握这些运算性质是正确判断的前提.2.答案:C解析:解:从正面看下面是个矩形,上面是一个上底在下的梯形,故选:C.根据主视图是从正面看得到的图形,可得答案.本题考查了简单组合体的三视图,把从正面看到的图形画出来是解题关键.3.答案:C解析:解:∵52>√5>0>−1,∴四个数中,最大的是52.故选:C.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.4.答案:A解析:解:根据题意把P1(x1,y1)、点P2(x2,y2)、点P3(x3,y3)表示到图象上,如图所示:故y1<y3<y2,故选:A.根据题意把三个点都表示到图象上,可以直观的得到y1、y2、y3的大小.此题主要考查了一次函数图象上点的坐标特征,凡是图象经过的点必能满足解析式.5.答案:C解析:解:∵AD//BC,∴∠CBF=∠DEF=40°,∵AB为折痕,∴2∠α+∠CBF=180°,即2∠α+40°=180°,解得∠α=70°.故选:C.由图形可得AD//BC,可得∠CBF=40°,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案.本题考查了图形的翻折问题;找着相等的角,利用平角列出方程是解答翻折问题的关键.6.答案:B解析:本题考查的是等腰三角形的性质、解一元一次不等式组,熟知等腰三角形的两腰相等是解答此题的关键.设AB=AC=xcm,则BC=(20−2x)cm,根据三角形的三边关系即可得出结论.解:∵在等腰△ABC中,AB=AC,其周长为20cm,∴设AB=AC=xcm,则BC=(20−2x)cm,∴{2x>20−2x20−2x>0,解得5<x<10,即5cm<AB<10cm.故选B.7.答案:D解析:解:∵将一次函数y=−2x的图象绕点A(2,3)逆时针方向旋转90°,∴得到的直线与直线y=−2x垂直,∴设旋转后的点O的对应点为B,过A作AD⊥x轴于D,过B作BD⊥AD于E,∴∠OAB=∠ADO=∠AEB=90°,∴∠ABE=∠OAD,∵AO=AB,∴△AOD≌△ABE(AAS),∴AE=OD=2,BE=AD=3,∴DE=1,则B(5,1),设函数解析式为y=12x+b,把点(2,3)代入得b=−32,则所求函数解析式为y=12x−32.故选:D.将一次函数y=−2x的图象绕点A(2,3)逆时针方向旋转90°,得到的直线与直线y=−2x垂直,设旋转后的点O的对应点为B,过A作AD⊥x轴于D,过B作BD⊥AD于E,根据全等三角形的性质得到AE=OD=2,BE=AD=3,得到B(5,1),于是得到结论.此题考查了一次函数图象与几何变换,全等三角形的判定和性质,掌握旋转的性质是解本题的关键.8.答案:D解析:解:设BE=x,则DE=3x,∵四边形ABCD为矩形,且AE⊥BD,∴△ABE∽△DAE,∴AE2=BE⋅DE,即AE2=3x2,∴AE=√3x,在Rt△ADE中,由勾股定理可得AD2=AE2+DE2,即62=(√3x)2+(3x)2,解得x=√3,∴AE=3,DE=3√3,如图,设A点关于BD的对称点为A′,连接A′D,PA′,则A′A=2AE=6=AD,AD=A′D=6,∴△AA′D是等边三角形,∵PA=PA′,∴当A′、P、Q三点在一条线上时,A′P+PQ最小,又垂线段最短可知当PQ⊥AD时,A′P+PQ最小,∴AP+PQ=A′P+PQ=A′Q=DE=3√3,故选D.在Rt△ABE中,利用三角形相似可求得AE、DE的长,设A点关于BD的对称点A′,连接A′D,可证明△ADA′为等边三角形,当PQ⊥AD时,则PQ最小,所以当A′Q⊥AD时AP+PQ最小,从而可求得AP+PQ的最小值等于DE的长,可得出答案..本题主要考查轴对称的应用,利用最小值的常规解法确定出A的对称点,从而确定出AP+PQ的最小值的位置是解题的关键,利用条件证明△A′DA是等边三角形,借助几何图形的性质可以减少复杂的计算.9.答案:C解析:解:被墨迹遮盖了的文字应是菱矩形.故选:C.有一组邻边相等的矩形是正方形;有一个角是直角的菱形是正方形,图中已有菱形,那么另一个圈中应是菱矩形.本题主要考查梯形,矩形,菱形,正方形的两个判定:有一组邻边相等的矩形是正方形;有一个角是直角的菱形是正方形.10.答案:D解析:解:∵二次函数y=−(x−b)2+c,∴当x>b时,y的值随x值的增大而减小,∵当x>1时,y的值随x值的增大而减小,∴b≤1,故选:D.根据题目中的函数解析式和二次函数的性质,可以得到b的取值范围,本题得以解决.本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质解答.11.答案:2(a+1)(a−1)解析:解:2a2−2,=2(a2−1),=2(a+1)(a−1).先提取公因式2,再对余下的多项式利用平方差公式继续分解.本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.答案:84°解析:解:∵AB′=CB′,∴∠C=∠CAB′,∴∠AB′B=∠C+∠CAB′=2∠C,∵将△ABC绕点A按逆时针方向旋转得到△AB′C′,∴∠C=∠C′,AB=AB′,∴∠B=∠AB′B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°−108°,∴∠C=24°,∴∠CAB′=∠C=24°,∴旋转角的度数=∠BAB′=∠BAC−∠CAB′=84°,故答案为84°.由旋转的性质可得∠C=∠C′,AB=AB′,由等腰三角形的性质可得∠C=∠CAB′,∠B=∠AB′B,由三角形的外角性质和三角形内角和定理可求解.本题考查了旋转的性质,等腰三角形的性质,灵活运用这些的性质解决问题是本题的关键. 13.答案:y 1<y 3<y 2解析:解:∵k >0,故反比例函数图象的两个分支在一三象限,且在每个象限内y 随x 的增大而减小.∴A(−3,y 1)在第三象限,B(1,y 2),C(2,y 3)在第二象限,且1<2,∴y 1<0,0<y 3<y 2,故y 1,y 2,y 3的大小关系为y 1<y 3<y 2.故答案为y 1<y 3<y 2.根据反比例函数的增减性解答即可.本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关键. 14.答案:263解析:解:∵四边形ABCD 是矩形,∴CD =AB =12,BC =AD =13,∠B =∠D =∠C =90°,∵AF =AD =13,∴BF =√AF 2−AB 2=√132−122=5,∴CF =BC −BF =13−5=8,∵∠DAF 的平分线交边DC 于点E ,∴∠FAE =∠DAE ,在△AFE 和△ADE 中,{AF =AD∠FAE =∠DAE AE =AE,∴△AFE≌△ADE(SAS),∴FE =DE ,设FE =DE =x ,则CE =12−x ,在Rt △CEF 中,由勾股定理得:82+(12−x)2=x 2,解得:x =263,即DE =263;故答案为:263.由勾股定理求出BF =5,得出CF =8,证明△AFE≌△ADE(SAS),得出FE =DE ,设FE =DE =x ,则CE=12−x,在Rt△CEF中,由勾股定理得出方程,解方程即可.本题考查了矩形的性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握矩形的性质和勾股定理,证明三角形全等是解题的关键.15.答案:解:(1)原式=−1−1+4=2;(2)原式=4x6y2⋅3xy2÷(6x4y3)=2x3y;(3)原式=4x2+12x+9−4x2+1=12x+10.解析:(1)先根据有理数的乘方,零指数幂,负整数指数幂进行计算,再求出即可;(2)先算乘方,再算乘除即可;(3)先根据平方差公式和完全平方公式进行计算,再合并同类项即可.本题考查了乘法公式,零指数幂,实数的混合运算和整式的混合运算等知识点,能正确运用整式的运算法则和实数的运算法则进行化简和计算是解此题的关键.16.答案:解:(1))原式=2√2+2×1−4×√2+(−1)=2√2+2−2√2−1=1;2(2)去分母得:1+x−1=2(x−2),去括号得:1+x−1=2x−4,移项合并得:x=4,经检验x=4是分式方程的解.解析:(1)原式第一项利用平方根的定义化简,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项表示三个−1的乘积,计算即可得到结果;(2)方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.17.答案:解:这种作法的正确.理由如下:由作图得∠PMO=∠PNO=90°,在Rt△PMO和Rt△PNO中∵{OP=OPOM=ON,∴Rt△PMO≌Rt△PNO(HL),∴∠POM=∠PON,即射线OP为∠AOB的角平分线.解析:由作图得∠PMO=∠PNO=90°,则可根据“HL”可证明Rt△PMO≌Rt△PNO,所以∠POM=∠PON,从而可判断射线OP为∠AOB的角平分线.此题主要考查了复杂作图以及全等三角形的判定与性质,得出Rt△MOP≌Rt△NOP是解题关键.18.答案:(1)证明:在四边形ABCD中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC平分∠DAB,∴∠DAC=∠BAC=60°,∵∠B=90°,∴∠ACB=30°,AC,∴AB=12AC.同理AD=12∴AD+AB=AC;(2)解:(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,在△CDA和△CBE中,{∠D=∠CBE∠DCA=∠BCEAC=EC,∴△CDA≌△CEB(AAS),∴AD=BE,∴AD+AB=AC;(3)解:结论:AD+AB=√2AC.理由如下:过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠ABC=180°,∠DAB=90°,∴∠DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠ABC=180°,∠CBE+∠ABC=180°,∴∠D=∠CBE,在△CDA和△CBE中,{∠D=∠CBE∠DCA=∠BCEAC=EC,∴△CDA≌△CBE(AAS),∴AD=BE,∴AD+AB=AE.在Rt△ACE中,∠CAB=45°,∴△ACE是等腰直角三角形,∴AE=√2AC,∴AD+AB=√2AC.解析:(1)由直角三角形的性质得出AD=12AC,AB=12AC即可解决问题;(2)以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,只要证明△CDA≌△CBE即可解决问题;(3)过点C作CE⊥AC交AB的延长线于点E,只要证明△ACE是等腰直角三角形,△CDA≌△CBE即可解决问题.本题考查四边形综合题、等边三角形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.19.答案:解:(1)∵B组有10人,A组发言人数:B发言人数=1:5,则A组发言人数为:2人.本次调查的样本容量为:2÷4%=50人;(2)c组的人数有:50×40%=20人;直方图如图所示(3)全年级每天发言次数不少于15次的发言的人数有:250×(1−4%−40%−20%)=90(人).解析:略20.答案:解:过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=10.由题意得∠ADE=α,∠E=45°,设AF=x米∵∠E=45°,∴EF=AF=x米,在Rt△ADF中,∵tan∠ADF=AFDF,∴DF=AFtan∠ADF =x6,∵DE=13.3米,∴x+x6=13.3,∴x=11.4,∴AG=AF−GF=11.4−10=1.4(米),∵∠ABC=120°,∴∠ABG=∠ABC−∠CBG=120°−90°=30°,∴AB=2AG=2.8(米),答:灯杆AB的长度为2.8米.解析:本题主要考查解直角三角形−仰角俯角问题,解题的关键是结合题意构建直角三角形并熟练掌握三角函数的定义及其应用能力.过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=10.设AF=x知EF=AF=x、DF=AFtan∠ADF =x6,由DE=13.3求得x=11.4,据此知AG=AF−GF=1.4,再求得∠ABG=∠ABC−∠CBG=30°可得AB=2AG=2.8.21.答案:解:(1)到A商店购买所需费用y和重量x之间的函数关系为:y A=420x(x≥0),到B商店购买所需费用y和重量x之间的函数关系:当0≤x≤3时,y B=450x,当x>3时,y B=450×3+450×0.8×(x−3)=360x+270;(2)当x=11时,y A=420×11=4620;y B=360×11+270=3960+270=4230;∵4620>4230,∴到B商店购买最合算.解析:(1))根据等量关系“去A商店购买所需费用=标价×重量”“去B商店购买所需费用=标价×3+标价×0.8×超出3克的重量(x>3);当x≤3时,y B=530x,”列出函数关系式;(2)通过比较A、B两商店费用的大小,得到购买一定重量的黄金饰品去最合算的商店.此题考查了一次函数与一元一次不等式的应用,关键是读懂题意,列出函数关系式和不等式,再根据实际情况进行讨论,不要漏解.22.答案:12解析:解:(1)共有四个数,其中两个负数,因此可求抽取的数字恰好为负数的概率为24=12;故答案为:12;(2)用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中点(x,y)在反比例函数y=−2x图象上的有4种,因此点(x,y)在反比例函数y=−2x 图象上的概率P=412=13.(1)共有四个数,其中两个负数,因此可求抽取的数字恰好为负数的概率;(2)用列表法表示所有可能出现的结果情况,得出点(x,y)在反比例函数y=−2x图象上的情况,进而求出概率.本题考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.23.答案:(1)证明:在△AOB和△COD中,{OA=OC∠AOB=∠COD OB=OD,∴△AOB≌△COD,∴∠A=∠ACD,∴DC//AB;(2)解:连接BC , ∵AB 为直径, ∴∠ACB =90°, ∴cosA =ACAB =13,由圆周角定理得,∠D =∠A , ∴cosD =13.解析:(1)证明△AOB≌△COD ,根据全等三角形的性质得到∠A =∠C ,根据平行线的判定定理证明; (2)连接BC ,根据余弦的定义、圆周角定理解答.本题考查的是圆周角定理、全等三角形的判定和性质,掌握直径所对的圆周角是直角、余弦的概念是解题的关键.24.答案:解:(1)①当y =0时,12x +1=0,解得x =−2,则A(−2,0),当y =3时,12x +1=3,解得x =4,则B(4,3),把A(−2,0),B(4,3)代入y =ax 2+bx −3得{4a −2b −3=016a +4b −3=3,解得{a =12b =−12, ∴抛物线的解析式为y =12x 2−12x −3;②过B 作BE ⊥x 轴于点E ,如图1,AE =4−(−2)=6,AB =√32+62=3√5, 在Rt △ABE 中,sin∠ABE =AEAB =3√5=2√55, ∵PC//BE ,∴sin∠ACP =sin∠ABE =2√55;(2)设P(m,12m 2−12m −3),则C(m,12m +1),BM =4−m , ∴PC =12m +1−(12m 2−12m −3)=−12m 2+m +4, ∵sin∠ACP =PD PC=2√55, ∴PD =−√55m 2+2√55m +8√55=−√55(m −1)2+9√55,当m =1时,线段PD 长的最大值为9√55;②作BM ⊥PC ,交PC 的延长线于点M ,作DN ⊥PC 于点N ,如图,∵sin∠P =sin∠BAE =BEAB =√55, ∴DN PD=√55, ∴DN =√55(√55m 2+2√55m +8√55)=−15m 2+25m +85,∵DN//BM , ∴DC CB =DNBM ,∵线段PC 把△PDB 分成两个三角形的面积之比为9:10, ∴当DCCB =DNBM =910,即−15m 2+25m+854−m=910,整理得2m 2−13m +20=0,解得m 1=52,m 2=4(舍去); 当DCCB =DNBM =109,即−15m 2+25m+854−m=109,整理得9m 2−68m +128=0,解得m 1=329,m 2=4(舍去);综上所述,m 的值为52或329; ③存在.如图2,连接PB 交x 轴于Q , ∵∠PDC =∠BDP ,∴当∠DPC =∠DBP 时,△DPC∽△DBP , 而∠DPC =∠BAE , ∴∠BAE =∠ABP , ∴QA =QB ,设Q(t,0),则QA =QB =t +2,EQ =4−t ,在Rt △BQE 中,(4−t)2+32=t 2,解得t =74,则Q(74,0), 设直线BQ 的解析式为y =px +q ,把B(4,3),Q(74,0)代入得{4p +q =374p +q =0,解得{p =43q =−73,∴直线BQ 的解析式为y =43x −73,解方程组{y =43x −73y =12x 2−12x −3得{x =4y =3或{x =−13y =−259, ∴P(−13,−259), ∴m =−13.解析:(1)①由直线解析式可求得A 、B 两点的坐标,代入抛物线解析式可求得a 、b 的值,则可求得抛物线解析式;②过B 作BE ⊥x 轴于点E ,在Rt △ABE 中可求得sin∠ABE ,则可求得sin∠ACP ;(2)①用m 可表示出C 点坐标,则可表示出PC 的长,利用其正弦值可表示出PD 的长,利用二次函数的性质可求得其最大值;②作BM ⊥PC ,交PC 的延长线于点M ,作DN ⊥PC 于点N ,则可用m 表示DN 和BM ,由面积的比得到DC 与BC 的比,然后利用相似比可得到m 的方程,可求得m 的值;③如图2,连接PB 交x 轴于Q ,只有当∠DPC =∠DBP 时,△DPC∽△DBP ,于是可证明QA =QB ,设Q(t,0),则QA =QB =t +2,EQ =4−t ,利用勾股定理得到(4−t)2+32=t 2,解得t =74,则Q(74,0),再利用待定系数法求出直线BQ 的解析式为y =43x −73,然后解方程组{y =43x −73y =12x 2−12x −3得P 点坐标,从而得到m 的值.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数的解析式,会通过解方程或方程组求函数与坐标轴的交点坐标和两个函数图象的交点坐标;会运用勾股定理、锐角三角函数和相似比进行几何计算;理解坐标与图形性质.25.答案:解:(1)连结DO ,∵BD 平分∠ABC ,∵DO=BO,∴∠ODB=∠OBD,∴∠CBD=∠ODB.∴DO//BC,∵∠C=90°,∴∠ADO=90°,∴AC是⊙O的切线;(2)∵E是AO中点,∴AE=EO=DO=BO=53,∴sin∠A=12,∴∠A=30°,∠B=60°,连结FO,则∠BOF=60°,∴BF⏜=60180×π×53=59π.(3)①如图3,连结OD,过O作OM⊥BC于M,则BM=FM,四边形CDOM是矩形设圆的半径为r,则OA=5−r.BM=FM=r−34,∵DO//BC,而∠ADO=90°=∠OMB,∴△ADO∽△OMB,∴OAOD =OBBM,即5−rr=rr−34,解之得r1=1,r2=158.②∵在(1)中∠CBD=∠ABD,∴DE=DF,∵BE是⊙O的直径,∴∠BDE=90°,而F、F′关于BD轴对称,∴BD⊥FF′,BF=BF′,∴DE//FF′,∴∠DEF′=∠BF′F,∴△DEF′∽∠BFF′,当r=1时,AO=4,DO=1,BO=1,由①知ODBC =OAAB,∴1BC =45,∴BC=54,∵CF=34,∴BF=12,∴CD =√12−(14)2=√154, ∴DF =DF′=(34)(√154)=√62, ∴△BFF′与△DEF′的面积之比=(12√62)2=16, 同理可得,当r =158时.时,△BFF′与△DEF′的面积比=95. ∴△BFF′与△DEF′的面积比为16或95.解析:(1)连结DO ,证明DO//BC ,得出∠ADO =90°,则结论得证;(2)求出∠A =30°,∠B =60°,连结FO ,则∠BOF =60°,由弧长公式可得出答案;(3)①如图3,过O 作OM ⊥BC 于M ,则BM =FM ,四边形CDOM 是矩形,设圆的半径为r ,则OA =5−r.BM =FM =r −34,证明△ADO∽△OMB ,由比例线段可得出r 的方程,解方程即可得出答案; ②证明△DEF′∽∠BFF′,当r =1或r =158时,根据相似三角形的性质可得出答案.本题是圆的综合题,考查了直角三角形30度角的性质,切线的判定和性质,等腰三角形的判定,圆周角定理,勾股定理,轴对称的性质,相似三角形的判定和性质等知识,正确作出辅助线,熟练运用圆的相关性质定理是解题的关键.。
陕西省西安市雁塔区部分中学2020年数学中考模拟试卷
陕西省西安市雁塔区部分中学2020年数学中考模拟试卷一、选择题(满分30分,每小题3分)(共10题;共30分)1.若(x﹣1)0=1成立,则x的取值范围是()A. x=﹣1B. x=1C. x≠0D. x≠12.点A(x1,y1)、B(x2,y2)都在直线y=kx+2(k<0)上,且x1<x2则y1、y2的大小关系是()A. y1 =y2B. y1 <y2C. y1 >y2D. y1 ≥y23.关于二次函数y=2x2﹣mx+m﹣2,以下结论:①抛物线交x轴有交点;②不论m取何值,抛物线总经过点(1,0);③若m>6,抛物线交x轴于A,B两点,则AB>1;④抛物线的顶点在y=﹣2(x﹣1)2图象上.其中正确的序号是()A. ①②③④B. ①②③C. ①②④D. ②③④二、填空题(满分12分,每小题3分)(共4题;共12分)4.在﹣,﹣0.2020020002…(两个非零数之间依次多一个0),其中无理数有________个.5.正六边形的边长为10m,那么它的边心距等于________.6.如图,A点是y轴正半轴上一点,过点A作x轴的平行线交反比例函数的图象于点B,交反比例函数的图象于点C,若AB:AC=3:2,则k的值是________.7.如图,边长为12的正方形ABCD,点P是对角线BD上一动点,E在边CD上,EC=3,则PC+PE的最小值是________.三、解答题(共11题;共63分)8.先化简,再求值:(2﹣)÷ ,其中x=﹣3.9.计算:﹣2× +|1﹣|﹣()﹣210.如图,已知⊙O和弦AB请你利用尺规作⊙O的内接△ABC,使AC=BC,(作出一个即可,不写作法,保留作图痕迹)11.证明:对角线互相垂直的平行四边形是菱形.12.某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.请根据以上的信息,回答下列问题:(1)补全扇形统计图和条形统计图;(2)所抽查学生参加社会实践活动天数的众数是________(选填:A,B,C,D,E);(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?13.如图,小明欲测量一座古塔的高度,他拿出一根竹杆竖直插在地面上,然后自己退后,使眼睛通过竹杆的顶端刚好看到塔顶,若小明眼睛离地面1.5m,竹标顶端离地面2.4m,小明到竹杆的距离DF=2m,竹杆到塔底的距离DB=32m,求这座古塔的高度.14.某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值:C D 总计/tA 200B x 300总计/t 240 260 500(2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.15.小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字2,3,4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.若和为奇数,则小明胜;若和为偶数,则小亮胜.(1)请你用画树状图或列表的方法,求出这两数和为6的概率.(2)你认为这个游戏规则对双方公平吗?说说你的理由.16.如图,AB是⊙O的直径,C点在⊙O上,AD平分角∠BAC交⊙O于D,过D作直线AC的垂线,交AC 的延长线于E,连接BD,CD.(1)求证:BD=CD;(2)求证:直线DE是⊙O的切线;(3)若DE=,AB=4,求AD的长.17.在平面直角坐标系中,已知二次函数y=ax2﹣2ax﹣3a(a>0)图象与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B的坐标;(2)若M为对称轴与x轴交点,且DM=2AM,①求二次函数解析式;②当t﹣2≤x≤t时,二次函数有最大值5,求t值;③若直线x=4与此抛物线交于点E,将抛物线在C,E之间的部分记为图象记为图象P(含C,E两点),将图象P沿直线x=4翻折,得到图象Q,又过点(10,﹣4)的直线y=kx+b与图象P,图象Q都相交,且只有两个交点,求b的取值范围.18.如图1,在矩形纸片ABCD中,AB=12cm,AD=20cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.答案解析部分一、选择题(满分30分,每小题3分)1.【答案】D【解析】【解答】解:由题意可知:x﹣1≠0,解得x≠1.故答案为:D.【分析】根据非零底数的零次冥等于1,可得出x-1为零,解出x的值。
2020届陕西省西安市雁塔区益新中学中考数学一模试卷(含解析)
2020届陕西省西安市雁塔区益新中学中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.下列运算中正确的是()A. π0=1B. √x2=xC. 2−2=−4D. −|−2|=22.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A. 圆锥,三棱锥,圆柱,正方体B. 圆锥,四棱锥,圆柱,正方体C. 圆锥,四棱柱,圆柱,正方体D. 圆锥,三棱柱,圆柱,正方体3.下列运算中,正确的是()A. x2⋅x3=x6B. (x3)2=x5C. x+x2=2x3D. −x3÷x2=−x4.具备下列条件的三角形中,不是直角三角形的是()∠AA. ∠A+∠B=∠CB. ∠B=∠C=12C. ∠A−∠B=90°D. ∠A=90°−∠B5.将直线y=x平移,使得它经过点(−2,0),则平移后的直线为()A. y=x−2B. y=x+1C. y=−x−2D. y=x+26.在下列的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与相似的三角形所在的网格图形是()A.B.C.D.7.点A的坐标是(1,1),若点B在坐标轴上,且△ABO是等腰三角形,则点B的坐标不可能是()A. (2,0)B. (0.5,0)C. (1,0)D. (0,1)8.在正方形ABCD的外侧,作等边三角形ADE,则∠CBE的度数为()A. 80°B. 75°C. 70°D. 65°9.如图,CD是⊙O的直径,AB是弦,∠CAB=20°,则∠DCB的度数为?()A. 70°B. 50°C. 40°D. 20°10.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(−1,0),与y轴的交点B在(0,−2)和(0,−1)之间(不包括这两点),对称轴为直线x=1,下列结论()①abc>0②4a+2b+c>0③2a+b=0④4ac−b2<8a⑤b>cA. ①③B. ①③④C. ②④⑤D. ①③④⑤二、填空题(本大题共4小题,共12.0分)11. 分解因式:m 2n −4mn −4n =______.12. 根椐要求回答:①正十二边形的每个外角是 °. ②如图,小亮从A 点出发前进10m ,向右转15°,再前进10m ,又向右转15°,……,这样一直走下去,当他第一次回到出发点A 时,一共走了 m.13. 如图,平行四边形ABCD 的周长为18cm ,AE 平分∠BAD ,若CE =1cm ,则AB 的长度是______cm .14. 如图,矩形ABCD 中,AD =6,E 为AD 中点,点P 为对角线AC 上的一个动点,当∠DAC =30°时,则PE +PD 的最小值是______.三、计算题(本大题共1小题,共5.0分)15. 先化简:再求值:(a −2−5a+2)÷a−32a+4,其中a =(3−π)0+(13)−1四、解答题(本大题共10小题,共73.0分)16.化简:(1)4y(y−x)−(x−2y)2(2)a−1a−2÷(a+1a−2)+117.如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为______.18.我市为加强学生的安全意识,组织了全市学生参加安全知识竞赛.为了解此次知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,请根据图表信息解答以下问题.组别成绩x/分频数A组60⩽x<70aB组70⩽x<808C组80⩽x<9012D组90⩽x<10014(1)一共抽取了______名参赛学生的成绩;表中a=______;(2)补全频数分布直方图;(3)计算扇形统计图中“B”对应的圆心角度数;(4)若成绩在80分以上(包括80分)的为“优秀”,该市共有学生120万人,那么该市学生中能获得“优秀”的有多少人?19.如图,正方形ABCD中,E,F是正方形内两点,BE//DF,EF⊥BE,为探索研究这个图形的特殊性质,某数学学习小组经历力如下过程初步体验如图1,连接BD,若BE=DF,求证:EF与BD互相平分规律探究(1)如图1中,(BE+DF)2+EF2=______AB2(2)如图2,若BE≠DF,其他条件不变,(1)中的数量关系是否会发生变化?如果不会,请证明你的结论;如果会发生变化,请说明理由拓展应用如图3,若AB=4,∠DPB=135°,√2BP+2PD=4√6,求PD的长20.如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为39.7°,塔底B的仰角为28.8°.已知塔高BC=40米,塔所在的山高OB=110米,OA=100米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度.(参考数据sin28.8°≈0.45,tan28.8°≈0.50;sin39.7°≈0.60,tan39.7°≈0.75)21.2020年12月7日,成都市郫都区新增1例本土新冠肺炎确诊病例,让全体市民再次加强了疫情防范意识.某单位准备用3000元购买医用口罩和洗手液发放给全体职工,若医用口罩购买500个,洗手液购买100瓶,则剩余200元;若医用口罩购买800个,洗手液购买80瓶,则还差40元.(1)求医用口罩和洗手液的单价;(2)根据疫情防控实际需要,单位决定购买医用口罩500个,洗手液和酒精消毒喷雾共90瓶,若需购买洗手液的瓶数最多为75瓶且购买酒精消毒喷雾的瓶数不超过洗手液瓶数的1,酒精消4毒喷雾每瓶的单价是32元,请你设计一种购买方案,要求所花的费用最少,并求出最少费用.22.一个不透明的口袋中装有4个完全相同的小球,分别标有数字1、2、3、4,另有三张纸牌,牌面数字分别是2、3、4.将纸牌背面朝上充分洗匀,小明和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人摸出一张纸牌,如果所摸球上的数字与纸牌上的数字之和小于5,那么小明去;否则小亮去.(1)求出小明参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.23.如图,⊙O中,点A为B^C中点,BD为直径,过A作AP//BC交DB的延长线于点P.(Ⅰ)求证:PA是⊙O的切线;(Ⅱ)若BC=2√5,AB=2√2,求sin∠ABD的值.24.如图,已知二次函数的图象经过点A(4,4)、B(5,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,求出P的坐标;如果不存在,请说明理由.25.(14分)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)在图1中,∠AOC=度,∠NOC=度.(2)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.(3)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).(4)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,①求∠COM+∠NOA的度数;②求∠AOM−∠NOC的度数.【答案与解析】1.答案:A解析:解:A、非零的零次幂等于1,故A正确;B、√x2=|x|,故B错误;C、负整数指数幂与正整数指数幂互为倒数,故C错误;D、−|−2|=−2,故D错误;故选:A.根据非零的零次幂等于1,二次根式的性质,负整数指数幂与正整数指数幂互为倒数,只有符号不同的两个数互为相反数,可得答案.本题考查了零指数幂,利用非零的零次幂等于1是解题关键,注意√x2=|x|.2.答案:D解析:【试题解析】本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解决此类问题的关键.根据常见的几何体的展开图进行判断,即可得出结果.解:根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:圆锥,三棱柱,圆柱,正方体.故选D.3.答案:D解析:解:A、x2⋅x3=x2+3=x5,故本选项错误;B、(x3)2=x3×2=x6,故本选项错误;C、x与x2不是同类项,不能计算,故本选项错误;D、−x3÷x2=−x3−2=−x,故本选项正确.故选D.根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;合并同类项法则,同底数幂相除,底数不变指数相减对各选项分析判断即可得解.本题考查了同底数幂的乘法,幂的乘方的性质,合并同类项,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.答案:C解析:解:A、∵∠A+∠B=∠C,∠A+∠B+∠C=180°∴2∠C=180°,解得∠C=90°,∴此三角形是直角三角形,故本选项错误;∠C,B、∵∠A=∠B=12∴设∠A=∠B=x,则∠C=2x.∵∠A+∠B+∠C=180°,∴x+x+2x=180°,解得x=45°,∴∠C=2x=90°,∴此三角形是直角三角形,故本选项错误;C、∵∠A−∠B=90°∴∠A=90°+∠B>90°∴此三角形是钝角三角形,故本选项正确;D、∵∠A=90°−∠B,∴∠A+∠B=90°,∴∠C=90°,∴此三角形是直角三角形,故本选项错误.故选:C.根据三角形内角和定理对各选项进行逐一判断即可.本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.5.答案:D解析:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线y=kx+b(k≠0)平移后的解析式时要注意平移时k的值不变.根据平移不改变k的值可设y=x+b,然后将点(−2,0)代入即可得出直线的函数解析式.解:设平移后直线的解析式为y=x+b.把(−2,0)代入直线解析式得0=−2+b,解得b=2,所以平移后直线的解析式为y=x+2.故选D.6.答案:B解析:根据三边对应成比例的两个三角形相似分别判定各选项的正误即可解答.解析:根据勾股定理,BC==2,AC==,AB==,所以△ABC的三边之比为:2:=1:2:,A、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故本选项错误;B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故本选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故本选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故本选项错误.故选B.本题主要考查了勾股定理以及相似三角形的判定.7.答案:B解析:解:如图,点B的坐标不可能是可以是(2,0),(√2,0),(1,0),(−√2,0),(0,−√2),(0,1),(0,√2),(0,2),不可能是(0.5,0).故选B.作出图形,然后根据等腰三角形的两边相等分别确定出点B的位置,即可得解.本题考查了等腰三角形的判定,坐标与图形性质,作出图形,利用数形结合的思想求解更形象直观.8.答案:B解析:解:∵四边形ABCD是正方形,∴∠BAD=∠ABC=90°,AB=AD,∵△ADE是等边三角形,∴∠EAD=60°,AE=AD,∴∠BAE=150°,AB=AE,∴∠ABE=∠AEB=15°,∴∠CBE=90°−15°=75°,故选:B.根据正方形的性质得到∠BAD=∠ABC=90°,AB=AD,根据等边三角形的性质得到∠EAD=60°,AE=AD,求得∠BAE=150°,AB=AE,根据等腰三角形的性质得到∠ABE=∠AEB=15°,于是得到结论.本题考查了正方形的性质,等边三角形的性质,三角形的内角和定理,等腰三角形的性质和判定的应用,解此题的关键是求出∠AEB的度数,难度适中.9.答案:A解析:解:连接BD,如图,∵CD是⊙O的直径,∴∠CBD=90°,∵∠D=∠CAB=20°,∴∠DCB=90°−20°=70°.故选:A.连接BD,如图,利用圆周角定理得到∠CBD=90°,∠D=∠CAB=20°,然后利用互余得到∠DCB的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.10.答案:D解析:解:①由抛物线开口向上,则a>0,对称轴为x=1,因此b<0,且2a+b=0,−2<c<−1,因此abc>0,①是正确的;②当x=2时,y=4a+2b+c<0,因此②错误,③−b=1,故−b=2a,2a即2a+b=0,故③正确;④由b2−4ac>0,推出4ac−b2<0,∵8a>0,4ac−b2<8a,因此④正确;⑤抛物线过(−1,0),a−b+c=0,即,b=a+c,因为a>0,所以b>c,因此⑤错误;故选:D.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行分别推理,进而对所得结论进行判断.此题主要考查了二次函数图象与系数之间的关系.解题关键是注意掌握数形结合思想的应用.11.答案:n(m2−4m−4)解析:解:m2n−4mn−4n=n(m2−4m−4).故答案为n(m2−4m−4).提取公因式n即可.本题考查了提公因式法分解因式,要求学生灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.答案:①30②240解析:本题主要考查多边形的外有和定理.注意多边形的外角和等于360°是解题的关键.①根据多边形的外角和等于360度除以边数即可得结果;②根据多边形外角和与每个外角的度数,求出边数,即可求出走的路程.解:①360°÷12=30°.故答案为30;②360°÷15°=24,24×10=240(m).故答案为240.13.答案:9解析:解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD//BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=xcm,则AD=BC=(x+1)cm,∵▱ABCD的周长为18cm,∴x+x+1=9,解得:x=4,即AB=4cm.故答案为:9.根据平行四边形的性质得出AB=CD,AD=BC,AD//BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB =BE ,设AB =CD =xcm ,则AD =BC =(x +1)cm ,得出方程x +x +1=9,求出方程的解即可.本题考查了平行四边形的在,平行线的性质,等腰三角形的判定的应用,解此题的关键是能推出AB =BE ,题目比较好,难度适中.14.答案:3√3 解析:解:如图所示,作点D 关于AC 的对称点D′,连接AD′,PD′,则AD =AD′,∠DAC =∠D′AC =30°,PD =PD′,∴△ADD′是等边三角形,∵PD +PE =PD′+PE ,∴当E ,P ,D′在同一直线上时,PE +PD 的最小值等于D′E 的长,∵AD =6,E 为AD 中点,∴DE =3,∠DD′E =30°,∴DD′=6,∴Rt △DED′中,D′E =3√3,∴PE +PD 的最小值等于3√3,故答案为:3√3.作点D 关于AC 的对称点D′,连接AD′,PD′,当E ,P ,D′在同一直线上时,PE +PD 的最小值等于D′E 的长,依据勾股定理求得D′E 的长,即可得到PE +PD 的最小值.本题考查轴对称最短问题以及矩形的性质,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.15.答案:解:(a −2−5a+2)÷a−32a+4=(a −2)(a +2)−5a +2⋅2(a +2)a −3 =(a +3)(a −3)a +2⋅2(a +2)a −3 =2(a +3)=2a +6,当a =(3−π)0+(13)−1=1+3=4时,原式=2×4+6=8+6=14.解析:根据分式的减法和除法可以化简题目中的式子,然后根据a的值即可解答本题.本题考查分式的化简求值、零指数幂、负整数指数幂,解答本题的关键是明确它们各自的计算方法.16.答案:解:(1)4y(y−x)−(x−2y)2=4y2−4xy−(x2+4y2−4xy)=4y2−4xy−x2−4y2+4xy=−x2;(2)a−1a−2÷(a+1a−2)+1=a−1a−2÷a(a−2)+1a−2+1=a−1a−2⋅a−2(a−1)2+1=1a−1+1=1a−1+a−1a−1=aa−1.解析:(1)直接利用单项式乘以多项式以及完全平方公式分别化简得出答案;(2)直接将括号里面通分运算进而利用分式的混合运算法则计算得出答案.此题主要考查了分式的混合运算以及整式的混合运算,正确掌握相关运算法则是解题关键.17.答案:(1)如图所示:(2)3 4解析:解:(1)如图所示;(2)由(1)知AE=AD=10、∠DAF=∠EAF,∵AB=8,∴BE=√AE2−AB2=6,在△DAF和△EAF中,∵{AD=AE∠DAF=∠EAF AF=AF,∴△DAF≌△EAF(SAS),∴∠D=∠AEF=90°,∴∠BEA+∠FEC=90°,又∵∠BEA+∠BAE=90°,∴∠FEC=∠BAE,∴tan∠FEC=tan∠BAE=BEAB =68=34,故答案为:34.(1)根据题目要求作图即可;(2)由(1)知AE=AD=10、∠DAF=∠EAF,可证△DAF≌△EAF得∠D=∠AEF=90°,即可得∠FEC=∠BAE,从而由tan∠FEC=tan∠BAE=BEAB可得答案.本题主要考查作图−基本作图及全等三角形的判定与性质、解直角三角形,熟练掌握角平分线的尺规作图和全等三角形的判定与性质是解题的关键.18.答案:40 6解析:解:(1)本次抽取的学生有:14÷35%=40(名),a=40−8−12−14=6,故答案为:40,6;(2)由(1)知,a=6,补全的频数分布直方图如右图所示;=72°,(3)360°×840即扇形统计图中“B”对应的圆心角度数是72°;=78(万人),(4)120×12+1440即该市学生中能获得“优秀”的有78万人.(1)根据D组的频数和所占的百分比,可以求得本次调查的人数,然后即可得a的值;(2)根据(1)中a的值和频数分布表,可以将频数分布直方图补充完整;(3)根据频数分布表中B组的频数和(1)中的结果,可以计算出扇形统计图中“B”对应的圆心角度数;(4)根据频数分布表中的数据,可以计算出该市学生中能获得“优秀”的有多少人.本题考查频数分布直方图、频数分布表、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.19.答案:2解析:初步体验证明:如图1,连接ED、BF,∵BE=DF,BE//DF,∴四边形EBFD是平行四边形,∴EF与BD互相平分;规律探究(1)如图2,过D作DG⊥BE,交BE的延长线于G,∴∠EGD=∠GEF=∠EFD=90°,∴四边形GEFD是矩形,∴EF=GD,EG=DF,在Rt△BGD中,BG2+DG2=BD2,∴(BE+EG)2+EF2=BD2,∵△ABD是等腰直角三角形,∴BD2=2AB2,∴(BE+DF)2+EF2=2AB2,故答案为:2;(2)不会发生变化,如图3,(BE+DF)2+EF2=2AB2仍然成立,理由是:过D作DG⊥BE,交BE的延长线于G,∴∠EGD=∠GEF=∠EFD=90°,∴四边形GEFD是矩形,∴EF=GD,EG=DF,在Rt△BGD中,BG2+DG2=BD2,∴(BE+EG)2+EF2=BD2,∵△ABD是等腰直角三角形,∴BD2=2AB2,∴(BE+DF)2+EF2=2AB2,拓展应用如图4,过P作PE⊥PD,过B作BE⊥PE,过D作DG⊥BE,得矩形GEPD,∴GD=EP,EG=PD,设BE=EG=x,PD=EG=y,则BP=√2x∵AB=4,∴BD=4√2,在Rt△BGD中,由勾股定理得:BG2+DG2=BD2,∴(x+y)2+x2=(4√2)2,∴2x2+2xy+y2=32①,∵√2BP+2PD=4√6,∴2x+2y=4√6②,解①和②得:{x=2√2y=2√6−2√2,∴PD=2√6−2√2.初步体验:根据一组对边平行且相等的四边形是平行四边形得:四边形EBFD是平行四边形,再由平行四边形的对角线互相平分得结论;规律探究:(1)如图2,作辅助线,构建矩形GEFD,利用勾股定理列方程并与矩形的对边相等相结合可得结论;(2)如图3,同理可得结论;拓展应用:如图4,类比如图2,构建矩形GEPD,设BE=EG=x,PD=EG=y,则BP=√2x由勾股定理得:BG2+DG2=BD2,则(x+y)2+x2=(4√2)2,由已知得:√2BP+2PD=4√6,则2x+2y=4√6②,解①和②可得结论.本题是四边形的综合题,考查了平行四边形和矩形的性质和判定,并根据勾股定理列方程解决问题,本题的关键是作辅助线,构建矩形和直角三角形,并运用了类比的思想,使问题得以解决.20.答案:解:如图,过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形.在Rt△PBD中,∵∠BDP=90°,∠BPD=28.8°,∴BD=PD⋅tan∠BPD=PD⋅tan28.8°;在Rt△CPD中,∵∠CDP=90°,∠CPD=39.7°,∴CD=PD⋅tan∠CPD=PD⋅tan39.7°;∵CD−BD=BC,∴PD⋅tan39.7°−PD⋅tan28.8°=40,∴0.75PD−0.50PD=40,解得PD=160(米),∴BD=PD⋅tan28.8°≈160×0.50=80(米),∵OB=110米,∴PE=OD=OB−BD=30米,∵OE=PD=160米,∴AE=OE−OA=160−100=60(米),∴tanα=PEAE =3060=0.5,∴坡度为1:2.解析:过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形,先解Rt△PBD,得出BD= PD⋅tan28.8°;解Rt△CPD,得出CD=PD⋅tan39.7°;再根据CD−BD=BC,列出方程,求出PD= 160,进而求出PE=30,AE=60,然后在△APE中利用三角函数的定义即可求解.本题考查了解直角三角形的应用−仰角俯角问题、坡度坡角问题,难度适中,通过作辅助线,构造直角三角形,利用三角函数求解是解题的关键.21.答案:解:(1)设医用口罩的单价为x 元,洗手液的单价为y 元,依题意得:{500x +100y =3000−200800x +80y =3000+40, 解得:{x =2y =18. 答:医用口罩的单价为2元,洗手液的单价为18元.(2)设购买洗手液m 瓶,则购买酒精消毒喷雾(90−m)瓶,依题意得:{90−m ≤14m m ≤75, 解得:72≤m ≤75.设购买医用口罩、洗手液和酒精消毒喷雾的总费用为w 元,则w =2×500+18m +32(90−m)=−14m +3880.∵−14<0,∴w 随m 的增大而减小,∴当m =75时,w 取得最小值,最小值=−14×75+3880=2830,此时90−m =15. 答:当购进75瓶洗手液,15瓶酒精消毒喷雾时,所花的费用最少,最少费用为2830元.解析:(1)设医用口罩的单价为x 元,洗手液的单价为y 元,根据“若医用口罩购买500个,洗手液购买100瓶,则剩余200元;若医用口罩购买800个,洗手液购买80瓶,则还差40元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买洗手液m 瓶,则购买酒精消毒喷雾(90−m)瓶,根据购买洗手液的瓶数最多为75瓶且购买酒精消毒喷雾的瓶数不超过洗手液瓶数的14,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,设购买医用口罩、洗手液和酒精消毒喷雾的总费用为w 元,根据总价=单价×数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质即可解决最值问题.本题考查了二元一次方程组的应用、一次函数的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w 与m 之间的函数关系式. 22.答案:解:(1)画树状图得:∵共有12种等可能的结果,所指数字之和小于5的有3种情况,∴P(和小于5)=312=14,∴小明参加比赛的概率为:14;(2)不公平,∵P(小明)=14,P(小亮)=34.∴P(和小于5)≠P(和大于等于5),∴游戏不公平;可改为:若两个数字之和小于6,则小明去参赛;否则,小亮去参赛.解析:(1)首先根据题意画出树状图,由树状图求得所有等可能的结果与两指针所指数字之和小于5的情况,则可求得小明参加比赛的概率;(2)根据小明获胜与小亮获胜的概率,比较概率是否相等,即可判定游戏是否公平;使游戏公平,只要概率相等即可.本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.答案:(Ⅰ)证明:连结AO,交BC于点E.∵点A是BC⏜的中点,∴AO⊥BC,又∵AP//BC,∴AP⊥AO,∴AP是⊙O的切线;(Ⅱ)解:∵AO⊥BC,BC=2√5,∴BE=12BC=√5,又∵AB=2√2,∴sin∠BAE=BEAB =√104,∵OA=OB,∴∠ABD=∠BAO,∴sin∠ABD=sin∠BAE=√104.解析:此题主要考查了切线的判定、垂径定理的应用和等腰三角形的性质以及锐角三角函数关系,正确转化角度得出sin∠ABD=sin∠BAE=√104是解题的关键.(Ⅰ)根据垂径定理得出AO⊥BC,进而根据平行线的性质得出AP⊥AO,即可证得结论;(Ⅱ)根据垂径定理得出BE=√5,在Rt△ABE中,利用锐角三角函数关系得出sin∠BAE=√104,再根据等腰三角形的性质得出∠ABD=∠BAE,即可求得求sin∠ABD=sin∠BAE=√104.24.答案:解:(1)设y=ax(x−5),把A点坐标(4,4)代入得:4a(4−5)=4,解得a=−1,函数的解析式为y=−x2+5x,答:二次函数的解析式是y=−x2+5x.(2)解:0<m<4,PC=PD−CD,∵D(m,0),PD⊥x轴,P在y=−x2+5x上,C在直线OA上,A(4,4),∴P(m,−m2+5m),C(m,m)∴PC=PD−CD=−m2+5m−m=−m2+4m,=−(m−2)2+4,∵a=−1<0,开口向下,∴有最大值,当D(2,0)时,PC max=4,答:当点P在直线OA的上方时,线段PC的最大值是4.(3)当0<m<4时,仅有OC=PC,∴−m2+4m=√2m,解得m=4−√2,∴P(4−√2,2+3√2);当m≥4时,PC=CD−PD=m2−4m,OC=√2m,由勾股定理得:OP2=OD2+DP2=m2+m2(m−5)2,①当OC=PC时,m2−4m=√2m,解得:m=4+√2或m=0(舍去),∴P(4+√2,2−3√2);②当OC=OP时,(√2m)2=m2+m2(m−5)2,解得:m1=6,m2=4,∵m=4时,P和A重合,即P和C重合,不能组成△POC,∴m=4舍去,∴P(6,−6);③当PC=OP时,m2(m−4)2=m2+m2(m−5)2,解得:m=5,∴P(5,0),答:存在,P的坐标是(4−√2,2+3√2)或(4+√2,2−3√2)或(6,−6)或(5,0).解析:(1)设y=ax(x−5),把A点坐标代入即可求出答案;(2)根据点的坐标求出PC=−m2+4m,化成顶点式即可求出线段PC的最大值;(3)当0<m<4时,仅有OC=PC,列出方程,求出方程的解即可;当m≥4时,PC=CD−PD= m2−4m,OC=√2m,分为三种情况:①当OC=PC时,m2−4m=√2m,求出方程的解即可得到P的坐标;同理可求:②当OC=OP时,③当PC=OP时,点P的坐标.综合上述即可得到答案.本题主要考查对用待定系数法求二次函数的解析式,等腰三角形的性质,勾股定理,二次函数的最值等知识点的理解和掌握,用的数学思想是分类讨论思想,此题是一个综合性比较强的题目,(3)小题有一定的难度.25.答案:解:(1)∠AOC=60°,∠NOC=150°;(2)直线ON平分∠AOC.理由:设ON的反向延长线为OD,∵OM平分∠BOC,∴∠MOC=∠MOB,又∵OM⊥ON,∴∠MOD=∠MON=90°,∴∠COD=∠BON,又∵∠AOD=∠BON(对顶角相等),∴∠COD=∠AOD,∴OD平分∠AOC,即直线ON平分∠AOC.(3)∵∠BOC=120°∴∠AOC=60°,∴∠BON=∠COD=30°,即旋转60°时ON平分∠AOC,由题意得,6t=60°或240°,∴t=10或40;(4)∵∠MON=90°,∠AOC=60°,∴∠AOM=90°−∠AON、∠NOC=60°−∠AON,∴∠AOM−∠NOC=(90°−∠AON)−(60°−∠AON)=30°.解析:本题主要考查了角平分线的定义及旋转的性质,旋转的基本性质有三点:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前后的图形相等.仔细观察图形,(1)由平角的定义可得∠AOC=60º,由直角可得∠NOC度数;(2)由角的平分线的定义和等角的余角相等求解;(3)由∠BOC=120°可得∠AOC=60°,则∠BON=∠COD=30°,由题意得,6t=60°或240°,据此求解;(4)因为∠MON=90°,∠AOC=60°,所以∠AOM=90°−∠AON、∠NOC=60°−∠AON,然后作差即可.找到各个角之间的关系,即可解答出来.。
2019-2020西安市中考数学一模试题(附答案)
2019-2020西安市中考数学一模试题(附答案)一、选择题1.下列命题正确的是( )A .有一个角是直角的平行四边形是矩形B .四条边相等的四边形是矩形C .有一组邻边相等的平行四边形是矩形D .对角线相等的四边形是矩形 2.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是 A . B .C .D . 3.下表是某学习小组一次数学测验的成绩统计表: 分数/分70 80 90 100 人数/人 1 3 x1已知该小组本次数学测验的平均分是85分,则测验成绩的众数是( )A .80分B .85分C .90分D .80分和90分 4.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣15.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB=27,CD=1,则BE 的长是( )A .5B .6C .7D .86.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A.40°B.50°C.60°D.70°7.如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k >0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1;2,△OAC与△CBD的面积之和为,则k的值为()A.2B.3C.4D.8.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是()A.15.5,15.5B.15.5,15C.15,15.5D.15,159.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.10.若一元二次方程x2﹣2kx+k2=0的一根为x=﹣1,则k的值为()A.﹣1B.0C.1或﹣1D.2或011.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A .13B .5C .22D .412.下列由阴影构成的图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题13.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:抽取的体检表数n50 100 200 400 500 800 1000 1200 1500 2000 色盲患者的频数m3 7 13 29 37 55 69 85 105 138 色盲患者的频率m/n 0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).14.一列数123,,,a a a ……n a ,其中1231211111,,,,111n n a a a a a a a -=-===---,则1232014a a a a ++++=__________. 15.不等式组0125x a x x ->⎧⎨->-⎩有3个整数解,则a 的取值范围是_____. 16.在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB 的影子一部分落在水平地面L 的影长BC 为5米,落在斜坡上的部分影长CD 为4米.测得斜CD 的坡度i =1:.太阳光线与斜坡的夹角∠ADC =80°,则旗杆AB 的高度_____.(精确到0.1米)(参考数据:sin50°=0.8,tan50°=1.2,=1.732)17.若a ,b 互为相反数,则22a b ab +=________.18.在Rt△ABC 中,∠C=90°,AC=6,BC=8,点E 是BC 边上的动点,连接AE ,过点E 作AE 的垂线交AB 边于点F ,则AF 的最小值为_______19.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点处,当△为直角三角形时,BE 的长为 .20.已知M 、N 两点关于y 轴对称,且点M 在双曲线12y x=上,点N 在直线y=﹣x+3上,设点M 坐标为(a ,b ),则y=﹣abx 2+(a+b )x 的顶点坐标为 . 三、解答题21.已知:如图,在ABC 中,AB AC =,AD BC ⊥,AN 为ABC 外角CAM ∠的平分线,CE AN ⊥.(1)求证:四边形ADCE 为矩形;(2)当AD 与BC 满足什么数量关系时,四边形ADCE 是正方形?并给予证明22.已知点A 在x 轴负半轴上,点B 在y 轴正半轴上,线段OB 的长是方程x 2﹣2x ﹣8=0的解,tan ∠BAO=12. (1)求点A 的坐标;(2)点E 在y 轴负半轴上,直线EC ⊥AB ,交线段AB 于点C ,交x 轴于点D ,S△DOE=16.若反比例函数y=kx的图象经过点C,求k的值;(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.23.直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接EF,过点F作FG∥ED交AB于点G.(1)求证:直线FG是⊙O的切线;(2)若FG=4,⊙O的半径为5,求四边形FGDE的面积.24.先化简(31a+-a+1)÷2441a aa-++,并从0,-1,2中选一个合适的数作为a的值代入求值.25.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】运用矩形的判定定理,即可快速确定答案.【详解】解:A.有一个角为直角的平行四边形是矩形满足判定条件;B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;因此答案为A.【点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.2.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.3.D解析:D【解析】【分析】先通过加权平均数求出x 的值,再根据众数的定义就可以求解.【详解】解:根据题意得:70+80×3+90x+100=85(1+3+x+1), x=3∴该组数据的众数是80分或90分.故选D .【点睛】本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x 是解答问题的关键.4.B解析:B【解析】【分析】由题意可知A=111)11x x ++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】 解:A=11111x x ++-=111x x x +-=21x x - 故选B.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键. 5.B解析:B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2 )2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键6.D解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.7.C解析:C【解析】【分析】由题意,可得A(1,1),C(1,k),B(2,),D(2,k),则△OAC面积=(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),根据△OAC与△CBD的面积之和为,即可得出k的值.【详解】∵AC∥BD∥y轴,点A,B的横坐标分别为1、2,∴A(1,1),C(1,k),B(2,),D(2,k),∴△OAC面积=×1×(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),∵△OAC与△CBD的面积之和为,∴(k-1)+ (k-1)=,∴k=4.【点睛】本题考查反比例函数系数k 的几何意义,三角形面积的计算,解题的关键是用k 表示出△OAC 与△CBD 的面积.8.D解析:D【解析】【分析】【详解】根据图中信息可知这些队员年龄的平均数为:132146158163172181268321⨯+⨯+⨯+⨯+⨯+⨯+++++=15岁, 该足球队共有队员2+6+8+3+2+1=22人,则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁,故选D .9.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A .是轴对称图形,不是中心对称图形;B .是轴对称图形,也是中心对称图形;C .是轴对称图形,不是中心对称图形;D .是轴对称图形,不是中心对称图形.故选B .点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.10.A解析:A【解析】【分析】把x =﹣1代入方程计算即可求出k 的值.【详解】解:把x =﹣1代入方程得:1+2k +k 2=0,解得:k =﹣1,故选:A .【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.11.A【解析】试题分析:由题意易知:∠CAB=45°,∠ACD=30°.若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1故选A.考点: 1.旋转;2.勾股定理.12.B解析:B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是中心对称图形,不是轴对称图形,故该选项不符合题意,B、是中心对称图形,也是轴对称图形,故该选项符合题意,C、不是中心对称图形,是轴对称图形,故该选项不符合题意,D、是中心对称图形,不是轴对称图形,故该选项不符合题意.故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折沿对称轴叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.二、填空题13.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故解析:07【解析】【分析】随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.【详解】解:观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右,故男性中,男性患色盲的概率为0.07故答案为:0.07.【点睛】本题考查利用频率估计概率.14.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a3+…+a2014=671×(-1++2 解析:20112【解析】【分析】分别求得a 1、a 2、a 3、…,找出数字循环的规律,进一步利用规律解决问题.【详解】 解:123412311111,,2,1,1211a a a a a a a =-======----… 由此可以看出三个数字一循环,2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+12+2)+(-1)=20112. 故答案为20112. 考点:规律性:数字的变化类.15.﹣2≤a <﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a 的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a 的不等式从而求出a 的范围【详解】解不等式x ﹣a >0得解析:﹣2≤a <﹣1.【解析】【分析】先解不等式组确定不等式组的解集(利用含a 的式子表示),根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解不等式x ﹣a >0,得:x >a ,解不等式1﹣x >2x ﹣5,得:x <2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、 0、1,则﹣2≤a <﹣1,故答案为:﹣2≤a <﹣1.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.2m 【解析】【分析】延长AD 交BC 的延长线于点E 作DF⊥CE 于点F 解直角三角形求出EFCF 即可解决问题【详解】延长AD 交BC 的延长线于点E 作DF⊥CE 于点F 在△DCF 中∵CD=4mDF :CF =1:3解析:2m .【解析】【分析】延长AD 交BC 的延长线于点E ,作DF ⊥CE 于点F .解直角三角形求出EF ,CF ,即可解决问题.【详解】延长AD 交BC 的延长线于点E ,作DF ⊥CE 于点F .在△DCF 中,∵CD =4m ,DF :CF =1:,∴tan ∠DCF =, ∴∠DCF =30°,∠CDF =60°.∴DF =2(m ),CF =2(m ),在Rt △DEF 中,因为∠DEF =50°,所以EF =≈1.67(m )∴BE =EF+FC+CB =1.67+2+5≈10.13(m ), ∴AB =BE•tan50°≈12.2(m ),故答案为12.2m .【点睛】本题主要考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.17.0【解析】【分析】先提公因式得ab (a+b )而a+b=0任何数乘以0结果都为0【详解】解:∵=ab(a+b )而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数解析:0【解析】【分析】先提公因式得ab (a+b ),而a+b=0,任何数乘以0结果都为0.【详解】解:∵22a b ab = ab (a+b ),而a+b=0,∴原式=0.故答案为0,【点睛】本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零.18.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB 得m+m=10解得m=此时AF=2解析:15 2【解析】试题分析:如图,设AF的中点为D,那么DA=DE=DF.所以AF的最小值取决于DE的最小值.如图,当DE⊥BC时,DE最小,设DA=DE=m,此时DB=53m,由AB=DA+DB,得m+53m=10,解得m=154,此时AF=2m=152.故答案为15 2.19.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.20.(±)【解析】【详解】∵MN两点关于y轴对称∴M坐标为(ab)N为(-ab)分别代入相应的函数中得b=①a+3=b②∴ab=(a+b)2=(a-b)2+4ab=11a+b=∴y=-x2x∴顶点坐标为解析:( ,112). 【解析】【详解】 ∵M 、N 两点关于y 轴对称,∴M 坐标为(a ,b ),N 为(-a ,b ),分别代入相应的函数中得,b=12a ①,a+3=b ②,∴ab=12,(a+b )2=(a-b )2+4ab=11,a+b=∴y=-12x 2,∴顶点坐标为(2b a -=244ac b a -=112),即(112). 点睛:主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.三、解答题21.(1)见解析 (2) 12AD BC =,理由见解析. 【解析】【分析】(1)根据矩形的有三个角是直角的四边形是矩形,已知CE ⊥AN ,AD ⊥BC ,所以求证∠DAE=90°,可以证明四边形ADCE 为矩形.(2)由正方形ADCE 的性质逆推得AD DC =,结合等腰三角形的性质可以得到答案.【详解】(1)证明:在△ABC 中,AB=AC ,AD ⊥BC , ∴∠BAD=∠DAC ,∵AN 是△ABC 外角∠CAM 的平分线, ∴∠MAE=∠CAE ,∴∠DAE=∠DAC+∠CAE=12×180°=90°, 又∵AD ⊥BC ,CE ⊥AN , ∴∠ADC=∠CEA=90°,∴四边形ADCE 为矩形.(2)当12AD BC =时,四边形ADCE 是一个正方形. 理由:∵AB=AC , AD ⊥BC ,BD DC ∴= 12AD BC =,AD BD DC ∴== , ∵四边形ADCE 为矩形, ∴矩形ADCE 是正方形. ∴当12AD BC =时,四边形ADCE 是一个正方形.【点睛】本题考查矩形的判定以及正方形的性质的应用,同时考查了等腰三角形的性质,熟练掌握这些知识点是关键.22.(1)(-8,0)(2)k=-19225(3)(﹣1,3)或(0,2)或(0,6)或(2,6)【解析】【分析】(1)解方程求出OB的长,解直角三角形求出OA即可解决问题;(2)求出直线DE、AB的解析式,构建方程组求出点C坐标即可;(3)分四种情形分别求解即可解决问题;【详解】解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的解,∴OB=4,在Rt△AOB中,tan∠BAO=12 OBOA=,∴OA=8,∴A(﹣8,0).(2)∵EC⊥AB,∴∠ACD=∠AOB=∠DOE=90°,∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,∵∠ADC=∠ODE,∴∠OAB=∠DEO,∴△AOB∽△EOD,∴OA OB OE OD=,∴OE:OD=OA:OB=2,设OD=m,则OE=2m,∵12•m•2m=16,∴m=4或﹣4(舍弃),∴D(﹣4,0),E(0,﹣8),∴直线DE的解析式为y=﹣2x﹣8,∵A(﹣8,0),B(0,4),∴直线AB的解析式为y=12x+4,由28142y xy x--⎧⎪⎨+⎪⎩==,解得24585xy⎧-⎪⎪⎨⎪⎪⎩==,∴C(245,85),∵若反比例函数y=kx的图象经过点C,∴k=﹣192 25.(3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,PB=PN=2,∴P(﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P (0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);【点睛】考查反比例函数综合题、一次函数的应用、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.23.(1)证明见解析(2)48【解析】【分析】(1)利用角平分线的性质以及等腰三角形的性质得出∠OFC=∠FCG,继而得出∠GFC+∠OFC=90°,即可得出答案;(2)首先得出四边形FGDH是矩形,进而利用勾股定理得出HO的长,进而得出答案.【详解】(1)连接FO,∵ OF=OC,∴∠OFC=∠OCF.∵CF平分∠ACE,∴∠FCG=∠FCE.∴∠OFC=∠FCG.∵ CE是⊙O的直径,∴∠EDG=90°,又∵FG//ED,∴∠FGC=180°-∠EDG=90°,∴∠GFC+∠FCG=90°∴∠GFC+∠OFC=90°,即∠GFO=90°,∴OF⊥GF,又∵OF是⊙O半径,∴FG与⊙O相切.(2)延长FO,与ED交于点H,由(1)可知∠HFG=∠FGD=∠GDH=90°,∴四边形FGDH是矩形.∴FH⊥ED,∴HE=HD.又∵四边形FGDH是矩形,FG=HD,∴HE=FG=4.∴ED=8.∵在Rt△OHE中,∠OHE=90°,∴OH=22OE HE-=2254-=3.∴FH=FO+OH=5+3=8.S四边形FGDH=12(FG+ED)•FH=12×(4+8)×8=48.24.【解析】试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.试题解析:原式=223111(2)a aa a-++⨯+-=2(2)(2)11(2)a a aa a-+-+⨯+-=22aa+--;当a=0时,原式=1.考点:分式的化简求值.25.(1)本次调查的学生共有100人;(2)补图见解析;(3)选择“唱歌”的学生有480人;(4)被选取的两人恰好是甲和乙的概率是16.【解析】【分析】(1)根据A项目的人数和所占的百分比求出总人数即可;(2)用总人数减去A、C、D项目的人数,求出B项目的人数,从而补全统计图;(3)用该校的总人数乘以选择“唱歌”的学生所占的百分比即可;(4)根据题意先画出树状图,得出所有等情况数和选取的两人恰好是甲和乙的情况数,然后根据概率公式即可得出答案.【详解】(1)本次调查的学生共有:30÷30%=100(人);(2)喜欢B类项目的人数有:100﹣30﹣10﹣40=20(人),补图如下:(3)选择“唱歌”的学生有:1200×40100=480(人);(4)根据题意画树形图:共有12种情况,被选取的两人恰好是甲和乙有2种情况,则被选取的两人恰好是甲和乙的概率是212=16.【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.。
2020届陕西省西安市中考数学一模试卷(有答案)
陕西省西安市中考数学一模试卷一、选择题1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0 D.|﹣1|2.图中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为()A.B.C. D.3.下列计算正确的是()A.a3+a2=a5 B.a3﹣a2=a C.a3•a2=a6 D.a3÷a2=a4.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如表所示:用电量(度)12014016180200户数23672则这20户家庭该月用电量的众数和中位数分别是()A.180,160 B.160,180 C.160,160 D.180,1805.如图,AC∥BD,AE平分∠BAC交BD于点E.若∠1=68°,则∠2=()A.112°B.124°C.128° D.140°6.将下列图形绕其对角线的交点逆时针旋转90°,所得图形一定与原图形重合的是()A.平行四边形B.矩形C.菱形D.正方形7.如图,在平面直角坐标系中,有一条通过点(﹣3,﹣2)的直线L,若四点(﹣2,a)、(0,b)、(c,0)、(d,﹣1)均在直线L上,则下列数值的判断哪个是正确的()A.a=3 B.b>﹣2 C.c<﹣3 D.d=28.如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h1.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则下列结论正确的是()A.h2=2h1B.h2=1.5h1 C.h2=h1D.h2=h19.如图,在半径为的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为()A.1 B.C.2 D.210.二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是()A.点C的坐标是(0,1)B.线段AB的长为2C.△ABC是等腰直角三角形D.当x>0时,y随x增大而增大二、填空题11.分解因式:mn2+6mn+9m=.14.如图,在直角坐标系中,直线y=6﹣x与y=(x>0)的图象相交于点A,B,设点A的坐标为(x1,y1),那么长为x1,宽为y1的矩形面积和周长分别为、.15.如图,在△ABC中,AB=15,AC=12,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.12.如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=120°,则∠AOE=.13.用科学计算器计算:12×tan13°=(结果精确到0.01).三、解答题16.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.17.先化简,再求值:,其中.18.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)19.为了了解青少年形体情况,现随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对测评数据作了适当处理(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)请问这次被抽查形体测评的学生一共是多少人?(3)如果全市有5万名初中生,那么全市初中生中,坐姿和站姿不良的学生有多少人?20.已知:如图,▱ABCD中,点E是AD的中点,延长CE交BA的延长线于点F.求证:AB=AF.21.随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).22.某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示.(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)23.一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)24.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.25.如图,抛物线y=x2﹣x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=﹣2x上.(1)求a的值;(2)求A,B的坐标;(3)以AC,CB为一组邻边作▱ACBD,则点D关于x轴的对称点D′是否在该抛物线上?请说明理由.26.如图,正三角形ABC的边长为3+.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.陕西省西安市中考数学一模试卷参考答案与试题解析一、选择题1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0 D.|﹣1|【考点】有理数大小比较.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.【解答】解:因为正实数都大于0,所以>0,又因为正实数大于一切负实数,所以>﹣2,所以>﹣0.1所以最大,故D不对;又因为负实数都小于0,所以0>﹣2,0>﹣0.1,故C不对;因为两个负实数绝对值大的反而小,所以﹣2<﹣0.1,故B不对;故选A.2.图中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为()A.B.C. D.【考点】简单组合体的三视图.【分析】找到从上面所看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从上面看,这个几何体有三行四列,且第一列有3个小正方形,二、四列有1个小正方形、第三列有2个小正方形;故选C.3.下列计算正确的是()A.a3+a2=a5 B.a3﹣a2=a C.a3•a2=a6 D.a3÷a2=a【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【分析】根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选D.4.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如表所示:用电量(度)120140160180200户数23672则这20户家庭该月用电量的众数和中位数分别是()A.180,160 B.160,180 C.160,160 D.180,180【考点】众数;中位数.【分析】根据众数和中位数的定义就可以解决.【解答】解:在这一组数据中180是出现次数最多的,故众数是180;将这组数据从小到大的顺序排列后,处于中间位置的两个数是160,160,那么由中位数的定义可知,这组数据的中位数是÷2=160.故选:A.5.如图,AC∥BD,AE平分∠BAC交BD于点E.若∠1=68°,则∠2=()A.112°B.124°C.128° D.140°【考点】平行线的性质.【分析】根据邻补角的定义求出∠BAC,再根据角平分线的定义求出∠3,然后利用两直线平行,同旁内角互补列式求解即可.【解答】解:∵∠1=68°,∴∠BAC=180°﹣∠1=180°﹣68°=112°,∵AE平分∠BAC,∴∠3=∠BAC=×112°=56°,∵AC∥BD,∴∠2=180°﹣∠3=180°﹣56°=124°.故选B.6.将下列图形绕其对角线的交点逆时针旋转90°,所得图形一定与原图形重合的是()A.平行四边形B.矩形C.菱形D.正方形【考点】旋转对称图形.【分析】根据旋转对称图形的性质,可得出四边形需要满足的条件,结合选项即可得出答案.【解答】解:由题意可得,此四边形的对角线互相垂直、平分且相等,则这个四边形是正方形.故选D.7.如图,在平面直角坐标系中,有一条通过点(﹣3,﹣2)的直线L,若四点(﹣2,a)、(0,b)、(c,0)、(d,﹣1)均在直线L上,则下列数值的判断哪个是正确的()A.a=3 B.b>﹣2 C.c<﹣3 D.d=2【考点】一次函数图象上点的坐标特征.【分析】根据一次函数图象上点的坐标特征,根据此函数为减函数,利用增减性分析解答即可.【解答】解:如图,可得此一次函数是减函数,因为﹣2<0,所以可得a>b,因为﹣3<﹣1<0,可得c<d<﹣2,故选C.8.如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h1.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则下列结论正确的是()A.h2=2h1B.h2=1.5h1 C.h2=h1D.h2=h1【考点】三角形中位线定理.【分析】直接根据三角形中位线定理进行解答即可.【解答】解:如图所示:∵O为AB的中点,OC⊥AD,BD⊥AD,∴OC∥BD,∴OC是△ABD的中位线,∴h1=2OC,同理,当将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则h2=2OC,∴h1=h2.故选C.9.如图,在半径为的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为()A.1 B.C.2 D.2【考点】垂径定理;勾股定理.【分析】作OE⊥AB于E,OF⊥CD于F,连结OD、OB,如图,根据垂径定理得到AE=BE=AB=2,DF=CF=CD=2,根据勾股定理在Rt△OBE中计算出OE=1,同理可得OF=1,接着证明四边形OEPF为正方形,于是得到OP=OE=.【解答】解:作OE⊥AB于E,OF⊥CD于F,连结OD、OB,如图,则AE=BE=AB=2,DF=CF=CD=2,在Rt△OBE中,∵OB=,BE=2,∴OE==1,同理可得OF=1,∵AB⊥CD,∴四边形OEPF为矩形,而OE=OF=1,∴四边形OEPF为正方形,∴OP=OE=.故选B.10.二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是()A.点C的坐标是(0,1)B.线段AB的长为2C.△ABC是等腰直角三角形D.当x>0时,y随x增大而增大【考点】抛物线与x轴的交点;二次函数的性质.【分析】判断各选项,点C的坐标可以令x=0,得到的y值即为点C的纵坐标;令y=0,得到的两个x值即为与x轴的交点坐标A、B;且AB的长也有两点坐标求得,对函数的增减性可借助函数图象进行判断.【解答】解:A,令x=0,y=1,则C点的坐标为(0,1),正确;B,令y=0,x=±1,则A(﹣1,0),B(1,0),|AB|=2,正确;C,由A、B、C三点坐标可以得出AC=BC,且AC2+BC2=AB2,则△ABC是等腰直角三角形,正确;D,当x>0时,y随x增大而减小,错误.故选D.二、填空题11.分解因式:mn2+6mn+9m=m(n+3)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式m,再对余下的多项式利用完全平方公式继续分解.【解答】解:mn2+6mn+9m=m(n2+6n+9)=m(n+3)2.故答案为:m(n+3)2.14.如图,在直角坐标系中,直线y=6﹣x与y=(x>0)的图象相交于点A,B,设点A的坐标为(x1,y1),那么长为x1,宽为y1的矩形面积和周长分别为4、12.【考点】反比例函数系数k的几何意义;一次函数的图象.【分析】先求出两图象的交点坐标,从而得出矩形面积和周长.【解答】解:把y=6﹣x与y=联立到一个方程组中,解得x=3+和3﹣,y=3﹣和3+.在本题中x1=3﹣,y1=3+,所以矩形面积=x1y1=4,周长=2(x1+y1)=12.故矩形面积和周长分别为4和12.故答案为:4、12.15.如图,在△ABC中,AB=15,AC=12,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是7.2.【考点】切线的性质;垂线段最短.【分析】三角形ABC中,利用勾股定理的逆定理判断得到∠C为直角,利用90度的圆周角所对的弦为直径,得到EF为圆的直径,设圆与AB的切点为D,连接CD,当CD垂直于AB时,即CD是圆的直径的时,EF长度最小,求出即可.【解答】解:∵在△ABC中,AB=15,AC=12,BC=9,∴AB2=AC2+BC2,∴△ABC为RT△,∠C=90°,即知EF为圆的直径,设圆与AB的切点为D,连接CD,当CD垂直于AB,即CD是圆的直径时,EF长度最小,最小值是=7.2.故答案为:7.2.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.12.如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=120°,则∠AOE=60°.【考点】菱形的性质.【分析】先根据菱形的邻角互补求出∠BAD的度数,再根据菱形的对角线平分一组对角求出∠BAO的度数,然后根据直角三角形两锐角互余列式计算即可得解.【解答】解:在菱形ABCD中,∠ADC=120°,∴∠BAD=180°﹣120°=60°,∴∠BAO=∠BAD=×60°=30°,∵OE⊥AB,∴∠AOE=90°﹣∠BAO=90°﹣30°=60°.故答案为:60°.13.用科学计算器计算:12×tan13°= 2.77(结果精确到0.01).【考点】计算器—三角函数;近似数和有效数字.【分析】正确使用计算器计算即可,注意运算顺序.【解答】解:12×tan13°≈12×0.231≈2.77.故答案为:2.77.三、解答题16.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=4﹣1+2﹣+4×=5+.17.先化简,再求值:,其中.【考点】分式的化简求值;二次根式的化简求值.【分析】先将括号内通分,合并;再将除法问题转化为乘法问题;约分化简后,在原式有意义的条件下,代入计算即可【解答】解:===,当时,原式===.18.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)【考点】作图—复杂作图;角平分线的性质;垂径定理.【分析】作∠AOB的角平分线,作MN的垂直平分线,以角平分线与垂直平分线的交点为圆心,以圆心到M点(或N点)的距离为半径作圆.【解答】解:如图所示.圆P即为所作的圆.19.为了了解青少年形体情况,现随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对测评数据作了适当处理(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)请问这次被抽查形体测评的学生一共是多少人?(3)如果全市有5万名初中生,那么全市初中生中,坐姿和站姿不良的学生有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据各部分所占的百分比的和等于1求出坐姿不良所占的百分比,然后求出被抽查的学生总人数,然后求出站姿不良与三姿良好的学生人数,最后补全统计图即可;(2)根据(1)的计算即可;(3)用总人数乘以坐姿和站姿不良的学生所占的百分比,列式计算即可得解.【解答】解:(1)坐姿不良所占的百分比为:1﹣30%﹣35%﹣15%=20%,被抽查的学生总人数为:100÷20%=500名,站姿不良的学生人数:500×30%=150名,三姿良好的学生人数:500×15%=75名,补全统计图如图所示;(2)100÷20%=500(名),答:这次被抽查形体测评的学生一共是500名;(3)5万×(20%+30%)=2.5万,答:全市初中生中,坐姿和站姿不良的学生有2.5万人.20.已知:如图,▱ABCD中,点E是AD的中点,延长CE交BA的延长线于点F.求证:AB=AF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】本题考查平行四边形性质的应用,要证AB=AF,由AB=CD,可以转换为求AF=CD,只要证明△AEF≌△DEC即可.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD.∴∠F=∠2,∠1=∠D.∵E为AD中点,∴AE=ED.在△AEF和△DEC中∴△AEF≌△DEC.∴AF=CD.∴AB=AF.21.随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).【考点】解直角三角形的应用.【分析】首先根据AC∥ME,可得∠CAB=∠AE28°,再根据三角函数计算出BC的长,进而得到BD的长,进而求出DF即可.【解答】解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),答:坡道口的限高DF的长是3.8m.22.某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示.(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)【考点】一次函数的应用.【分析】(1)利用待定系数法求出一次函数解析式即可,根据当生产数量至少为10吨,但不超过50吨时,得出x的定义域;(2)根据总成本=每吨的成本×生产数量,利用(1)中所求得出即可.【解答】解:(1)利用图象设y关于x的函数解析式为y=kx+b,将(10,10)(50,6)代入解析式得:,解得:,y=﹣x+11(10≤x≤50)(2)当生产这种产品的总成本为280万元时,x(﹣x+11)=280,解得:x1=40,x2=70(不合题意舍去),故该产品的生产数量为40吨.23.一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)【考点】列表法与树状图法.【分析】先画树形图:共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占两种,摸出的两个小球标号之和是6的占一种;即可知道棋子走到哪一点的可能性最大,根据概率的概念也可求出棋子走到该点的概率.【解答】解:画树形图:共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占两种,摸出的两个小球标号之和是6的占一种;所以棋子走E点的可能性最大,棋子走到E点的概率==.24.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.【考点】切线的判定;圆周角定理.【分析】(1)连接OA,根据角之间的互余关系可得∠OAE=∠DEA=90°,故AE⊥OA,即AE是⊙O的切线;(2)根据圆周角定理,可得在Rt△AED中,∠AED=90°,∠EAD=30°,有AD=2DE;在Rt△ABD中,∠BAD=90°,∠ABD=30°,有BD=2AD=4DE,即可得出答案.【解答】(1)证明:连接OA,∵DA平分∠BDE,∴∠BDA=∠EDA.∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠EDA,∴OA∥CE.∵AE⊥CE,∴AE⊥OA.∴AE是⊙O的切线.(2)解:∵BD是直径,∴∠BCD=∠BAD=90°.∵∠DBC=30°,∠BDC=60°,∴∠BDE=120°.∵DA平分∠BDE,∴∠BDA=∠EDA=60°.∴∠ABD=∠EAD=30°.∵在Rt△AED中,∠AED=90°,∠EAD=30°,∴AD=2DE.∵在Rt△ABD中,∠BAD=90°,∠ABD=30°,∴BD=2AD=4DE.∵DE的长是1cm,∴BD的长是4cm.25.如图,抛物线y=x2﹣x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=﹣2x上.(1)求a的值;(2)求A,B的坐标;(3)以AC,CB为一组邻边作▱ACBD,则点D关于x轴的对称点D′是否在该抛物线上?请说明理由.【考点】二次函数综合题.【分析】(1)根据二次函数的顶点坐标的求法得出顶点坐标,再代入一次函数即可求出a的值;(2)根据二次函数解析式求出与x轴的交点坐标即是A,B两点的坐标;(3)根据平行四边形的性质得出D点的坐标,即可得出D′点的坐标,即可得出答案.【解答】解:(1)∵抛物线y=x2﹣x+a其顶点在直线y=﹣2x上.∴抛物线y=x2﹣x+a,=(x2﹣2x)+a,=(x﹣1)2﹣+a,∴顶点坐标为:(1,﹣+a),∴y=﹣2x,﹣+a=﹣2×1,∴a=﹣;(2)二次函数解析式为:y=x2﹣x﹣,∵抛物线y=x2﹣x﹣与x轴交于点A,B,∴0=x2﹣x﹣,整理得:x2﹣2x﹣3=0,解得:x=﹣1或3,A(﹣1,0),B(3,0);(3)作出平行四边形ACBD,作DE⊥AB,在△AOC和△BDE中∵∴△AOC≌△BED(AAS),∵AO=1,∴BE=1,∵二次函数解析式为:y=x2﹣x﹣,∴图象与y轴交点坐标为:(0,﹣),∴CO=,∴DE=,D点的坐标为:(2,),∴点D关于x轴的对称点D′坐标为:(2,﹣),代入解析式y=x2﹣x﹣,∵左边=﹣,右边=×4﹣2﹣=﹣,∴D′点在函数图象上.26.如图,正三角形ABC的边长为3+.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.【考点】位似变换;等边三角形的性质;勾股定理;正方形的性质.【分析】(1)利用位似图形的性质,作出正方形EFPN的位似正方形E′F′P′N′,如答图①所示;(2)根据正三角形、正方形、直角三角形相关线段之间的关系,利用等式E′F′+AE′+BF′=AB,列方程求得正方形E′F′P′N′的边长;(3)设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),求得面积和的表达式为:S=+(m﹣n)2,可见S的大小只与m、n的差有关:①当m=n时,S取得最小值;②当m最大而n最小时,S取得最大值.m最大n最小的情形见第(1)(2)问.【解答】解:(1)如图①,正方形E′F′P′N′即为所求.(2)设正方形E′F′P′N′的边长为x,∵△ABC为正三角形,∴AE′=BF′=x.∵E′F′+AE′+BF′=AB,∴x+x+x=3+,∴x=,即x=3﹣3,(x≈2.20也正确)(3)如图②,连接NE、EP、PN,则∠NEP=90°.设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),它们的面积和为S,则NE=,PE=n.∴PN2=NE2+PE2=2m2+2n2=2(m2+n2).∴S=m2+n2=PN2,延长PH交ND于点G,则PG⊥ND.在Rt△PGN中,PN2=PG2+GN2=(m+n)2+(m﹣n)2.∵AD+DE+EF+BF=AB,即m+m+n+n=+3,化简得m+n=3.∴S= [32+(m﹣n)2]= +(m﹣n)2①当(m﹣n)2=0时,即m=n时,S最小.∴S最小=;②当(m﹣n)2最大时,S最大.即当m最大且n最小时,S最大.∵m+n=3,3.由(2)知,m最大=3﹣9+(m最大﹣n最小)2]∴S最大= [= [9+(3﹣3﹣6+3)2]=99﹣54….≈5.47也正确)(S最大54,S最小=.综上所述,S最大=99﹣。
2020年陕西省中考数学一模试卷 解析版
2020年陕西省中考数学一模试卷一.选择题(共10小题)1.的倒数是()A.B.C.D.2.如图,将直角三角形绕其一条直角边所在直线l旋转一周,得到的几何体是()A.B.C.D.3.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a4.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°5.某校给足球队的十一位运动员每人购买了一双运动鞋.尺码及购买数量如下表:尺码/码4041424344购买数量/双24221则这十一双运动鞋尺码的众数和中位数分别为()A.40,41B.41,41C.41,42D.42,436.若正比例函数的图象经过(﹣3,2),则这个图象一定经过点()A.(2,﹣3)B.C.(﹣1,1)D.(2,﹣2)7.如图,在菱形ABCD中,∠ABC=60°,AB=4.若点E、F、G、H分别是边AB、BC、CD、DA的中点,连接EF、FG、GH、HE,则四边形EFGH的面积为()A.8B.6C.4D.68.如果点A(m,n)、B(m+1,n+2)均在一次函数y=kx+b(k≠0)的图象上,那么k的值为()A.2B.1C.﹣1D.﹣29.如图,在矩形ABCD中,AB=3.4,BC=5,以BC为直径作半圆O,点P是半圆O上的一点,若PB=4,则点P到AD的距离为()A.B.1C.D.10.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距10个单位长度.若其中一条抛物线的函数表达式为y=x2+6x+m,则m的值是()A.﹣4或﹣14B.﹣4或14C.4或﹣14D.4或14二.填空题(共4小题)11.在,﹣1,,π这四个数中,无理数有个.12.不等式+2>x的正整数解为.13.如图,在x轴上方,平行于x轴的直线与反比例函数y=和y=的图象分别交于A、B两点,连接OA、OB,若△AOB的面积为6,则k1﹣k2=.14.如图,在半圆⊙O中,AB是直径,CD是一条弦,若AB=10,则△COD面积的最大值是.三.解答题(共11小题)15.计算:×﹣2×|﹣5|+(﹣)﹣2.16.解方程:﹣=1.17.如图,已知锐角△ABC,点D是AB边上的一定点,请用尺规在AC边上求作一点E,使△ADE与△ABC相似.(作出符合题意的一个点即可,保留作图痕迹,不写作法.)18.在正方形ABCD中,M、N分别是边CD、AD的中点,连接BN,AM交于点E.求证:AM⊥BN.19.为了庆祝六一儿童节,红旗中学七年级举办了文艺演出,该校学生会为了了解学生最喜欢演出中的哪类节目,对这个年级的学生进行了抽样调查.我们根据调查结果绘制了两幅统计图.请依据以下两幅统计图提供的相关信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该校七年级有800名学生,求这些学生中最喜欢歌唱类节目的人数.20.小明想利用所学知识测量一公园门前热气球直径的大小,如图,当热气球升到某一位置时,小明在点A处测得热气球底部点C、中部点D的仰角分别为50°和60°,已知点O 为热气球中心,EA⊥AB,OB⊥AB,OB⊥OD,点C在OB上,AB=30m,且点E、A、B、O、D在同一平面内,根据以上提供的信息,求热气球的直径约为多少米?(精确到0.1m)(参考数据:sin50°≈0.7660,cos50°≈0.6428,tan50°=1.192)21.某市为了倡导居民节约用水,生活用自来水按阶梯式水价计费.如图是居民每户每月的水(自来水)费y(元)与所用的水(自来水)量x(吨)之间的函数图象.根据下面图象提供的信息,解答下列问题:(1)当17≤x≤30时,求y与x之间的函数关系式;(2)当一户居民在某月用水为15吨时,求这户居民这个月的水费;(3)已知某户居民上月水费为91元,求这户居民上月用水量多少吨?22.甲、乙两人利用五个小球做“找象限”游戏,这五个小球的球面上分别标有数字﹣2、﹣1、1、2、3,这些小球除球面上数字不同外其他完全相同.他们俩约定:把这五个小球放在一个不透明的口袋中,甲先从口袋中任摸一个小球,记下数字作为一点的横坐标,再将这个小球放回这个袋中摇匀,接着乙从口袋中任摸一个小球,记下数字作为这个点的纵坐标,这样就得到坐标平面上的一个点,若此点在第一、三象限,则甲胜,否则乙胜.这样的游戏对甲、乙双方公平吗?为什么?23.如图,⊙O是△ABC的外接圆,过点A、B两点分别作⊙O的切线PA、PB交于一点P,连接OP(1)求证:∠APO=∠BPO;(2)若∠C=60°,AB=6,点Q是⊙O上的一动点,求PQ的最大值.24.如图,在平面直角坐标系中,点A(﹣1,0),B(0,2),点C在x轴上,且∠ABC=90°.(1)求点C的坐标;(2)求经过A,B,C三点的抛物线的表达式;(3)在(2)中的抛物线上是否存在点P,使∠PAC=∠BCO?若存在,求出点P的坐标;若不存在,说明理由.25.问题探究(1)如图①,在Rt△ABC中,∠B=90°,请你过点A作一条直线AD,其中点D为BC 上一点,使直线AD平分△ABC的面积;(2)如图②,点P为▱ABCD外一点,AB=6,BC=12,∠B=45°,请过点P作一条直线l,使其平分▱ABCD的面积,并求出▱ABCD的面积;问题解决(3)如图③,在平面直角坐标系中,四边形OABC是李爷爷家一块土地的示意图,其中OA∥BC,点P处有一个休息站点(占地面积忽略不计),李爷爷打算过点P修一条笔直的小路l(路的宽度不计),使直线l将四边形OABC分成面积相等的两部分,分别用来种植不同的农作物.已知点A(8,8)、B(6,12)、P(3,6).你认为直线1是否存在?若存在,求出直线l的表达式;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.的倒数是()A.B.C.D.【分析】根据倒数的定义直接进行解答即可.【解答】解:根据倒数的定义得:﹣的倒数是﹣;故选:A.2.如图,将直角三角形绕其一条直角边所在直线l旋转一周,得到的几何体是()A.B.C.D.【分析】根据直角三角形绕直角边旋转是圆锥,可得答案.【解答】解:将直角三角形绕其一条直角边所在直线l旋转一周,得到的几何体是圆锥,故选:B.3.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a【分析】根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选:D.4.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选:B.5.某校给足球队的十一位运动员每人购买了一双运动鞋.尺码及购买数量如下表:尺码/码4041424344购买数量/双24221则这十一双运动鞋尺码的众数和中位数分别为()A.40,41B.41,41C.41,42D.42,43【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:由表可知41出现次数最多,所以众数为41,因为共有2+4+2+2+1=11个数据,所以中位数为第6个数据,即中位数为41,故选:B.6.若正比例函数的图象经过(﹣3,2),则这个图象一定经过点()A.(2,﹣3)B.C.(﹣1,1)D.(2,﹣2)【分析】先利用待定系数法求出正比例函数的解析式,再把各选项代入进行检验即可.【解答】解:设正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过(﹣3,2),∴﹣3k=2,解得k=﹣,∴正比例函数的解析式为:y=﹣x.A、∵当x=2时,y=﹣×2=﹣≠﹣3,∴此点不在函数图象上,故本选项错误;B、∵当x=时,y=﹣×=﹣1,∴此点在函数图象上,故本选项正确;C、∵当x=﹣1时,y=﹣×(﹣1)=≠1,∴此点不在函数图象上,故本选项错误;D、∵当x=2时,y=﹣×2=﹣≠﹣2,∴此点不在函数图象上,故本选项错误.故选:B.7.如图,在菱形ABCD中,∠ABC=60°,AB=4.若点E、F、G、H分别是边AB、BC、CD、DA的中点,连接EF、FG、GH、HE,则四边形EFGH的面积为()A.8B.6C.4D.6【分析】连接AC、BD交于O,根据三角形中位线性质得到EH∥BD,FG∥BD,EF∥AC,HG∥AC,推出四边形EFGH是平行四边形,求得∠HEF=90°,得到四边形EFGH 是矩形,解直角三角形得到AC=AB=4,BD=4,于是得到结论.【解答】解:连接AC、BD交于O,∵四边形ABCD是菱形,∴AC⊥BD,∵点E、F、G、H分别是边AB、BC、CD和DA的中点,∴EH∥BD,FG∥BD,EF∥AC,HG∥AC,∴EH∥FG,EF∥HG,∴四边形EFGH是平行四边形,∵AC⊥BD,∴∠AOB=90°,∴∠BAO+∠ABO=90°,∵∠AEO=∠ABO,∠BEF=∠EAO,∴∠AEO+∠BEF=90°,∴∠HEF=90°,∴四边形EFGH是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=4,BD=4,∴EF=AC=2,∴EH=BD=2,∴四边形EFGH的面积为2×=4,故选:C.8.如果点A(m,n)、B(m+1,n+2)均在一次函数y=kx+b(k≠0)的图象上,那么k的值为()A.2B.1C.﹣1D.﹣2【分析】根据点A、B的坐标利用一次函数图象上点的坐标特征可得出关于k、b的二元一次方程组(m、n当做已知量),解之即可得出k值.【解答】解:∵点A(m,n)、B(m+1,n+2)均在一次函数y=kx+b(k≠0)的图象上,∴,解得:k=2.故选:A.9.如图,在矩形ABCD中,AB=3.4,BC=5,以BC为直径作半圆O,点P是半圆O上的一点,若PB=4,则点P到AD的距离为()A.B.1C.D.【分析】作PE⊥AD于E,直线PE交BC于F,连接PC,如图,根据平行线的性质可判断PF⊥BC,再根据圆周角定理得到∠BPC=90°,则可根据勾股定理计算出PC,接着利用面积法计算出PF,然后计算出PE即可.【解答】解:如图,连接PC,作PE⊥AD于E,直线PE交BC于F,∵AD∥BC,∴PF⊥BC,∵BC为直径,∴∠BPC=90°,∴PC==3,∵PF•BC=PB•PC,∴PF==2.4,易得四边形ABFE为矩形,∴EF=AB=3.4,∴PE=3.4﹣2.4=1.故选:B.10.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距10个单位长度.若其中一条抛物线的函数表达式为y=x2+6x+m,则m的值是()A.﹣4或﹣14B.﹣4或14C.4或﹣14D.4或14【分析】根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得.【解答】解:∵一条抛物线的函数表达式为y=x2+6x+m,∴这条抛物线的顶点为(﹣3,m﹣9),∴关于x轴对称的抛物线的顶点(﹣3,9﹣m),∵它们的顶点相距10个单位长度.∴|m﹣9﹣(9﹣m)|=10,∴2m﹣18=±10,当2m﹣18=10时,m=14,当2m﹣18=﹣10时,m=4,∴m的值是4或14.故选:D.二.填空题(共4小题)11.在,﹣1,,π这四个数中,无理数有2个.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:在,﹣1,,π这四个数中,无理数有和π共2个.故答案为:212.不等式+2>x的正整数解为1,2.【分析】首先去分母、移项、合并同类项、系数化成1,求得不等式的解集,然后确定正整数解即可.【解答】解:+2>x,去分母,得:x﹣1+6>3x,移项,得:x﹣3x>1﹣6,合并同类项,得:﹣2x>﹣5,系数化成1得:x<2.5.则正整数解是:1,2.故答案是:1,2.13.如图,在x轴上方,平行于x轴的直线与反比例函数y=和y=的图象分别交于A、B两点,连接OA、OB,若△AOB的面积为6,则k1﹣k2=﹣12.【分析】根据AB∥x轴,设A(x,),B(,)得到AB=﹣x,根据△AOB的面积为6,列方程即可得到结论.【解答】解:∵AB∥x轴,∴设A(x,),B(,)∴AB=﹣x,∵△AOB的面积为6,∴(﹣x)•=6,∴k1﹣k2=﹣12,故答案为:﹣12.14.如图,在半圆⊙O中,AB是直径,CD是一条弦,若AB=10,则△COD面积的最大值是12.5.【分析】如图,作DH⊥CO交CO的延长线于H.首先证明当DH=OD时,△COD的面积最大,此时△COD是等腰直角三角形,然后求得最大值即可.【解答】解:如图,作DH⊥CO交CO的延长线于H.=•OC•DH,∵S△COD∵DH≤OD,∴当DH=OD时,△COD的面积最大,此时△COD是等腰直角三角形,∠COD=90°,此时面积的最大值为:×5×5=12.5,故答案为:12.5.三.解答题(共11小题)15.计算:×﹣2×|﹣5|+(﹣)﹣2.【分析】根据二次根式的乘法法则、绝对值和负整数指数幂的意义计算.【解答】解:原式=﹣2×10+9=2﹣10+9=2﹣1.16.解方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x(x﹣1)﹣2=x2﹣3x,去括号得:x2﹣x﹣2=x2﹣3x,移项合并得:2x=2,解得:x=1,经检验x=1是分式方程的解.17.如图,已知锐角△ABC,点D是AB边上的一定点,请用尺规在AC边上求作一点E,使△ADE与△ABC相似.(作出符合题意的一个点即可,保留作图痕迹,不写作法.)【分析】以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AC的交点即为所求作的点.【解答】解:如图,点E即为所求作的点.18.在正方形ABCD中,M、N分别是边CD、AD的中点,连接BN,AM交于点E.求证:AM⊥BN.【分析】先根据SAS证明△ABN≌△DAM,得出对应角相等∠ABN=∠DAM,再根据角的互余关系即可得出∠AEB=90°,证出AM⊥BN.【解答】证明:∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠BAN=∠ADM=90°,∵M、N分别是边CD、AD的中点,∴AN=AD,DM=CD,∴AN=DM,在△ABN和△DAM中,,∴△ABN≌△DAM(SAS),∴∠ABN=∠DAM,∵∠DAM+∠BAE=90°,∴∠ABN+∠BAE=90°,∴∠AEB=90°,∴AM⊥BN.19.为了庆祝六一儿童节,红旗中学七年级举办了文艺演出,该校学生会为了了解学生最喜欢演出中的哪类节目,对这个年级的学生进行了抽样调查.我们根据调查结果绘制了两幅统计图.请依据以下两幅统计图提供的相关信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该校七年级有800名学生,求这些学生中最喜欢歌唱类节目的人数.【分析】(1)根据统计图可得,抽样调查中,最喜欢乐器的学生有12人,占总人数的10%,根据频数与频率、数据总数的关系,即可求出本次调查的学生人数;(2)根据(1)所求结果即可补全两幅统计图;(3)根据样本估计总体即可得800名学生中最喜欢歌唱类节目的人数.【解答】解:(1)本次抽样调查的学生人数:12÷10%=120(名);(2)舞蹈类人数:120×35%=42(名),歌唱类的百分比:×100%=30%,小品类的百分比:×100%=20%.补全两幅统计图如图所示:(3)800×30%=240(名).答:最喜欢歌唱类节目的人数为240名.20.小明想利用所学知识测量一公园门前热气球直径的大小,如图,当热气球升到某一位置时,小明在点A处测得热气球底部点C、中部点D的仰角分别为50°和60°,已知点O 为热气球中心,EA⊥AB,OB⊥AB,OB⊥OD,点C在OB上,AB=30m,且点E、A、B、O、D在同一平面内,根据以上提供的信息,求热气球的直径约为多少米?(精确到0.1m)(参考数据:sin50°≈0.7660,cos50°≈0.6428,tan50°=1.192)【分析】过E点作EF⊥OB于F,过D点作DG⊥EF于G.在Rt△CEF中,根据三角函数得到CF,在Rt△DEG中,根据三角函数得到DG=EG,设热气球的直径为x米,得到关于x的方程,解方程即可求解.【解答】解:如图,过E点作EF⊥OB于F,过D点作DG⊥EF于G.在Rt△CEF中,CF=EF•tan50°=AB•tan50°=35.76m,在Rt△DEG中,DG=EG•tan60°=EG,设热气球的直径为x米,则35.76+x=(30﹣x),解得x≈11.9.故热气球的直径约为11.9米.21.某市为了倡导居民节约用水,生活用自来水按阶梯式水价计费.如图是居民每户每月的水(自来水)费y(元)与所用的水(自来水)量x(吨)之间的函数图象.根据下面图象提供的信息,解答下列问题:(1)当17≤x≤30时,求y与x之间的函数关系式;(2)当一户居民在某月用水为15吨时,求这户居民这个月的水费;(3)已知某户居民上月水费为91元,求这户居民上月用水量多少吨?【分析】(1)根据图示知,该直线经过点(20,66),(30,116),则由待定系数法来求y 与x之间的函数关系式;(2)先求出当0≤x<17时,y与x之间的函数关系式,把x=15代入可求解;(3)把y=91代入(1)中的函数关系式,求得x的值即可.【解答】解:(1)y与x之间的函数关系式为:y=kx+b,由题意得:∴∴y与x之间的函数关系式为:y=5x﹣34;(2)当x=17吨时,y=5×17﹣34=51元,∴当0≤x<17时,y与x之间的函数关系式为:y=3x,∴当x=15吨时,y=45元,答:这户居民这个月的水费45元;(3)当y=91元>51元,∴91=5x﹣34x=25答:这户居民上月用水量25吨.22.甲、乙两人利用五个小球做“找象限”游戏,这五个小球的球面上分别标有数字﹣2、﹣1、1、2、3,这些小球除球面上数字不同外其他完全相同.他们俩约定:把这五个小球放在一个不透明的口袋中,甲先从口袋中任摸一个小球,记下数字作为一点的横坐标,再将这个小球放回这个袋中摇匀,接着乙从口袋中任摸一个小球,记下数字作为这个点的纵坐标,这样就得到坐标平面上的一个点,若此点在第一、三象限,则甲胜,否则乙胜.这样的游戏对甲、乙双方公平吗?为什么?【分析】画出树状图,然后找出点在第一、三象限和第二、四象限的情况数,再根据概率公式列式进行计算即可得解.【解答】解:画树状图如下:共有25种情况,其中此点在第一、三象限的有13种结果,此点在第二、四象限的有12种结果,∴甲获胜的概率为,乙获胜的概率为,∵>,∴这样的游戏对甲、乙双方不公平.23.如图,⊙O是△ABC的外接圆,过点A、B两点分别作⊙O的切线PA、PB交于一点P,连接OP(1)求证:∠APO=∠BPO;(2)若∠C=60°,AB=6,点Q是⊙O上的一动点,求PQ的最大值.【分析】(1)根据切线的性质得出OA⊥PA,OB⊥PB,然后根据HL证得RT△PAO≌RT △PBO,即可证得结论.(2)根据切线的性质得出∠PAB=∠PBA=∠C=60°,OP⊥AB,从而证得△PAB为等边三角形,延长PO交⊙O于Q,连接AQ、BQ,则此时PQ最大,然后通过解直角三角形即可求得PQ的最大值.【解答】(1)证明:连接OA、OB,∵PA、PB是⊙O的切线,∴OA⊥PA,OB⊥PB,在RT△PAO和RT△PBO中,,∴RT△PAO≌RT△PBO(HL),∴∠APO=∠BPO;(2)解:∵PA、PB是⊙O的切线,∴∠PAB=∠PBA=∠C=60°,OP⊥AB,∴△PAB为等边三角形,延长PO交⊙O于Q,连接AQ、BQ,则此时PQ最大,∵∠APB=60°,∴∠APO=∠BPO=30°∴PQ=2×AP=2×AB=2××6=6.24.如图,在平面直角坐标系中,点A(﹣1,0),B(0,2),点C在x轴上,且∠ABC=90°.(1)求点C的坐标;(2)求经过A,B,C三点的抛物线的表达式;(3)在(2)中的抛物线上是否存在点P,使∠PAC=∠BCO?若存在,求出点P的坐标;若不存在,说明理由.【分析】(1)设C点坐标为(x,0)(x>0),可得AC=x+1,AB=,BC=,由勾股定理可得(x+1)2=5+(),解方程可求x,进一步得到点C的坐标;(2)根据待定系数法可求经过A,B,C三点的抛物线的表达式;(3)由∠PAC=∠BCO可得tan∠PAC=tan∠BCO,设P点坐标为(x,y),再分两种情况:P点在x轴上方时;P点在x轴下方时;进行讨论可求点P的坐标.【解答】解:(1)设C点坐标为(x,0)(x>0),则AC=x+1,AB=,BC=,由勾股定理可得(x+1)2=5+()2,解得x=4.故点C的坐标为(4,0);(2)设经过A,B,C三点的抛物线的表达式为y=ax2+bx+c,依题意有,解得.故经过A,B,C三点的抛物线的表达式为y=﹣x2+x+2;(3)∵∠PAC=∠BCO,∴tan∠PAC=tan∠BCO,设P点坐标为(x,y),tan∠BCO=,P点在x轴上方时,y>0,tan∠PAC=,联立,﹣x2+3x+4=x+1,x2﹣2x﹣3=0,(x﹣3)(x+1)=0,∵y>0,∴x=3,∴点P的坐标为(3,2);P点在x轴下方时;y<0,x>0,tan∠PAC=﹣,联立,x2﹣3x﹣4=x+1,x2﹣4x﹣5=0,(x﹣5)(x+1)=0,∵x>0,∴x=5,∴点P的坐标为(5,﹣3).综上可得,点P的坐标为(3,2)或(5,﹣3).25.问题探究(1)如图①,在Rt△ABC中,∠B=90°,请你过点A作一条直线AD,其中点D为BC 上一点,使直线AD平分△ABC的面积;(2)如图②,点P为▱ABCD外一点,AB=6,BC=12,∠B=45°,请过点P作一条直线l,使其平分▱ABCD的面积,并求出▱ABCD的面积;问题解决(3)如图③,在平面直角坐标系中,四边形OABC是李爷爷家一块土地的示意图,其中OA∥BC,点P处有一个休息站点(占地面积忽略不计),李爷爷打算过点P修一条笔直的小路l(路的宽度不计),使直线l将四边形OABC分成面积相等的两部分,分别用来种植不同的农作物.已知点A(8,8)、B(6,12)、P(3,6).你认为直线1是否存在?若存在,求出直线l的表达式;若不存在,请说明理由.【分析】(1)点D为BC的中点时,直线AD则平分△ABC的面积;(2)连接AC、BD,AC与BD交于点O,则点O为平行四边形ABCD的对称中心,作直线OP,直线OP即为所求,作高线AE,根据等腰直角三角形的性质求AE的长,根据平行四边形的面积公式可得结论;(3)过点B作BD⊥x轴于点D,交AO于E,连接OB,则E(6,6).先证明四边形OEBC是平行四边形,则过点P的直线平分平行四边形OEBC,然后过点P的直线只要平分△BEA的面积即可,然后求得直线AB、PA的解析式,接下来,再求得直线PF的解析式为y=kx+6﹣3k,然后再求得点G、F、E的坐标,最后,依据△BGF的面积等于△ABE的面积的一半列出关于k的方程求解即可.【解答】解:(1)如图1,点D为BC的中点,作直线AD,直线AD则平分△ABC的面积;(2)如图2,连接AC、BD,AC与BD交于点O,则点O为平行四边形ABCD的对称中心,作直线OP,直线OP即为所求;如图3,过A作AE⊥BC于E,∵∠ABC=45°,∴△ABE是等腰直角三角形,∴AE===3,∵BC=12,∴▱ABCD的面积=BC•AE=12×3=36;(3)∵A(8,8),∴直线OA的解析式为:y=x,过点B作BD⊥x轴于点D,交AO于E,连接OB,则E(6,6),∵B(6,12),点P(3,6),∴点P为线段OB的中点.∵OA∥BC,BE∥OC,∴四边形OEBC是平行四边形.∴点P是平行四边形OEBC的对称中心,∴过点P的直线平分平行四边形OEBC.∴过点P的直线PF只要平分△BEA的面积即可.设直线PF的表达式为y=kx+b,且过点P(3,6),∴3k+b=6,即b=6﹣3k,∴y=kx+6﹣3k.设直线AB的表达式为y=mx+n,且过点B(6,12),A(8,8),则,解得:,∴直线AB的函数表达式为y=﹣2x+24.∴,解得:x=,∴F的横坐标为,把x=6代入y=kx+6﹣3k得y=3k+6,∴G(6,3k+6)同理得直线AP的解析式为y=x+,当x=6时,y=,∴<3k+6<12,解得<k<2,=BG•(F x﹣6)=(12﹣3k﹣6)(﹣6)=(8﹣6)(12﹣6),∵S△BFG解得k=或k=4(舍去),∴直线l的表达式为y=x+4.。
2020年陕西省中考数学一模试卷 (含解析)
2020年陕西省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−66的相反数是()A. −66B. 66C. 166D. −1662.55°角的余角是()A. 55°B. 45°C. 35°D. 125°3.据报道,2015年国内生产总值达到677000亿元,677000用科学记数法表示应为()A. 0.677×106B. 6.77×105C. 67.7×104D. 677×1034.如图是郴(cℎēn)州市春季某一天的气温随时间变化的图象,根据图象可知,在这一天中最高气温与达到最高气温的时间是()A. 25℃,16时B. 10℃,6时C. 20℃,14时D. 15℃,18时5.(−12x2y)3的计算结果是()A. −12x6y3 B. −16x6y3 C. −18x6y3 D. 18x6y36.如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,BD⊥AC于点D.则CD的长为()A. 25√5 B. 23√5 C. 45√5 D. 35√57.直线y=ax+2与直线y=3x−2平行,下列说法不正确的是()A. a =3B. 直线y =ax +2与y =3x −2没有交点C. 方程组{y =ax +2y =3x −2无解D. 方程组{y =ax +2y =3x −2有无穷多个解8. 如图,平行四边形ABCD 中,AC ⊥AB ,点E 为BC 边中点,AD =6,则AE 的长为( )A. 2B. 3C. 4D. 59. 在直径为12cm 的圆中有一个内接△ABC ,AB =6cm ,则∠C 的度数是A. 30°B. 150°C. 30°或120°D. 30°或150°10. 在平面直角坐标系中,将抛物线y =3x 2+2先向左平移2个单位,再向上平移6个单位后所得到的抛物线的顶点坐标是( )A. (−2,6)B. (−2,−8)C. (−2,8)D. (2,−8)二、填空题(本大题共4小题,共12.0分)11. 计算:(1+√2)(1−√2)=______.12. 如图,在正五边形ABCDE 中,连接AC ,则∠BAC 的度数为______.13. 若M(2,2)和N(b,−1−n 2)是反比例函数y =kx 图象上的两点,则一次函数y =kx +b 的图象经过______ 象限.14. 如图,在菱形ABCD 中,AB =2,∠DAB =60°,对角线AC ,BD 相交于点O ,过点C 作CE//BD交AB 的延长线于点E ,连接OE ,则OE 长为______.三、计算题(本大题共2小题,共12.0分)15.解分式方程:①40x−3=64x;②2xx−1+2=−21−x.16.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)四、解答题(本大题共9小题,共66.0分)17.解不等式组:{3x≥4x−1 5x−12>x−218.已知:∠α.请你用直尺和圆规画一个∠BAC,使∠BAC=∠α.(要求:要保留作图痕迹,不写作法.)19.如图,在▱ABCD中,AE=CF,求证:四边形DEBF是平行四边形.20.某商场进了600箱苹果.在出售之前,先从中随机抽出10箱检查,称得10箱苹果的质量(单位:千克)如下:5.0,5.4,4.4,5.3,5.0,5.0,4.8,4.8,4.0,5.3.(1)请指出这10箱苹果质量的平均数、中位数和众数分别是多少?(2)请你根据上述结果估计600箱苹果的质量为多少千克.21.某生物小组观察一植物生长,得到植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行于x轴).(1)该植物从观察时起,多少天以后停止长高?(2)求AC段对应的函数解析式,并求该植物最高能长到多少厘米.22.不透明的口袋里装有黄、白两种颜色的乒乓球(除颜色外其他都相同),其中黄球有3个,白球有1个.(1)若从中随机摸出1个乒乓球,则摸出白球的概率为______;(2)若从中随机摸出2个乒乓球,求摸出的2个球都是黄球的概率.23.如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作⊙O的切线,交AB的延长线于点D,求∠D的度数.24.如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(−2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.(1)求抛物线的函数表达式;(2)点P的横坐标为t,在抛物线上的第一象限内移动,当△BCP的面积取最大值时,求t得值;(3)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标;25.如图,⊙O的直径AB=10,点P为BA的延长线上一点,直线PD切⊙O于点D,过点B作BH⊥PD,垂足为H,BH交⊙O于点C,BC=6,连接BD.(1)求证:BD平分∠ABH;(2)求PA的长;(3)E是AB⏜上的一动点,DE交AB于点F,连接AD,AE.是否存在点E,使得△ADE∽△FDB?如果存在,请证明你的结论,并求AE⏜的长;如果不存在,请说明理由.【答案与解析】1.答案:B解析:解:−66的相反数是66.故选:B.直接利用相反数的定义得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.2.答案:C解析:解:55°的余角=90°−55°=35°.故选C.相加等于90°的两角称作互为余角,也作两角互余,即一个角是另一个角的余角.因而,求这个角的余角,就可以用90°减去这个角的度数.本题考查了余角的定义,互余是反映了两个角之间的关系即和是90°.3.答案:B解析:解:677000=6.77×105,故选:B.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.答案:C解析:本题考查了函数图象,仔细观察图象,即可解决问题.根据图象,即可求出答案.解:根据题意:在这一天中最高气温即T的最大值为20,达到最高气温的时间即对应t的值为14.故选C .5.答案:C解析:解:原式=−18x 6y 3.故选C .根据幂的乘方与积的乘方运算法则进行运算即可.本题考查了幂的乘方与积的乘方,解答本题的关键是掌握幂的乘方与积的乘方运算法则. 6.答案:A解析:本题考查了勾股定理,三角形的面积.利用面积法求得线段BD 的长度是解题的关键.利用勾股定理求得相关线段的长度,然后由面积法求得BD 的长度,再利用勾股定理即可求出CD 的长.解:如图,由勾股定理得AC =√12+22=√5,∵12BC ×2=12AC ⋅BD ,即12×2×2=12×√5BD ,∴BD =4√55, ∴CD =√BC 2−BD 2=2√55. 故选A .7.答案:D解析:本题主要考查了两条直线平行问题、一次函数与二元一次方程组的关系.根据两个一次函数平行时系数之间的关系即可得出答案.解:∵直线y =ax +2与直线y =3x −2平行,∴a =3,两直线无交点,方程组{y =ax +2y =3x −2无解. 故A ,B ,C 正确,D 错误,故选D .8.答案:B解析:解:∵四边形ABCD是平行四边形,∴BC=AD=6,∵E为BC的中点,AC⊥AB,BC=3,∴AE=12故选:B.由平行四边形的性质得出BC=AD=6,由直角三角形斜边上的中线性质即可得出结果.本题考查了平行四边形的性质、直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.9.答案:D解析:本题考查了圆周角定理,考查了三角形的内接圆,解答时要进行分类讨论,根据点C所在的不同位置来加以分析.解:如图∵⊙O的直径为12cm,∴OA=OB=6cm,∵AB=6cm,∴OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠ACB=1∠AOB=30°,2∵四边形ACBC′是⊙O的内接四边形,∴∠AC′B+∠ACB=180°,∴∠AC′B=150°.∴弦长6cm所对的圆周角等于30°或150°.故选D.10.答案:C解析:本题考查了二次函数图象与几何变换.先把抛物线的解析式化为顶点式y=a(x−k)2+ℎ,其中对称轴为直线x=k,顶点坐标为(k,ℎ),若把抛物线先右平移m个单位,向上平移n个单位,抛物线的平移后顶点(k+m,ℎ+n).解:抛物线y=3x2+2的顶点坐标为(0,2),抛物线y=3x2+2先向左平移2个单位,再向上平移6个单位后所得到抛物线顶点坐标为(−2,8),故选:C.11.答案:−1解析:解:原式=1−(√2)2=1−2=−1.故答案为−1.根据平方差公式计算.本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.12.答案:36°解析:解:正五边形内角和:(5−2)×180°=3×180°=540°∴∠B=540°=108°,5∴∠BAC=180°−∠B2=180°−108°2=36°,故答案为:36°.首先利用多边形的内角和公式求得正五边形的内角和,再求得每个内角的度数,利用等腰三角形的性质可得∠BAC的度数.本题主要考查了正多边形的内角和,熟记多边形的内角和公式:(n−2)×180°是解答此题的关键.13.答案:第一、三、四解析:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键,先根据M(2,2)和N(b,−1−n2)是反比例函数y=kx图象上的两点求出k 的值及b的符号,再根据一次函数的性质即可得出结论.解:∵M(2,2)和N(b,−1−n2)是反比例函数y=kx图象上的两点,∴k=2×2=4,∴b(−1−n2)=4,∴−1−n2=4b,∵1+n2>0,∴−1−n2<0,即4b<0,∴b<0,∵一次函数y=kx+b中k=4>0,b<0,∴此函数的图象经过一、三、四象限.故答案为第一、三、四.14.答案:√7解析:解:∵四边形ABCD是菱形,∠DAB=60°,∴∠OAB=30°,∠AOB=90°.OB=OD,AO=CO,CD//AB,∵AB=2,∴OB=1,AO=OC=√3,∴DB=2,∵CE//DB,CD//BE,∴四边形DBEC是平行四边形.∴CE=DB=2,∠OCE=90°,∴OE=√OC2+CE2=√4+3=√7,故答案为:√7.由菱形的性质可得∠OAB=30°,∠AOB=90°,由直角三角形的性质可求OB=1,AO=OC=√3,由勾股定理可求OE的长.本题菱形的性质,等边三角形的性质,直角三角形的性质,平行四边形的判定和性质,灵活运用菱形的性质是本题的关键.15.答案:解:(1)方程两边都乘以x(x−3)得,40x=64(x−3),64x−40x=192,x=8,检验:当x=8时,x(x−3)≠0,∴x=8是原方程的解;(2)方程两边都乘以(x−1)得,2x+2(x−1)=2,4x=4,x=1,检验:当x=1时,x−1=0,∴x=1是原分式方程的增根,原分式方程无解.解析:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.(1)方程两边都乘以x(x−3),分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)方程两边都乘以(x−1),分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.16.答案:解:(1)作CH ⊥BD 于H ,如图,根据题意得∠DCH =15°,∠BCH =22°,∴∠BCD =∠DCH +∠BCH =15°+22°=37°;(2)易得四边形ABHC 为矩形,则CH =AB =30,在Rt △DCH 中,tan∠DCH =DH CH ,∴DH =30tan15°=30×0.268=8.04,在Rt △BCH 中,tan∠BCH =BHCH ,∴BH =30tan22°=30×0.404=12.12,∴BD =12.12+8.04=20.16≈20.2(m).答:教工宿舍楼的高BD 为20.2m .解析:(1)作CH ⊥BD 于H ,如图,利用仰角和俯角定义得到∠DCH =15°,∠BCH =22°,然后计算它们的和即可得到∠BCD 的度数;(2)利用正切定义,在Rt △DCH 中计算出DH =30tan15°=8.04,在Rt △BCH 中计算出BH =30tan22°=12.12,然后计算BH +DH 即可得到教工宿舍楼的高BD .本题考查了解直角三角形的应用−仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.17.答案:解:{3x ≥4x −1①5x−12>x −2② ∵解不等式①得:x ≤1,解不等式②得:x >−1,∴不等式组的解集为−1<x ≤1,解析:先求出不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键. 18.答案:解:如图所示,∠BAC 即为所求.解析:根据作一个角等于已知角的方法作图即可.此题主要考查了基本作图,关键是掌握作一个角等于已知角的方法.19.答案:证明:在▱ABCD中,则AB//CD,AB=CD,∵AE=CF,∴AB−AE=CD−CF,∴BE=DF,∵BE//DF,∴四边形DEBF是平行四边形.解析:利用平行四边形的性质得出AB//CD,AB=CD,进而求出BE=DF,进而利用一组对边平行且相等的四边形是平行四边形进而求出即可.此题主要考查了平行四边形的判定与性质,得出BE=DF是解题关键.=4.9(千克),20.答案:解:(1)平均数=5.0+5.4+4.4+5.3+5.0+5.0+4.8+4.8+4.0+5.3105.0出现的次数最多,是3次,因而众数是5.0千克;共有10个数,中间位置的是第5个与第6个,中位数是这两个数的平均数是5.0千克.(2)由(1)得每箱苹果的质量平均为4.9千克,∴总量=4.9×600=2940千克.答:600箱苹果的质量约为2940千克.解析:本题考查的是平均数、众数和中位数.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位.并且本题考查了总体与样本的关系,可以用样本平均数估计总体平均数.(1)根据平均数、众数和中位数的定义求解;(2)先求出样本的平均数,再估计总体.21.答案:解:(1)∵CD//x轴,∴从第50天开始植物的高度不变,答:该植物从观察时起,50天以后停止长高;(2)设直线AC的解析式为y=kx+b(k≠0),∵经过点A(0,6),B(30,12),∴{b=630k+b=12,解得{k=15b=6.所以,直线AC的解析式为y=15x+6(0≤x≤50),当x=50时,y=15×50+6=16cm.答:直线AC所在线段的解析式为y=15x+6(0≤x≤50),该植物最高长16cm.解析:本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.(1)根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;(2)设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC线段的解析式,再把x=50代入进行计算即可得解.22.答案:14解析:解:(1)∵不透明的口袋里黄球有3个,白球有1个,共有4个球,∴摸出白球的概率为14;故答案为:14.(2)根据题意画树状图如下:共有12种等情况数,其中摸出的2个球都是黄球的有6种,则摸出的2个球都是黄球的概率是612=12.(1)用白球的个数除以总球的个数即可得出答案;(2)根据题意画树状图,然后根据树状图即可求得所有等可能的结果与摸出的2个球都是黄球的情况,然后根据概率公式求解即可求得答案.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.答案:40°解析:考查切线的性质,圆周角定理,比较简单,熟记圆周角定理是解题的关键.首先连接OC,由∠A=25°,可求得∠BOC的度数,由CD是⊙O的切线,可得OC⊥CD,继而求得答案.解:连接OC,∵圆O是Rt△ABC的外接圆,∴AB是直径,∵CD 是圆O 的切线,∴OC ⊥CD ,24.答案:解:(1)∵抛物线y =ax 2+bx +4交x 轴于A(−2,0), ∴0=4a −2b +4,∵对称轴是x =3,∴−b 2a =3,即6a +b =0,两关于a 、b 的方程联立解得a =−14,b =32,∴抛物线为y =−14x 2+32x +4;(2)当x =0时,y =4,∴点C 的坐标为(0,4),∴OC =4,OB =3.∵点P 的横坐标为t ,点P 在抛物线上,∴点P 的坐标为(t,−14t 2+32t +4),当0<x ≤3时,S △BCP =3(−14t 2+32t +4)−12×3×4−12t(−14t 2+32t +4−4)−12(3−t)(−14t 2+32t +4)=−38(t −173)2+28924, 即当t =173时,最大面积为28924; 当3<x ≤6时,S △BCP =t(−1t 2+3t +4)−1×3×4−1(t −3)(−1t 2+3t +4)−1t(−1t 2+3t +4−4) =−38(t −173)2+289, 即当t =173时,最大面积为28924;当6<x ≤8时,S △BCP =4t −12×3×4−12t(4+14t 2−32t −4)−12(t −3)(−14t 2+32t +4) =−98(t −209)2+509, 即当t =209时,最大面积为509. ∵28924>509,∴当△BCP 的面积取最大值时,t 的值为173;(3)如图1所示,∵四边形为平行四边形,且BC//MN ,∴BC =MN .①N 点在M 点下方,即M 向下平移4个单位,向右平移3个单位与N 重合. 设M 1(x,−14x 2+32x +4),则N 1(x +3,−14x 2+32x), ∵N 1在x 轴上,∴−14x 2+32x =0,解得x =0(M 与C 重合,舍去),或x =6, ∴x M =6,∴M 1(6,4);②M 点在N 点右下方,即N 向下平移4个单位,向右平移3个单位与M 重合. 设M(x,−14x 2+32x +4),则N(x −3,−14x 2+32x +8), ∵N 在x 轴上,∴−14x2+32x+8=0,解得x=3−√41,或x=3+√41,∴x M=3−√41,或3+√41,∴M2(3−√41,−4)或M3(3+√41,−4)综上所述,M的坐标为(6,4)或(3−√41,−4)或(3+√41,−4).解析:本题考查了一次函数、二次函数的图象与性质,函数的意义,平移及二元一次方程求解等知识,本题难度适中,但想做全答案并不容易,是道非常值得学生练习的题目.(1)解析式已存在,y=ax2+bx+4,我们只需要根据特点描述求出a,b即可.由对称轴为−b2a,又过点A(−2,0),所以函数表达式易得;(2)根据(1)求出OB,OC的长,然后得出点P的坐标为(t,−14t2+32t+4),再分三种情况分析:当0<x≤3时;当3<x≤6时;当6<x≤8时,分别求出三种情况下的最大面积,再比较即可;(3)四边形BCMN为平行四边形,则必定对边平行且相等.因为已知MN//BC,所以MN=BC,即M、N的位置如B、C位置关系,则可分2种情形,①N点在M点右下方,即M向下平移4个单位,向右平移3个单位与N重合.②M点在N右下方,即N向下平移4个单位,向右平移3个单位与M重合.因为M在抛物线,可设坐标为(x,−14x2+32x+4),易得N坐标,由N在x轴上,所以其纵坐标为0,则可得关于x的方程,进而求出x,求出M的坐标.25.答案:(1)证明:连接OD,∵PD是⊙O的切线,∴OD⊥PD,又∵BH⊥PD,∴∠PDO=∠PHB=90°,∴OD//BH,∴∠ODB=∠DBH,而OD=OB,∴∠ODB=∠OBD,∴∠OBD=∠DBH,∴BD平分∠ABH;(2)解:过点O 作OG ⊥BC ,垂足为G ,则BG =CG =3,在Rt △OBG 中,OG =√OB 2−BG 2=4,∵∠ODH =∠DHG =∠HGO =90°,∴四边形ODHG 为矩形,∴OD =GH =5,BH =BG +GH =8,∵OD//BH ,∴PO PB =OD BH ,即PO PO+5=58,解得PO =253,∴PA =PO −AO =253−5=103;(3)当E 为AB 弧的中点时,△ADE∽△FDB ,∵E 是AB⏜的中点, 即AE⏜=BE ⏜, ∴∠ADE =∠EDB ,又∵∠AED =∠ABD ,∴△ADE∽△FDB ,可求得AE ⏜=52π.解析:此题考查了平行线的判定与性质,角平分线的定义,勾股定理,矩形的判定与性质,切线的性质,圆周角定理及其推论,相似三角形的判定,掌握这些判定与性质及定理的内容是解决此类问题的关键.(1)先连接OD ,根据PD 是⊙O 的切线,得到OD ⊥PD ,结合BH ⊥PD ,得到∠PDO =∠PHB =90°,∴OD//BH ,∴∠ODB =∠DBH ,而OD =OB ,∴∠ODB =∠OBD ,∴∠OBD =∠DBH ,即可证明BD 平分∠ABH ;(2)过点O 作OG ⊥BC ,垂足为G ,先用勾股定理求出OG =√OB 2−BG 2=4,根据∠ODH =∠DHG =∠HGO =90°,得到四边形ODHG 为矩形,得到OD =GH =5,BH =BG +GH =8,根据OD//BH ,得到PO PB =OD BH ,即PO PO+5=58,可以求出PO =253,即可求出PA 的长;(3)当E 是AB⏜的中点时,得到AE ⏜=BE ⏜,则∠ADE =∠EDB ,又∵∠AED =∠ABD ,∴△ADE∽△FDB ,可求得AE ⏜=52π.。
【精选3份合集】陕西省西安市2020年中考一模数学试卷有答案含解析
中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.下列二次根式,最简二次根式是( )A B C D解析:C【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.已知A、B两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A市到B市乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为()A.4504504050x x-=-B.4504504050x x-=-C.4504502503x x-=+D.4504502503x x-=-解析:D 【解析】解:设动车速度为每小时x千米,则可列方程为:45050x﹣450x=23.故选D.3.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是( )A.y=2x2+3 B.y=2x2﹣3C.y=2(x+3)2D.y=2(x﹣3)2解析:C【解析】【分析】按照“左加右减,上加下减”的规律,从而选出答案.【详解】y=2x2向左平移3个单位得到的抛物线的解析式是y=2(x+3)2,故答案选C.【点睛】本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.4.我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为()A.2B.2C.2D.2解析:A【解析】【分析】分析出此三棱柱的立体图像即可得出答案.【详解】由三视图可知主视图为一个侧面,另外两个侧面全等,是长×高=228222,所以答案选择A项.【点睛】本题考查了由三视图求侧面积,画出该图的立体图形是解决本题的关键.5.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,则不等式()()0kx b mx n ++>的解集为( )A .x >2B .0<x <4C .﹣1<x <4D .x <﹣1 或 x >4解析:C【解析】【分析】 看两函数交点坐标之间的图象所对应的自变量的取值即可.【详解】∵直线y 1=kx+b 与直线y 2=mx+n 分别交x 轴于点A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0的解集为﹣1<x <4,故选C .【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.6.一元二次方程x 2+kx ﹣3=0的一个根是x=1,则另一个根是( )A .3B .﹣1C .﹣3D .﹣2 解析:C【解析】试题分析:根据根与系数的关系可得出两根的积,即可求得方程的另一根.设m 、n 是方程x 2+kx ﹣3=0的两个实数根,且m=x=1;则有:mn=﹣3,即n=﹣3;故选C .【考点】根与系数的关系;一元二次方程的解.7.如图,已知△ABC 中,∠C=90°,2,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B 的长为( )A.2-2B.3C.3-1D.1解析:C【解析】【分析】延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解. 【详解】解:延长BC′交AB′于D,连接BB',如图,在2AC′=2,∵BC′垂直平分AB′,∴C′D=12AB=1,∵BD为等边三角形△ABB′的高,∴BD=323∴BC′=BD-3.故本题选择C.【点睛】熟练掌握勾股定理以及由旋转60°得到△ABB′是等边三角形是解本题的关键.8.对于反比例函数2yx,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小解析:C【解析】【详解】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x>0时,y随x的增大而减小,所以C错误;D中,当x<0时,y随x的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化9.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺解析:B【解析】【分析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴1.5 150.5x,解得x=45(尺),故选B.【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.10.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=ax与一次函数y=bx﹣c在同一坐标系内的图象大致是( )。
2020年陕西省西安市中考数学模拟试卷1解析版
2020年陕西省西安市中考数学模拟试卷1解析版一.选择题(共12小题,满分36分,每小题3分)1.下列运算正确的是()A.1﹣2=1B.3×(﹣2)=6C.(a4)2=a6D.3×(2y﹣1)=6y﹣32.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10103.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.4.下列调查方式,你认为最合适的是()A.了解北京市每天的流动人口数,采用抽样调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民”一带一路”期间的出行方式,采用全面调查方式D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式5.将点A(2,3)向左平移2个单位长度得到点A',点A'关于x轴的对称点是A'',则点A''的坐标为()A.(0,﹣3)B.(4,﹣3)C.(4,3)D.(0,3)6.使函数有意义的自变量x的取值范围为()A.x≠0B.x≥﹣1C.x≥﹣1且x≠0D.x>﹣1且x≠0 7.如图,在△ABC中,点D,E分别为AB,AC边上的点,且DE∥BC,BE相较于点O,连接AO并延长交DE于点G,交BC边于点F,则下列结论中一定正确的是()A.=B.=C.=D.=8.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥AD于点E,交BC于点F,则EF的长为.9.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为()A.56B.64C.72D.9010.如图∠A是⊙O的圆周角,∠A=50°,则∠OBC的度数为()A.30°B.40°C.50°D.60°11.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米12.已知y=bx﹣c与抛物线y=ax2+bx+c在同一直角坐标系中的图象可能是()A.B.C.D.二.填空题(共7小题,满分21分,每小题3分)13.已知一组数据:12,10,8,15,6,8.则这组数据的中位数是.14.计算:()﹣2+(π﹣3)0﹣=.15.如图,AB是⊙O的直径,点C、D在圆上,∠D=65°,则∠BAC等于度.16.初2018级某班文娱委员,对该班“肆月”学习小组同学购买不同单价的毕业照(单位:元)情况进行了统计,绘制了如图所示的条形统计图,则所购毕业照平均每张的单价是元.17.如图,已知抛物线与反比例函数的图象相交于B,且B点的横坐标为3,抛物线与y轴交于点C(0,6),A是抛物线的顶点,P点是x轴上一动点,当P A+PB最小时,P点的坐标为.18.如图,正方形ABCD的边长为4,点O为对角线AC、BD的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.19.求21+22+23+…+2n的值,解题过程如下:解:设:S=21+22+23+…+2n①两边同乘以2得:2S=22+23+24+…+2n+1②由②﹣①得:S=2n+1﹣2所以21+22+23+…+2n=2n+1﹣2参照上面解法,计算:1+31+32+33+…+3n﹣1=.三.解答题(共9小题,满分63分)20.(6分)(1)计算:(﹣2)2﹣﹣2cos30°+(﹣3)0+|﹣1|(2)化简:+÷21.(5分)关于x、y的方程组的解满足x大于0,y小于4.求a的取值范围.22.(6分)为更好地开展选修课,戏剧社的张老师统计了近五年该社团学生参加市级比赛的获奖情况,并绘制成如下两幅不完整的统计图,请根据图中的信息,完成下列问题:(1)该社团2017年获奖学生人数占近五年获奖总人数的百分比为,补全折线统计图;(2)该社团2017年获奖学生中,初一、初二年级各有一名学生,其余全是初三年级学生,张老师打算从2017年获奖学生中随机抽取两名学生参加学校的艺术节表演,请你用列表法或画树状图的方法,求出所抽取两名学生恰好都来自初三年级的概率.23.(6分)某小区为了安全起见,决定将小区内的滑滑板的倾斜角由45°调为30°,如图,已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上,调整后滑滑板会加长多少米?(结果精确到0.01米,参考数据:≈1.414,≈1.732,≈2.449)24.(6分)已知:如图,点A,F,E,C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.25.(7分)如图,过⊙O外一点P作⊙O的切线P A切⊙O于点A,连接PO并延长,与⊙O 交于C、D两点,M是半圆CD的中点,连接AM交CD于点N,连接AC、CM.(1)求证:CM2=MN•MA;(2)若∠P=30°,PC=2,求CM的长.26.(8分)如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;(1)求反比例函数的表达式;(2)根据图象直接写出﹣x>的解集;(3)将直线l1:y=x沿y向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.27.(9分)某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件.(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少m%.结果10月份利润达到3388元,求m的值(m>10).28.(10分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【解答】解:A、1﹣2=﹣1,错误;B、3×(﹣2)=﹣6,错误;C、(a4)2=a8,错误;D、3×(2y﹣1)=6y﹣3,正确;故选:D.2.【解答】解:4 400 000 000=4.4×109,故选:B.3.【解答】解:几何体的主视图有2列,每列小正方形数目分别为2,1,故选:A.4.【解答】解:A、了解北京市每天的流动人口数,采用抽样调查方式,正确;B、旅客上飞机前的安检,采用全面调查方式,故错误;C、了解北京市居民”一带一路”期间的出行方式,抽样调查方式,故错误;D、日光灯管厂要检测一批灯管的使用寿命,采用抽样调查方式,故错误;故选:A.5.【解答】解:∵点A(2,3)沿向左平移2个单位长度得到点A′,∴A′(0,3),∴点A′关于x轴对称的点的坐标是:(0,﹣3).故选:A.6.【解答】解:由题意得,x+1≥0且x≠0,解得x≥﹣1且x≠0.故选:C.7.【解答】解:∵DE∥BC,∴△ADE∽△ABC,△DEO∽△CBO.∴=,=.∴=.故选:C.8.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=3,OC=AC=4,在Rt△BOC中,由勾股定理得,BC==5,∵S△OBC=×OB×OC=×BC×OF,∴OF=,∴EF=.故答案为.9.【解答】解:∵第一个图形:三角形每条边上有3盆花,共计32﹣3盆花,第二个图形:正四边形每条边上有4盆花,共计42﹣4盆花,第三个图形:正五边形每条边上有5盆花,共计52﹣5盆花,…第n个图形:正n+2边形每条边上有n盆花,共计(n+2)2﹣(n+2)盆花,则第8个图形中花盆的个数为(8+2)2﹣(8+2)=90盆.故选:D.10.【解答】解:∵=,∴∠BOC=2∠A,∵∠A=50°,∴∠BOC=100°,∵OB=OC,∴∠OBC=∠OCB=(180°﹣100°)=40°,故选:B.11.【解答】解:作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=,∴0.45=,∴AB=21.7(米),故选:A.12.【解答】解:A、∵二次函数图象开口向上,对称轴在y轴右侧,交y轴与负半轴,∴a>0,b<0,c<0,∴一次函数图象应该过第一、二、四象限,A错误;B、∵二次函数图象开口向下,对称轴在y轴右侧,交原点,∴a<0,b>0,c=0,∴一次函数图象应该过第一、三象限,B错误;C、∵二次函数图象开口向上,对称轴在y轴左侧,交y轴与负半轴,∴a>0,b>0,c<0,∴一次函数图象应该过第一、二、三象限,C正确;D、∵二次函数图象开口向下,对称轴在y轴右侧,交y轴正半轴,∴a<0,b>0,c>0,∴一次函数图象应该过第一、三、四象限,D错误.故选:C.二.填空题(共7小题,满分21分,每小题3分)13.【解答】解:将数据从小到大重新排列为:6、8、8、10、12、15,所以这组数据的中位数为=9,故答案为:9.14.【解答】解:原式=4+1﹣3=2,故答案为:215.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠D=65°,∠B与∠D是对的圆周角,∴∠D=∠B=65°,∴∠BAC=90°﹣∠B=25°.故答案为:25.16.【解答】解:所购毕业照平均每张的单价是=18(元),故答案为:18.17.【解答】解:如图,作点A关于x轴的对称点A′,连接A′B,则A′B与x轴的交点即为所求,∵抛物线y=ax2﹣4x+c(a≠0)与反比例函数y=的图象相交于点B,且B点的横坐标为3,抛物线与y轴交于点C(0,6),∴点B(3,3),∴,解得:∴y=x2﹣4x+6=(x﹣2)2+2,∴点A的坐标为(2,2),∴点A′的坐标为(2,﹣2),设过点A′(2,﹣2)和点B(3,3)的直线解析式为y=mx+n,解得:,∴直线A′B的函数解析式为y=5x﹣12,令y=0,则0=5x﹣12得x=,故答案为:(,0).18.【解答】解:∵正方形ABCD的边长为4,∴AB=AD=4,∴BD=AB=4,∵点E为边AB的中点,∴AE=AB=2,∵∠EAD=90°,∴DE==2,过B作BF⊥DD1于F,∴∠DAE=∠EFB=90°,∵∠AED=∠BFE,∴△ADE∽△FEB,∴,∴=,∴EF=,∴DF=2+=,∵△BED绕着点B旋转至△BD1E1,∴BD1=BD,∠D1BD=∠E1BE,BE1=BE,∴DD1=2DF=,△D1BD∽△E1BE,∴=,∴=,∴EE1=,故答案为:.19.【解答】解:设S=1+31+32+33+…+3n﹣1①∴3S=3(1+31+32+33+…+3n﹣1)=3+32+33+…+3n②②﹣①得2S=3n﹣1∴S=1+31+32+33+…+3n﹣1=,故答案为:.三.解答题(共9小题,满分63分)20.【解答】解:(1)原式=4﹣2﹣2×+1+﹣1=2;(2)原式=+•=+1=.21.【解答】解:解方程组得:,∵x大于0,y小于4,∴,解得:﹣2<a<1,故a的取值范围为:﹣2<a<1.22.【解答】(1)近五年获奖总人数=7÷35%=20(人)该社团2013年获奖占近五年获奖总人数的百分比==5%,所以该社团2017年获奖占近五年获奖总人数的百分比=25%﹣5%=20%,所以该社团2017年获奖总人数=20×20%=4,补全折线统计图为:故答案为20%;(2)画树状图为:(用A表示初一学生、用B表示初二学生,用C、C表示初三学生)共有12种等可能的结果数,其中所抽取两名学生恰好都来自初三年级的结果数为2,所以所抽取两名学生恰好都来自初三年级的概率==.23.【解答】解答:在Rt△ABC中,AC=AB•sin45°=4×=2,∵∠ABC=45°,∴AC=BC=2,在Rt△ADC中,AD=2AC=4,AD﹣AB=4﹣4≈1.66.答:改善后滑板会加长1.66米.24.【解答】证明:(1)∵AB∥DC,∴∠A=∠C,在△ABE与△CDF中,∴△ABE≌△CDF(ASA);(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD,∵EG=5,∴CD=10,∵△ABE≌△CDF,∴AB=CD=10.25.【解答】解:(1)∵⊙O中,M点是半圆CD的中点,∴=,∴∠CAM=∠DCM,又∵∠CMA=∠NMC,∴△AMC∽△CMN,∴=,即CM2=MN•MA;(2)连接OA、DM,∵P A是⊙O的切线,∴∠P AO=90°,又∵∠P=30°,∴OA=PO=(PC+CO),设⊙O的半径为r,∵PC=2,∴r=(2+r),解得:r=2,又∵CD是直径,∴∠CMD=90°,∵CM=DM,∴△CMD是等腰直角三角形,∴在Rt△CMD中,由勾股定理得CM2+DM2=CD2,即2CM2=(2r)2=16,则CM2=8,∴CM=2.26.【解答】解:(1)∵直线l1:y=﹣x经过点A,A点的纵坐标是2,∴当y=2时,x=﹣4,∴A(﹣4,2),∵反比例函数y=的图象经过点A,∴k=﹣4×2=﹣8,∴反比例函数的表达式为y=﹣;(2)∵直线l1:y=﹣x与反比例函数y=的图象交于A,B两点,∴B(4,﹣2),∴不等式﹣x>的解集为x<﹣4或0<x<4;(3)如图,设平移后的直线l2与x轴交于点D,连接AD,BD,∵CD∥AB,∴△ABC的面积与△ABD的面积相等,∵△ABC的面积为30,∴S△AOD+S△BOD=30,即OD(|y A|+|y B|)=30,∴×OD×4=30,∴OD=15,∴D(15,0),设平移后的直线l2的函数表达式为y=﹣x+b,把D(15,0)代入,可得0=﹣×15+b,解得b=,∴平移后的直线l2的函数表达式为y=﹣x+.27.【解答】解:(1)设售价应为x元,依题意有1160﹣≥1100,解得x≤15.答:售价应不高于15元.(2)10月份的进价:10(1+20%)=12(元),由题意得:1100(1+m%)[15(1﹣m%)﹣12]=3388,设m%=t,化简得50t2﹣25t+2=0,解得:t1=,t2=,所以m1=40,m2=10,因为m>10,所以m=40.答:m的值为40.28.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E,∵抛物线对称轴为x=﹣=﹣,∴E(﹣,﹣3),∵M(1,0),N(﹣2,﹣6),设△DMN的面积为S,∴S=S△DEN+S△DEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=,(3)当a=﹣1时,抛物线的解析式为:y=﹣x2﹣x+2=﹣(x+)2+,有,﹣x2﹣x+2=﹣2x,解得:x1=2,x2=﹣1,∴G(﹣1,2),∵点G、H关于原点对称,∴H(1,﹣2),设直线GH平移后的解析式为:y=﹣2x+t,﹣x2﹣x+2=﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.。
2020年陕西省中考数学全真模拟数学一模试卷(A卷) (含答案解析)
2020年陕西省中考数学全真模拟数学一模试卷(A卷)一、选择题(本大题共10小题,共30.0分)1.−14的相反数为()A. −4B. 14C. 4 D. −142.在如图所示的四个几何体中,俯视图是矩形的是()A. B. C. D.3.如图,AD//BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()A. 30°B. 60°C. 90°D. 120°4.下列各点中,在正比例函数y=3x的图象上的是()A. (1,3)B. (−1,3)C. (3,1)D. (3,−1)5.下列计算正确的是()A. x2+x=x3B. (−3x)2=6x2C. 8x4÷2x2=4x2D. (x−2y)(x+2y)=x2−2y26.如图所示,在△ABC中,AB=AC,AD是中线,DE⊥AB,DF⊥AC,垂足分别为E、F,则下列四个结论中:①AB上任一点与AC上任一点到D的距离相等;②AD上任一点到AB、AC的距离相等;③∠BDE=∠CDF;④∠1=∠2.正确的有()A. 1个B. 2个C. 3个D. 4个7. 直线y =x 与y =−x +4的交点在第( )象限.A. 一B. 二C. 三D. 四8. 已知菱形ABCD 的对角线相交于点O ,G 是OB 上的一点,过点D 作DF ⊥GC 于点F ,DF ,AC 的延长线相交于点E ,sin∠CDO =√55,OG =65,那么OE 的长为( )A. 6√35B. 53C. √15D. 1259. 如图,A ,B ,C ,D 是⊙O 上的四个点,AB⏜=BC ⏜,若∠AOB =58°,则∠BDC 的度数为( ) A. 58°B. 42°C. 32°D. 29°10. 抛物线y =x 2−2x +3向左平移4个单位长度后的顶点坐标是( )A. (2,3)B. (3,−2)C. (−3,2)D. (4,2)二、填空题(本大题共4小题,共12.0分)11. 在数−1,0,√2,−√3中,最小的数是______.12. 如图,∠1是五边形ABCDE 的一个外角.若∠1=60°,则∠A +∠B +∠C +∠D 的度数为________.13. 如图,在平面直角坐标系中,点A(6,0),B(0,3),反比例函数y =kx (k >0)的图象经过矩形ABCD 的顶点C ,且交边AD 于点E ,若E 为AD 的中点,则k 的值为______.14.如图,正方形ABCD中,BC=2,点M是AB边的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,若∠DFE=45°,PF=√56,则DP的长为______;则CE=______.三、计算题(本大题共2小题,共10.0分)15.计算:√9−(−1)2019+(3.14−π)0−(12)−216.计算:(x+2x2−2x −x−1x2−4x+4)÷x−4x.四、解答题(本大题共9小题,共68.0分)17.已如:⊙O与⊙O上的一点A(1)求作:⊙O的内接正六边形ABCDEF;(要求:尺规作图,不写作法但保留作图痕迹)(2)连接CE,BF,判断四边形BCEF是否为矩形,并说明理由.18.如图,已知在△ABC中,DE//BC交AC于点E,交AB于点D,BC.DE=12求证:D、E分别是AB、AC的中点.19.为宣传节约用水,小强随机调查了某小区部分家庭3月份的用水情况,并将收集的数据整理成如下统计图.(1)小明一共调查了__________户家庭;(2)小强调查的家庭3月份用水量的众数是____________,中位数是_______________,平均数是________________;(3)若该小区有800户居民,请你估计这个小区3月份的总用水量是多少吨?20.李华晚上在两根相距40m的路灯杆下来回散步,已知李华身高AB=1.6m,灯柱CD=EF=8m.(1)若李华距灯柱CD的距离DB=16m,求他的影子BQ的长.(2)若李华的影子PB=5m,求李华距灯柱CD的距离.21.某校图书馆为了满足同学们阅读课外书的需求,计划购进甲、乙两种图书共100套,其中甲种图书每套120元,乙种图书每套80元,设购买甲种图书的数量x套.(1)按计划用11000元购进甲、乙两种图书时,问购进这甲、乙两种图书各多少套?(2)若购买甲种图书的数量要不少于乙种图书的数量的1,购买两种图书的总费用为W元,求出3最少总费用.(3)图书馆在不增加购买数量的情况下,增加购买丙种图书,要求甲种图书与丙种图书的购买费用相同,丙种图书每套100元,总费用比(2)中最少总费用多出1240元,请直接写出购买方案.22.袋中装有3红1白除颜色外一样的球,一次随机取出两只球,请用列表或画树状图的方法求摸出两球是一红一白的概率.23.如图,⊙O是△ABC的外接圆,∠BAC的平分线交⊙O于点D,交BC于点E,过点D作直线DF//BC.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)若AB=6,AE=12√35,CE=4√75,求BD的长.24.如图,已知顶点为C(0,−3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M(且点M在BC上方),使得∠MCB=15∘?若存在,求出点M的坐标;若不存在,请说明理由.25.如图四边形ABCD中,AD=DC.∠DAB=∠ACB=90°,过点D作DF⊥AC,垂足为F.DF与AB相交于E.设AB=15,BC=9,P是射线DF上的动点.求△BCP的周长最小值?【答案与解析】1.答案:B解析:解:−14的相反数是14.故选:B.根据相反数的定义,只有符号不同的两个数互为相反数解答.本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.答案:D解析:解:A、圆柱俯视图是圆,故此选项错误;B、圆锥俯视图是带圆心的圆,故此选项错误;C、三棱柱俯视图是三角形,故此选项错误;D、长方体俯视图是矩形,故此选项正确.故选:D.俯视图是分别从物体上面看,所得到的图形.本题考查了几何体的三视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.答案:B解析:本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.先根据两直线平行,内错角相等得到∠ADB=∠B=30°,再利用角平分线定义得到∠ADE=2∠B=60°,然后再根据两直线平行,内错角相等即可得到∠DEC的度数.解:∵AD//BC,∴∠ADB=∠B=30°,∵DB平分∠ADE,∴∠ADE=2∠B=60°,∵AD//BC,∴∠DEC=∠ADE=60°.故选B.4.答案:A解析:解:A、当x=1时,y=3x=3,∴点(1,3)在正比例函数y=3x的图象上;B、当x=−1时,y=3x=−3,∴点(−1,3)不在正比例函数y=3x的图象上;C、D、当x=3时,y=3x=9,∴点(3,1)和(3,−1)不在正比例函数y=3x的图象上.故选:A.利用一次函数图象上点的坐标特征验证四个选项中的点是否在正比例函数图象上,此题得解.本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+ b是解题的关键.5.答案:C解析:解:x2+x不能合并,故选项A错误;(−3x)2=9x2,故选项B错误;8x4÷2x2=4x2,故选项C正确;(x−2y)(x+2y)=x2−4y2,故选项D错误;故选:C.根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.6.答案:C解析:本题考查角平分线的性质、等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.利用等腰三角形的性质以及角平分线的性质定理一一判断即可;解:∵AB=AC,BD=CD,∴AD平分∠BAC,∴∠1=∠2,∴AD上任一点到AB、AC的距离相等,故②④正确,∵∠B=∠C,DE⊥AB,DF⊥AC,∴∠BDE+∠B=90°,∠CDF+∠C=90°,∴∠BDE=∠CDF.故③正确,AB上任一点与AC上任一点到D的距离不一定相等,故①错误,故选:C.7.答案:A解析:解:根据题意正比例函数的图象y=x过第一、三象限,而一次函数y=−x+4的图象过第一、二、四象限.所以其交点应在第一象限.故选:A.此题可根据正比例函数和一次函数所在的象限确定出交点所在的象限.本题主要考查了一次函数的图象性质,由图象确定交点所在的象限较为简单.本题还可以联立两直线解析式求出交点坐标,进而判断交点所在象限.8.答案:D解析:解:∵四边形ABCD是菱形,∴AC⊥BD,∴∠GOC=∠EOD,∵sin∠CDO=OCCD =√55,设OC=√5x,CD=5x,则OD=2√5x,∵DF⊥GC,∴∠CFE=90°=∠GOC,∵∠GCO=∠ECF,∴∠OGC=∠E,∵∠GOC=∠EOD=90°,∴△DOE∽△COG,∴ODOC =OEOG,∴2√5x√5x =OE65=2,∴OE=125,故选:D.根据三角函数的比设OC=√5x,CD=5x,利用勾股定理可得OD=2√5x,证明△DOE∽△COG,列比例式可得结论.本题考查的是菱形的性质和相似三角形的判定和性质的应用、三角函数,正确运用三角函数设未知数是关键.9.答案:D解析:【分析本题考查的是圆心角、弧、弦之间的关系、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.连接OC,根据圆心角、弧、弦之间的关系定理得到∠BOC=∠AOB=58°,根据圆周角定理计算,得到答案.解:连接OC,∵AB⏜=BC⏜,∴∠BOC=∠AOB=58°,由圆周角定理得,∠BDC=12∠BOC=29°,故选D.10.答案:C解析:解:抛物线y=x2−2x+3=(x−1)2+2,顶点坐标是(1,2),将其向左平移4个单位,得到的点是(−3,2).故选:C.先将抛物线y=x2−2x+3化为顶点式,找出顶点坐标,利用平移的特点即可求出新的抛物线顶点坐标.考查了二次函数图象与几何变换,二次函数的性质.解决本题的关键是得到所求抛物线顶点坐标,利用平移的规律解答.11.答案:−√3解析:解:∵|−1|=1,|−√3|=√3而√3>1∴−√3<−1∴−√3<−1<0<√2故答案为−√3.显然0与√2都大于负数,所以只要比较−1与−√3的大小就可以找到最小的数.本题考查的是实数的大小比较,抓住两个负数的大小方法比较是解决问题的关键.12.答案:420°解析:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.根据补角的定义得到∠AED=120°,根据五边形的内角和即可得到结论.解:∵∠1=60°,∴∠AED=120°,∵五边形的内角和为(5−2)×180°=540°,∴∠A+∠B+∠C+∠D=540°−∠AED=420°.故答案为420°.13.答案:14解析:本题考查反比例函数图象上点的坐标特征、矩形的性质、相似三角形的性质等知识,设适当的未知数,表示点的坐标,然后利用方程求出未知数的值,进而得出答案.设法表示点C、E的坐标,通过辅助线,构造相似三角形,设合适未知数,表示出点C、E的坐标,再依据都在反比例函数的图象上,建立方程解出未知数,确定点的坐标,进而确定k的值.解:过点CE分别作x轴y、轴的垂线,垂足为M、N,如图:∵ABCD是矩形,∴∠ABC=∠BAC=90°,易证△AOB∽△BMC,∴CMBM =OBOA=36=12,设CM=a,则BM=2a,∴C(a,2a+3),同理可得:E(6+12a,a),∵点C、E在反比例函数y=kx(k>0)的图象上,∴a(2a+3)=a(6+12a),∴a1=14,a2=0(舍去),故答案为14.14.答案:2√53;76解析:解:如图,∵四边形ABCD是正方形,∴AB=BC=CD=DA=2,∠DAB=90°,∠DCP=45°,∵点M是AB边的中点,∴AM=BM=1,在Rt △ADM 中,DM =2+12=√5,∵AM//CD ,∴AM DC =PM PD =12, ∴DP =2√53, ∵PF =√56, ∴DF =DP −PF =2√53−√56=√52, ∵∠EDF =∠PDC ,∠DFE =∠DCP =45°,∴△DEF∽△DPC ,∴DF DC =DE DP , ∴√522=2√53, ∴DE =56, ∴CE =CD −DE =2−56=76. 故答案为:2√53,76. 如图,首先求出DM 、DF 、PD 的长,证明△DEF∽△DPC ,可得DF DC =DE DP ,求出DE 即可解决问题.本题考查正方形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.15.答案:解:原式=3+1+1−4=1.解析:直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键. 16.答案:解:原式=[x+2x(x−2)−x−1(x−2)2]⋅xx−4=(x +2)(x −2)−x(x −1)x(x −2)2⋅x x −4 =x −4x(x −2)2⋅x x −4=1(x−2)2.解析:先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解后约分即可. 本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.17.答案:解:(1)如图,正六边形ABCDEF 为所作;(2)四边形BCEF 为矩形.理由如下:连接BE ,如图,∵六边形ABCDEF 为正六边形,∴AB =BC =CD =DE =EF =FA ,∴AB⏜=BC ⏜=CD ⏜=DE ⏜=EF ⏜=AF ⏜, ∴BC⏜+CD ⏜+DE ⏜=EF ⏜+AF ⏜+AF ⏜, ∴BAE⏜=BCE ⏜, ∴BE 为直径,∴∠BFE =∠BCE =90°,同理可得∠FBC =∠CEF =90°,∴四边形BCEF 为矩形.解析:(1)如图,在⊙O 上依次截取六段弦,使它们都等于OA ,从而得到正六边形ABCDEF ;(2)连接BE ,如图,利用正六边形的性质得AB =BC =CD =DE =EF =FA ,AB⏜=BC ⏜=CD ⏜=DE ⏜=EF⏜=AF ⏜,则判断BE 为直径,所以∠BFE =∠BCE =90°,同理可得∠FBC =∠CEF =90°,然后判断四边形BCEF 为矩形.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了矩形的判定与正六边形的性质.18.答案:证明:作BF//AC交ED的延长线于点F,∵DE//BC,∴四边形BCEF是平行四边形,∴BC=EF=2ED,AC//BF,EC=BF,∴ED=DF,∠A=∠DBF,∴在△ADE与△BDF中,{∠A=∠DBF∠ADE=∠BDF DE=DF,∴△ADE≌△BDF(AAS)∴AD=BD,AE=BF=EC,即D、E分别是AB、AC的中点.解析:如图,作BF//AC交ED的延长线于点F,构建平行四边形BCEF,利用平行四边形的性质和全等三角形的判定定理AAS得到△ADE≌△BDF,则该全等三角形的对应边相等:AD=BD,AE= BF=EC,即证得结论.本题考查了三角形中位线定理、全等三角形的判定与性质、平行四边形的判定和性质.注意:本题中辅助线的作法,通过作辅助线构建全等三角形是解题的难点.19.答案:解:(1)20;(2)4;4;4.5;(3)根据题意得:800×4.5=3600(吨),答:估计这个小区3月份的总用水量是3600吨.解析:此题主要考查了条形统计图,众数,平均数,以及用样本估计总体,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据(1)条形图上户数之和即为调查的家庭户数;(2)根据中位数,众数及平均数的定义进行计算即可;(3)利用样本估计总体的方法,用800×所调查的20户家庭的平均用水量即可.解:(1)小明一共调查的户数是:1+1+3+6+4+2+2+1=20(户),故答案为20;(2)∵在这组数据中,4出现了6次,出现的次数最多,∴这组数据的众数是4吨;∵将这组数据按从小到大的顺序排列,其中出于中间的两个数都是6,有(4+4)÷2=4,∴这组数据的中位数是4吨;这组数据的平均数是:1×1+2×1+3×3+4×6+5×4+6×2+7×2+8×120=4.5(吨)故答案为4;4;4.5;(3)见答案.20.答案:解:(1)∵AB//CD,∴△ABQ∽△CDQ,∴ABCD =BQDQ,即1.68=BQ16+BQ,∴BQ=4m;(2)∵AB//EF,∴△ABP∽△EPF,∴ABEF =PBPF,即1.68=5PF,∴PF=25,∵DF=40,∴BD=20m.∴李华距灯柱CD的距离是20m.解析:(1)根据相似三角形的性质即可得到结论;(2)根据相似三角形的性质和线段的和差即可得到.本题考查了相似三角形的应用,熟练掌握相似三角形的性质是解题的关键.21.答案:解:(1)由题意知购买甲种图书的数量x套,则乙种图书数量为(100−x)套,则有120x+80(100−x)=11000,得x=75,于是100−x=25,答:购进甲种图书75套,乙种图书25套;(100−x),(2)根据题意有x≥13解得:x≥25,而W=120x+80(100−x)=40x+8000,∵40>0,∴W的值随着x的增大而增大,只有当x取最小值25时,W取得最小值,即W最小值为40×25+8000=9000.答:购买两种图书最少总费用为9000元;(3)满足条件的方案是购买甲种图书35套,乙种图书23套,丙种图书42套.解析:【试题解析】本题考查的是一次函数与一元一次不等式的综合应用,根据不等式求出变量范围和最值是解决问题的重难点,正确列出方程是解决问题的关键.(1)设购买甲种图书的数量x套,则乙种图书数量为(100−x)套,根据总价钱列出方程120x+80(100−x)=11000即可解决;(100−x),在此条件下,利用一次函数求费用的最小值;(2)根据x≥13(3)根据甲、丙两种费用相等,表示出丙种图书的数量,再根据总费用列方程即可.解:(1)见答案;(2)见答案;(3)设购买丙种图书为y本,由题意知120x=100y∴y=1.2x于是有120x+100y+80(100−x−y)=9000+1240解得x=35,则1.2x=42∴100−x−1.2x=23答:满足条件的方案是购买甲种图书35套,乙种图书23套,丙种图书42套.22.答案:解:画树状图为:共有12种等可能的结果数,其中摸出两球是一红一白的结果数为6,所以摸出两球是一红一白的概率=612=12.解析:画树状图展示所有种等可能的结果数,再找摸出两球是一红一白的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.答案:解:(1)DF与⊙O相切,理由:连接OD,∵∠BAC的平分线交⊙O于点D,∴∠BAD=∠CAD,∴BD⏜=CD⏜,∴OD⊥BC,∵DF//BC,∴OD⊥DF,∴DF与⊙O相切;(2)∵∠BAD=∠CAD,∠ADB=∠C,∴△ABD∽△AEC,∴ABAE =BDCE,∴12√35=4√75,∴BD=2√217.解析:本题主要考查了相似三角形的性质和判定、切线的判定、角平分线的定义、垂径定理的知识点,证得∠BAD =∠DAC 是解题的关键.(1)连接OD ,根据角平分线的定义得到∠BAD =∠CAD ,求得BD ⏜=CD ⏜,根据垂径定理得到OD ⊥BC ,根据平行线的性质得到OD ⊥DF ,于是得到DF 与⊙O 相切;(2)根据相似三角形的判定和性质即可得到结论.24.答案:解:(1)将(0,−3)代入y =x +m ,可得:m =−3;(2)将y =0代入y =x −3得x =3,所以点B 的坐标为(3,0),将(0,−3)、(3,0)代入y =ax 2+b 中,可得:{b =−39a +b =0, 解得:{a =13b =−3, 所以二次函数的解析式为y =13x 2−3;(3)存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D ,则∠ODC =45°+15°=60°, ∴OD =OC ⋅tan30°=√3,设DC 为y =kx −3,代入(√3,0),可得k =√3,联立两个方程可得:{y =√3x −3y =13x 2−3, 解得:{x 1=0y 1=−3,{x 2=3√3y 2=6, 所以M 1(3√3,6);②若M 在B 下方,设MC 交x 轴于点E ,则∠OEC =45°+15°=60°,∴OE =OC ⋅tan60°=3√3, 设EC 为y =kx −3,代入(3√3,0)可得:k =√33, 联立两个方程可得:{y =√33x −3y =13x 2−3, 解得:{x 1=0y 1=−3,{x 2=√3y 2=−2, 所以M 2(√3,−2),综上所述M 的坐标为(3√3,6)或(√3,−2).解析:此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键.(1)把C(0,−3)代入直线y =x +m 中解答即可;(2)把y =0代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可;(3)分M 在BC 上方和下方两种情况进行解答即可.25.答案:解:∵AD =DC ,DF ⊥AC ,∴DF 为AC 的中垂线,∴C 与A 关于射线DF 对称,连接EC ,则P 与点E 重合时,PB +PC 最小,即△BCP 的周长最小,∴AE =EC ,∴△BCP 的周长=CE +BC +EB=AE +EB +BC=AB +BC=15+9=24.△BCP的最小值为24.解析:本题考查的是轴对称−最短线路问题以及中垂线的性质,根据轴对称的性质得出AE=EC是解答此题的关键.根据AD=DC,DF⊥AC,可得A与C关于DF对称,由当点P与点E重合时,△BCP 的周长最小,即可求出△BCP的周长最小值.。
2019-2020西安市中考数学一模试题含答案
2019-2020西安市中考数学一模试题含答案一、选择题1.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70°2.在下面的四个几何体中,左视图与主视图不相同的几何体是( )A .B .C .D .3.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( )A .19B .16C .13D .234.如图,在ABC V 中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC ∠的度数是( )A .68︒B .112︒C .124︒D .146︒5.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为( )A .5B .4C .213D .4.86.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2k y x =(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论: ①ΔADB ΔADC S S =;②当0<x <3时,12y y <;③如图,当x=3时,EF=83; ④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小.其中正确结论的个数是( )A .1B .2C .3D .47.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.58.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A .0a b +>B .0a c +>C .0b c +>D . 0ac < 9.方程21(2)304m x mx --+=有两个实数根,则m 的取值范围( ) A .52m > B .52m ≤且2m ≠ C .3m ≥ D .3m ≤且2m ≠10.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A.10°B.15°C.18°D.30°11.均匀的向一个容器内注水,在注水过程中,水面高度h与时间t的函数关系如图所示,则该容器是下列中的()A.B.C.D.12.cos45°的值等于( )A.2B.1C.3D.22二、填空题13.如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是.14.如图,△ABC的三个顶点均在正方形网格格点上,则tan∠BAC=_____________.15.如图,直线a、b被直线l所截,a∥b,∠1=70°,则∠2= .16.已知62x =+,那么222x x -的值是_____.17.在函数3y x=-的图象上有三个点(﹣2,y 1),(﹣1,y 2),(12,y 3),则y 1,y 2,y 3的大小关系为_____. 18.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y (米)表示甲、乙两人之间的距离,x (秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y 与x 函数关系,那么,乙到达终点后_____秒与甲相遇.19.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.20.若关于x 的一元二次方程kx 2+2(k+1)x+k -1=0有两个实数根,则k 的取值范围是三、解答题21.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.22.为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A 级:非常满意;B 级:满意;C 级:基本满意;D 级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查测试的建档立卡贫困户的总户数______.(2)图1中,∠α的度数是______,并把图2条形统计图补充完整.(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?a b c d e)中随机选取两户,调查他(4)调查人员想从5户建档立卡贫困户(分别记为,,,,们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户e的概率. 23.直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接EF,过点F作FG∥ED交AB于点G.(1)求证:直线FG是⊙O的切线;(2)若FG=4,⊙O的半径为5,求四边形FGDE的面积.24.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面积.25.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.3.C解析:C【解析】【分析】画出树状图即可求解.【详解】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=13;故选:C.【点睛】本题考查的是概率,熟练掌握树状图是解题的关键.4.B解析:B【解析】【分析】根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.【详解】解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DCE=∠A,∵∠ACB=90°,∠B=34°,∴∠A=56°,∴∠CDA=∠DCE+∠A=112°,故选B .【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.5.C解析:C【解析】【分析】先根据圆周角定理得∠ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到142CD AD AC ===,然后利用勾股定理计算BD 的长. 【详解】 ∵AB 为直径,∴90ACB ︒∠=,∴6BC ==,∵OD AC ⊥, ∴142CD AD AC ===,在Rt CBD ∆中,BD ==故选C .【点睛】 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.6.C解析:C【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确;∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x =,由函数图象得:当0<x <2时,12y y <,选项②错误;当x=3时,14y =,243y =,即EF=443-=83,选项③正确;当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C . 考点:反比例函数与一次函数的交点问题.7.B解析:B【解析】【分析】【详解】解:∵∠ACB =90°,∠ABC =60°,∴∠A =30°,∵BD 平分∠ABC ,∴∠ABD =12∠ABC =30°, ∴∠A =∠ABD , ∴BD =AD =6, ∵在Rt △BCD 中,P 点是BD 的中点,∴CP =12BD =3. 故选B . 8.A解析:A【解析】【分析】根据a b =,确定原点的位置,根据实数与数轴即可解答.【详解】解:a b =Q ,∴原点在a ,b 的中间,如图,由图可得:a c <,0a c +>,0b c +<,0ac <,0a b +=,故选项A 错误,故选A .【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.9.B解析:B【解析】【分析】根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到20m -≠,30m -≥,(()214204m ∆=--⨯≥,然后解不等式组即可. 【详解】解:根据题意得 20m -≠,30m -≥,(()214204m ∆=--⨯≥, 解得m ≤52且m ≠2. 故选B .10.B解析:B【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB ∥CF ,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.11.D解析:D【解析】【分析】由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.【详解】根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D 几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢;故选D.【点睛】此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.12.D解析:D【解析】【分析】将特殊角的三角函数值代入求解.【详解】解:cos45°=22.故选D.【点睛】本题考查特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.二、填空题13.【解析】【分析】连接BD交AC于点O由勾股定理可得BO=3根据菱形的性质求出BD再计算面积【详解】连接BD交AC于点O根据菱形的性质可得AC⊥BDAO=CO=4由勾股定理可得BO=3所以BD=6即可解析:【解析】【分析】连接BD,交AC于点O,由勾股定理可得BO=3,根据菱形的性质求出BD,再计算面积.【详解】连接BD,交AC于点O,根据菱形的性质可得AC⊥BD,AO=CO=4,由勾股定理可得BO=3,所以BD=6,即可得菱形的面积是12×6×8=24.考点:菱形的性质;勾股定理.14.【解析】分析:在图形左侧添加正方形网格分别延长ABAC连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan∠BAC=故答案为点睛:本题考查了锐角三角函解析:1 3【解析】分析:在图形左侧添加正方形网格,分别延长AB、AC,连接它们延长线所经过的格点,可构成直角三角形,利用正切的定义即可得出答案.详解:如图所示,由图形可知,90AFE ∠=︒,3AF AC =,EF AC =,∴tan ∠BAC =133EF AC AF AC ==. 故答案为13. 点睛:本题考查了锐角三角函数的定义. 利用网格构建直角三角形进而利用正切的定义进行求解是解题的关键.15.110°【解析】∵a ∥b ∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110°解析:110°【解析】∵a ∥b ,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°16.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确 解析:4【解析】【分析】 将所给等式变形为26x =【详解】 ∵62x =, ∴26x -= ∴(2226x =, ∴22226x x -+=, ∴2224x x -=,故答案为:4【点睛】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.17.y2>y1>y3【解析】【分析】根据图象上的点(xy )的横纵坐标的积是定值k 可得xy=k 据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=解析:y2>y1>y3.【解析】【分析】根据图象上的点(x,y)的横纵坐标的积是定值k,可得xy=k,据此解答即可.【详解】解:∵函数y=-3x的图象上有三个点(-2,y1),(-1,y2),(12,y3),∴-2y1=-y2=12y3=-3,∴y1=1.5,y2=3,y3=-6,∴y2>y1>y3.故答案为y2>y1>y3.【点睛】本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.18.30【解析】【分析】由图象可以V甲=9030=3m/sV追=90120-30=1m/s故V乙=1+3=4m/s由此可求得乙走完全程所用的时间为:12004=300 s则可以求得此时乙与甲的距离即可求出解析:30【解析】【分析】由图象可以V甲==3m/s,V追==1m/s,故V乙=1+3=4m/s,由此可求得乙走完全程所用的时间为:=300s,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.【详解】由图象可得V甲==3m/s,V追==1m/s,∴V乙=1+3=4m/s,∴乙走完全程所用的时间为:=300s,此时甲所走的路程为:(300+30)×3=990m.此时甲乙相距:1200﹣990=210m则最后相遇的时间为:=30s故答案为:30【点睛】此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.19.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:5 16.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为5 16.20.k≥-13且k≠0【解析】试题解析:∵a=kb=2(k+1)c=k-1∴△=4(k+1)2-4×k×(k-1)=3k+1≥0解得:k≥-13∵原方程是一元二次方程∴k≠0考点:根的判别式解析:k≥,且k≠0【解析】试题解析:∵a=k,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥0,解得:k≥-,∵原方程是一元二次方程,∴k≠0.考点:根的判别式.三、解答题21.(1)12,32;(2)证明见解析.【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1,∵该方程的一个根为1,∴1111{211a xa x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.22.(1)60;(2)54°;(3)1500户;(4)见解析,25. 【解析】【分析】(1)用B 级人数除以B 级所占百分比即可得答案;(2)用A 级人数除以总人数可求出A 级所占百分比,乘以360°即可得∠α的度数,总人数减去A 级、B 级、D 级的人数即可得C 级的人数,补全条形统计图即可;(3)用10000乘以A 级人数所占百分比即可得答案;(4)画出树状图,得出所有可能出现的结果及选中e 的结果,根据概率公式即可得答案.【详解】(1)21÷35%=60(户) 故答案为60(2)9÷60×360°=54°,C 级户数为:60-9-21-9=21(户),补全条形统计图如所示:故答案为:54°(3)910000150060⨯=(户) (4)由题可列如下树状图:由树状图可知,所有可能出现的结果共有20种,选中e的结果有8种∴P(选中e)=82 205.【点睛】本题考查了条形统计图、扇形统计图及概率,概率=所求结果数与所有可能出现的结果数的比值,正确得出统计图中的信息,熟练掌握概率公式是解题关键.23.(1)证明见解析(2)48【解析】【分析】(1)利用角平分线的性质以及等腰三角形的性质得出∠OFC=∠FCG,继而得出∠GFC+∠OFC=90°,即可得出答案;(2)首先得出四边形FGDH是矩形,进而利用勾股定理得出HO的长,进而得出答案.【详解】(1)连接FO,∵ OF=OC,∴∠OFC=∠OCF.∵CF平分∠ACE,∴∠FCG=∠FCE.∴∠OFC=∠FCG.∵ CE是⊙O的直径,∴∠EDG=90°,又∵FG//ED,∴∠FGC=180°-∠EDG=90°,∴∠GFC+∠FCG=90°∴∠GFC+∠OFC=90°,即∠GFO=90°,∴OF⊥GF,又∵OF是⊙O半径,∴FG与⊙O相切.(2)延长FO,与ED交于点H,由(1)可知∠HFG=∠FGD=∠GDH=90°,∴四边形FGDH是矩形.∴FH⊥ED,∴HE=HD.又∵四边形FGDH是矩形,FG=HD,∴HE=FG=4.∴ED=8.∵在Rt△OHE中,∠OHE=90°,∴OH=22OE HE-=2254-=3.∴FH=FO+OH=5+3=8.S四边形FGDH=12(FG+ED)•FH=12×(4+8)×8=48.24.(1)见解析;(2)243.【解析】【分析】(1)根据平行四边形的和菱形的判定证明即可;(2)根据含30°的直角三角形的性质和勾股定理以及菱形的面积解答即可.【详解】证明:(1)∵DE∥BC,DF∥AB,∴四边形BFDE是平行四边形,∵BD是△ABC的角平分线,∴∠EBD=∠DBF,∵DE∥BC,∴∠EDB=∠DBF,∴∠EBD=∠EDB,∴BE=ED,∴平行四边形BFDE是菱形;(2)连接EF,交BD于O,∵∠BAC=90°,∠C=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠DBC=30°,∴BD=DC=12,∵DF ∥AB ,∴∠FDC=∠A=90°,∴DF=4333==, 在Rt △DOF 中,OF=()222243623DF OD -=-=, ∴菱形BFDE 的面积=12×EF •BD =12×12×43=243. 【点评】此题考查了菱形的判定和性质,熟练掌握菱形的判定和性质是解题的关键.25.(1)1000,(2)答案见解析;(3)900.【解析】【分析】(1)结合不剩同学的个数和比例,计算总体个数,即可.(2)结合总体个数,计算剩少数的个数,补全条形图,即可.(3)计算一餐浪费食物的比例,乘以总体个数,即可.【详解】解:(1)这次被调查的学生共有600÷60%=1000人,故答案为1000;(2)剩少量的人数为1000﹣(600+150+50)=200人,补全条形图如下:(3),答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.【点睛】考查统计知识,考查扇形图的理解,难度较容易.。
2020-2021学年陕西省西安市中考数学第一次模拟试卷及答案解析
陕西省中考数学一模试卷一、选择题1.的平方根是()A.±3 B.3 C.±9 D.92.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.3.下面计算一定正确的是()A.b3+a3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3+3y5=15y8D.b9÷b3=b34.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.87.不等式组的解集在数轴上表示正确的是()A. B.C.D.8.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E 为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b二、填空题11.分解因式:ab2﹣4ab+4a= .12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.13.如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为.[选做题]请从以下两个小题中任选一个作答,若多选,则按第一题计分14.若一个正n边形的每个内角为156°,则这个正n边形的边数是.15.用科学计算器计算:cos32°≈.(精确到0.01)三、解答题16.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.17.解分式方程:﹣=1.18.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.20.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+5图象上的概率.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.26.【问题探究】(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF=AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求AM+MC的最小值;【问题解决】(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路.点B到AC的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)参考答案与试题解析一、选择题1.的平方根是()A.±3 B.3 C.±9 D.9【考点】平方根;算术平方根.【分析】根据平方运算,可得平方根、算术平方根.【解答】解:∵,9的平方根是±3,故选:A.2.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】左视图是从左边看得到的视图,结合选项即可得出答案.【解答】解:所给图形的左视图为C选项说给的图形.故选C.3.下面计算一定正确的是()A.b3+a3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3+3y5=15y8D.b9÷b3=b3【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】利用合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂的除法法则:底数不变,指数相减进行分析即可.【解答】解:A、b3+a3=2b6,计算错误;B、(﹣3pq)2=﹣9p2q2,计算错误;C、5y3+3y5=15y8,计算错误;D、b9÷b3=b3,计算正确;故选:D.4.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°【考点】平行线的判定与性质.【分析】首先根据同位角相等,两直线平行可得a∥b,再根据平行线的性质可得∠3=∠5,再根据邻补角互补可得∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°,故选:C.5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限【考点】一次函数图象与系数的关系;反比例函数图象上点的坐标特征.【分析】首先利用反比例函数图象上点的坐标特征可得k的值,再根据一次函数图象与系数的关系确定一次函数y=kx﹣k的图象所过象限.【解答】解:∵反比例函数y=的图象过点(﹣2,1),∴k=﹣2×1=﹣2,∴一次函数y=kx﹣k变为y=﹣2x+2,∴图象必过一、二、四象限,故选:A.6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.8【考点】等腰三角形的判定;坐标与图形性质.【分析】分别以O、A为圆心,以OA长为半径作圆,与坐标轴交点即为所求点M,再作线段OA的垂直平分线,与坐标轴的交点也是所求的点M,作出图形,利用数形结合求解即可.【解答】解:如图,满足条件的点M的个数为6.故选C.分别为:(﹣2,0),(2,0),(0,2),(0,2),(0,﹣2),(0,).7.不等式组的解集在数轴上表示正确的是()A. B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出每个不等式的解集再求出其公共解集.【解答】解:该不等式组的解集为1<x≤2,故选C.8.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)【考点】坐标与图形变化﹣旋转.【分析】如图,把线段OP绕点O逆时针旋转90°到OP′位置看作是把Rt△OPA绕点O逆时针旋转90°到RtOP′A′,再根据旋转的性质得到OA′、P′A′的长,然后根据第二象限点的坐标特征确定P′点的坐标.【解答】解:如图,OA=3,PA=4,∵线段OP绕点O逆时针旋转90°到OP′位置,∴OA旋转到x轴负半轴OA′的位置,∠P′A′0=∠PAO=90°,P′A′=PA=4,∴P′点的坐标为(﹣3,4).故选C.9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E 为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°【考点】菱形的性质.【分析】连接BF,利用SAS判定△BCF≌△DCF,从而得到∠CBF=∠CDF,根据已知可注得∠CBF的度数,则∠CDF也就求得了.【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×80°=40°∴∠ABF=∠BAF=40°∵∠ABC=180°﹣80°=100°,∠CBF=100°﹣40°=60°∴∠CDF=60°.故选D.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b【考点】二次函数图象与系数的关系.【分析】由二次函数的性质,即可确定a,b,c的符号,即可判定A是错误的;又由对称轴为x=﹣,即可求得a=b;由当x=1时,a+b+c<0,即可判定C错误;然后由抛物线与x轴交点坐标的特点,判定D正确.【解答】解:A、∵开口向上,∴a>0,∵抛物线与y轴交于负半轴,∴c<0,∵对称轴在y轴左侧,∴﹣<0,∴b>0,∴abc<0,故A选项错误;B、∵对称轴:x=﹣=﹣,∴a=b,故B选项错误;C、当x=1时,a+b+c=2b+c<0,故C选项错误;D、∵对称轴为x=﹣,与x轴的一个交点的取值范围为x1>1,∴与x轴的另一个交点的取值范围为x2<﹣2,∴当x=﹣2时,4a﹣2b+c<0,即4a+c<2b,故D选项正确.故选D.二、填空题11.分解因式:ab2﹣4ab+4a= a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.【考点】反比例函数系数k的几何意义.【分析】由于同底等高的两个三角形面积相等,所以△AOB的面积=△ABP的面积=2,然后根据反比例函数中k的几何意义,知△AOB的面积=|k|,从而确定k的值,求出反比例函数的解析式.【解答】解:设反比例函数的解析式为.∵△AOB的面积=△ABP的面积=2,△AOB的面积=|k|,∴|k|=2,∴k=±4;又∵反比例函数的图象的一支位于第一象限,∴k>0.∴k=4.∴这个反比例函数的解析式为.13.如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为2.【考点】平行四边形的性质;三角形的面积.【分析】由已知条件可知AC=2,AB=,应该是当AB、AC是直角边时三角形的面积最大,根据AB⊥AC即可求得.【解答】解:由已知条件可知,当AB⊥AC时▱ABCD的面积最大,∵AB=,AC=2,∴S△ABC==,∴S▱ABCD=2S△ABC=2,∴▱ABCD面积的最大值为2.故答案为:2.[选做题]请从以下两个小题中任选一个作答,若多选,则按第一题计分14.若一个正n边形的每个内角为156°,则这个正n边形的边数是15 .【考点】多边形内角与外角.【分析】根据多边形内角和定理列出方程,解方程即可.【解答】解:由题意得,=156°,解得,n=15,故答案为:15.15.用科学计算器计算:cos32°≈ 2.68 .(精确到0.01)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方.【分析】熟练应用计算器,对计算器给出的结果,根据精确度的概念用四舍五入法取近似数.【解答】解:cos32°=3.1623×0.8480≈2.68,故答案为2.68.三、解答题16.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.【考点】特殊角的三角函数值;零指数幂;负整数指数幂.【分析】涉及绝对值、特殊角的三角函数值、0指数幂、负整数指数幂、二次根式的运算等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+,=|2﹣|﹣1+4+,=2﹣﹣1+4+,=5.17.解分式方程:﹣=1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣5x+6﹣3x﹣9=x2﹣9,解得:x=,经检验x=是分式方程的解.18.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).【考点】三角形的外接圆与外心.【分析】要使三棵树都在花坛的边上则应使花坛为△ABC的外接圆,故只要作出三角形两边垂直平分线的交点即为△ABC的外接圆圆心,再以此点为圆心,以此点到点A的长度为半径画圆,此圆即为花坛的位置.【解答】解:①分别以A、B为圆心,以大于AB为半径画圆,两圆相交于D、E两点,连接DE;②分别以A、C为圆心,以大于AC为半径画圆,两圆相交于G、F两点,连接GF;③直线DE与GF相交于点O,以O为圆心,以OA的长为半径画圆,则此圆即为花坛的位置.19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;(2)利用总数减去另外两段的人数,即可求得0.5~1小时的人数,从而作出直方图;(3)利用360°乘以日人均阅读时间在1~1.5小时的所占的比例;(4)利用总人数12000乘以对应的比例即可.【解答】解:(1)样本容量是:30÷20%=150;(2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=75(人).;(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×=108°;(4)12000×=9600(人).20.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)由四边形ABCD为正方形,得到AB=AD,∠B=∠D=90°,DC=CB,由E、F分别为DC、BC中点,得出DE=BF,进而证明出两三角形全等;(2)首先求出DE和CE的长度,再根据S△AEF=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF得出结果.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠D=∠B=90°,DC=CB,∵E、F为DC、BC中点,∴DE=DC,BF=BC,∴DE=BF,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:由题知△ABF、△ADE、△CEF均为直角三角形,且AB=AD=4,DE=BF=×4=2,CE=CF=×4=2,∴S△AEF=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF=4×4﹣×4×2﹣×4×2﹣×2×2=6.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)【考点】解直角三角形的应用﹣方向角问题.【分析】首先过点A作AH⊥CF于点H,易得∠ACH=60°,然后利用三角函数的知识,求得AH的长,继而可得消防车是否需要改进行驶.【解答】解:如图:过点A作AH⊥CF于点H,由题意得:∠MCF=75°,∠CAN=15°,AC=125米,∵CM∥AN,∴∠ACM=∠CAN=15°,∴∠ACH=∠MCF﹣∠ACM=75°﹣15°=60°,∴在Rt△ACH中,AH=AC•sin∠ACH=125×≈108.25(米)>100米.答:消防车不需要改道行驶.22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.【考点】一次函数的应用.【分析】(1)设出一次函数解析式,代入图象上的两个点的坐标,即可解答;(2)把x=6代入(1)中的函数解析式,求得路程(甲、乙距A城的距离),进一步求得速度即可解答.【解答】解:(1)设甲车返回过程中y与x之间的函数解析式y=kx+b,∵图象过(5,450),(10,0)两点,∴,解得,∴y=﹣90x+900.函数的定义域为5≤x≤10;(2)当x=6时,y=﹣90×6+900=360,(千米/小时).23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+5图象上的概率.【考点】列表法与树状图法;一次函数图象上点的坐标特征.【分析】(1)首先根据题意画出表格,即可得到P的所以坐标;(2)然后由表格求得所有等可能的结果与数字x、y满足y=﹣x+5的情况,再利用概率公式求解即可求得答案【解答】解:列表得:1234yx(x,y)1(1,2)(1,3)(1,4)2(2,1)(2,3)(2,4)3(3,1)(3,2)(3,4)4(4,1)(4,2)(4,3)(1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=﹣x+5图象上的概率为:P=.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.【考点】切线的判定.【分析】(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC得出∠P=30°,继而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,从而得出结论;(2)利用含30°的直角三角形的性质求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直径.【解答】(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵,∴.∴⊙O的直径为.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.【考点】二次函数综合题.【分析】(1)根据平移规律写出抛物线解析式,再求出M、A、B坐标即可.(2)首先证明△ABE∽△AMF,推出的值,∠BAM=90°,根据tan∠ABM=即可解决问题.(3)分点P在x轴上方或下方两种情形解决问题.【解答】解:(1)∵抛物线y=x2﹣3向右平移一个单位后得到的函数解析式为y=(x ﹣1)2﹣3,∴顶点M(1,﹣3),令x=0,则y=(0﹣1)2﹣3=﹣2,∴点A(0,﹣2),x=3时,y=(3﹣1)2﹣3=4﹣3=1,∴点B(3,1),(2)过点B作BE⊥AO于E,过点M作MF⊥AO于M,∵EB=EA=3,∴∠EAB=∠EBA=45°,同理可求∠FAM=∠FMA=45°,∴△ABE∽△AMF,∴==,又∵∠BAM=180°﹣45°×2=90°,∴tan∠ABM==,(3)过点P作PH⊥x轴于H,∵y=(x﹣1)2﹣3=x2﹣2x﹣2,∴设点P(x,x2﹣2x﹣2),①点P在x轴的上方时,=,整理得,3x2﹣7x﹣6=0,解得x1=﹣(舍去),x2=3,∴点P的坐标为(3,1);②点P在x轴下方时,=,整理得,3x2﹣5x﹣6=0,解得x1=(舍去),x2=,x=时,y=x2﹣2x﹣2=,∴点P的坐标为(,),综上所述,点P的坐标为(3,1)或(,).26.【问题探究】(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF=AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求AM+MC的最小值;【问题解决】(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路.点B到AC的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)【考点】作图—应用与设计作图.【分析】(1)根据等边三角形的性质得出∠BAD=30°,得出EF=AE;(2)根据题意得出C,M,N在一条直线上时,此时最小,进而求出即可;(3)作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC于点M,点M即为所求,在Rt△ABD中,求出AD的长,在Rt△MBD 中,得出MD的长,即可得出答案.【解答】解:(1)如图①,作EF⊥AB,垂足为点F,点F即为所求.理由如下:∵点E是正△ABC高AD上的一定点,∴∠BAD=30°,∵EF⊥AB,∴EF=AE;(2)如图②,作CN⊥AB,垂足为点N,交AD于点M,此时最小,最小为CN的长.∵△ABC是边长为2的正△ABC,∴CN=BC•sin60°=2×=,∴MN+CM=AM+MC=,即的最小值为.(3)如图③,作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC于点M,点M即为所求.在Rt△ABD中,AD===480(km),在Rt△MBD中,∠MBD=∠MAF=30°,得MD=BD•tan30°=(km),所以AM=km.。
陕西省西安市2020年中考数学一模试卷解析版
中考数学一模试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.-2020的绝对值是( )A. -2020B. 2020C. -D.2.如果有一个正方体,它的展开图可能是下列四个展开图中的( )A. B. C. D.3.下列计算正确的是( )A. (x-8y)(x-y)=x2+8y2B. (a-1)2=a2-1C. -x(x2+x-1)=-x3+x2-xD. (6xy+18x)÷x=6y+184.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于( )A. 2B. -2C. 4D. -45.如图,将三角板的直角顶点放在直尺的一边上.若∠1=65°,则∠2的度数为( )A. 15°B. 35°C. 25°D. 40°6.在平面直角坐标系中,将直线y=3x的图象向左平移m个单位,使其与直线y=-x+6的交点在第二象限,则m的取值范围是( )A. m>2B. m<2C. m>6D. m<67.如图,已知四边形ABCD中,AC平分∠BAD,AB=AC=5,AD=3,BC=CD.则点C到AB的距离是( )A.B.C. 3D. 28.如图,矩形ABCD中,AB=,BC=3,AE⊥BD于E,则EC=( )A.B.C.D.9.如图,△ABC内接于⊙O,AC=5,BC=12,且∠A=90°+∠B,则点O到AB的距离为( )A.B.C.D. 410.二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),直线AB交y轴于点B(0,-7),动点C(x,y)在直线AB上,且1<x<7,过点C作x轴的垂线交抛物线于点D,则CD的最值情况是( )A. 有最小值9B. 有最大值9C. 有最小值8D. 有最大值8二、填空题(本大题共4小题,共12.0分)11.将实数0,-,2.7,-1.4,0.14用“<”号连接起来应为______.12.任意五边形的内角和与外角和的差为______度.13.如图,在平面直角坐标系中,菱形OABC的边OA在x轴的负半轴上,反比例函数y=(x<0)的图象经过对角线OB的中点D和顶点C.若菱形OABC的面积为6,则k的值等于______.14.如图,线段BC和动点A构成△ABC,∠BAC=120°,BC=3,则△ABC周长的最大值______.三、解答题(本大题共11小题,共78.0分)15.计算:16.先化简,再求值:(x+1)÷(2+),其中x=-.17.如右图,已知点P是线段MN外一点,请利用直尺和圆规画一点Q,使得点Q到M、N两点的距离相等,且点Q与点M、P在同一条直线上.(保留作图痕迹)18.如图,AB∥CF,D,E分别是AB,AC上的点,DE=EF.求证:△ADE≌△CFE.19.某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、不合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.等级频数频率优秀2040%良好合格10m%不合格5n%请根据以上信息,解答下列问题:优秀良(1)本次调查随机抽取了______名学生;表中m=______,n=______;(2)补全条形统计图;(3)若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人.20.图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A处,手柄长AB=25cm,AB与墙壁DD′的夹角∠D′AB=37°,喷出的水流BC与AB形成的夹角∠ABC=72°,现在住户要求:当人站在E处淋浴时,水流正好喷洒在人体的C 处,且使DE=50cm,CE=130cm.问:安装师傅应将支架固定在离地面多高的位置?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).21.甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OPQ和线段EF,分别表示甲、乙两人与A地的距离y甲、y乙与他们所行时间x(h)之间的函数关系(1)求线段OP对应的y甲与x的函数关系式并注明自变量x的取值范围;(2)求y乙与x的函数关系式以及乙到达A地所用的时间;(3)经过______小时,甲、乙两人相距2km.22.为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1)八(1)班抽中歌曲《我和我的祖国》的概率是______;(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.23.已知在Rt△ABC中,∠C=90°;以斜边AB上的一点O为圆心作圆O,与AC、BC分别相切与点D、E.(1)求证:CD=CE;(2)若AC=8,AB=10;求AD的长.24.已知二次函数L与y轴交于点C(0,3),且过点(1,0),(3,0).(1)求二次函数L的解析式及顶点H的坐标(2)已知x轴上的某点M(t,0);若抛物线L关于点M对称的新抛物线为L′,且点C、H的对应点分别为C′,H′;试说明四边形CHC′H′为平行四边形.(3)若平行四边形的边与某一条对角线互相垂直时,称这种平行四边形为“和谐四边形”;在(2)的条件下,当平行四边形CHC′H′为“和谐四边形”时,求t的值.25.问题提出:(1)如图1,在四边形ABCD中,AB=BC,AD=CD=3,∠BAD=∠BCD=90°,∠ADC=60°,则四边形ABCD的面积为______;问题探究:(2)如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠ABC=135°,AB=2,BC=3,在AD、CD上分别找一点E、F,使得△BEF的周长最小,并求出△BEF的最小周长;问题解决:(3)如图3,在四边形ABCD中,AB=BC=2,CD=10,∠ABC=150°,∠BCD=90°,则在四边形ABCD中(包含其边沿)是否存在一点E,使得∠AEC=30°,且使四边形ABCE的面积最大.若存在,找出点E的位置,并求出四边形ABCE的最大面积;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:根据绝对值的概念可知:|-2020|=2020,故选:B.根据绝对值的定义直接进行计算.本题考查了绝对值.解题的关键是掌握绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】A【解析】【分析】本题主要考查的是几何体的展开图,利用带有数的面的特点及位置解答是解题的关键.由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:由原正方体的特征可知,含有4,6,8的数字的三个面一定相交于一点,而选项B 、C、D中,经过折叠后与含有4,6,8的数字的三个面一定相交于一点不符.故选A.3.【答案】D【解析】解:∵(x-8y)(x-y)=x2-9xy+8y2,故选项A错误;∵(a-1)2=a2-2a+1,故选项B错误;∵-x(x2+x-1)=-x3-x2+x,故选项C错误;∵(6xy+18x)÷x=6y+18,故选项D正确;故选:D.根据各个选项中的式子可以计算出正确的结果,本题得以解决.本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.4.【答案】B【解析】解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),∴m2=4,∴m=±2,∵y的值随x值的增大而减小,∴m<0,∴m=-2,故选:B.利用待定系数法求出m,再结合函数的性质即可解决问题.本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.【答案】C【解析】解:∵直尺的两边互相平行,∠1=65°,∴∠3=65°,∴∠2=90°-65°=25°.故选:C.先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.6.【答案】A【解析】解:将直线y=3x的图象向左平移m个单位可得:y=3(x+m),联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第二象限,∴,解得:m>2.故选:A.将直线y=3x的图象向左平移m个单位可得:y=3(x+m),求出直线y=3(x+m),与直线y=-x+6的交点,再由此点在第二象限可得出m的取值范围.本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第二象限的点的横坐标小于0、纵坐标大于0.7.【答案】C【解析】解:在AB上截取AE=AD=3,连接CE,过C作CF⊥AB于F点.∵AC平分∠BAD,∴∠BAC=∠DAC.在△ADC与△AEC中,∵,∴△ADC≌△AEC(SAS),∴CE=CD.∵CD=CB,∴CE=CB.∵CF⊥BE,∴CF垂直平分BE.∵AB=5,∴BE=2,∴EF=1,∴AF=4,在Rt△ACF中,∵CF2=AC2-AF2=52-42=9,∴CF=3.故选:C.在AB上截取AE=AD=3,连接CE,过C作CF⊥AB于F点,根据SAS定理得出△ADC≌△AEC,故可得出CE=CD,再由垂直平分线的性质求出AF的长,根据勾股定理即可得出结论.本题考查的是全等三角形的判定与性质,角平分线的性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.8.【答案】D【解析】解:作EF⊥BC于F,∵四边形ABCD是矩形,∴AD=BC=3,AB=CD=,∠BAD=90°.∴tan∠ADB==,∴∠ADB=30°,∴∠ABE=60°,∴在Rt△ABE中cos∠ABE===,∴BE=,∴在Rt△BEF中,cos∠FBE===,∴BF=,∴EF==,∴CF=3-=,在Rt△CFE中,CE==.故选:D.作EF⊥BC于F,构造Rt△CFE中和Rt△BEF,由已知条件AB=,BC=3,可求得∠ADB=30°,所以Rt△CFE和Rt△BEF都可解,从而求出BE,BF的长,再求出CF的长,在Rt△CFE中利用勾股定理可求出EC的长.本题考查了矩形的性质,解直角三角形,以及勾股定理的运用.具有一定的综合性.9.【答案】B【解析】解:作直径CD,连BD,过O作OM⊥AB于M,过B作BN⊥CD于N,如图,则∠CBD=90°,∵∠A=90°+∠ABC,∴∠A=∠ABD,∴∠ABD+∠D=∠A+∠D=180°,∴CD∥AB,∴∠BDC=∠ABC,∴=,∴BD=AC=5.∴OM=BN,在Rt△ABD中,CD==13,∵×BN×CD=×BC×BD,∴BN═==,∴OM=,即点O到AB的距离为.故选:B.作直径CD,连BD,过O作OM⊥AB于M,过B作BN⊥CD于N,如图,利用圆周角定理得到∠CBD=90°,再证明CD∥AB得到•∠BDC=∠ABC,所以BD=AC=5.然后利用勾股定理计算出CD,再利用面积法求出BN即可.本题考查了三角形的外心与外接圆:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理和圆周角定理.10.【答案】B【解析】解:∵二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),∴,解得,∴二次函数为y=x2-7x,∵A(7,0),B(0,-7),∴直线AB为:y=x-7,设C(x,x-7),则D(x,x2-7x),∴CD=x-7-(x2-7x)=-x2+8x-7=-(x-4)2+9,∴1<x<7范围内,有最大值9,故选:B.根据待定系数法求得抛物线的解析式好我在想AB的解析式,设C(x,x-7),则D(x ,x2-7x),根据图象的位置即可得出CD=-(x-4)2+9,根据二次函数的性质即可求得.本题考查了二次函数的性质,待定系数法求一次函数的解析式,求二次函数的解析式,表示出CD的关系式是解题的关键.11.【答案】-<-1.4<0<0.14<2.7【解析】解:将实数0,-,2.7,-1.4,0.14用“<”号连接起来应为-<-1.4<0<0.14<2.7.故答案为:-<-1.4<0<0.14<2.7.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.【答案】180【解析】解:任意五边形的内角和是180×(5-2)=540度;任意五边形的外角和都是360度;所以任意五边形的内角和与外角和的差为540-360=180度.故答案为:180.利用多边形的内角和公式求出五边形的内角和,再结合其外角和为360度,即可解决问题.考查了多边形内角与外角,本题利用多边形的内角和公式及多边形的外角和即可解决问题.13.【答案】-2【解析】解:设点A的坐标为(a,0),点C的坐标为(c,),则-a•=6,点D的坐标为(,),∴,解得,k=-2,故答案为-2.根据题意,可以设出点C和点A的坐标,然后利用反比例函数的性质和菱形的性质即可求得k的值,本题得以解决.本题考查反比例函数系数k的几何意义、反比例函数的性质、菱形的性质、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用数形结合的思想解答.14.【答案】3+2【解析】解:延长BA到D,使AD=AC,连接CD,作△BCD的外接圆⊙O,∵AD=AC,∴△ABC的周长为:AB+BC+AC=AB+BC+AD=BD+BC.∵BC=3,∴当BD的长度最大时,△ABC周长最大,∴当点A与点O重合时,BD为⊙O的直径,BD最大.设⊙O的半径为r,连接OB,OC,过点O作OE⊥BC于点E,∵∠BAC=120°,∴∠BOE=∠AOB=60°.∵BC=3,OE⊥BC,∴BE=,∴=sin60°,∴=,∴r=,∴BD的最大值为2r=2.∴△ABC周长的最大值为3+2.故答案为:3+2.延长BA到D,使AD=AC,连接CD,作△BCD的外接圆⊙O,当BD的长度最大时,△ABC 周长最大,而BD为⊙O的直径时,BD最大.设⊙O的半径为r,连接OB,OC,过点O作OE⊥BC于点E,根据垂径定理得出BE的长,再用正弦函数得出OB的长度,则BD 的最大值可得,从而△ABC周长的最大值可得.本题考查了三角形的外接圆、垂径定理及解直角三角形等知识点,正确构造三角形的外接圆是解题的关键.15.【答案】解:原式=1-1+3+4+3×=1-1+3+4+=7+.【解析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值.此题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.16.【答案】解:(x+1)÷(2+)=(x+1)÷=(x+1)=,当x=-时,原式==.【解析】根据分式的加法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.【答案】解:作MN的垂直平分线l,连接并延长PM交l于点Q.点Q即为所求作的点.【解析】作线段MN的垂直平分线与射线PM的交点即为所求作的点.本题考查了复杂作图,解决本题的关键是作线段的垂直平分线.18.【答案】解:∵AB∥CF,∴∠ADE=∠F,在△ADE和△CFE中,,∴△ADE≌△CFE(ASA).【解析】首先根据AB∥CF可得∠ADE=∠F,再加上对顶角∠AED=∠CEF,和条件DE=EF 可利用ASA证明△ADE≌△CFE.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA 、AAS、HL.19.【答案】50 20 10【解析】解:(1)本次调查随机抽取了20÷40%=50名学生,=20%,=10%,∴m=20,n=10,故答案为:50,20,10;(2)补全条形统计图如图所示;(3)2000×=1400人,答:该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有1400人.(1)用优秀的人数除以优秀的人数所占的百分比即可得到总人数;(2)根据题意补全条形统计图即可得到结果;(3)全校2000名乘以“优秀”和“良好”等级的学生数所占的百分比即可得到结论.本题考查的是条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.【答案】解:过点B作BG⊥D′D于点G,延长EC、GB交于点F,∵AB=25,DE=50,∴sin37°=,cos37°=,∴GB≈25×0.60=15,GA≈25×0.80=20,∴BF=50-15=35,∵∠ABC=72°,∠D′AB=37°,∴∠GBA=53°,∠CBF=55°,∴∠BCF=35°,∵tan35°=,∴CF≈=50,∴FE=50+130=180,∴GD=FE=180,∴AD=180-20=160,∴安装师傅应将支架固定在离地面160cm的位置.【解析】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.过B作BG⊥D′D于点G,延长EC、GB交于点F,根据锐角三角函数的定义即可求出答案.21.【答案】或【解析】解:(1)设线段OP对应的y甲与x的函数关系式为y甲=kx(k≠0),12=k,得k=18,即线段OP对应的y甲与x的函数关系式为y甲=18x(0<x<);(2)设y乙与x的函数关系式为y乙=ax+b,,解得,即y乙与x的函数关系式为y乙=-4.5x+12,当y乙=0时,-4.5x+12=0,解得x=,∴乙到达A地所用的时间小时;(3)|(-4.5x+12)-18x|=2,-4.5x+12-18x=2或18x-(-4.5x+12)=2,解得,x=或x=,∴经过或小时,甲、乙两人相距2km.故答案为:或.(1)根据函数图象中的数据,利用待定系数法可以求得线段OP对应的y甲与x的函数关系式;(2)利用待定系数法可以求得y乙与x的函数关系式以及乙到达A地所用的时间;(3)根据(1)和(2)中的函数解析式,可以求得经过多少小时,甲、乙两人相距2km .本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.22.【答案】(1)(2)树状图如图所示:共有9种可能,八(1)班和八(2)班抽中不同歌曲的概率==.【解析】解:(1)因为有A,B,C3种等可能结果,所以八(1)班抽中歌曲《我和我的祖国》的概率是;故答案为.(2)见答案【分析】(1)直接根据概率公式计算可得;(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.【答案】(1)证明:连接OD、OE,∵AC、BC都与圆O相切,∴OE⊥BC,OD⊥AC,又∠C=90°,∴四边形OECD为矩形,∵OD=OE,∴四边形OECD为正方形,∴CD=CE;(2)解:设圆O的半径为r,在Rt△ABC中,BC===6,∵OD⊥AC,∠C=90°,∠A=∠A,∴△AOD∽△ABC,∴=,即=,解得,r=,∴AD=AC-CD=8-=.【解析】(1)连接OD、OE,根据切线的性质、正方形的判定定理得到四边形OECD 为正方形,根据正方形的性质证明结论;(2)根据勾股定理求出BC,证明△AOD∽△ABC,根据相似三角形的性质列出比例式,计算即可.本题考查的是切线的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.24.【答案】解:(1)设二次函数L的解析式为:y=ax2+bx+c(a≠0)由题意可得:解得:∴二次函数L的解析式为:y=x2-4x+3,∵y=x2-4x+3=(x-2)2-1,∴顶点H的坐标(2,-1)(2)∵若抛物线L关于点M对称的新抛物线为L′,且点C、H的对应点分别为C′,H′;∴CM=C'M,HM=H'M,∴四边形CHC′H′为平行四边形;(3)∵点C(0,3),点H(2,-1)∴直线CH解析式为:y=-2x+3;若CC'⊥CH时,则CC'解析式为:y=x+3,当y=0时,0=t+3,∴t=-6;若HH'⊥CH时,则HH'解析式为:y=x-2,当y=0时,0=t-2,∴t=4∵若抛物线L关于点M对称的新抛物线为L′,且点C、H的对应点分别为C′,H′;∴点C'(2t,-3),点H'(2t-2,1)若CH'⊥HH',则H'C2+H'H2=CH2,∴(2t-2-0)2+(3-1)2+(2t-2-2)2+(1+1)2=(0-2)2+(3+1)2,∴t=若CC'⊥CH',则H'C2+C'C2=C'H'2,∴(2t-2-0)2+(3-1)2+(2t-0)2+(3+3)2=(0-2)2+(3+1)2,∴△<0,方程无解;综上所述:t=或4或-6.【解析】(1)利用待定系数法可求解析式,由配方法可求顶点坐标;(2)由中心对称的性质可得CM=C'M,HM=H'M,可得结论;(3)分四种情况讨论,由两点距离公式和一次函数的性质可求解.本题是二次函数综合题,考查了二次函数的性质,平行四边形的判定,中心对称的性质,一次函数的性质,两点距离公式等知识,熟练运用这些性质进行推理是本题的关键.25.【答案】(1)3;(2)如图,作点B关于AD的对称点M,作点B关于CD的对称点N,连接MN,交AD 于点E,交CD于点F,过点M作MG⊥BC,交CB的延长线于点G,∵点B,点M关于AD对称∴BE=EM,AB=AM=2,∴BM=4∵点B,点N关于CD对称∴BF=FN,BC=CN=3∴△BEF的周长=BE+BF+EF=NF+EF+EM=MN∵∠ABC=135°,∴∠GBM=45°,且GM⊥BG,∴∠GBM=∠GMB=45°∴BG=GM,且BG2+GM2=BM2,∴BG=4=GM,∴GN=BG+BC+CN=4+3+3=10,∴在Rt△GMN中,MN===2∴△BEF的最小周长为2(3)作△ABC的外接圆,交CD于点E,连接AC,AE,过点A作AM⊥CD于点M,作BN⊥AM于点N,∵四边形ABCE是圆内接四边形∴∠ABC+∠AEC=180°∴∠AEC=30°,∵BN⊥AM,AM⊥CD,∠BCD=90°,∴四边形BCMN是矩形∴BC=MN=2,BN=CM,∠CBN=90°,∵∠ABC=150°,∴∠ABN=60°,且BN⊥AM∴∠BAN=30°,∴BN=AB=1,AN=BN=∴AM=+2,CM=1∵∠AEC=30°,AM⊥CE,∴AE=2AM=2+4,ME=AM=3+2∴CE=CM+ME=4+2=AE∴点E在AC垂直平分线上,∵S四边形ABCE=S△ABC+S△ACE,且S△ABC是定值,AC长度是定值,点E在△ABC的外接圆上,∴当点E在AC的垂直平分线上时,S四边形ABCE最大∴S四边形ABCE=S四边形ABCM+S△AME=××1+=8+4【解析】解:(1)∵AB=BC,AD=CD=3,∠BAD=∠BCD=90°∴△ABD≌△CBD(SAS)∴∠ADB=∠CDB,且∠ADC=60°∴∠ADB=∠CDB=30°,且∠BAD=∠BCD=90°∴AB=BC=∴四边形ABCD的面积=2××3×=3故答案为:3(2)见答案;(3)见答案。
2020年陕西省中考数学一模试卷
解:∵ ,
∴ .
∵ ,
∴ .
∵ 平分 ,
∴ .
∵ ,
∴ ,
∴ .
故选 .
5.某校给足球队的十一位运动员每人购买了一双运动鞋.尺码及购买数量如下表:
尺码/码
购买数量/双
则这十一双运动鞋尺码的众数和中位数分别为()
A. ,
B. ,
C. ,
D. ,
【答案】
B
【考点】
中位数
众数
【解析】
根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
∵ 、 分别是边 、 的中点,
∴ , ,
∴ = ,
在 和 中, ,
∴ ,
∴ = ,
∵ = ,
∴ = ,
∴ = ,
∴ .
【考点】
全等三角形的性质与判定
正方形的性质
【解析】
先根据 证明 ,得出对应角相等 = ,再根据角的互余关系即可得出 = ,证出 .
【解答】
证明:∵四边形 是正方形,
∴ = = = , = = ,
【解答】
由表可知 出现次数最多,所以众数为 ,
因为共有 = 个数据,
所以中位数为第 个数据,即中位数为 ,
6.若正比例函数的图象经过 ,则这个图象一定经过点()
A.
B.
C.
D.
【答案】
B
【考点】
一次函数图象上点的坐标特点
【解析】
先利用待定系数法求出正比例函数的解析式,再把各选项代入进行检验即可.
【解答】
(参考数据: , , = )
陕西省西安市2019-2020学年中考数学一模考试卷含解析
陕西省西安市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知二次函数y=x2﹣4x+m的图象与x轴交于A、B两点,且点A的坐标为(1,0),则线段AB的长为()A.1 B.2 C.3 D.42.下列计算正确的是()A.a²+a²=a4B.(-a2)3=a6C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b3.计算﹣2+3的结果是()A.1 B.﹣1 C.﹣5 D.﹣64.为喜迎党的十九大召开,乐陵某中学剪纸社团进行了剪纸大赛,下列作品既是轴对称图形又是中心对称图形的是()A.B.C.D.5.如图,平行四边形ABCD的顶点A、B、D在⊙O上,顶点C在⊙O直径BE上,连结AE,若∠E=36°,则∠ADC的度数是()A.44°B.53°C.72°D.54°6.“a是实数,20a ”这一事件是()A.不可能事件B.不确定事件C.随机事件D.必然事件7.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个8.如图,AB ∥CD ,直线EF 与AB 、CD 分别相交于E 、F ,AM ⊥EF 于点M ,若∠EAM=10°,那么∠CFE 等于( )A .80°B .85°C .100°D .170°9.若二次函数()20y ax bx c a =++≠的图象与x 轴有两个交点,坐标分别是(x 1,0),(x 2,0),且12x x <.图象上有一点()00M x y ,在x 轴下方,则下列判断正确的是( )A .0a >B .240b ac -≥C .102x x x <<D .()()01020a x x x x --< 10.如图是一个由5个相同的正方体组成的立体图形,它的俯视图是( )A .B .C .D .11.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( )A .0.8x ﹣10=90B .0.08x ﹣10=90C .90﹣0.8x=10D .x ﹣0.8x ﹣10=90 12.要使分式337x x -有意义,则x 的取值范围是( ) A .x=73 B .x>73 C .x<73 D .x≠73二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点A 为函数y=9x (x >0)图象上一点,连结OA ,交函数y=4x(x >0)的图象于点B ,点C 是x 轴上一点,且AO=AC ,则△OBC 的面积为____.14.如图,在每个小正方形的边长为1的网格中,A,B为格点(Ⅰ)AB的长等于__(Ⅱ)请用无刻度的直尺,在如图所示的网格中求作一点C,使得CA=CB且△ABC的面积等于32,并简要说明点C的位置是如何找到的__________________15.如图是“已知一条直角边和斜边作直角三角形”的尺规作图过程已知:线段a、b,求作:Rt ABC∆.使得斜边AB=b,AC=a作法:如图.(1)作射线AP,截取线段AB=b;(2)以AB为直径,作⊙O;(3)以点A为圆心,a的长为半径作弧交⊙O于点C;(4)连接AC、CB.ABC∆即为所求作的直角三角形.请回答:该尺规作图的依据是______.16.不等式组32132x xx->⎧⎪⎨≤⎪⎩的解是____.17.若x,y为实数,y=224412x xx---,则4y﹣3x的平方根是____.18.今年“五一”节日期间,我市四个旅游景区共接待游客约303000多人次,这个数据用科学记数法可记19.(6分)抛物线y=ax 2+bx+3(a≠0)经过点A (﹣1,0),B (32,0),且与y 轴相交于点C . (1)求这条抛物线的表达式;(2)求∠ACB 的度数; (3)点D 是抛物线上的一动点,是否存在点D ,使得tan ∠DCB=tan ∠ACO .若存在,请求出点D 的坐标,若不存在,说明理由.20.(6分)先化简,再求值:22(1)x y x y x y -÷--,其中x=32-,y=11()2-. 21.(6分)如图,二次函数23y x x m =-++的图象与x 轴的一个交点为()4,0B ,另一个交点为A ,且与y 轴相交于C 点()1求m 的值及C 点坐标;()2在直线BC 上方的抛物线上是否存在一点M ,使得它与B ,C 两点构成的三角形面积最大,若存在,求出此时M 点坐标;若不存在,请简要说明理由()3P 为抛物线上一点,它关于直线BC 的对称点为Q①当四边形PBQC 为菱形时,求点P 的坐标;②点P 的横坐标为(04)t t <<,当t 为何值时,四边形PBQC 的面积最大,请说明理由.22.(8分)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.23.(8分)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?24.(10分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx﹣3(m≠0)与x轴交于A(3,0),B两点.(1)求抛物线的表达式及点B的坐标;(2)当﹣2<x<3时的函数图象记为G,求此时函数y的取值范围;(3)在(2)的条件下,将图象G在x轴上方的部分沿x轴翻折,图象G的其余部分保持不变,得到一个新图象M.若经过点C(4.2)的直线y=kx+b(k≠0)与图象M在第三象限内有两个公共点,结合图象求b的取值范围.25.(10分)解方程(2x+1)2=3(2x+1)26.(12分)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)使点C 、D 分别落在点M 、N 的位置,发现∠EFM=2∠BFM ,求∠EFC 的度数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】先将点A(1,0)代入y =x 2﹣4x+m ,求出m 的值,将点A(1,0)代入y =x 2﹣4x+m ,得到x 1+x 2=4,x 1•x 2=3,即可解答【详解】将点A(1,0)代入y =x 2﹣4x+m ,得到m =3,所以y =x 2﹣4x+3,与x 轴交于两点,设A(x 1,y 1),b(x 2,y 2)∴x 2﹣4x+3=0有两个不等的实数根,∴x 1+x 2=4,x 1•x 2=3,∴AB =|x 1﹣x 2|21212)4x x x x ++( =2;故选B .【点睛】此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.2.D【解析】【分析】各项计算得到结果,即可作出判断.A、原式=2a2,不符合题意;B、原式=-a6,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=-4b,符合题意,故选:D.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.A【解析】【分析】根据异号两数相加的法则进行计算即可.【详解】解:因为-2,3异号,且|-2|<|3|,所以-2+3=1.故选A.【点睛】本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.4.C【解析】【分析】根据轴对称和中心对称的定义去判断即可得出正确答案.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:C.【点睛】本题考查的是轴对称和中心对称的知识点,解题关键在于对知识点的理解和把握.5.D【解析】【分析】根据直径所对的圆周角为直角可得∠BAE=90°,再根据直角三角形的性质和平行四边形的性质可得解.根据直径所对的圆周角为直角可得∠BAE=90°,根据∠E=36°可得∠B=54°,根据平行四边形的性质可得∠ADC=∠B=54°. 故选D【点睛】本题考查了平行四边形的性质、圆的基本性质.6.D【解析】a 是实数,|a |一定大于等于0,是必然事件,故选D.7.B【解析】【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x=﹣2b a=1,即b=﹣2a ,而x=﹣1时,y=0,即a ﹣b+c=0,∴a+2a+c=0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x <1时,y 随x 增大而增大,所以⑤正确.故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac=0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.8.C【解析】【分析】根据题意,求出∠AEM,再根据AB ∥CD ,得出∠AEM 与∠CFE 互补,求出∠CFE .【详解】∵AM ⊥EF ,∠EAM=10°又∵AB∥CD∴∠AEM+∠CFE=180°∴∠CFE=100°.故选C.【点睛】本题考查三角形内角和与两条直线平行内错角相等.9.D【解析】【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.【详解】A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、∵x1<x2,∴△=b2-4ac>0,故本选项错误;C、若a>0,则x1<x0<x2,若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;D、若a>0,则x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,则(x0-x1)与(x0-x2)同号,∴a(x0-x1)(x0-x2)<0,综上所述,a(x0-x1)(x0-x2)<0正确,故本选项正确.10.C【解析】【分析】根据俯视图的概念可知, 只需找到从上面看所得到的图形即可.【详解】解: 从上面看易得: 有2列小正方形, 第1列有2个正方形, 第2列有2个正方形,故选C.【点睛】考查下三视图的概念; 主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形; 11.A试题分析:设某种书包原价每个x 元,根据题意列出方程解答即可. 设某种书包原价每个x 元, 可得:0.8x ﹣10=90考点:由实际问题抽象出一元一次方程.12.D【解析】【分析】本题主要考查分式有意义的条件:分母不能为0,即3x−7≠0,解得x .【详解】∵3x−7≠0,∴x≠73. 故选D .【点睛】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.6【解析】【分析】根据题意可以分别设出点A 、点B 的坐标,根据点O 、A 、B 在同一条直线上可以得到A 、B 的坐标之间的关系,由AO=AC 可知点C 的横坐标是点A 的横坐标的2倍,从而可以得到△OBC 的面积.【详解】设点A 的坐标为(a,9a),点B 的坐标为(b,4b ), ∵点C 是x 轴上一点,且AO=AC ,∴点C 的坐标是(2a,0),设过点O(0,0),A(a, 9a)的直线的解析式为:y=kx , ∴9a=k ⋅a , 解得k=29a , 又∵点B(b,4b )在y=29a x 上, ∴4b =29a ⋅b,解得,a b =32或a b =−32(舍去), ∴S △OBC =422a b=6.【点睛】本题考查了等腰三角形的性质与反比例函数的图象以及三角形的面积公式,解题的关键是熟练的掌握等腰三角形的性质与反比例函数的图象以及三角形的面积公式.14.5取格点P、N(S△PAB=32),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.【解析】【分析】(Ⅰ)利用勾股定理计算即可;(Ⅱ)取格点P、N(S△PAB=32),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.【详解】解:(Ⅰ)AB=2221=5,故答案为5.(Ⅱ)如图取格点P、N(使得S△PAB=32),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.故答案为:取格点P、N(S△PAB=32),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.【点睛】本题考查作图﹣应用与设计,线段的垂直平分线的性质、等高模型等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.15.等圆的半径相等,直径所对的圆周角是直角,三角形定义【解析】【分析】根据圆周角定理可判断△ABC为直角三角形.【详解】根据作图得AB为直径,则利用圆周角定理可判断∠ACB=90°,从而得到△ABC满足条件.故答案为:等圆的半径相等,直径所对的圆周角是直角,三角形定义.【点睛】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.16.16x <≤【解析】【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】32132x x x >①②-⎧⎪⎨≤⎪⎩ 解不等式①,得x >1,解不等式②,得x≤1,所以不等式组的解集是1<x≤1,故答案是:1<x≤1.【点睛】考查了一元一次不等式解集的求法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).17.【解析】同时成立,∴224040x x ⎧-≥⎨-≥⎩故只有x 2﹣4=0,即x=±2, 又∵x ﹣2≠0,∴x=﹣2,y=12x -=﹣14, 4y ﹣3x=﹣1﹣(﹣6)=5,∴4y ﹣3x 的平方根是故答案:18.3.03×101【解析】分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于303000有6位整数,所以可以确定n=6-1=1.详解:303000=3.03×101,故答案为:3.03×101. 点睛:此题考查科学记数法表示较大的数的方法,准确确定a 与n 的值是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=﹣2x 2+x+3;(2)∠ACB=45°;(3)D 点坐标为(1,2)或(4,﹣25).【解析】【分析】(1)设交点式y=a (x+1)(x ﹣32),展开得到﹣32a=3,然后求出a 即可得到抛物线解析式; (2)作AE ⊥BC 于E ,如图1,先确定C (0,3),再分别计算出BC=2,接着利用面积法计算出ACE 即可;(3)作BH ⊥CD 于H ,如图2,设H (m ,n ),证明Rt △BCH ∽Rt △ACO ,利用相似计算出BH=4,CH=4,再根据两点间的距离公式得到(m ﹣32)2+n 2=(4)2,m 2+(n ﹣3)2=(4)2,接着通过解方程组得到H (920,﹣320)或(9344,),然后求出直线CD 的解析式,与二次函数联立成方程组,解方程组即可.【详解】(1)设抛物线解析式为y=a (x+1)(x ﹣32),即y=ax 2﹣12ax ﹣32a ,∴﹣32a=3,解得:a=﹣2,∴抛物线解析式为y=﹣2x 2+x+3; (2)作AE ⊥BC 于E ,如图1,当x=0时,y=﹣2x 2+x+3=3,则C (0,3),而A (﹣1,0),B (32,0),∴,212Q AE•BC=12OC•AB ,∴331⨯+()在Rt △ACE 中,sin ∠ACE=AE AC,∴∠ACE=45°,即∠ACB=45°; (3)作BH ⊥CD 于H ,如图2,设H (m ,n ).∵tan ∠DCB=tan ∠ACO ,∴∠HCB=∠ACO ,∴Rt △BCH ∽Rt △ACO ,∴BH OA =CH OC =BC AC ,即1BH =3CH,,∴(m ﹣32)2+n 2=2=98,①m 2+(n ﹣3)2=(924)2=818,② ②﹣①得m=2n+34,③,把③代入①得:(2n+34﹣32)2+n 2=98,整理得:80n 2﹣48n ﹣9=0,解得:n 1=﹣320,n 2=34. 当n=﹣320时,m=2n+34=920,此时H (920,﹣320),易得直线CD 的解析式为y=﹣7x+3,解方程组27323y x y x x =-+⎧⎨=-++⎩得:03x y =⎧⎨=⎩或425x y =⎧⎨=-⎩,此时D 点坐标为(4,﹣25); 当n=34时,m=2n+34=94,此时H (9344,),易得直线CD 的解析式为y=﹣x+3,解方程组2323y x y x x =-+⎧⎨=-++⎩得:03x y =⎧⎨=⎩或12x y =⎧⎨=⎩,此时D 点坐标为(1,2). 综上所述:D 点坐标为(1,2)或(4,﹣25).【点睛】本题是二次函数综合题.熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定的性质;会利用待定系数法求函数解析式,把求两函数交点问题转化为解方程组的问题;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.20.x+y 3.【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x 、y 的值代入即可解答本题. 试题解析:原式=()()x x y x y x y x y y -++-⋅- =()()y x y x y x y y+-⋅-=x+y , 当32,y=11()2-=2时,原式3321.()14m =,()0,4C ;()2存在,()2,6M ;()(315,15P +①或(15,15P -;②当2t =时,16PBQC S =四边形最大.【解析】【分析】(1)用待定系数法求出抛物线解析式;(2)先判断出面积最大时,平移直线BC 的直线和抛物线只有一个交点,从而求出点M 坐标;(3)①先判断出四边形PBQC 时菱形时,点P 是线段BC 的垂直平分线,利用该特殊性建立方程求解; ②先求出四边形PBCQ 的面积与t 的函数关系式,从而确定出它的最大值.【详解】解:(1)将B (4,0)代入23y x x m =-++,解得,m=4,∴二次函数解析式为234y x x =-++,令x=0,得y=4,∴C (0,4);(2)存在,理由:∵B (4,0),C (0,4),∴直线BC 解析式为y=﹣x+4,当直线BC 向上平移b 单位后和抛物线只有一个公共点时,△MBC 面积最大,∴24{34y x b y x x =-++=-++, ∴24(2)16t --+,∴△=1﹣4b=0,∴b=4,∴26x y =⎧⎨=⎩,∴M (2,6); (3)①如图,∵点P 在抛物线上,∴设P (m ,234m m -++),当四边形PBQC 是菱形时,点P 在线段BC 的垂直平分线上,∵B (4,0),C (0,4),∴线段BC 的垂直平分线的解析式为y=x ,∴m=234m m -++,∴m=15±, ∴P (15+,15+)或P (15-,15-);②如图,设点P (t ,234t t -++),过点P 作y 轴的平行线l ,过点C 作l 的垂线,∵点D 在直线BC 上,∴D (t ,﹣t+4),∵PD=234t t -++﹣(﹣t+4)=24t t -+,BE+CF=4,∴S 四边形PBQC =2S △PDC =2(S △PCD +S △BD )=2(12PD×CF+12PD×BE )=4PD=224164(2)16t t t -+--+ ∵0<t <4,∴当t=2时,S 四边形PBQC 最大=1.考点:二次函数综合题;二次函数的最值;最值问题;分类讨论;压轴题.22.(1)50,30%;(2)不能,理由见解析;(3)P=23【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;(2)观察可知79.5~99.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.5~99.5”这一组人数占百分比为:(8+4)÷50×100%=24%, 所以“69.5~79.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为50,30%;(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的共有8种结果,故P=812=23. 【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.23.A车行驶的时间为3.1小时,B车行驶的时间为2.1小时.【解析】【分析】设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:700t﹣7001.4t=80,解分式方程即可,注意验根.【详解】解:设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:700t﹣7001.4t=80,解得:t=2.1,经检验,t=2.1是原分式方程的解,且符合题意,∴1.4t=3.1.答:A车行驶的时间为3.1小时,B车行驶的时间为2.1小时.【点睛】本题考核知识点:列分式方程解应用题.解题关键点:根据题意找出数量关系,列出方程. 24.(1)抛物线的表达式为y=x2﹣2x﹣2,B点的坐标(﹣1,0);(2)y的取值范围是﹣3≤y<1.(2)b的取值范围是﹣83<b<25.【解析】【分析】(1)、将点A坐标代入求出m的值,然后根据二次函数的性质求出点B的坐标;(2)、将二次函数配成顶点式,然后根据二次函数的增减性得出y的取值范围;(2)、根据函数经过(-1,0)、(3,2)和(0,-2)、(3,2)分别求出两个一次函数的解析式,从而得出b的取值范围.【详解】(1)∵将A(2,0)代入,得m=1,∴抛物线的表达式为y=2x-2x-2.令2x-2x-2=0,解得:x=2或x=-1,∴B点的坐标(-1,0).(2)y=2x-2x-2=()21x--3.∵当-2<x<1时,y随x增大而减小,当1≤x<2时,y随x增大而增大,∴当x=1,y最小=-3.又∵当x=-2,y=1,∴y的取值范围是-3≤y<1.(2)当直线y=kx+b经过B(-1,0)和点(3,2)时,解析式为y=25x+25.当直线y=kx+b经过(0,-2)和点(3,2)时,解析式为y=54x-2.由函数图象可知;b的取值范围是:-2<b<25.【点睛】本题主要考查的就是二次函数的性质、一次函数的性质以及函数的交点问题.在解决第二个问题的时候,我们首先必须要明确给出x的取值范围是否是在对称轴的一边还是两边,然后根据函数图形进行求解;对于第三问我们必须能够根据题意画出函数图象,然后根据函数图象求出取值范围.在解决二次函数的题目时,画图是非常关键的基本功.25.x1=-12,x2=1【解析】试题分析:分解因式得出(2x+1)(2x+1﹣3)=0,推出方程2x+1=0,2x+1﹣3=0,求出方程的解即可.试题解析:解:整理得:(2x+1)2-3(2x+1)=0,分解因式得:(2x+1)(2x+1﹣3)=0,即2x+1=0,2x+1﹣3=0,解得:x1=﹣12,x2=1.点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大.26.(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元.【解析】【分析】(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元可列方程18x+12(20﹣x)=300,解方程即可;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.【详解】(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据题意得:18x+12(20﹣x)=300,解得:x=10,则20﹣x=20﹣10=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据题意得:13y+8.8(20﹣y)≤239,解得:y≤15,根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,当y=15时,W最大,最大值为91万元.所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.27.(1)﹣10;(2)∠EFC=72°.【解析】【分析】(1)原式利用乘方的意义,立方根定义,乘除法则及家减法法则计算即可;(2)根据折叠的性质得到一对角相等,再由已知角的关系求出结果即可.【详解】(1)原式=﹣1﹣18+9=﹣10;(2)由折叠得:∠EFM=∠EFC,∵∠EFM=2∠BFM,∴设∠EFM=∠EFC=x,则有∠BFM=12x,∵∠MFB+∠MFE+∠EFC=180°,∴x+x+12x=180°,解得:x=72°,则∠EFC=72°.【点睛】本题考查了实数的性质及平行线的性质,解题的关键是熟练掌握实数的运算法则及平行线的性质.。
【2020精品中考数学提分卷】陕西省中考数学一模试卷-学生用卷+答案
2020年陕西省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−2019的相反数是()A. −2019B. 2019C. −12019D. 120192.一个几何体的三视图如图所示,则这个几何体是()A. 圆柱B. 圆锥C. 三棱柱D. 长方体3.如图,直线l1//l2 ,且分别与直线l交于C,D两点,把一块含30∘角的三角尺按如图所示的位置摆放.若∠1=52∘,则∠2的度数为()A. 92∘B. 98∘C. 102∘D. 108∘4.点A(−3,2)在反比例函数y=kx(k≠0)的图象上,则k的值是()A. −6B. −32C. −1D. 65.下列运算正确的是()A. 2m2+m2=3m4B. (mn2)2=mn4C. 2m⋅4m2=8m2D. m5÷m3=m26.如图,四边形ABCD中∠DAB=60∘,∠B=∠D=90∘,BC=1,CD=2,则对角线AC的长为()A. √21B. √213C. 2√213D. 5√2137.已知直线l:y=−12x+1与x轴交于点P,将l绕点P顺时针旋转90∘得到直线l′,则直线l′的解析式为()A. y=12x−1 B. y=2x−1 C. y=12x−4 D. y=2x−48.如图,矩形ABCD中,AB=2,AD=3,点E、F、G、H分别是矩形AB、BC、CD、DA的中点,则四边形EFGH的周长为()A. 10B. 5C. √13D. 2√139.如图所示,点A,B,C,D在⊙O上,CD是直径,∠ABD=75∘,则∠AOC的度数为()A. 15∘B. 25∘C. 30∘D. 35∘10.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点坐标为(4,0),抛物线的对称轴是x=1.下列结论中:①abc>0;②2a+b=0;③方程ax2+bx+c=3有两个不相等的实数根;④抛物线与x轴的另一个交点坐标为(−2,0);⑤若点A(m,n)在该抛物线上,则am2+bm+c≤a+b+c.其中正确的有()A. 5个B. 4个C. 3个D. 2个二、填空题(本大题共4小题,共12.0分)11.比较大小:−2√5______−3√2.12.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于______度.13.已知同一个反比例函数图象上的两点P1(x1,y1)、P2(x2,y2),若x2=x1+2,且1y2=1 y1+12,则这个反比例函数的解析式为______.14.如图,在▱ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=16cm2,S△BQC=25cm2,则图中阴影部分的面积为______cm2.三、计算题(本大题共3小题,共17.0分)15.计算:√6×(−√2)+|1−√3|+(−13)−216.先化简,再求值:x2+2x+1x2+x ÷(1+x2x−2x),其中x=√2+117.某服装厂每天生产A、B两种品牌的服装共600件,A、B两种品牌的服装每件的成A x件,每天两种服装获利y元.A B成本(元/件)5035利润(元/件)2015(2)如果服装厂每天至少投入成本26400元,那么每天至少获利多少元?四、解答题(本大题共8小题,共61.0分)18.如图,已知△ABC中,∠ACB=90∘,请作△ABC的外接圆.(保面作图痕迹,不写作法)19.如图,点B、F、C、E在一条直线上,FB=CE,AB//ED,AC//FD,AD交BE于O.求证:AD与BE互相平分.20.为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810请根据图表中所提供的信息,完成下列问题:(1)表中a=______,b=______,样本成绩的中位数落在______范围内;(2)请把频数分布直方图补充完整;(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有多少人?21.城墙作为古城西安的地标性建筑,自然是吸引了不少人慕名而来,每逢春节,城墙上都会支起万盏花灯,小画和小明去城墙观赏花灯,看见宏伟的城墙后,他们想要测量城墙的高,小明在城墙下看见城墙上有一根灯杆AB(点A为灯泡的位置),于是小明提议用灯下的影长来测量城墙的高,首先小明站在E处,测得其影长EF= 1m,小画站在H处,测得其影长HM=1.6m,小画和小明之间的距离HE=4m,已知小明的身高DE为1.5m,小画的身高GH为1.6m,灯杆AB的高为1.8m,点B 在直线AC上,AC⊥CM,DE⊥CM,GH⊥CM.请你根据以上信息,求出城墙的高BC.22.某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠.本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠,指针指向其它区域无优惠:方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为__________;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.23.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90∘;(2)当BC=3,sinA=3时,求AF的长.524.如图,在平面直角坐标系中,二次函数y=−x2+6x−5的图象与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.(1)求点P,C的坐标;(2)直线l上是否存在点Q,使△PBQ的面积等于△PAC的面积的2倍?若存在,求出点Q的坐标;若不存在,请说明理由.25.问题发现.(1)如图①,Rt△ABC中,∠C=90∘,AC=3,BC=4,点D是AB边上任意一点,则CD的最小值为______.(2)如图②,矩形ABCD中,AB=3,BC=4,点M、点N分别在BD、BC上,求CM+MN的最小值.(3)如图③,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=2,点F是BC边上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG、CG,四边形AGCD的面积是否存在最小值,若存在,求这个最小值及此时BF的长度.若不存在,请说明理由.2020年陕西省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)26.−2019的相反数是()A. −2019B. 2019C. −12019D. 12019【答案】B【解析】解:−2019的相反数是:2019.故选:B.直接利用相反数的定义分析得出答案.此题主要考查了相反数,正确把握定义是解题关键.27.一个几何体的三视图如图所示,则这个几何体是()A. 圆柱B. 圆锥C. 三棱柱D. 长方体【答案】C【解析】解:由三视图知这个几何体是三棱柱,故选:C.由常见几何体的三视图即可判断.本题主要考查由三视图判断几何体,解题的关键是熟练掌握常见几何体的三视图.28.如图,直线l1//l2 ,且分别与直线l交于C,D两点,把一块含30∘角的三角尺按如图所示的位置摆放.若∠1=52∘,则∠2的度数为()A. 92∘B. 98∘C. 102∘D. 108∘【答案】B【解析】【分析】本题主要考查了平行线的性质和三角板的特征以及角度的计算,解答本题的关键是利用平行线的性质.依据l1//l2,即可得到∠1=∠3=52∘,再根据∠4=30∘,即可得出从∠2=180∘−∠3−∠4=98∘.【解答】解:如图,∵l1//l2,∴∠1=∠3=52∘,又∵∠4=30∘,∴∠2=180∘−∠3−∠4=180∘−52∘−30∘=98∘,故选:B.29.点A(−3,2)在反比例函数y=kx(k≠0)的图象上,则k的值是()A. −6B. −32C. −1D. 6【答案】A【解析】【分析】本题考查了反比例函数图象上点的坐标特征,反比例函数图象上所有点的坐标均满足该函数的解析式.根据点A的坐标,利用反比例函数图象上点的坐标特征求出k值,此题得解.【解答】解:∵A(−3,2)在反比例函数y=kx(k≠0)的图象上,∴k=(−3)×2=−6.故选A.30.下列运算正确的是()A. 2m2+m2=3m4B. (mn2)2=mn4C. 2m⋅4m2=8m2D. m5÷m3=m2【答案】D【解析】解:A、2m2+m2=3m2,故此选项错误;B、(mn2)2=m2n4,故此选项错误;C、2m⋅4m2=8m3,故此选项错误;D、m5÷m3=m2,正确.故选:D.直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.此题主要考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题关键.31.如图,四边形ABCD中∠DAB=60∘,∠B=∠D=90∘,BC=1,CD=2,则对角线AC的长为()A. √21B. √213C. 2√213D. 5√213【答案】C【解析】解:延长DC交AB的延长线于点K;在Rt△ADK中,∠DAK=60∘∠AKD=30∘,BC=1,∴CK= 2,BK=√3,∴DK=CD+CK=4,∴AD=DKtan60∘=4√33,在△Rt△ADC中,AC=√AD2+DC2=2√213,故选:C.延长DC与AB交于一点K.解直角三角形求出DK,再求出AD,利用勾股定理求出AC.考查了解直角三角形的应用,解题关键在于构造直角三角形ADK.32.已知直线l:y=−12x+1与x轴交于点P,将l绕点P顺时针旋转90∘得到直线l′,则直线l′的解析式为()A. y=12x−1 B. y=2x−1 C. y=12x−4 D. y=2x−4【答案】D【解析】解:设直线的解析式为y=kx+b,∵直线直线l,∴−12×k=−1,即k=2,在直线l:y=−12x+1中,令y=0,则x=2,∴P(2,0),代入y=2x+b,可得0=4+b,解得b=−4,∴直线的解析式为y=2x−4,故选:D.设直线的解析式为y=kx+b,根据直线直线l,即可得到k=2,再根据P(2,0),即可得出直线的解析式为y=2x−4.本题考查了利用待定系数法求直线的解析式:先设直线的解析式为y=kx+b,然后把已知点的坐标代入得到关于k、b的方程组,解方程组即可.33.如图,矩形ABCD中,AB=2,AD=3,点E、F、G、H分别是矩形AB、BC、CD、DA的中点,则四边形EFGH的周长为()A. 10B. 5C. √13D. 2√13【答案】D【解析】解:连接BD,AC,如图,∵矩形ABCD中,AB=2,AD=3,∴AC=BD=√22+32=√13,∵点E、F、G、H分别是矩形AB、BC、CD、DA的中点,∴HG为△ACD为中位线,EF为△BAC为△BAC的中位线,∴HG=12AC=√132,EF=12AC=√132,同理可得EH=12BD=√132,GF=12BD=√132,∴四边形EFGH的周长为4×√132=2√13.故选:D.连接BD,AC,如图,根据矩形的性质和勾股定理得到AC=BD=√13,再利用三角形中位线性质得到HG=12AC=√132=EF,EH=GF=12BD=√132,然后计算四边形EFGH的周长.本题考查了中点四边形:顺次连接任意四边形各边中点所得的四边形为平行四边形.也考查了矩形的性质.34.如图所示,点A,B,C,D在⊙O上,CD是直径,∠ABD=75∘,则∠AOC的度数为()A. 15∘B. 25∘C. 30∘D. 35∘【答案】C【解析】解:连接AC,∵∠ABD=75∘,∴∠DCA=75∘,∵OA=OC,∴∠AOC=180∘−2×75∘=30∘,故选:C.由CD是直径,∠ABD=75∘,由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,求得∠DCA的度数,即可求得∠AOC的度数.此题考查了圆周角定理.此题难度不大,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用是解此题的关键.35.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点坐标为(4,0),抛物线的对称轴是x=1.下列结论中:①abc>0;②2a+b=0;③方程ax2+bx+c=3有两个不相等的实数根;④抛物线与x轴的另一个交点坐标为(−2,0);⑤若点A(m,n)在该抛物线上,则am2+bm+c≤a+b+c.其中正确的有()A. 5个B. 4个C. 3个D. 2个【答案】B【解析】解:①∵对称轴是y轴的右侧,∴ab<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,故①错误;②∵−b=1,2a∴b=−2a,2a+b=0,故②正确;③由图象得:y=3时,与抛物线有两个交点,∴方程ax2+bx+c=3有两个不相等的实数根;故③正确;④∵抛物线与x轴的一个交点坐标为(4,0),抛物线的对称轴是x=1,第 1页 / 共 22 页∴抛物线与x 轴的另一个交点坐标为(−2,0); 故④正确;⑤∵抛物线的对称轴是x =1, ∴y 有最大值是a +b +c , ∵点A(m,n)在该抛物线上, ∴am 2+bm +c ≤a +b +c , 故⑤正确;本题正确的结论有:②③④⑤,4个, 故选B .【分析】结合函数图象,根据二次函数的性质及二次函数与一元二次方程、一元二次不等式间的关系逐一判断即可.本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c(a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左侧;当a 与b 异号时(即ab <0),对称轴在y 轴右侧;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c);也考查了抛物线与x 轴的交点以及二次函数的性质.二、填空题(本大题共4小题,共12.0分) 36. 比较大小:−2√5______−3√2. 【答案】<【解析】解:∵−2√5=−√20,−3√2=−√18, ∴−2√5<−3√2, 故答案为:<.先把根号外的因式移入根号内,再根据两个负数比较大小,其绝对值大的反而小比较即可.本题考查了实数的大小比较法则,能熟记实数的大小比较法则内容是解此题的关键,注意:两个负数比较大小,其绝对值大的反而小.37. 两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则∠AOB 等于______度.【答案】108【解析】解:如图,由正五边形的内角和,得∠1=∠2=∠3=∠4=108∘, ∠5=∠6=180∘−108∘=72∘, ∠7=180∘−72∘−72∘=36∘.∠AOB=360∘−108∘−108∘−36∘=108∘,故答案为:108.根据多边形的内角和,可得∠1,∠2,∠3,∠4,根据等腰三角形的内角和,可得∠7,根据角的和差,可得答案.本题考查了多边形的内角与外角,利用多边形的内角和得出每个内角是解题关键.38.已知同一个反比例函数图象上的两点P1(x1,y1)、P2(x2,y2),若x2=x1+2,且1y2=1 y1+12,则这个反比例函数的解析式为______.【答案】y=4x【解析】解:设这个反比例函数的表达式为y=kx,∵P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,∴x1⋅y1=x2⋅y2=k,∴1y1=x1k,1y2=x2k,∵1y2=1y1+12,∴1y2−1y1=12,∴x2k −x1k=12,∴x2−x1k =12,∴k=2(x2−x1),∵x2=x1+2,∴x2−x1=2,∴k=2×2=4,∴这个反比例函数的解析式为:y=4x,故答案为:y=4x.设这个反比例函数的表达式为y=kx ,可得x1⋅y1=x2⋅y2=k,变形后得:1y1=x1k,1y2=x2k,将其代入已知1y2=1y1+12,可得x2−x1k=12,根据x2=x1+2,即可求得k的值.本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.同时考查了式子的变形.39.如图,在▱ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=16cm2,S△BQC=25cm2,则图中阴影部分的面积为______cm2.第18页,共22页第 1 页 / 共 22 页【答案】41【解析】解:连接E 、F 两点, ∵四边形ABCD 是平行四边形, ∴AB//CD ,∴△EFC 的FC 边上的高与△BCF 的FC 边上的高相等,∴S △EFC =S △BCF , ∴S △EFQ =S △BCQ ,同理:S △EFD =S △ADF , ∴S △EFP =S △ADP ,∵S △APD =16cm 2,S △BQC =25cm 2, ∴S 四边形EPFQ =41cm 2,故答案为:41.连接E 、F 两点,由三角形的面积公式我们可以推出S △EFC =S △BCQ ,S △EFD =S △ADF ,所以S △EFG =S △BCQ ,S △EFP =S △ADP ,因此可以推出阴影部分的面积就是S △APD +S △BQC . 本题主要考查了平行四边形的性质,题目综合性较强,主要考查了平行四边形的性质,解答此题关键是作出辅助线,找出同底等高的三角形.三、计算题(本大题共3小题,共17.0分)40. 计算:√6×(−√2)+|1−√3|+(−13)−2【答案】解:原式=−2√3+√3−1+9=8−√3.【解析】先计算二次根式的乘法、去绝对值符合、计算零指数幂,再合并同类二次根式即可得.本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则、绝对值性质及负整数指数幂.41. 先化简,再求值:x 2+2x+1x 2+x ÷(1+x2x−2x),其中x =√2+1 【答案】解:原式=(x+1)2x(x+1)÷(1+x 2x−2x 2x)=x +1x ÷1−x 2x =1+x x ⋅x (1+x)(1−x)=11−x ,当x =√2+1时, 原式=1−√2−1=−√22.第18页,共22页【解析】先根据分式混合运算顺序和运算法则化简原式,再将x 的值代入计算可得. 本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.42. 某服装厂每天生产A 、B 两种品牌的服装共600件,A 、B 两种品牌的服装每件的成本和利润如表:设每天生产A 种品牌服装x 件,每天两种服装获利y 元.A B 成本(元/件) 50 35 利润(元/件)2015(2)如果服装厂每天至少投入成本26400元,那么每天至少获利多少元? 【答案】解:(1)A 种品牌服装x 件,则B 种品牌服装(600−x)件,依题意,得 y =20x +15(600−x)=5x +9000;(2)A 种品牌服装x 件,则B 种品牌服装(600−x)件,依题意,得 50x +35(600−x)≥26400,解得x ≥360, ∴每天至少获利y =5x +9000=10800【解析】(1)A 种品牌服装x 件,则B 种品牌服装(600−x)件;利润=A 种品牌服装件数×A 种品牌服装一件的利润+B 种品牌服装件数×B 种品牌服装一件的利润,列出函数关系式;(2)A 种品牌服装x 件,则B 种品牌服装(600−x)件;成本=A 种品牌服装件数×A 种品牌服装一件的成本+B 种品牌服装件数×B 种品牌服装一件的成本,列出不等式,求x 的值,再代入(1)求利润.本题考查一次函数的应用、不等式的应用,解题的关键是理解题意,学会用函数和不等式解决问题,属于中考常考题型.四、解答题(本大题共8小题,共61.0分)43. 如图,已知△ABC 中,∠ACB =90∘,请作△ABC 的外接圆.(保面作图痕迹,不写作法)【答案】解:(1)如图,⊙O 为所作;【解析】作AB 的垂直平分线得到AB 的中点O ,再以O 点为圆心,OA 为半径作⊙O 即可.本题考查了作图−复杂作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的外接圆和圆周角定理.44. 如图,点B 、F 、C 、E 在一条直线上,FB =CE ,AB//ED ,AC//FD ,AD 交BE于O.求证:AD 与BE 互相平分.第 1 页 / 共 22 页【答案】证明:如图,连接BD ,AE , ∵FB =CE , ∴BC =EF ,又∵AB//ED ,AC//FD ,∴∠ABC =∠DEF ,∠ACB =∠DFE , 在△ABC 和△DEF 中, {∠ABC =∠DEF BC =EF ∠ACB =∠DFE, ∴△ABC≌△DEF(ASA), ∴AB =DE , 又∵AB//DE ,∴四边形ABDE 是平行四边形, ∴AD 与BE 互相平分.【解析】连接BD ,AE ,判定△ABC≌△DEF(ASA),可得AB =DE ,依据AB//DE ,即可得出四边形ABDE 是平行四边形,进而得到AD 与BE 互相平分. 本题主要考查了平行四边形的判定与性质,解决问题的关键是依据全等三角形的对应边相等得出结论.45. 为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图. 学生立定跳远测试成绩的频数分布表分组频数 1.2≤x <1.6 a 1.6≤x <2.0 12 2.0≤x <2.4 b 2.4≤x <2.810请根据图表中所提供的信息,完成下列问题:(1)表中a =______,b =______,样本成绩的中位数落在______范围内; (2)请把频数分布直方图补充完整;(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x <2.8范围内的学生有多少人?第18页,共22页【答案】8 20 2.0≤x <2.4 【解析】解:(1)由统计图可得, a =8,b =50−8−12−10=20, 样本成绩的中位数落在:2.0≤x <2.4范围内,故答案为:8,20,2.0≤x <2.4; (2)由(1)知,b =20,补全的频数分布直方图如右图所示; (3)1000×1050=200(人),答:该年级学生立定跳远成绩在2.4≤x <2.8范围内的学生有200人.(1)根据题意和统计图可以求得a 、b 的值,并得到样本成绩的中位数所在的取值范围; (2)根据b 的值可以将频数分布直方图补充完整;(3)根据统计图中的数据可以求得该年级学生立定跳远成绩在2.4≤x <2.8范围内的学生有多少人.本题考查频数分布直方图、频数分布表、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.46. 城墙作为古城西安的地标性建筑,自然是吸引了不少人慕名而来,每逢春节,城墙上都会支起万盏花灯,小画和小明去城墙观赏花灯,看见宏伟的城墙后,他们想要测量城墙的高,小明在城墙下看见城墙上有一根灯杆AB(点A 为灯泡的位置),于是小明提议用灯下的影长来测量城墙的高,首先小明站在E 处,测得其影长EF =1m ,小画站在H 处,测得其影长HM =1.6m ,小画和小明之间的距离HE =4m ,已知小明的身高DE 为1.5m ,小画的身高GH 为1.6m ,灯杆AB 的高为1.8m ,点B 在直线AC 上,AC ⊥CM ,DE ⊥CM ,GH ⊥CM.请你根据以上信息,求出城墙的高BC .【答案】解:∵DE//AC ,GH//AC , ∴△DEF∽△ACF ,△GHM∽△ACM ,第 1 页 / 共 22 页∴AC DE =CF EF ,AC GH =CMHM , ∴AC 1.5=CE+11,AC 1.6=CE+4+1.61.6,∴AC =13.8m ,∴BC =AC −AB =12m , ∴出城墙的高BC 为12m .【解析】由△DEF∽△ACF ,△GHM∽△ACM ,可得ACDE =CFEF ,ACGH =CMHM ,由此构建方程组即可解决问题;本题考查相似三角形的应用,解题的关键是准确寻找相似三角形解决问题,学会构建方程组解决问题,属于中考常考题型.47. 某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠.本次活动共有两种方式,方式一:转动转盘甲,指针指向A 区域时,所购买物品享受9折优惠,指针指向其它区域无优惠:方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为__________;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率. 【答案】解:(1)14; (2)画树状图如下:由树状图可知共有12种等可能结果,其中指针指向每个区域的字母相同的有2种结果, 所以指针指向每个区域的字母相同的概率,即顾客享受8折优惠的概率为212=16. 【解析】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.(1)由转动转盘甲共有四种等可能结果,其中指针指向A 区域只有1种情况,利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中确定指针指向每个区域的字母相同的结果数,利用概率公式计算可得.【解答】解:(1)若选择方式一,转动转盘甲一次共有四种等可能结果,其中指针指向A 区域只有1种情况,∴享受9折优惠的概率为14,故答案为14;(2)见答案.48.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90∘;(2)当BC=3,sinA=35时,求AF的长.【答案】解:(1)连接OE,BE,∵DE=EF,∴DE⏜=EF⏜∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE//BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90∘(2)在△ABC,∠C=90∘,BC=3,sinA=35∴AB=5,设⊙O的半径为r,则AO=5−r,在Rt△AOE中,sinA=OEOA =r5−r=35∴r=158∴AF=5−2×158=54【解析】(1)连接OE,BE,因为DE=EF,所以DE⏜=EF⏜,从而易证∠OEB=∠DBE,所以OE//BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5−r,在Rt△AOE中,sinA=OEOA =r5−r=35,从而可求出r的值.本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综第18页,共22页第 1 页 / 共 22 页合程度较高,需要学生灵活运用所学知识.49. 如图,在平面直角坐标系中,二次函数y =−x 2+6x −5的图象与x 轴交于A 、B 两点,与y 轴交于点C ,其顶点为P ,连接PA 、AC 、CP ,过点C 作y 轴的垂线l . (1)求点P ,C 的坐标;(2)直线l 上是否存在点Q ,使△PBQ 的面积等于△PAC 的面积的2倍?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】解:(1)∵y =−x 2+6x −5=−(x −3)2+4, ∴顶点P(3,4),令x =0得到y =−5, ∴C(0.−5).(2)令y =0,x 2−6x +5=0,解得x =1或5, ∴A(1,0),B(5,0),设直线PC 的解析式为y =kx +b ,则有{3k +b =4b=−5, 解得{b =−5k=3,∴直线PC 的解析式为y =3x −5,设直线交x 轴于D ,则D(53,0),设直线PQ 交x 轴于E ,当BE =2AD 时,△PBQ 的面积等于△PAC 的面积的2倍, ∵AD =23, ∴BE =43,∴E(113,0)或E′(193,0),则直线PE 的解析式为y =−6x +22, ∴Q(92,−5),直线PE′的解析式为y =−65x +385,∴Q′(212,−5),综上所述,满足条件的点Q(92,−5),Q′(212,−5).【解析】(1)利用配方法求出顶点坐标,令x=0,可得y=−5,推出C(0,−5);(2)直线PC的解析式为y=3x−5,设直线交x轴于D,则D(53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,分两种情形分别求解即可解决问题.本题考查抛物线与x轴的交点、二次函数的性质等知识,解题的关键是熟练掌握待定系数法,学会用转化的思想思考问题,属于中考常考题型.50.问题发现.(1)如图①,Rt△ABC中,∠C=90∘,AC=3,BC=4,点D是AB边上任意一点,则CD的最小值为______.(2)如图②,矩形ABCD中,AB=3,BC=4,点M、点N分别在BD、BC上,求CM+MN的最小值.(3)如图③,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=2,点F是BC边上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG、CG,四边形AGCD的面积是否存在最小值,若存在,求这个最小值及此时BF的长度.若不存在,请说明理由.【答案】125【解析】解:(1)如图①,过点C作CD⊥AB于D,根据点到直线的距离垂线段最小,此时CD最小,在Rt△ABC中,AC=3,BC=4,根据勾股定理得,AB=5,∵12AC×BC=12AB×CD,∴CD=AC×BCAB =125,故答案为125;(2)如图②,作出点C关于BD的对称点E,过点E作EN⊥BC于N,交BD于M,连接CM,此时CM+MN= EN最小;∵四边形ABCD是矩形,∴∠BCD=90∘,CD=AB=3,根据勾股定理得,BD=5,∵CE⊥BC,∴12BD×CF=12BC×CD,∴CF=BC×CDBD =125,第18页,共22页【2020年中考数学——精品提分卷】 第 1 页 / 共 22 页 由对称得,CE =2CF =245, 在Rt △BCF 中,cos∠BCF =CF BC =35,∴sin∠BCF =45,在Rt △CEN 中,EN =CEsin∠BCE =245×45=9625; 即:CM +MN 的最小值为9625;(3)如图3,∵四边形ABCD 是矩形,∴CD =AB =3,AD =BC =4,∠ABC =∠D =90∘,根据勾股定理得,AC =5,∵AB =3,AE =2,∴点F 在BC 上的任何位置时,点G 始终在AC 的下方,设点G 到AC 的距离为h ,∵S 四边形AGCD =S △ACD +S △ACG =12AD ×CD +12AC ×ℎ=12×4×3+12×5×ℎ=52ℎ+6,∴要四边形AGCD 的面积最小,即:h 最小,∵点G 是以点E 为圆心,BE =1为半径的圆上在矩形ABCD 内部的一部分点, ∴EG ⊥AC 时,h 最小,由折叠知∠EGF =∠ABC =90∘,延长EG 交AC 于H ,则EH ⊥AC ,在Rt △ABC 中,sin∠BAC =BC AC =45,在Rt △AEH 中,AE =2,sin∠BAC =EH AE =45,∴EH =45AE =85, ∴ℎ=EH −EG =85−1=35, ∴S 四边形AGCD 最小=52ℎ+6=52×35+6=152,过点F 作FM ⊥AC 于M ,∵EH ⊥FG ,EH ⊥AC ,∴四边形FGHM 是矩形,∴FM =GH =35∵∠FCM =∠ACB ,∠CMF =CBA =90∘,∴△CMF∽△CBA ,∴CF AC =FM AB , ∴CF5=353,∴CF =1∴BF=BC−CF=4−1=3.(1)根据点到直线的距离最小,再用三角形的面积即可得出结论;(2)先根据轴对称确定出点M和N的位置,再利用面积求出CF,进而求出CE,最后用三角函数即可求出CM+MN的最小值;(3)先确定出EG⊥AC时,四边形AGCD的面积最小,再用锐角三角函数求出点G到AC 的距离,最后用面积之和即可得出结论,再用相似三角形得出的比例式求出CF即可求出BF.此题是四边形综合题,主要考查了矩形的性质,点到直线的距离,轴对称,解本题的关键是确定出满足条件的点的位置,是一道很好的中考常考题.第18页,共22页。
2020年陕西省中考数学一模试卷(含答案解析)
2020年陕西省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−12的倒数是()A. −2B. 2C. 12D. −122.一个直角三角形绕其直角边旋转一周得到的几何体可能是()A. B.C. D.3.下列计算正确的是()A. x3·x=x3B. x3−x2=xC. −x3·(−x)2=x5D. x6÷x=x54.如图,AB//CD,CE平分∠ACD交AB于E,若∠A=120°,则∠AEC=()A. 20°B. 25°C. 30°D. 50°5.某商场一天中售出李宁牌运动鞋10双,其中各种尺码的鞋的销售量如下表所示,则这10双鞋的尺码组成的一组数据中,众数和中位数分别为()鞋的尺寸(单位:厘米)23.52424.52526销售量(单位:双)12241A. 25,25B. 24.5,25C. 26,25D. 25,24.756.下列在正比例函数y=−4x的图象上的点是()A. (1,4)B. (−1,−4)C. (4,−1)D. (0.5,−2)7. 如图,在菱形ABCD 中,∠A =60°,AD =8,P 是AB 边上的一点,E ,F 分别是DP ,BP 的中点,则线段EF 的长为( )A. 8B. 2√5C. 4D. 2√2 8. 点A(1,m)在函数y =2x 的图象上,则m 的值是( )A. 1B. 2C. 12D. 09. 如图,在矩形ABCD 中,AB =4,BC =6,E 是矩形内部的一个动点,且AE ⊥BE ,则线段CE的最小值为( )A. 32B. 2√10−2C. 2√13−2D. 410. 将抛物线y =−x 2向左移动2个单位,再向上移动3个单位后,抛物线的顶点为( )A. (2,3)B. (2,−3)C. (−2,3)D. (−2,−3)二、填空题(本大题共4小题,共12.0分)11. 在实数117,−(−1),π3,√1.21,313113113,√5中,无理数有______个.12. 不等式12x −5≤1−32x 的正整数解是______ .13. 如图,过y 轴上任意一点P ,作x 轴的平行线,分别与反比例函数y =−6x 和y =2x 的图象交于点A 和点B ,若C 为x 轴上任意一点,连接AC ,BC ,则△ABC 的面积为_________.14.在Rt△ABC中,∠ACB=90°.AC=6,BC=8,分别以它的三边为直径向上作三个半圆,则阴影部分面积为.三、计算题(本大题共1小题,共5.0分)15.解方程:xx+2−2x2−4=1.四、解答题(本大题共10小题,共73.0分)16.17.计算:(√3+1)×(√3−1)−√8+|1−√2|17.如图,△ABC的顶点在正方形网格的格点上,D是边AB上一点,请在其它边上找一点E,连接DE后,使得到的新三角形与△ABC相似.要求用无刻度的直尺作图,且作出两种不同的情况.18.如图,正方形ABCD中,E、F分别是边CD、DA上的点,且CE=DF,AE与BF交于点M.求证:AE⊥BF.19.东营市“创建文明城市”活动如火如荼的展开.某中学为了搞好“创城”活动的宣传,校学生会就本校学生对东营“市情市况”的了解程度进行了一次调查测试.经过对测试成绩的分析,得到如下图所示的两幅不完整的统计图(A:59分及以下;B:60−69分;C:70−79分;D:80−89分;E:90−100分).请你根据图中提供的信息解答以下问题:(1)求该校共有多少名学生;(2)将条形统计图补充完整;(3)在扇形统计图中,计算出“60−69分”部分所对应的圆心角的度数.20.如图,从地面B处测得热气球A的仰角为45°,从地面C处测得热气球A的仰角为30°,若BC为240米,求:热气球A的高度.21.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?22.小华和小军做摸卡片游戏,规则如下:甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为−7,−1,3.乙袋中的三张卡片所标的数值为−2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.若点A在第一象限,则小华胜,若点A在第三象限则小军胜.这个游戏对双方公平吗?请说明理由.23.如图,在△ABC中,∠A=60°,⊙O是△ABC的外接圆,过点B作⊙O的切线,交CO的延长线于点D,CD交⊙O于点E.(1)求证:BC=BD;(2)若BC=3,求CD的长.x2+bx+c交24.如图,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,B(3,5),抛物线y=−12 x轴于点C,D两点,且经过点B.(1)求抛物线的表达式;(2)在抛物线上是否存在点F,使得△ACF的面积等于5,若存在,求出点F的坐标;若不存在,说明理由;(3)点M(4,k)在抛物线上,连接CM,求出在坐标轴的点P,使得△PCM是以∠PCM为顶角以CM为腰的等腰三角形,请直接写出P点的坐标.25.如图,在平面直角坐标系中,A(−4√3,0)、B(0,−4),D为直线AB上一点,且D点横坐标为−√3,y轴上有一动点P,直线l经过D、P两点.(1)求直线AB的表达式和D点坐标;(2)当∠ADP=105°时,求点P坐标;(3)在直线l上取点Q(m,n)且mn=3√3,现过点Q作QM⊥y轴于M,QN⊥x轴于N.问:是否存在点P,使得直线DQ分长方形ONQM为两部分,其中所分成的三角形面积是△PDB面积的一半?若存在,直接写出P点坐标;若不存在,请说明理由.【答案与解析】1.答案:A的倒数是−2.解析:解:−12故选:A.根据倒数的定义求解.本题主要考查了倒数的定义,解题的关键是熟记定义.2.答案:D解析:本题考查了点线面体的相关知识点,熟记各种平面图形旋转得到的立体图形是解题关键.根据直角三角形绕直角边旋转是圆锥,可得答案.解:将一个直角三角形绕它的一条直角边旋转一周得到的几何体是圆锥,故选D.3.答案:D解析:本题考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的不能合并.利用同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.解:A.应为x3·x=x3+1=x4,故本选项错误;B.x3−x2没有同类项,不能合并,故本选项错误;C.−x3·(−x)2=−x2+2=−x5,故本选项错误;D.应为x6÷x1=x5,故本选项正确.故选D.4.答案:C解析:解:∵AB//CD,∠A=120°,∴∠ACD=60°,∵CE平分∠ACD,∴∠ECD=∠AEC=30°,∵AB//CD,∴∠AEC=∠ECD=30°,故选C.直接利用平行线的性质得出∠ACD=70°,再利用角平分线的性质得出答案.此题主要考查了平行线的性质以及角平分线的性质,正确得出∠ACD的度数是解题关键.5.答案:D解析:解:从小到大排列此数据为:23.5、24、24、24.5、24.5、25、25、25、25、26,中间两个数是24.5和25,则中位数是(24.5+25)÷2=24.75;数据25出现了四次,出现的次数最多,则众数是25.故选:D.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.此题考查了中位数和众数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.注意众数可以不止一个.6.答案:D解析:解:A、∵当x=1时,y=−4×1=−4≠4,∴此点不在正比例函数y=−4x图象上,故本选项错误;B、∵当x=−1时,y=(−4)×(−1)=4≠−4,∴此点不在正比例函数y=−4x图象上,故本选项错。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年陕西省西安市雁塔区中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.﹣2的绝对值是()A.2B.C.D.12.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.3.下列计算正确的是()A.a•a2=a2B.(a2)2=a4C.3a+2a=5a2D.(a2b)3=a2•b34.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°5.已知y关于x成正比例,且当x=2时,y=﹣6,则当x=1时,y的值为()A.3B.﹣3C.12D.﹣126.如图,在△ABC中,AB=AC,AD、CE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°7.在同一平面直角坐标系中,直线y=2x+3与y=2x﹣5的位置关系是()A.平行B.相交C.重合D.垂直8.如图,矩形ABCD中,AB=3,AD=9,点E在边AD上,AE=1,过E、D两点的圆的圆心O 在边AD的上方,直线BO交AD于点F,作DG⊥BO,垂足为G.当△ABF与△DFG全等时,⊙O的半径为()A.B.C.D.9.如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,AC=4,则OD的长为()A.1B.1.5C.2D.2.510.已知抛物线y=ax2+bx+c(a<0)经过点(﹣1,0),且满足4a+2b+c>0,有下列结论:①a+b >0;②﹣a+b+c>0;③b2﹣2ac>5a2.其中,正确结论的个数是()A.0B.1C.2D.3二.填空题(共4小题,满分12分,每小题3分)11.不等式﹣9+3x≤0的非负整数解的和为.12.如果3sinα=+1,则∠α=.(精确到0.1度)13.如图,在平面直角坐标系中,直线y=x与双曲线y=(k≠0)交于点A,过点C(0,2)作AO的平行线交双曲线于点B,连接AB并延长与y轴交于点D(0,4),则k的值为.14.已知等边三角形ABC边长为2,两顶点A、B分别在平面直角坐标系的x轴负半轴、y轴的正半轴上滑动,点C在第四象限,连结OC,则线段OC长的最小值是.三.解答题(共11小题)15.计算:+tan60°﹣(sin45°)﹣1﹣|1﹣|16.计算:+17.已知:△ABC中,∠A=36°,AB=AC,用尺规求作一条过点B的直线,使得截出的一个三角形与△ABC相似.(保留作图痕迹,不写作法)18.某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:(1)请将图2的统计图补充完整;(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是个学科;(3)若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有人.19.如图,在▱CBCD中,E是对角线BD上的一点,过点C作CF∥DB,且CF=DE,连接AE,BF,EF.(1)求证:△ADE≌△BCF;(2)若∠ABE+∠BFC=180°,则四边形ABFE是什么特殊四边形?说明理由.20.如图,小华在晚上由路灯A走向路灯B.当他走到点P时,发现他身后影子的顶部刚好接触到路灯A的底部;当他向前再步行12m到达点Q时,发现他身前影子的顶部刚好接触到路灯B的底部.已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB.(1)求两个路灯之间的距离.(2)当小华走到路灯B的底部时,他在路灯A下的影长是多少?21.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:甲乙原料成本128销售单价1812生产提成10.8(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)22.汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完..........,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是;(2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?23.如图,AB是⊙O的直径,直线AT切⊙O于点A,BT交⊙O于C,已知∠B=30°,AT=,求⊙O的直径AB和弦BC的长.24.在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.25.如图,△BCD内接于⊙O,直径AB经过弦CD的中点M,AE交BC的延长线于点E,连接AC,∠EAC=∠ABD=30°.(1)求证:△BCD是等边三角形;(2)求证:AE是⊙O的切线;(3)若CE=2,求⊙O的半径.2020年陕西省西安市雁塔区中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据差的绝对值是大数减小数,可得答案.【解答】解:﹣2的绝对值是2﹣.故选:A.【点评】本题考查了实数的性质,差的绝对值是大数减小数.2.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.【分析】根据同底数幂的乘法底数不变指数相加,幂的乘方底数不变指数相乘,合并同类项系数相加字母及指数不变,积的乘方等于乘方的积,可得答案.【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、幂的乘方底数不变指数相乘,故B正确;C、合并同类项系数相加字母及指数不变,故C错误;D、积的乘方等于乘方的积,故D错误;故选:B.【点评】本题考查了幂的乘方与积的乘方,熟记法则并根据法则计算是解题关键.4.【分析】先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.【解答】解:如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:C.【点评】本题主要考查了平行线的性质,解题的关键是掌握三角形外角的性质.5.【分析】先利用待定系数法求出y=﹣3x,然后计算x=1对应的函数值.【解答】解:设y=kx,∵当x=2时,y=﹣6,∴2k=﹣6,解得k=﹣3,∴y=﹣3x,∴当x=1时,y=﹣3×1=﹣3.故选:B.【点评】本题考查了待定系数法求正比例函数的解析式:设正比例函数解析式为y=kx(k≠0),然后把一个已知点的坐标代入求出k即可.6.【分析】根据等腰三角形的性质得到∠BAD=∠CAD=20°,∠ABC=∠ACB,根据三角形内角和定理求出∠ACB,根据角平分线的定义计算即可.【解答】解:∵AB=AC,AD是△ABC的中线,∴∠BAD=∠CAD=20°,∠ABC=∠ACB,∴∠ACB==70°,∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°,故选:B.【点评】本题考查的是等腰三角形的性质,三角形的中线和角平分线以及三角形内角和定理,掌握等腰三角形的三线合一是解题的关键.7.【分析】根据直线y=2x+3与y=2x﹣5中的k都等于2,于是得到结论.【解答】解:∵直线y=2x+3与y=2x﹣5的k值相等,∴直线y=2x+3与y=2x﹣5的位置关系是平行,故选:A.【点评】本题考查了两条直线相交或平行问题,知道两直线的k值相等时两直线平行是解题的关键.8.【分析】根据全等三角形的性质得到BF=DF,根据矩形的性质得到∠A=90°,根据勾股定理得到AF=4,连接OE,OD,则OE=OD,过O作OH⊥AD于H,则HE=HD=4,根据相似三角形的性质得到OH=,根据勾股定理列方程即可得到结论.【解答】解:∵△ABF与△DFG全等,∴BF=DF,∵AD=9,∴BF=9﹣AF,∵四边形ABCD是矩形,∴∠A=90°,∴AB2+AF2=BF2,即32+AF2=(9﹣AF)2,解得:AF=4,∵AE=1,∴EF=3,DE=8,连接OE,OD,则OE=OD,过O作OH⊥AD于H,则HE=HD=4,∴FH=1,∵∠A=∠OHF=90°,∠AFB=∠OFH,∴△ABF∽△HOF,∴,即,∴OH=,在Rt△ODH中,OD==,故选:B.【点评】本题考查了矩形的性质,全等三角形的性质,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.9.【分析】由OD⊥BC,根据垂径定理,可得CD=BD,即可得OD是△ABC的中位线,则可求得OD的长.【解答】解:∵OD⊥BC,∴CD=BD,∵OA=OB,AC=4∴OD=AC=2.故选:C.【点评】此题考查了垂径定理以及三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.10.【分析】利用题意画出二次函数的大致图象,利用对称轴的位置得到﹣>,则可对①进行判断;利用a<0,b>0,c>0可对②进行判断;由a﹣b+c=0,即b=a+c,则4a+2(b+c)+c >0,所以2a+c>0,变形b2﹣2ac﹣5a2=﹣(2a+c)(2a﹣c),则可对③进行判断.【解答】解:如图,∵抛物线过点(﹣1,0),且满足4a+2b+c>0,∴抛物线的对称轴x=﹣>,∴b>﹣a,即a+b>0,所以①正确;∵a<0,b>0,c>0,∴﹣a+b+c>0,所以②正确;∵a﹣b+c=0,即b=a+c,∴4a+2(b+c)+c>0,∴2a+c>0,∴b2﹣2ac﹣5a2=(a+c)2﹣2ac﹣5a2=﹣(2a+c)(2a﹣c),而2a+c>0,2a﹣c<0,∴∴b2﹣2ac﹣5a2>0,即b2﹣2ac>5a2.所以③正确.故选:D.【点评】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二.填空题(共4小题,满分12分,每小题3分)11.【分析】根据不等式的性质求出不等式的解集,找出不等式的非负整数解相加即可.【解答】解:﹣9+3x≤0,3x≤9,∴x≤3,∴不等式﹣9+3x≤0的非负整数解有0,1,2,3,即0+1+2+3=6.故答案为:6.【点评】本题主要考查对解一元一次不等式,不等式的性质,一元一次不等式的整数解等知识点的理解和掌握,能根据不等式的解集找出不等式的非负整数解是解此题的关键.12.【分析】根据计算器可以计算出∠α的度数,从而可以解答本题.【解答】解:∵3sinα=+1,∴sinα=,解得,∠α≈65.5°,故答案为:65.5°.【点评】本题考查计算器﹣三角函数,解答本题的关键是会用计算器求三角函数的值.13.【分析】根据“直线y=x与双曲线y=(k≠0)交于点A,过点C(0,2)作AO的平行线交双曲线于点B”,得到BC的解析式,根据“OD=4,OC=2,BC∥AO”,得到△BCD~△AOD,结合点A和点B的坐标,根据点A和点B都在双曲线上,得到关于m的方程,解之,得到点A 的坐标,即可得到k的值.【解答】解:∵OA的解析式为:y=,又∵AO∥BC,点C的坐标为:(0,2),∴BC的解析式为:y=,设点B的坐标为:(m,m+2),∵OD=4,OC=2,BC∥AO,∴△BCD~△AOD,∴点A的坐标为:(2m,m),∵点A和点B都在y=上,∴m()=2m•m,解得:m=2,即点A的坐标为:(4,),k=4×=,故答案为:.【点评】本题考查了反比例函数与一次函数的交点问题,正确掌握代入法和三角形相似的判定定理是解题的关键.14.【分析】利用等边三角形的性质得出C点位置,进而求出OC的长.【解答】解:如图所示:过点C作CE⊥AB于点E,当点C,O,E在一条直线上,此时OC最短,∴△ABC是等边三角形,∴CE过点O,E为BD中点,则此时EO=AB=1,故OC的最小值为:OC=CE﹣EO=BC sin60°﹣×AB=﹣1.故答案为:﹣1.【点评】此题主要考查了勾股定理以及等边三角形的性质,得出当点C,O,E在一条直线上,此时OC最短是解题关键.三.解答题(共11小题)15.【分析】将特殊锐角的三角函数值代入,同时化简二次根式、计算绝对值,再进一步计算可得.【解答】解:原式=3+﹣()﹣1﹣(﹣1)=3+﹣﹣+1=2+1.【点评】本题主要考查实数的运算,解题的关键是熟练掌握实数的混合运算顺序和运算法则及特殊锐角的三角函数值.16.【分析】原式先计算除法运算,再计算加减运算即可求出值.【解答】解:原式=+•=+=+=.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.17.【分析】根据三角形相似的作图解答即可.【解答】解:如图,直线BD即为所求.【点评】此题主要考查相似图形的作法,关键是根据三角形相似的作图.18.【分析】(1)由A的人数及其所占百分比求得总人数,总人数减去其它类别人数求得B的人数即可补全图形;(2)根据众数的定义求解可得;(3)用总人数乘以样本中D和E人数占总人数的比例即可得.【解答】解:(1)∵被调查的总人数为20÷20%=100(人),则辅导1个学科(B类别)的人数为100﹣(20+30+10+5)=35(人),补全图形如下:(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是1个学科,故答案为:1;(3)估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有2000×=300(人),故答案为:300.【点评】此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键.19.【分析】(1)根据平行四边形的性质和全等三角形的判定证明即可;(2)根据平行四边形的性质和全等三角形的判定以及菱形的判定解答即可.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC,∵CF∥DB,∴∠BCF=∠DBC,∴∠ADB=∠BCF在△ADE与△BCF中,∴△ADE≌△BCF(SAS).(2)四边形ABFE是菱形理由:∵CF∥DB,且CF=DE,∴四边形CFED是平行四边形,∴CD=EF,CD∥EF,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=EF,AB∥EF,∴四边形ABFE是平行四边形,∵△ADE≌△BCF,∴∠AED=∠BFC,∵∠AED+∠AEB=180°,∴∠ABE=∠AEB,∴AB=AE,∴四边形ABFE是菱形.【点评】此题考查平行四边形的性质,关键是根据平行四边形的性质和全等三角形的判定以及菱形的判定解答.20.【分析】(1)如图1,先证明△APM∽△ABD,利用相似比可得AP=AB,再证明△BQN∽△BAC,利用相似比可得BQ=AB,则AB+12+AB=AB,解得AB=18(m);(2)如图1,他在路灯A下的影子为BN,证明△NBM∽△NAC,利用相似三角形的性质得=,然后利用比例性质求出BN即可.【解答】解:(1)如图1,∵PM∥BD,∴△APM∽△ABD,=,即=,∴AP=AB,∵NQ∥AC,∴△BNQ∽△BCA,∴=,即=,∴BQ=AB,而AP+PQ+BQ=AB,∴AB+12+AB=AB,∴AB=18.答:两路灯的距离为18m;(2)如图1,他在路灯A下的影子为BN,∵BM∥AC,∴△NBM∽△NAC,∴=,即=,解得BN=3.6.答:当他走到路灯B时,他在路灯A下的影长是3.6m.【点评】本题考查了相似三角形的应用:通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.21.【分析】(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元列出方程,求出方程的解即可得到结果;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.【解答】解:(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据题意得:18x+12(20﹣x)=300,解得:x=10,则20﹣x=20﹣10=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据题意得:13y+8.8(20﹣y)≤239,解得:y≤15,根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,当y=15时,W最大,最大值为91万元.【点评】此题考查了一元一次方程的应用,以及一次函数的应用,弄清题中的等量关系是解本题的关键.22.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.【解答】解:(1)甲队最终获胜的概率是;故答案为;(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.【分析】连接AC ,如图所示,由AT 与圆O 相切,得到BA 垂直于AT ,在直角三角形ABT 中,利用锐角三角函数定义求出AB 的长,根据AB 为圆O 的直径,利用直径所对的圆周角为直角得到∠ACB =90°,在直角三角形ABC 中,利用锐角三角函数定义即可求出BC 的长.【解答】解:连接AC ,如图所示:∵直线AT 切⊙O 于点A ,∴∠BAT =90°,在Rt △ABT 中,∠B =30°,AT =, ∴tan30°=,即AB ==3;∵AB 是⊙O 的直径,∴∠ACB =90°,在Rt △ABC 中,∠B =30°,AB =3,∴cos30°=,则BC =AB •cos30°=.【点评】此题考查了切线的性质,锐角三角函数定义,以及圆周角定理,熟练掌握切线的性质是解本题的关键.24.【分析】(1)由y =﹣x 2+bx +c 经过点A 、B 、C ,A (﹣1,0),C (0,3),利用待定系数法即可求得此抛物线的解析式;(2)首先令﹣x 2+2x +3=0,求得点B 的坐标,然后设直线BC 的解析式为y =kx +b ′,由待定系数法即可求得直线BC 的解析式,再设P (a ,3﹣a ),即可得D (a ,﹣a 2+2a +3),即可求得PD 的长,由S △BDC =S △PDC +S △PDB ,即可得S △BDC =﹣(a ﹣)2+,利用二次函数的性质,即可求得当△BDC 的面积最大时,求点P 的坐标;(3)直角三角形斜边上的中线等于斜边的一半列出关系式m =(n ﹣)2﹣,然后根据n 的取值得到最小值.【解答】解:(1)由题意得:,解得:, ∴抛物线解析式为y =﹣x 2+2x +3;(2)令﹣x 2+2x +3=0,∴x 1=﹣1,x 2=3,即B (3,0),设直线BC 的解析式为y =kx +b ′,∴, 解得:,∴直线BC 的解析式为y =﹣x +3,设P (a ,3﹣a ),则D (a ,﹣a 2+2a +3),∴PD =(﹣a 2+2a +3)﹣(3﹣a )=﹣a 2+3a ,∴S △BDC =S △PDC +S △PDB=PD •a +PD •(3﹣a )=PD •3=(﹣a 2+3a )=﹣(a ﹣)2+,∴当a =时,△BDC 的面积最大,此时P (,);(3)由(1),y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴E (1,4),设N (1,n ),则0≤n ≤4,取CM 的中点Q (,),∵∠MNC =90°,∴NQ =CM ,∴4NQ2=CM2,∵NQ2=(1﹣)2+(n﹣)2,∴4[=(1﹣)2+(n﹣)2]=m2+9,整理得,m=n2﹣3n+1,即m=(n﹣)2﹣,∵0≤n≤4,当n=上,M最小值=﹣,n=4时,M最小值=5,综上,m的取值范围为:﹣≤m≤5.【点评】此题考查了待定系数法求函数的解析式、相似三角形的判定与性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.25.【分析】(1)由AB是⊙O的直径,M是CD的中点知AB⊥CD,BD=BC,结合∠ABD=∠ABC =30°,即∠CBD=60°即可得证;(2)先证AE∥CD,由AB⊥CD知AE⊥AB,据此即可得证;(3)由AB是直径知∠ACB=∠ACE=90°,由∠EAC=30°知AE=2CE=4,∠ABE=30°知BE=2AE=8,根据勾股定理可得直径AB的长,从而得出答案.【解答】证明:(1)∵AB是⊙O的直径,M是CD的中点,∴AB⊥CD,∴BD=BC,∴∠ABD=∠ABC=30°,即∠CBD=60°,∴△BCD是等边三角形;(2)∵∠EAC=∠ABD,∠ABD=∠ACD,∴∠EAC=∠ACD,∴AE∥CD,由(1)知AB⊥CD,∴AE⊥AB,∵点A在⊙O上,∴∴AE是⊙O的切线;(3)∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE=90°,∵∠EAC=30°,∴AE=2CE=4,在Rt△EAB中,∠ABE=30°,∴BE=2AE=8,∴AB===4,∴⊙O的半径为2.【点评】本题是圆的综合问题,解题的关键是掌握等边三角形的判定、圆心角定理、圆周角定理和勾股定理等知识.。