初中数学有关圆的分类讨论题型解题技巧

合集下载

[初中++数学]圆+课件+苏科版数学九年级上册

[初中++数学]圆+课件+苏科版数学九年级上册
2.1圆
欣赏圆
特殊的 四边形 概念
性质
应用
认识圆
1.说一说,你对圆有哪些认识? 半径、直径、周长、面积等
2.画一画,请在白纸上用圆规任意画几个圆. 3.想一想,如何画一个半径为3m的圆? 4.试一试,观察画图的过程,请你描述圆的形成过程.
P
0
描述圆
在同一个平面内,线段OP绕它固定的一个端点O
旋转一周,另一个端点P运动所形成的图形叫做圆.
O
D
C
O
探究圆
A
弦 直径
B O
A

C
P
D
B
3.对折圆形纸片,使点C与点D 重合,你有什么发现?
弧 用符号 “ ͡ ” 表示,
大于半圆的弧叫做优弧, 小于半圆的弧叫做劣弧.
CA͡ D是优弧, C͡ D是劣弧.
圆心角
PC=PD A͡ C=A͡ D B͡ C=B͡ D
等弧
探究圆
A
分类讨论 从特殊到一般
寄语:
为什么圆规能画圆? 因为它心不动,脚在走!
运用圆
A
例2. 如图,线段PQ=4cm.
(1)画出下列图形:
P
Q
到点P的距离等于2cm的点的集合.
B
到点Q的距离等于3cm的点的集合.
(2)在所画图中,到点P距离等于2cm,且到点Q的距离等
于3cm的点有几个?在图中将他们表示出来. (3)在所画图中,到点P距离小于或等于2cm,且到点Q的距
离大于或等于3cm的点的集合是怎样的图形?请将他们表示
∠D相等吗?为什么?
D
C
D ,
⇒∴ ∠BOC=∠AOD .
又∵OB=OA , OC=OD (同

关于初中数学几何常见分类问题的讨论

关于初中数学几何常见分类问题的讨论

关于初中数学几何常见分类问题的讨论发布时间:2021-11-26T09:05:38.706Z 来源:《教学与研究》2021年11月下作者:尹姝[导读] 几何分类是初中数学一种重要的数学思想方法和解题策略。

在历届中考中,都不乏有几何分类讨论的题目出现。

一进入几何图形解答,就可能受图形的局限而漏解。

现就初中数学几何图形分类问题从方法方面作一些讨论,望能为同行提供一些有益的借鉴。

四川省南充市五星中学尹姝【摘要】几何分类是初中数学一种重要的数学思想方法和解题策略。

在历届中考中,都不乏有几何分类讨论的题目出现。

一进入几何图形解答,就可能受图形的局限而漏解。

现就初中数学几何图形分类问题从方法方面作一些讨论,望能为同行提供一些有益的借鉴。

【关键词】初中数学;几何问题;分类方法;掌握规律;具体应用初中数学中的几何图形教学具有很强的规律性,教师在授课时应该根据图形变化进行分类讨论,从而有助于学生更快更容易地理解和吸收知识。

一、初中数学分类方法之讨论初中数学中的所谓分类,就是根据数学对象本质属性的相同点与不同点,将其分成几个不同种类的一种数学思想。

它既是一种重要的数学思想,又是一种重要的数学逻辑方法。

有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性。

掌握好这类问题对提高综合学习能力会有很大帮助,它既有利于培养学生的创新精神与探索精神,又有利于培养学生严谨、求实的科学态度。

分类思想解题的过程(思维、动因和方法)我们把它归纳为WHDI四个方面进行讨论: 1.W即为什么要进行分类。

一般地说,当我们研究的问题是下列五种的情形时可以考虑使用分类的思想方法来解决问题:(1)涉及到分类定义的概念,当我们应用这些概念时就必须考虑使用分类讨论的方法;(2)直接运用了分类研究的定理、性质、公式、法则,如果在解决问题中需要突破对定理、性质、公式、法则的条件限制可以考虑使用分类讨论的方法;图形的不确定而需要对其进行分类讨论;(5)由数学运算引起的分类讨论。

初中数学有关圆的分类讨论题型解题技巧

初中数学有关圆的分类讨论题型解题技巧

初中数学有关圆的分类讨论题型解题技巧随着新课改推进,近几年中考也发生很大变化,从过去侧重知识概念考核,逐渐过渡到综合能力考查,尤其是对数学思想的综合运用。

其中分类讨论就是一种非常重要数学思想,可以说是全国很多地方每年中考必考类型,而在不同知识点中,分类讨论的出题方式又不一样。

今天我们就讲讲分类讨论在圆当中的综合运用。

由于圆中的点、线在圆中的位置分布可能有多种情况,经常会导致其答案的不唯一性。

如:点与圆的位置关系,点可能在圆内,也可能在圆外;两条弦的位置关系,可能在某一条直径的同侧,也可能在直径的异侧;圆与圆相切,可能外切,也可能内切,等等。

因此,求解圆的有关问题时,要注意分类讨论思想。

第1页/共1页。

与圆有关的试题分类探究_何继斌

与圆有关的试题分类探究_何继斌

角形, 再根据相似三角形的性质判定角的等量关 系. 圆中角的等量关系给解决图形的相似或全等提 供了条件.
图1 题型 2
图2
垂径定理的应用 圆是轴对称图形, 根据这一特征可以得到“垂 径定理” 这一应用非常广泛的重要定理. 利用垂径 定理可以解决有关线段长度的计算 、 比例关系的证 明以及其他与圆有关的综合性问题 . 例 2 如图 2 , 点 A 在半径为 20 的 ⊙O 上, 以 OA 为一条对角线作矩形 OBAC , 设直线 BC 交 ⊙O E. 若 OC = 12 , BD 的长度差是 于点 D, 则线段 CE , . 解 ( 2012 年全国初中数学联赛试题) 设 DE 的 中 点 为 M, 联 结 OM, 则 OM ⊥
DE. 因为 OB = 槡 20 2 - 12 2 = 16 , 所以 OB ·OC 16 ˑ 12 48 = = , OM = BC 20 5 从而 故 64 36 BM = , CM = 槡 OC2 - OM2 = , 5 5 CE - BD = ( EM - CM) - ( DM - BM) = BM - CM = 点评 64 36 28 - = . 5 5 5
第7 期
何继斌:与圆有关的试题分类探究
· 13·
与 圆 有 关 的 试 题 分 类 探 究
●何继斌
( 杭州文海实验学校 浙江杭州 310018 )
圆是各地中考和竞赛的重要知识之一 , 且遍布 各种题型, 既涉及计算、 论证, 又涉及探索以及操作 题等, 考查的知识点侧重于与圆有关的角 、 计算等. 近几年的竞赛或中考试题中, 与圆有关的试题在沿 袭传统的题型外, 还加大了探索、 创新的力度, 特别 是增加了与圆有关的动态问题、 圆与代数的综合题 等. 在解决与圆有关的问题时, 除了要能灵活运用 所学知识外, 还要注意与其他知识的联系, 注意数 学思想方法的运用. 圆是数学中思想方法比较集中 的知识点之一, 如转化思想、 方程思想、 分类思想、 整体思想等. 本文仅对近几年全国各地区初中数学 竞赛及中考中与圆有关的试题进行分类研究 , 以供 参考. 题型 1 与圆有关的角 圆心角、 圆周角、 弦切角以及它们的大小与所 对( 或所夹) 弧的度数之间的关系是圆中最基本的 数量关系, 也是解决与角有关的几何问题的重要知 识点, 是证明与圆有关结论的常用工具 . E 为对角线 BD 例 1 如图 1 , 在 ABCD 中, AC 的 延 长 线 与 上一 点, 且 满 足 ∠ECD = ∠ACB , △ABD 的外接圆交于点 F. 证明:∠DFE = ∠AFB. ( 2014 年全国初中数学联赛福建赛区试题 ) AD∥BC , 解 在ABCD 中, 从而 ∠ACB = ∠DAF , ∠BDC = ∠ABD. 因为∠ABD = ∠AFD, ∠ECD = ∠ACB , 所以 于是 因此 ∠DAF = ∠ECD, ∠BDC = ∠AFD, △DCE ∽△FAD, CD AF = . DE DF

【单元练】《易错题》初中九年级数学上册第二十四章《圆》知识点总结(专题培优)

【单元练】《易错题》初中九年级数学上册第二十四章《圆》知识点总结(专题培优)

一、选择题1.如图,在ABC 中,90ACB ∠=︒,过B ,C 两点的O 交AC 于点D ,交AB 于点E ,连接EO 并延长交O 于点F .连接BF ,CF ,若135EDC ∠=︒,2AE =,4BE =,则CF 的值为( ).A 10B .2C .23D .3A解析:A【分析】 由四边形BCDE 内接于⊙O 知∠EFC=∠ABC=45°,据此得AC=BC ,由EF 是⊙O 的直径知∠EBF=∠ECF=∠ACB=90°及∠BCF=∠ACE ,再根据四边形BECF 是⊙O 的内接四边形知∠AEC=∠BFC ,从而证△ACE ≌△BCF 得AE=BF ,根据Rt △ECF 是等腰直角三角形知EF 2=20,继而可得答案.【详解】∵四边形BCDE 内接于O ,且135EDC ∠=︒, ∴18045EFC ABC EDC ︒∠=∠=-∠=︒,∵90ACB ∠=︒, ∴ABC 是等腰三角形,∴AC BC =,又∵EF 是O 的直径, ∴90EBF ECF ACB ∠=∠=∠=︒,∴BCF ACE ∠=∠,∵四边形BECF 是O 的内接四边形,∴AEC BFC ∠=∠,∴()ACE BFC ASA ≅△△,∴AE BF =,Rt BEF △中,22222224220EF BF BE BE AE =+=+=+=,Rt ECF △中,45EFC ∠=︒,∴CE CF =,∴2222220CE CF CF EF +===,∴210CF =, ∴10CF =, 故选:A .【点睛】本题主要考查圆周角定理,解题的关键是掌握圆内接四边形的性质、圆周角定理、全等三角形的判定与性质及勾股定理. 2.如图,A 是B 上任意一点,点C 在B 外,已知2AB =,4BC =,ACD △是等边三角形,则BCD △的面积的最大值为( )A .434+B .43C .438+D .63A解析:A【分析】 以BC 为边作等边BCM ,连接DM ,则DCM CAB ≅△△,根据全等三角形的性质得到DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232+,根据三角形的面积即可得到结论.【详解】解:以BC 为边作等边BCM ,连接DM ,∵60DCA MCB ==∠∠,∴DCM ACB =∠∠,∵DC=AC ,MC=BC ,∴DCM CAB ≅△△(SAS ),∴DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232,此时面积为:434故选:A【点睛】本题考查了等边三角形的性质,三角形面积的计算,找出点D 的位置是解题的关键. 3.如图,AB 、AC 是⊙O 的切线,B 、C 为切点,∠A =50°,点P 是圆上异于B 、C 的点,则∠BPC 的度数是( )A .65°B .115°C .115°或65°D .130°或65°C解析:C【分析】根据切线的性质得到OB ⊥AB ,OC ⊥AC ,求出∠BOC ,分点P 在优弧BC 上、点P 在劣弧BC 上两种情况,根据圆周角定理、圆内接四边形的性质计算即可.【详解】解:∵AB 、AC 是⊙O 的切线,∴OB ⊥AB ,OC ⊥AC ,∴∠OBA =90°,∠OCA =90°∵∠A =50°,∴∠BOC =360°﹣90°﹣90°﹣50°=130°,如图,当点P 在优弧BPC 上时,∠BPC =12∠BOC =65°, 当点P ′在劣弧BC 上时,∠BP ′C =180°﹣65°=115°,故选:C .【点睛】本题考查的是切线的性质、圆周角定理、圆内接四边形的性质,掌握圆的切线垂直于经过切点的半径及圆周角定理是解题的关键.4.2020年温州市实验中学数学文化节征稿文化节LOGO ,小明利用古希腊医学家希波克拉底所画图形进行设计.如图ABC 内接于一个半径为5的半圆,90ACB ∠=︒,分别以AB ,BC ,AC 为直径向外作半圆.若阴影部分图形面积之和是空白部分图形面积之和的3倍,则ABC 的面积为( )A .5πB .7.5πC .253πD .10πB解析:B【分析】 设AC=a ,BC=b ,由勾股定理可求得a 2+b 2=102,由三角形的面积公式和圆的面积公式分别求出空白部分图形面积和阴影部分图形面积,利用阴影部分图形面积之和是空白部分图形面积之和的3倍可求得ab ,进而可求得△ABC 的面积.【详解】解:设AC=a ,BC=b ,由题意,AB=10,∴a 2+b 2=102, 由图可知,空白部分面积为(25122ab π-), 阴影部分面积= 22111251()()2222222a b ab ab πππ⨯+⨯⨯+-+ = 22()2582a b ab ππ+-+ =1002582ab ππ-+ = ab , ∵阴影部分图形面积之和是空白部分图形面积之和的3倍,∴ab =3(25122ab π-), 解得:15ab π=,∴△ABC=12ab =7.5π, 故选:B .【点睛】 本题考查了圆的面积公式、三角形的面积公式、勾股定理、解方程等知识,熟记面积公式,利用割补法和整体思想解决问题是解答的关键.5.已知O 的直径10CD cm ,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( ) A .5B .3C .2545D .233 解析:C【分析】连结OA ,由AB CD ⊥,根据垂径定理可以得到4AM =,结合勾股定理可以得到3OM =.在分类讨论,如图,当8CM =和2CM =时,再结合勾股定理即可求出AC .【详解】连结OA ,∵AB CD ⊥, ∴118422AM BM AB ===⨯=, 在Rt OAM 中,5OA =, ∴223OA OM AM -==,当如图时,538CM OC OM =+=+=,在Rt ACM △中,2245AC AM CM =+=,当如图时,532CM OC OM =-=-=,在Rt ACM △中,2225AC AM CM =+=故选C .【点睛】 本题考查垂径定理“垂直于弦的直径平分弦且平分这条弦所对的两条弧”.分类讨论思想也是解决本题的关键.6.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D 、C .若∠ACB=30°,AB= 3,则阴影部分的面积( )A 3B 3C 3π6D 3π6-C 解析:C【分析】首先求出∠AOB ,OB ,然后利用S 阴=S △ABO −S 扇形OBD 计算即可.【详解】连接OB .∵AB 是⊙O 切线,∴OB ⊥AB ,∵OC =OB ,∠C =30°,∴∠C =∠OBC =30°,∴∠AOB =∠C +∠OBC =60°,在Rt △ABO 中,∵∠ABO =90°,AB =3,∠A =30°,∴OB =ABtan30°=1,∴S 阴=S △ABO −S 扇形OBD =12×1×3−2601360π⋅=3π26-. 故选:C .【点睛】本题考查切线的性质、等腰三角形的性质、勾股定理,直角三角形30度角性质,解题的关键是学会分割法求面积,记住扇形面积公式,属于中考常考题型.7.如图,AB 圆O 的直径,弦CD AB ⊥,垂足为M ,下列结论不成立的是( )A .CM DM =B .CB BD =C .ACD ADC ∠=∠ D .OM MB =D解析:D【分析】 根据垂径定理得到CM=DM ,BC BD =,AC AD =,然后根据圆周角定理得∠ACD=∠ADC ,而对于OM 与MB 的大小关系不能判断.【详解】解:∵AB 是⊙O 的直径,弦CD ⊥AB ,∴CM=DM ,BC BD =,AC AD =,∴∠ACD=∠ADC .而无法比较OM ,MB 的大小,故选:D .【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.8.如图,AB 为O 的直径,C 为O 上一点,其中6AB =,120AOC ∠=︒,P 为O 上的动点,连AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为( )A .37B .3272+C .237+D .33722+D 解析:D【分析】 如图,连接OQ ,作CH ⊥AB 于H .首先证明点Q 的运动轨迹为以AO 为直径的⊙K ,连接CK ,当点Q 在CK 的延长线上时,CQ 的值最大,利用勾股定理求出CK 即可解决问题;【详解】如图,连接OQ ,作CH ⊥AB 于H .∵AQ =QP ,∴OQ ⊥PA ,∴∠AQO =90°,∴点Q 的运动轨迹为以AO 为直径的⊙K ,连接CK ,当点Q 在CK 的延长线上时,CQ 的值最大,∵120AOC ∠=︒∴∠COH =60°在Rt △OCH 中,∵∠COH =60°,OC=12AB=3, ∴OH =12OC =32,CH 22332OC OH +=,在Rt △CKH 中,CK =223332⎛⎫+= ⎪⎪⎝⎭372, ∴CQ 的最大值为33722+, 故选:D .【点睛】 本题考查圆周角定理、轨迹、勾股定理、点与圆的位置关系等知识,解题的关键是正确寻找点Q 的运动轨迹,学会构造辅助圆解决问题,属于中考填空题中的压轴题. 9.如图,⊙O 的直径12CD =,AB 是⊙O 的弦,AB CD ⊥,垂足为P ,:1:2CP PO =,则AB 的长为( )A .45B .215C .16D .8A解析:A【分析】 连接OA ,先根据⊙O 的直径CD =12,CP :PO =1:2求出CO 及OP 的长,再根据勾股定理可求出AP 的长,进而得出结论.【详解】连接OA ,∵⊙O 的直径CD =12,CP :PO =1:2,∴CO =6,PO=4,∵AB ⊥CD ,∴22OA OP -2264-5,∴AB =2AP =22545⨯=故选:A .【点睛】本题考查了垂径定理和勾股定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式2222ar d⎛⎫=+⎪⎝⎭成立,知道这三个量中的任意两个,就可以求出另外一个.10.如图,点M是矩形ABCD的边BC、CD上的点,过点B作BN⊥AM于点P,交矩形ABCD的边于点N,连接DP,若AB=6,AD=4,则DP的长的最小值为()A.2 B.121313C.4 D.5A解析:A【分析】易证∠APB=90°,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB的中点为O,连接OD,OD与半圆的交点P′就是DP的长的最小值时的位置,OP′=OA=12AB=3,OD=5,DP′=OD−OP′=2,即可得出结果.【详解】解:∵BN⊥AM,∴∠APB=90°,∵AB=6为定长,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB的中点为O,连接OD,OD与半圆的交点P′就是DP长的最小值时的位置,如图所示:∵AB=6,AD=4,∴OP′=OA=12AB=3,OD22AD+OA224+3=5,∴DP′=OD−OP′=5−3=2,∴DP的长的最小值为2,故选:A.【点睛】本题考查了矩形的性质、勾股定理、轨迹等知识;判断出P点的运动轨迹,找出DP长的最小值时的位置是解题的关键.二、填空题AB=,11.如图,AB、AC、BD是O的切线,P、C、D为切点,如果8AC=,则BD的长为_______.5【分析】由于ABACBD是⊙O的切线则AC=APBP=BD求出BP的长即可求出BD的长【详解】解:∵ACAP为⊙O的切线∴AC=AP∵BPBD为⊙O 的切线∴BP=BD∴BD=PB=AB-AP=8-5解析:3【分析】由于AB、AC、BD是⊙O的切线,则AC=AP,BP=BD,求出BP的长即可求出BD的长.【详解】解:∵AC、AP为⊙O的切线,∴AC=AP,∵BP、BD为⊙O的切线,∴BP=BD,∴BD=PB=AB-AP=8-5=3.故答案为:3.【点睛】本题考查了切线长定理,两次运用切线长定理并利用等式的性质是解题的关键.12.如图,有一半径为6cm的圆形纸片,要从中剪出一个圆心角为60︒的扇形ABC,AB,AC为⊙O的弦,那么剪下的扇形ABC(阴影部分)的面积为 ___________.【分析】如图(见解析)先根据等边三角形的判定与性质可得再根据圆周角定理可得然后根据垂径定理勾股定理可得BC的长从而可得AB的长最后利用扇形的面积公式即可得【详解】如图连接OBOCBC 过点O 作于点D 由解析:218cm π【分析】如图(见解析),先根据等边三角形的判定与性质可得AB BC =,再根据圆周角定理可得120BOC ∠=︒,然后根据垂径定理、勾股定理可得BC 的长,从而可得AB 的长,最后利用扇形的面积公式即可得.【详解】如图,连接OB 、OC 、BC ,过点O 作OD BC 于点D ,由题意得:,60,6AB AC A OB OC cm =∠=︒==,ABC ∴是等边三角形,AB BC ∴=,由圆周角定理得:2120BOC A ∠=∠=︒,OD BC ⊥, 160,22BOD BOC BC BD ∴∠=∠=︒=, 30OBD ∴∠=︒,在Rt BOD 中,2213,332OD OB cm BD OB OD cm ===-=, 263AB BC BD cm ∴===,则剪下的扇形ABC (阴影部分)的面积为()()22606318360cm ππ⨯=,故答案为:218cm π.【点睛】本题考查了等边三角形的判定与性质、圆周角定理、垂径定理、扇形的面积公式等知识点,通过作辅助线,利用到垂径定理是解题关键.13.将面积为3πcm 2的扇形围成一个圆锥的侧面,若扇形的圆心角是120°,则该圆锥底面圆的半径为_____cm .1【分析】直接利用已知得出圆锥的母线长再利用圆锥侧面展开图与各部分对应情况得出答案【详解】解:设圆锥的母线长为Rcm 底面圆的半径为rcm ∵面积为3πcm2的扇形围成一个圆锥的侧面扇形的圆心角是120 解析:1【分析】直接利用已知得出圆锥的母线长,再利用圆锥侧面展开图与各部分对应情况得出答案.【详解】解:设圆锥的母线长为Rcm ,底面圆的半径为rcm ,∵面积为3πcm 2的扇形围成一个圆锥的侧面,扇形的圆心角是120°, ∴2120360R π⨯=3π, 解得:R =3,由题意可得:2πr =1203180π⨯, 解得:r =1.故答案为:1.【点睛】 此题主要考查了圆锥的计算,正确得出母线长是解题关键.14.如图所示,在平面直角坐标系中,正六边形OABCDE 边长是6,则它的外接圆圆心P 的坐标是______.【分析】如图所示连接POPA 过点P 作PG ⊥OA 于点G 由正六边形推出为等边三角形进而求出OGPG 的长度即可求得P 点坐标【详解】解:如图所示连接POPA 过点P 作PG ⊥OA 于点G 则∵多边形为正六边形∴∵∴解析:(3,33【分析】如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,由正六边形OABCDE 推出OPA 为等边三角形,进而求出OG 、PG 的长度即可求得P 点坐标.【详解】解:如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,则90OGP ∠=︒,∵多边形OABCDE 为正六边形,∴60OPA ∠=︒,∵PO PA =, ∴OPA 为等边三角形,又∵PG ⊥OA ,∴PG 平分OPA ∠,∴30OPG ∠=︒,又∵OA=6, ∴11163222OG OP OA ===⨯=, ∴由勾股定理得:22226333PG OP OG =-=-=,∴P 的坐标是()3,33,故答案为:()3,33【点睛】本题考查正多边形外接圆的问题,熟练掌握正多边形的性质,灵活运用三角形相关知识解决边角关系是本题的关键.15.如图,AB 是O 的直径,CD 是O 的弦,AB 、CD 的延长线交于点E ,已知2AB DE =,若COD ∆为直角三角形,则E ∠的度数为______︒.【分析】由于AB 是⊙O 的直径则AB =2DO 而AB =2DE 可得DO =DE 根据等腰三角形的性质得到∠DOE =∠E 又由于△COD 为直角三角形而OC =OD 所以△COD 为等腰直角三角形于是可得∠CDO =45° 解析:22.5︒【分析】由于AB 是⊙O 的直径,则AB =2DO ,而AB =2DE ,可得DO =DE ,根据等腰三角形的性质得到∠DOE =∠E ,又由于△COD 为直角三角形,而OC =OD ,所以△COD 为等腰直角三角形,于是可得∠CDO =45°,利用三角形外角性质有∠CDO =∠DOE +∠E ,则∠E =12∠CDO =22.5°.【详解】解:∵AB 是⊙O 的直径,∵AB =2DO ,而AB =2DE ,∴DO=DE,∴∠DOE=∠E,∵△COD为直角三角形,而OC=OD,∴△COD为等腰直角三角形,∴∠CDO=45°,∵∠CDO=∠DOE+∠E,∠CDO=22.5°.∴∠E=12故答案为:22.5°.【点睛】本题考查了圆的认识:圆上任意两点的连线段叫圆的弦;过圆心的弦叫圆的直径;直径的长等于半径的2倍.也考查了等腰直角三角形的判定与性质以及等腰三角形的性质.16.已知圆心O到直线l的距离为5,⊙O半径为r,若直线l与⊙O有两个交点,则r的值可以是________.(写出一个即可)答案不唯一如516等(满足即可)【分析】根据直线与圆的位置关系可得出圆的半径与圆心距之间的关系再取r的值即可【详解】解:∵直线l与⊙O有两个交点圆心O到直线l的距离为5∴∴在此范围内取值即可如516r>即可)解析:答案不唯一,如5.1,6等(满足5【分析】根据直线与圆的位置关系可得出圆的半径与圆心距之间的关系,再取r的值即可.【详解】解:∵直线l与⊙O有两个交点,圆心O到直线l的距离为5,r>∴5∴在此范围内取值即可,如5.1,6等.【点睛】此题主要考查了直线与圆的位置关系---相交,熟知直线与圆相交满足的条件是解答此题的关键.17.如图,在⊙O中,弦AC、BD相交于点E,且AB BC CD==,若∠BEC=130°,则∠ACD的度数为_____105°【分析】根据圆周角定理的推论可得∠BCA=∠CBD=∠CDB然后根据三角形的内角和定理即可求出∠BCA与∠CED再在△CDE中利用三角形的内角和求解即可【详解】解:∵∴∠BCA =∠CBD =∠解析:105°【分析】根据圆周角定理的推论可得∠BCA =∠CBD =∠CDB ,然后根据三角形的内角和定理即可求出∠BCA 与∠CED ,再在△CDE 中利用三角形的内角和求解即可【详解】解:∵AB BC CD ==,∴∠BCA =∠CBD =∠CDB ,∵∠BEC =130°,∴∠BCA =∠CBD =25°,∠CED =50°,∴∠CDB =25°,∴∠ACD =180°﹣50°﹣25°=105°.故答案为:105°.【点睛】本题考查了圆周角定理的推论和三角形的内角和定理,熟练掌握上述知识是解题的关键. 18.如图,AB 是O 的直径,O 交BC 的中点于D ,DE AC ⊥于E ,连接AD ,则下列结论正确的有______(填序号) ①AD BC ⊥;②EDA B ∠=∠;③12OA AC =;④DE 是O 的切线. ①②③④【分析】根据题意易得∠ADB=90°可得①进而根据线段垂直平分线的性质可得AC=AB 连接OD 然后根据圆的基本性质及切线的判定定理可求解【详解】解:∵是的直径∴∠ADB=90°∴AD ⊥BC 故① 解析:①②③④【分析】根据题意易得∠ADB=90°,可得①,进而根据线段垂直平分线的性质可得AC=AB ,连接OD ,然后根据圆的基本性质及切线的判定定理可求解.【详解】解:∵AB 是O 的直径,∴∠ADB=90°,∴AD ⊥BC ,故①正确;∵点D 是BC 的中点,∴AC=AB ,∴△ABC 是等腰三角形,∴∠B=∠C ,∠CAD=∠BAD ,∵DE ⊥AC ,∠CDA=90°,∴∠EDA+∠EAD=90°,∠CAD+∠C=90°,∴EDA C ∠=∠,∴EDA B ∠=∠,故②正确; ∵12OA AB =, ∴12OA AC =,故③正确; 连接OD ,如图所示:∵OD=OA ,∴∠ADO=∠DAO ,∴∠ADO=∠EAD ,∴∠ADO+∠EDA=90°,∴ED 是⊙O 的切线,故④正确;∴正确的有①②③④;故答案为①②③④.【点睛】本题主要考查切线的判定定理及等腰三角形的性质与判定,熟练掌握切线的判定定理及等腰三角形的性质与判定是解题的关键.19.如图,△ABC 内接于O ,∠BAC=45°,AD ⊥BC 于D , BD=6,DC=4,则AD 的长是_____. 12【分析】连接OAOBOC 过点O 作OE ⊥AD 于EOF ⊥BC 于F 根据圆周角定理得到∠BOC=90°再根据等腰直角三角形的性质计算求出OB 再由DF=BD-BF 得出DF 然后等腰直角三角形的性质求出OF 根 解析:12【分析】连接OA 、OB 、OC 过点O 作OE ⊥AD 于E ,OF ⊥BC 于F ,根据圆周角定理得到∠BOC=90°,再根据等腰直角三角形的性质计算,求出OB ,再由DF=BD-BF 得出DF ,然后等腰直角三角形的性质求出OF ,根据勾股定理求出AE ,再根据AD=AE+OF 得到答案.【详解】解:∵BD=6,DC=4,∴BC=BD+DC=10∵∠BAC=45°,∴∠BOC=90°, ∴2522==OB BC 连接OA 、OB 、OC 过点O 作OE ⊥AD 于E ,OF ⊥BC 于F ,∴BF=FC=5,∴DF=BD-BF=1,∵∠BOC=90°,BF=FC∴OF=12BC=5, ∵AD ⊥BC ,OE ⊥AD ,OF ⊥BC ,∴四边形OFDE 为矩形,∴OE=DF=1,DE=OF=5,在Rt △AOE 中,227,=-=AE OA OE∴AD=AE+DE=12.【点睛】本题考查的是三角形的外接圆,掌握圆周角定理、垂径定理、等腰直角三角形的性质是解题的关键.20.如图,直线AB ,CD 相交于点O ,∠AOC=30°,半径为1cm 的的圆心P 在射线OA 上,且与点O 的距离为6cm ,以1cm/s 的速度沿由A 向B 的方向移动,那么与直线CD 相切时,圆心P 的运动时间为 _____.4秒或8秒【分析】⊙P与CD相切应有两种情况一种是在射线OA上另一种在射线OB上设对应的圆的圆心分别在MN两点当P 在M点时根据切线的性质在直角△OME中根据30度的角所对的直角边等于斜边的一半即可求解析:4秒或8秒【分析】⊙P与CD相切应有两种情况,一种是在射线OA上,另一种在射线OB上,设对应的圆的圆心分别在M,N两点.当P在M点时,根据切线的性质,在直角△OME中,根据30度的角所对的直角边等于斜边的一半,即可求得OM的长,进而求得PM的长,从而求得由P到M移动的时间;根据ON=OM,即可求得PN,也可以求得求得由P到M移动的时间.【详解】①当⊙P在射线OA上,设⊙P于CD相切于点E,P移动到M时,连接ME.∵⊙P与直线CD相切,∴∠OEM=90°,∵在直角△OPM中,ME=1cm,∠AOC=30°,∴OM=2ME=2cm,则PM=OP-OM=6-2=4cm,∵⊙P以1cm/s的速度沿由A向B的方向移动,∴⊙P移动4秒时与直线CD相切;②当⊙P的圆移动到直线CD的右侧,同理可求ON=2则PN=6+2=8cm.∴⊙P移动8秒时与直线CD相切.故答案为:4秒或8秒.【点睛】本题主要考查了切线的性质和直角三角形的性质,注意已知圆的切线时,常用的辅助线是连接圆心与切点,本题中注意到分两种情况讨论是解题的关键.三、解答题21.如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,OD交⊙O于点D,点E在⊙O上,若∠AOD=50°.(1)求∠DEB的度数;(2)若OC=3,OA=5,①求弦AB的长;②求劣弧AB的长.解析:(1)25°;(2)①8;②25 9π【分析】(1)由垂径定理,可知AD BD=,再由圆周角定理求得∠DEB的度数.(2)①由勾股定理可得AC=4,由垂径定理可知,AC=BC=12AB=4,即可求解;②根据弧长公式即可求得答案.【详解】解:(1)∵OD⊥AB,∴AD BD=,∴∠AOD=∠BOD∴∠DEB=12∠AOD=12×50°=25°.(2)①∵OC=3,OA=5,∴AC=4,∵OD⊥AB,∴12AD BD AB==,∴AC =BC =12AB =4, ∴AB =8; ②∵∠AOD =50°,AD BD =,∴∠AOB =100°, ∵OA =5,∴AB 的长=1005251801809n r πππ⨯==. 【点睛】本题考查了圆周角定理、垂径定理,勾股定理及弧长公式.解答关键是应用垂径定理求得AC =BC =12AB =4. 22.如图,已知,90Rt ABC ACB ∆∠=︒.(1)请在图中用无刻度的直尺和圆规作一个圆,使得圆心О在边AC 上,且与边,AB BC 所在直线相切(不写作法,保留作图痕迹);(2)在(1)的条件下,若9,12AC BC ==,求O 的半径. 解析:(1)见解析;(2)O 的半径为4 【分析】(1)先作∠ABC 的角平分线,交AC 于点O ,然后过O 作AB 的垂线,交AB 于E ,以O 为圆心,OE 为半径作圆即可;(2)先利用勾股定理求出AB ,然后由OBC ABO ABC S S S ∆∆∆+=即可求出O 的半径. 【详解】解:(1)如图所示:(2)设直线AB 与O 切于点D ,连接OD ,则,OD AB ⊥90,ACB ∴∠=︒22222291215AB AC BC ∴=+=+=.15,AB ∴=设O 的半径为,r由得OBC ABO ABC S S S ∆∆∆+=1215912,r r +=⨯4,r ∴=即O 的半径为4【点睛】本题考查了尺规作图,切线的性质,理解题意熟练掌握角平分线和垂线的作图是解题的关键.23.如图,AB 是O 的一条弦,⊥OD AB ,垂足为C ,OD 交O 于点D ,点E 在O 上,若50AOD .(1)求DEB ∠的度数:(2)若3OC =,5OA =,①求弦AB 的长;②求劣弧AB 的长.解析:(1)25°;(2)①8;②25π9 【分析】 (1)根据垂径定理和圆周角定理求解即可;(2)①根据勾股定理和垂径定理求解即可;②先求出100AOB ∠=︒,再根据弧长公式计算即可. 【详解】解:(1)∵⊥OD AB ,∴AD BD =,∴11502522DEB AOD ∠=∠=⨯︒=︒; (2)①∵3OC =,5OA =,⊥OD AB ,∴22534AC =-=,∴AB=2AC=8;②∵50AOD ,AD BD =,∴100AOB ∠=︒, ∵5OA =,∴弧AB 的长π1005π25π1801809n r ⨯===. 【点睛】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,以及弧长公式,熟练掌握各知识点是解答本题的关键.24.已知点A 、B 在半径为2的⊙O 上,直线AC 与⊙O 相切,OC OB ,连接AB 交OC 于点D .(1)如图①,若60ACO ︒∠=,求B :(2)如图②,OC 与⊙O 交于点E ,若//BE OA ,求AB 的长.解析:(1)30°;(2)222+(1)由切线的性质可知∠OAC=90°,由三角形的内角和定理可知∠AOC=30°,由∠AOB=∠AOC+∠BOC 可得出∠AOB 的度数,结合OA=OB 可得出∠B=30°;(2)过B 作BH AO ⊥交AO 的延长线于H ,由BE ∥OA 可得出ABE OAB ∠=∠,结合等腰直角三角形的性质可得出45OBE ︒∠=,根据勾股定理得出2OH BH ==,最后再结合勾股定理即可得出结论. 【详解】解:(1))∵AC 与⊙O 相切,∴∠OAC=90°∵∠OCA=60°∴∠AOC=30°∵OC ⊥OB ,∴∠AOB=∠AOC+∠BOC=120°∵OA=OB , ∴180120302B ︒︒︒-∴∠==; (2)过B 作BH AO ⊥交AO 的延长线于H//BE OAABE OAB ∴∠=∠,90OB OE BOE ︒=∠=45OBE ︒∴∠=45HO B OAB OBA ABE OBA OBE ︒∴∠=∠+∠=∠+∠=∠=2OA OB ==2OH BH ∴==2222(22)(2)AB AH BH ∴=+=++842222=+=+【点睛】本题考查了切线的性质,勾股定理,等腰三角形的性质,熟练掌握切线的性质是解本题的关键.25.如图,半径为2的⊙O 与正五边形ABCDE 的边AB 、AE 相切于点M 、N ,求劣弧MN解析:45π 【分析】如图(见解析),先根据圆的切线的性质可得,OM AB ON AE ⊥⊥,再根据正五边形的内角和可得108A ∠=︒,然后根据四边形的内角和可得72MON ∠=︒,最后弧长公式即可得.【详解】如图:连接OM ,ON ,∵O 与正五边形ABCDE 的边AB 、AE 相切于点M 、N ,∴,OM AB ON AE ⊥⊥,90AMO ANO ∴∠=∠=︒,∵正五边形的每个内角为(52)1801085-⨯︒=︒, 108A ∴∠=︒,∴在四边形AMON 中,36072AMO ANO A MON ∠-∠=-∠∠︒-=︒,∵O 的半径为2,∴劣弧MN 的长度为72241805ππ⨯=.【点睛】本题考查了正五边形的内角和、圆的切线的性质、弧长公式等知识点,熟练掌握正五边形的内角和是解题关键.26.如图,OA 、OB 、OC 分别是⊙O 的半径,且AC =CB ,D 、E 分别是OA 、OB 的中点.CD 与CE 相等吗?为什么?解析:CD=CE .见解析.【分析】由题意易得OD=OE ,由等弧所对的圆心角相等可得DOC EOC ∠=∠,进而由全等三角形的判定证得△CDO ≌△CEO ,进而求证结论.【详解】CD=CE .∵ D 、E 分别是OA 、OB 的中点, ∴12OD OA ,12OE OB =, ∴OD=OE ,∵AC CB =.∴DOC EOC ∠=∠,又∵OC=OC ,∴△CDO ≌△CEO ,∴CD=CE .【点睛】本题主要考查圆圆周角定理、全等三角形的判定和性质,解题的关键是由等弧所对的圆心角相等求得DOC EOC ∠=∠.27.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,CD 是⊙O 的切线,AD ⊥CD 于点D ,E 是AB 延长线上一点,CE 交⊙O 于点F ,连接OC ,AC .(1)求证:AC 平分∠DAO ;(2)若∠DAO =105°,∠E =30°,①求∠OCE 的度数;②若⊙O 的半径为2EF 的长.解析:(1)见解析;(2)①45°,②32.【分析】(1)由切线性质知OC ⊥CD ,结合AD ⊥CD 得AD ∥OC ,即可知∠DAC =∠OCA =∠OAC ,从而得证;(2)①由AD ∥OC 知∠EOC =∠DAO =105°,结合∠E =30°可得结果;②作OG ⊥CE ,根据垂径定理及等腰直角三角形性质知CG =FG =OG ,由OC =2得出CG=FG=OG=2,在Rt△OGE中,由∠E=30°可得GE=23,由此计算即可.【详解】(1)证明:∵CD是⊙O的切线,∴OC⊥CD.∵AD⊥CD,∴AD∥OC.∴∠DAC=∠OCA.∵OC=OA,∴∠OCA=∠OAC.∴∠OAC=∠DAC.∴AC平分∠DAO.(2)①∵AD∥OC,∴∠EOC=∠DAO=105°.∵∠E=30°,∴∠OCE=180°-∠EOC-∠E =45°.②作OG⊥CE于点G,∵OC=2∠OCE=45°,∴CG=OG=2.∴FG=2.在Rt△OGE中,∠E=30°,∴GE=3∴EF=GE−FG=32 .【点睛】本题考查了圆的切线的性质、平行线的判定与性质、垂径定理等知识,熟练掌握切线的性质、平行线的判定与性质、垂径定理是解题的关键.28.如图,AB是O的直径,AM和BN是它的两条切线,DE切O于点E,交AM 于点D,交BN于点C,F是CD的中点,连接OF.(1)求证://OD BE ;(2)猜想:OF 与CD 有何数量关系?并说明理由.解析:(1)见解析;(2)(2)12OF CD =,理由见解析 【分析】(1)连接OE ,利用直角三角形HL 判定Rt AOD Rt EOD ∆∆≌,根据全等三角形的性质可知AOD ABE ∠=∠,根据平行线的判定即可求证结论;(2)根据切线长定理可知DA=DE ,CB=CE ,根据切线的性质可知AB ⊥AD ,BC ⊥AB ,证得四边形ABCD 是梯形,根据梯形的中位线定理并代换即可求证.【详解】(1)证明:连接OE ,∵AM ,DE 是O 的切线,OA 、OE 是O 的半径,∴OA OE =,90DAO DEO ∠=∠=︒,又∵OD 为公共边∴Rt AOD Rt EOD ∆∆≌(HL )∴12AOD EOD AOE ∠=∠=∠, ∵12ABE AOE ∠=∠, ∴AOD ABE ∠=∠,∴OD BE(2)12OF CD =, 理由:∵AM 、DE 是圆的切线,∴DA=DE ,AB ⊥AD ,同理可得:CB=CE ,BC ⊥AB ,证得四边形ABCD 是梯形,∵F 是CD 的中点、O 是AB 的中点,∴OF =()12AD BC + =()12DE CE +, ∴12OF CD =. 【点睛】 本题主要考查与圆有关的位置关系、切线长定理、全等三角形的判定与其性质、梯形,解题的关键是综合运用所学知识.。

分 类 讨 论 思 想 在 圆中的应用

分 类 讨 论 思 想 在 圆中的应用

分类讨论思想在圆(上) 中的应用庞各庄中学初三数学组陈晓健一、课题:分类讨论思想在圆(上)中的应用二、课型:复习课(专题性质)三、时间:2008年12月四、班级:初三(六)班五、学生情况分析:通过对分类方法的多次渗透,学生对分类思想已有了一定的认识,但学生在确定分类的依据和究竟哪些知识点需要分类讨论掌握不好,有待加强。

六、本课内容分析:圆(上)中的部分内容是对学生进一步加强和提高分类讨论意识的极好题材。

七、教学目标:1、了解分类讨论思想2、掌握圆(上)有关需要进行分类讨论的一些问题;并理解这些分类讨论的依据。

3、通过分类讨论问题的学习来训练学生的思维的条理性、缜密性和灵活性。

六、教学重点、难点:目标2、3七、教学方法:讲练法。

八、教学过程:1、引入:(1)过三点可以画圆吗?(2)查阅圆周角定理的证明过程。

2、复习提问:点与圆的位置关系分哪几种?例1、点P到⊙O的最短距离为3, 最长距离为5, 则⊙O 的半径为________。

分析: 根据点P与圆的三种位置关系去研究例题的结论3、提问:什么是外心?三角形外心的位置有哪几种情况?例2、已知点O为△ABC的外心,∠A= ,则∠BOC=________。

分析: 根据外心与三角形的三种位置关系去研究例题的结论4、提问:弦所对的圆周角有多少个?有几种?例3、圆中一弦等于半径,则此弦所对的圆周角的度数是________。

分析: 根据弦所对的圆周角的两种位置关系去研究例题结论练习:①一条弦将圆周分为1:5的两部分,则这条弦所对的圆周角的度数是多少?②圆内接正三角形的一条边所对的圆周角的度数是多少?5、弦的不同位置引发的分类讨论例4、(2005襄樊市中考题)⊙O的半径为5㎝,弦AB∥CD,AB=6㎝,CD=8㎝,则AB和CD之间的距离是()(A)7㎝(B)8㎝(C)7㎝或1㎝(D)1㎝分析:题中的弦AB、CD都比⊙O中的直径小,所以AB 和CD可能在圆心的同侧,也可能在圆心的异侧。

(常考题)人教版初中数学九年级数学上册第四单元《圆》检测卷(含答案解析)(5)

(常考题)人教版初中数学九年级数学上册第四单元《圆》检测卷(含答案解析)(5)

一、选择题1.在平面直角坐标系中,以点()3,4-为圆心,半径为5作圆,则原点一定( ) A .与圆相切B .在圆外C .在圆上D .在圆内 2.已知正方形的边长a ,其内切圆的半径为r ,外接圆的半径为R ,则::R r a =( ) A .2:1:2 B .2:1:1 C .2:1:1 D .2:2:4 3.已知O 的直径10CD cm ,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( ) A .25B .43C .25或45D .23或43 4.在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧AC 沿弦AC 翻折交AB 于点D ,连结CD .如图,若点D 与圆心O 不重合,∠BAC =25°,则∠BDC 的度数( )A .45°B .55°C .65°D .70° 5.如图,AB 为O 的直径,C 为O 上一点,其中6AB =,120AOC ∠=︒,P 为O 上的动点,连AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为( )A .37B .3272+C .237+D .33722+ 6.以O 为中心点的量角器与直角三角板ABC 如图所示摆放,直角顶点B 在零刻度线所在直线DE 上,且量角器与三角板只有一个公共点P ,∠POB =40°,则∠CBD 的度数是( )A .50°B .45°C .35°D .40°7.如图,EM 经过圆心O ,EM CD ⊥于M ,若4CD =,6EM =,则CED 所在圆的半径为( )A .103B .83C .3D .48.已知O 的半径为4,点P 在O 外,OP 的长可能是( ) A .2 B .3 C .4 D .59.如图,PA 切O 于点,A PB 切O 于点B PO ,交O 于点C ,下列结论中不一定成立的是( )A .PA PB =B .PO 平分APB ∠C .AB OP ⊥D .2PAB APO ∠=∠ 10.在下列命题中,正确的是( )A .弦是直径B .半圆是弧C .经过三点确定一个圆D .三角形的外心一定在三角形的外部 11.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°,则∠BOD 等于( )A .20°B .40°C .50°D .60° 12.一个圆锥的底面直径为4 cm ,其侧面展开后是圆心角为90°的扇形,则这个圆锥的侧面积等于( )A .4πcm 2B .8πcm 2C .12πcm 2D .16πcm 2第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.一排水管截面如图所示,截面半径13dm OA =,水面宽10dm AB =,则圆心O 到水面的距离OC=______dm.14.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是AC的中点,AC与BD交于点E.若E是BD的中点,则AC的长是____________.15.如图,正五边形ABCDE内接于⊙O,点F在DE上,则∠CFD=_____度.16.在平面直角坐标系xOy中,A(5,6),B(5,2),C(3,0),△ABC的外接圆的圆心坐标为____.17.如图,在⊙O中,弦AC、BD相交于点E,且AB BC CD==,若∠BEC=130°,则∠ACD的度数为_____18.如图,⊙O 的半径为3,点A是⊙O 外一点,OA=6,B是⊙O上的动点,线段AB的中点为P,连接 OA、OP.则线段 OP的最大值是______.19.如图所示,在⊙O中,AB为弦,交AB于AB点D,且OD=DC,P为⊙O上任意一点,连接PA,PB,若⊙O的半径为1,则S△PAB的最大值为_____.20.如图,已知空间站A与星球B距离为a,信号飞船C在星球B附近沿圆形轨道行驶,B,C之间的距离为b.数据S表示飞船C与空间站A的实时距离,那么S的最小值________.三、解答题21.如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2).(1)画出△OAB关于绕着点O逆时针旋转180°得到的△OA1B1,并写出点B1的坐标;(2)点A旋转到点A1所经过的路径长为__________(结果保留π).22.如图,已知A、B、C、D四点都在⊙O上.(1)若∠ABC=120°,求∠AOC的度数;(2)在(1)的条件下,若点B是弧AC的中点,求证:四边形OABC为菱形.23.如图,在直角坐标系中,A (0,4)、B (4,4)、C (6,2),(1)写出经过A 、B 、C 三点的圆弧所在圆的圆心M 的坐标:______;(2)判断点()5,2D -与圆M 的位置关系.24.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,求大正方形的面积.25.如图,AB 为O 的直径,C 为O 上一点,AD 和过点C 的切线互相垂直,垂足为D .(1)求证:AC 平分DAB ∠;(2)若4CD =,8AD =,试求O 的半径. 26.如图,AB 为⊙O 的直径,C ,D 是⊙O 上的点,P 是⊙O 外一点,AC ⊥PD 于点E ,AD平分∠BAC .(1)求证:PD是⊙O的切线;(2)若3∠BAC=60°,求⊙O的半径.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设点(-3,4)为点P,原点为点O,先计算出OP的长,然后根据点与圆的位置关系的判定方法求解.【详解】解:∵设点(-3,4)为点P,原点为点O,∴OP225,34而⊙P的半径为5,∴OP等于圆的半径,∴点O在⊙P上.故选:C.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.2.A解析:A【分析】经过圆心O作正方形一边AB的垂线OC,垂足是C.连接OA,则在直角△OAC中,∠AOC=45°.OC是边心距r,OA即半径R,进而即可求解【详解】如图:作出正方形的边心距,连接正方形的一个顶点和中心可得到一直角三角形在中心的直角三角形的角为360°÷4÷2=45°,∴内切圆的半径为2a ,外接圆的半径为22a , ∴::R r a =22a :2a :a=2:1:2 故选A【点睛】本题主要考查正多边形的外接圆与内切圆的半径,掌握相关概念,作出图形,是解题的关键.3.C解析:C【分析】连结OA ,由AB CD ⊥,根据垂径定理可以得到4AM =,结合勾股定理可以得到3OM =.在分类讨论,如图,当8CM =和2CM =时,再结合勾股定理即可求出AC .【详解】连结OA ,∵AB CD ⊥,∴118422AM BM AB ===⨯=, 在Rt OAM 中,5OA =,∴223OA OM AM -==,当如图时,538CM OC OM =+=+=,在Rt ACM △中,2245AC AM CM =+=,当如图时,532CM OC OM =-=-=,在Rt ACM △中,2225AC AM CM =+=故选C .【点睛】 本题考查垂径定理“垂直于弦的直径平分弦且平分这条弦所对的两条弧”.分类讨论思想也是解决本题的关键.4.C解析:C【分析】连接BC ,求出∠B =65°,根据翻折的性质,得到∠ADC+∠B =180°,进而得到∠BDC=∠B =65°.【详解】解:连接BC ,∵AB 是直径,∴∠ACB =90°,∵∠BAC =25°,∴∠B =90°﹣∠BAC =90°﹣25°=65°,根据翻折的性质,AC 所对的圆周角为∠B ,ABC 所对的圆周角为∠ADC ,∴∠ADC+∠B =180°,∴∠BDC=∠B =65°,故选:C .【点睛】本题考查了圆周角定理及其推论,根据题意添加适当辅助线是解题关键.5.D解析:D【分析】如图,连接OQ ,作CH ⊥AB 于H .首先证明点Q 的运动轨迹为以AO 为直径的⊙K ,连接CK ,当点Q 在CK 的延长线上时,CQ 的值最大,利用勾股定理求出CK 即可解决问题;【详解】如图,连接OQ ,作CH ⊥AB 于H .∵AQ =QP ,∴OQ ⊥PA ,∴∠AQO =90°,∴点Q 的运动轨迹为以AO 为直径的⊙K ,连接CK ,当点Q 在CK 的延长线上时,CQ 的值最大,∵120AOC ∠=︒∴∠COH =60°在Rt △OCH 中,∵∠COH =60°,OC=12AB=3, ∴OH =12OC =32,CH 2233OC OH +=, 在Rt △CKH 中,CK 223332⎛⎫+= ⎪ ⎪⎝⎭372 ∴CQ 的最大值为33722 故选:D .【点睛】本题考查圆周角定理、轨迹、勾股定理、点与圆的位置关系等知识,解题的关键是正确寻找点Q 的运动轨迹,学会构造辅助圆解决问题,属于中考填空题中的压轴题. 6.D解析:D【分析】根据切线的性质得到∠OPB =90°,证出OP //BC ,根据平行线的性质得到∠POB =∠CBD ,于是得到结果.【详解】∵AB 是⊙O 的切线,∴∠OPB =90°,∵∠ABC =90°,∴OP //BC ,∴∠CBD =∠POB =40°,故选D .【点睛】本题考查了切线的性质,平行线的判定和性质,熟练掌握切线的判定和性质是解题的关键.7.A解析:A【分析】如图,连接OD ,设半径为r ,则OM=6-r;再由垂径定理求出MD 的长,然后根据勾股定理解答即可.【详解】解:如图,连接OD ,设半径为r ,则OM=6-r∵EM CD ⊥∴MD=12CD=2 在Rt △MOD 中,OD=r ,OM=6-r ,MD=2 ∴222OM MD OD +=,即()22262r r -+=,解得r=103. 故答案为A .【点睛】本题考查了圆的垂径定理和勾股定理,根据垂径定理求得MD 的长是解答本题的关键. 8.D解析:D【分析】根据题意可以求得OP 的取值范围,从而可以解答本题.【详解】解:∵O 的半径为4,点P 在⊙O 外,∴OP >4,故选:D .【点睛】本题考查点和圆的位置关系,解答本题的关键是明确题意,求出OP 的取值范围. 9.D解析:D【分析】利用切线长定理证明△PAG ≌△PBG 即可得出.【详解】解:连接OA,OB,AB,AB交PO于点G,由切线长定理可得:∠APO=∠BPO,PA=PB,又∵PG=PG,∴△PAG≌△PBG,从而AB⊥OP.因此A.B.C都正确.无法得出AB=PA=PB,可知:D是错误的.综上可知:只有D是错误的.故选:D.【点睛】本题考查了切线长定理、全等三角形的判定和性质,关键是利用切线长定理解答.10.B解析:B【分析】根据命题的“真”“假”进行判断即可.【详解】解:A、弦不一定是直径,原说法错误,不符合题意;B、半圆是弧,说法正确,符合题意;C、不在同一直线上的三点确定一个圆,原说法错误,不符合题意;D、三角形的外心不一定在三角形的外部,原说法错误,不符合题意;故选:B.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.11.B解析:B【分析】由线段AB是⊙O的直径,弦CD丄AB,根据垂径定理的即可求得=BC BD,然后由圆周角定理,即可求得答案.【详解】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=BC BD,∵∠CAB=20°,∴∠BOD=2∠CAB=2×20°=40°.故选:B.【点睛】此题考查了圆周角定理以及垂径定理.此题难度不大,注意掌握数形结合思想的应用.12.D解析:D【分析】设展开后的圆半径为r,根据圆锥性质可知底面周长就等于展开后扇形的弧长,然后算出展开后扇形的半径,进而计算出扇形的面积.【详解】解:设展开后的扇形半径为r,由题可得:4π=2rπ解得r=8∴S扇形=14π×82=16π故选:D【点睛】此题主要考查了圆锥的计算,正确理解圆锥侧面展开图与各部分对应情况是解题关键.二、填空题13.12【分析】根据垂径定理求出AC=5dm再根据勾股定理求出OC即可【详解】∵OC⊥AB∴AC=5dm在Rt△AOC中∴OC==12dm故答案为:12【点睛】此题考查垂径定理勾股定理熟记垂径定理是解题解析:12【分析】根据垂径定理求出AC=5dm,再根据勾股定理求出OC即可.【详解】∵OC⊥AB,10dmAB=,∴AC=5dm,在Rt△AOC中,13dmOA=,∴=,故答案为:12【点睛】此题考查垂径定理,勾股定理,熟记垂径定理是解题的关键.14.【分析】连接DO交AC于点F由垂径定理得F是AC中点再由中位线定理得接着证明得到DF=CB就可以求出OF的长就得到BC的长最后用勾股定理求出AC 的长【详解】解:如图连接DO 交AC 于点F ∵D 是的中点∴ 解析:42【分析】连接DO ,交AC 于点F ,由垂径定理得F 是AC 中点,再由中位线定理得12OF BC =,接着证明()EFD ECB AAS ≅,得到DF=CB ,就可以求出OF 的长,就得到BC 的长,最后用勾股定理求出AC 的长.【详解】解:如图,连接DO ,交AC 于点F ,∵D 是AC 的中点,∴OD AC ⊥,AF CF =,∴90DFE ∠=︒,∵OA OB =,AF CF =,∴12OF BC =, ∵AB 是直径, ∴90ACB ∠=︒,在EFD △和ECB 中,90DFE BCE DEF BECDE BE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴()EFD ECB AAS ≅,∴DF BC =, ∴12OF DF =, ∵3OD =,∴1OF =,∴2BC =,在Rt ABC 中,2242AC AB BC =-=.故答案是:2【点睛】本题考查垂径定理,解题的关键是熟练运用垂径定理.15.36【分析】连接OCOD求出∠COD的度数再根据圆周角定理即可解决问题【详解】如图连接OCOD∵五边形ABCDE是正五边形∴∠COD==72°∴∠CFD=∠COD=36°故答案为:36【点睛】本题考解析:36.【分析】连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题.【详解】如图,连接OC,OD.∵五边形ABCDE是正五边形,∴∠COD=3605=72°,∴∠CFD=12∠COD=36°,故答案为:36.【点睛】本题考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识.16.(14)【分析】如图作AB和BC的垂直平分线它们的交点为△ABC的外接圆的圆心然后直接读出△ABC的外接圆的圆心坐标【详解】解:如图所示:点P 即为所求;所以点P的坐标为(14)故答案为(14)【点睛解析:(1,4)【分析】如图,作AB和BC的垂直平分线,它们的交点为△ABC的外接圆的圆心,然后直接读出△ABC的外接圆的圆心坐标.【详解】解:如图所示:点P即为所求;所以点P的坐标为(1,4).故答案为(1,4).【点睛】本题主要考查了三角形的外接圆与外心,掌握三角形外接圆的圆心是三角形三条边垂直平分线的交点是解答本题的关键.17.105°【分析】根据圆周角定理的推论可得∠BCA=∠CBD=∠CDB然后根据三角形的内角和定理即可求出∠BCA与∠CED再在△CDE中利用三角形的内角和求解即可【详解】解:∵∴∠BCA=∠CBD=∠解析:105°【分析】根据圆周角定理的推论可得∠BCA=∠CBD=∠CDB,然后根据三角形的内角和定理即可求出∠BCA与∠CED,再在△CDE中利用三角形的内角和求解即可【详解】解:∵AB BC CD==,∴∠BCA=∠CBD=∠CDB,∵∠BEC=130°,∴∠BCA=∠CBD=25°,∠CED=50°,∴∠CDB=25°,∴∠ACD=180°﹣50°﹣25°=105°.故答案为:105°.【点睛】本题考查了圆周角定理的推论和三角形的内角和定理,熟练掌握上述知识是解题的关键.18.【分析】如图连接OB设OA交⊙O于点T连接PT利用三角形中位线定理求出PT根据OP≤PT+OT可得结论【详解】如图连接OB设OA交⊙O于点T连接PT∵OA=6OT=3∴OT=TA∵AP=PB∴PT=解析:9 2【分析】如图,连接OB,设OA交⊙O于点T,连接PT.利用三角形中位线定理求出PT,根据OP≤PT+O T ,可得结论.【详解】如图,连接OB ,设OA 交⊙O 于点T ,连接PT .∵OA=6,OT=3,∴OT=TA ,∵AP=PB ,∴PT=12OB=32, ∵OP≤PT+OT , ∴OP≤92, 故答案为:92. 【点睛】本题考查点与圆的位置关系,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题.19.【分析】作直径CE 连OAAEBE 利用垂经定理的AD=BD 在利用勾股定理计算出AD 则AB=2AD 当点P 与点E 重合时P 点到AB 的距离最大然后根据三角形面积公式求解即可【详解】延长CD 交⊙O 于点E 连接OA 解析:334【分析】作直径CE ,连OA 、AE 、BE ,利用垂经定理的AD=BD ,在利用勾股定理计算出AD ,则AB=2AD ,当点P 与点E 重合时,P 点到AB 的距离最大,然后根据三角形面积公式求解即可.【详解】延长CD 交⊙O 于点E ,连接OA ,AE ,BE 如图,∵OA=OC=1,OD=CD ,∴OD=CD=12OC=12, ∵OC ⊥AB ,∴2232OA OD -=,AD=BD=12AB , AB=2AD=3,∴sin ∠OAD=12OD OA =, ∴∠OAD=30º, ∴∠AOD =90º-∠OAD =60º,∵OA =OE ,∴∠OAE=∠OEA ,∵∠AOD=∠OAE+∠OEA ,∴∠OAE=∠OEA=30º,∵CE ⊥AB ,∴AE=BE ,∴∠OEB=∠OEA=30º,∴∠AEB=∠OEB+∠OEA=60º,∴△ABE 是等边三角形,∴AE=AB=3,DE=2232AE AD -=, S △ABE =1332AB DE =, ∵在△ABP 中,当点P 与点E 重合时,AB 边上的高取最大值,此时△ABP 的面积最大, ∴S △ABP 的最大值=334. 故答案为:334.【点睛】本题考查三角形面积,掌握垂经定理,勾股定理,和引辅助线构造图形,找到当点P 与点E 重合时,P 点到AB 的距离最大,然后根据三角形面积公式求解是解题关键.20.a-b 【分析】根据圆外一点到圆的最大距离是过圆心的直线与圆相交的最远的点到圆的最小距离是点与圆心的连线与圆相交的最近点求解即可【详解】解:空间站A 与星球B 飞船C 在同一直线上时S 取到最小值a-b 故答案 解析:a-b【分析】根据圆外一点到圆的最大距离是过圆心的直线与圆相交的最远的点,到圆的最小距离是点与圆心的连线与圆相交的最近点求解即可.【详解】解:空间站A 与星球B 、飞船C 在同一直线上时,S 取到最小值a-b .故答案为:a-b .【点睛】本题考查了圆外一点到圆的最大距离和最短距离,最大距离和最短距离都在过圆心的直线上.属于基础知识.三、解答题21.(1)作图见解析,B 1(-4,-2);(2)4π.【分析】(1)将点A 和点B 分别绕点O 逆时针旋转90°后所得对应点,再顺次连接即可得; (2)根据弧长公式计算可得.【详解】解:(1)∴△OA 1B 1即为所求作三角形,如图,点B 1(-4,-2).(2)∵OA =4,∠1AOA =180°,∴点A 旋转到点A 1所经过的路径长为1804180π⋅=4π. 【点睛】本题主要考查作图−旋转变换,解题的关键是熟练掌握旋转变换的定义与性质,并据此得出变换后的对应点,及弧长公式.22.(1)∠AOC=120°;(2)见解析【分析】(1)先由圆内接四边形的性质得∠ADC=60°,再由圆周角定理即可得出答案;(2)证△OAB 和△OBC 都是等边三角形,则AB=OA=OC=BC ,根据菱形的判定方法即可得到结论.【详解】(1)∵A、B、C、D四点都在⊙O上∴∠ABC+∠ADC=180°,∵∠ABC=120°,∴∠ADC=60°,∴∠AOC=2∠ADC=120°;(2)连接OB,如图所示:∵点B是弧AC的中点,∠AOC=l20°,∴∠AOB=∠BOC=60°,又∵OA=OC=OB,∴△OAB和△OBC都是等边三角形,∴AB=OA=OC=BC,∴四边形OABC是菱形.【点睛】本题考查了圆内接四边形的性质,圆周角定理,圆心角、弧、弦的关系:在同圆或等圆中,相等的弧所对的圆心角相等.也考查了等边三角形的判定与性质以及菱形的判定.23.(1)(2,0);(2)在圆内.【分析】(1)由网格容易得出AB的垂直平分线和BC的垂直平分线,它们的交点即为点M,根据图形即可得出点M的坐标;(2)用两点间距离公式求出圆的半径和线段DM的长,当DM小于圆的半径时点D在圆内.【详解】(1)如图1,点M就是要找的圆心;圆心M 的坐标为(2,0).故答案为(2,0);(2)圆的半径AM =2224+=25.线段MD =22(52)2-+=13<25,所以点D 在⊙M 内.【点睛】本题考查的是点与圆的位置关系,坐标与图形性质以及垂径定理,利用网格结构得到圆心M 的坐标是解题的关键.24.64cm 2【分析】连接OA 、OB 、OE ,证Rt △ADO ≌Rt △BCO ,推出OD=OC ,设AD=a ,则OD=12a ,由勾股定理求出OA=OB=OE=5a ,求出EF=FC=4cm ,在△OFE 中由勾股定理求出a ,即可求出答案.【详解】解:连接OA 、OB 、OE ,∵四边形ABCD 是正方形,∴AD=BC ,∠ADO=∠BCO=90°,∵在Rt △ADO 和Rt △BCO 中∵OA OB AD BC =⎧⎨=⎩, ∴Rt △ADO ≌Rt △BCO ,∴OD=OC ,∵四边形ABCD 是正方形,∴AD=DC ,设AD=acm ,则OD=OC=12DC=12AD=12acm , 在△AOD 中,由勾股定理得:OA=OB=OE=5acm , ∵小正方形EFCG 的面积为16cm 2,∴EF=FC=4cm ,在△OFE 中,由勾股定理得:(5a)2=42+(12a+4)2, 解得:a=-4(舍去),a=8,∴正方形面积为264cm故答案为:64cm².【点睛】 本题考查了全等三角形的性质和判定,勾股定理的应用,主要考查学生运用定理进行计算的能力,用的数学思想是方程思想.25.(1)证明见解析;(2)5.【分析】(1)连接OC ,根据切线的性质可得OC CD ⊥,再证//AD OC ,然后再根据平行线的性质和等腰三角形的性质说明12∠=∠即可;(2)作OE AD ⊥于点E ,设O 的半径为x ,先证四边形OEDC 是矩形,进而求得OE 和AE ,然后根据勾股定理解答即可.【详解】(1)证明:如图1:连接OC ,∵CD 是切线,∴OC CD ⊥.∵AD CD ⊥,∴//AD OC ,∴13∠=∠.∵OA OC =,∴23∠∠=,∴12∠=∠,∴AC 平分DAB ∠;(2)解:如图2,作OE AD ⊥于点E ,设O 的半径为x .∵AD CD ⊥,OE AD ⊥,∴90OED EDC DCO ∠=∠=∠=︒,∴四边形OEDC 是矩形,∴4OE CD ==,8AE AD DE x =-=-,∴()22248x x +-=, ∴228016x x x -+=,解得5x =,∴O 的半径是5.【点睛】本题考查了圆的切线的性质、等腰三角形的性质、平行线的性质以及勾股定理等内容,灵活应用所学知识成为解答本题的关键.26.(1)见解析;(2)2【分析】(1)连接OD ,根据角平分线的定义得到∠BAD=∠DAE ,根据等腰三角形的性质得到∠ODA=∠OAD ,由垂直的定义得到∠AEP=90°,根据切线的判定定理即可得到结论; (2)连接BD ,根据角平分线的定义得到∠BAD=∠DAE=30°,推出AB=2BD ,设BD=x ,则AB=2x ,根据勾股定理即可得到结论.【详解】(1)证明:连接OD ,∵AD 平分∠BAC ,∴∠BAD=∠DAE ,∵OA=OD ,∴∠ODA=∠OAD ,∴∠ODA=∠DAE ,∴OD∥AE,∵AC⊥PD,∴∠AEP=90°,∴∠ODP=∠AEP=90°,∴OD⊥PE,∵OD是⊙O的半径,∴PD是⊙O的切线;(2)解:连接BD,∵AD平分∠BAC,∠BAC=60°,∴∠BAD=∠DAE=30°,∵AC⊥PE,∴AD=2DE=∵AB为⊙O的直径,∴∠ADB=90°,∴AB=2BD,设BD=x,则AB=2x,∵AD2+BD2=AB2,∴()222+=(2x x∴BD=2,AB=4,∴AO=2,∴⊙O的半径为2.【点睛】本题考查了切线的判定和性质,勾股定理,角平分线的定义,圆周角定理,含30度角的直角三角形的性质,正确的作出辅助线是解题的关键.。

最新人教版初中九年级上册数学《圆周角》教案

最新人教版初中九年级上册数学《圆周角》教案

24.1.4 圆周角【知识与技能】理解圆周角的概念.探索圆周角与同弧所对的圆心角之间的关系,并会用圆周角定理及推论进行有关计算和证明.【过程与方法】经历探索圆周角定理的过程,初步体会分类讨论的数学思想,渗透解决不确定的探索型问题的思想和方法,提高学生的发散思维能力.【情感态度】通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验.【教学重点】圆周角定理及其推论的探究与应用.【教学难点】圆周角定理的证明中由一般到特殊的数学思想方法以及圆周角定理及推论的应用.一、情境导入,初步认识如图是一个圆柱形的海洋馆的横截面示意图,人们可以通过其中的圆弧形玻璃窗AB观看窗内的海洋动物,同学甲站在圆心O的位置.同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(∠AOB和∠ACB)有什么关系?如果同学丙、丁分别站在其他靠墙的位置D和E,他们的视角(∠ADB和∠AEB)和同学乙的视角相同吗?[相同,2∠ACB=2∠AEB=2∠ADB=∠AOB]【教学说明】教师出示海洋馆图片,引导学生思考,引出课题,学生观察图形、分析,初步感知角的特征.二、思考探究,获取新知1.圆周角的定义探究1 观察下列各图,图(1)中∠APB的顶点P在圆心O的位置,此时∠APB 叫做圆心角,这是我们上节所学的内容.图(2)中∠APB的顶点P在⊙O上,角的两边都与⊙O相交,这样的角叫圆周角.请同学们分析(3)、(4)、(5)、(6)是圆心角还是圆周角.【教学说明】设计这样的一个判断角的问题,是再次强调圆周角的定义,让学生深刻体会定义中的两个条件缺一不可.【归纳结论】圆周角必须具备两个条件:①顶点在圆上;②角的两边都与圆相交.二者缺一不可.2.圆周角定理探究2如图,(1)指出⊙O中所有的圆心角与圆周角,并指出这些角所对的是哪一条弧?(2)量一量∠D、∠C、∠AOB的度数,看看它们之间有什么样的关系?(3)改变动点C在圆周上的位置,看看圆周角的度数有没有变化?你发现其中有规律吗?若有规律,请用语言叙述.解:(1)圆心角有:∠AOB圆周角有:∠C、∠D,它们所对的都是AB(2)∠C=∠D=1/2∠AOB.(3)改变动点C在圆周上的位置,这些圆周角的度数没有变化,并且圆周角的度数恰好等于同弧所对圆心角度数的一半.【教学说明】教师利用几何画板测量角的大小,移动点C,让学生观察当C点位置发生改变过程中,图中有哪些不变,从而交流总结,找出规律,同时引导学生观察圆心与圆周角的位置关系,为定理分情况证明作铺垫.为了进一步研究上面发现的结论,如图,在⊙O上任取一个圆周角∠ACB,将圆对折,使折痕经过圆心O和∠ACB的顶点C.由于点C的位置的取法可能不同,这时折痕可能会:(1)在圆周角的一条边上;(2)在圆周角的内部;(3)在圆周角的外部.已知:在⊙O中,AB所对的圆周角是∠ACB,圆心角是∠AOB,求证:∠ACB=1/2∠AOB.[提示分析:我们可按上面三种图形、三种情况进行证明.]如图(1),圆心O在∠ACB的边上,∵OB=OC,∴∠B=∠C,而∠BOA=∠B+∠C,∴∠B=∠C=1/2∠AOB.图(2)(3)的证明方法与图(1)不同,但可以转化成(1)的基本图形进行证明,证明过程请学生们讨论完成.得出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.注意:①定理应用的条件是“同圆或等圆中”,而且必须是“同弧或等弧”,如下图(1).②若将定理中的“同弧或等弧”改为“同弦或等弦”结论就不成立了.因为一条弦所对的圆周角有两种情况,它们一般不相等(而是互补).如下图(2).【教学说明】在定理的证明过程中,要使学生明确,要不要分情况来证明.若要分情况证明,必须要明白按什么标准来分情况,然后针对各种不同的情况逐个进行证明.在证明过程中,第(1)种情况是特殊情况,是比较容易证明的,经过添加直径这条辅助线将(2)、(3)种情况转化为第(1)种情况,体现由一般到特殊的思想方法。

数学九年级下册圆的知识点

数学九年级下册圆的知识点

数学九年级下册圆的知识点圆是数学几何中的一个重要概念,广泛应用于各个领域。

在九年级的数学学习中,我们将更加深入地学习圆的相关知识。

本文将围绕圆的定义、性质、公式和应用等方面展开详细介绍。

一、圆的定义在数学中,圆是由平面上到一个固定点距离相等的所有点组成的图形。

其中,距离固定点最远的点称为圆的半径,固定点称为圆心。

圆心与圆上任意一点之间的线段称为半径。

二、圆的性质1. 圆的半径相等性质:圆上任意两点间的线段都是半径,且长度相等。

2. 圆的直径性质:圆的直径是圆上任意两点的连线,且长度是半径的两倍。

3. 圆的弦性质:圆上的弦分为等弦和不等弦两种。

等弦对应的弦长相等,而不等弦对应的弦长不相等。

4. 圆的切线性质:过圆上一点可以作无数条切线,这些切线与以该点为顶点的两条切线相等,且相互垂直。

三、圆的公式1. 圆的周长公式:圆的周长称为圆周长,通常用C表示,公式为C = 2πr,其中r为圆的半径,π取近似值3.14。

2. 圆的面积公式:圆的面积称为圆面积,通常用A表示,公式为A = πr²,其中r为圆的半径,π取近似值3.14。

四、圆的应用1. 圆的运动学应用:在物理学中,圆的运动学应用非常广泛,例如机械运动中的回转运动、行星围绕太阳的椭圆轨道等。

2. 圆的建筑应用:在建筑学中,圆被广泛应用于设计和构建中,例如建筑物中的圆形窗户、圆形拱门等。

3. 圆的电子应用:在电子工程中,圆被广泛应用于电路板设计、天线设计等领域。

4. 圆的地理应用:在地理学中,圆被用于表示地球的形状,地球是近似于一个球体。

总结:在数学九年级下册中,我们系统学习了圆的定义、性质、公式和应用等知识点。

掌握了这些知识,我们能够更好地理解圆的特性,应用于各种实际问题中。

通过灵活运用圆的相关知识,我们可以提高解决问题的能力和思维能力,为今后的数学学习打下坚实的基础。

初中数学圆知识点总结

初中数学圆知识点总结

初中数学圆知识点总结初中数学圆知识点总结一.1、弧长公式n°的圆心角所对的弧长l的计算公式为L=nπr/1802、扇形面积公式,其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长.S=﹙n/360﹚πR2=1/2×lR3、圆锥的侧面积,其中l是圆锥的母线长,r是圆锥的地面半径.S=1/2×l×2πr=πrl4.圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。

5.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。

上述五个条件中的任何两个条件都可推出其他三个结论。

6.定理:在同圆或等圆中,相等的圆心角所对弧相等、所对的弦相等、所对的弦心距相等。

推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.4、弦切角定理弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角.弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角.二.圆周角和圆心角的关系:1.圆周角的定义:顶点在圆上,并且两边都与圆相交的角,叫做圆周角.2.圆周角定理;一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对圆周角相等;反之,在同圆或等圆中,相等圆周角所对弧也相等;推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;初中数学圆知识点学习技巧1.点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则①点在圆上===d=r;②点在圆内===ddr.二.圆的对称性:1.与圆相关的概念:④同心圆:圆心相同,半径不等的两个圆叫做同心圆。

⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。

新人教版初中数学——圆的性质及与圆有关的位置关系-知识点归纳及中考典型题解析

新人教版初中数学——圆的性质及与圆有关的位置关系-知识点归纳及中考典型题解析

人教版初中数学——圆的性质及与圆有关的位置关系知识点归纳及中考典型例题解析一、圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.2.注意(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、三角形与圆1.三角形的外接圆相关概念经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.考向一圆的基本认识1.在一个圆中可以画出无数条弦和直径.2.直径是弦,但弦不一定是直径.3.在同一个圆中,直径是最长的弦.4.半圆是弧,但弧不一定是半圆.弧有长度和度数,规定半圆的度数为180°,劣弧的度数小于180°,优弧的度数大于180°.5.在同圆或等圆中能够互相重合的弧是等弧,度数或长度相等的弧不一定是等弧.典例1下列命题中正确的有①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个【答案】A【解析】①弦是圆上任意两点之间所连线段,所以①错误;②半径不是弦,所以②错误;③直径是最长的弦,正确;④只有180°的弧才是半圆,所以④错误,故选A.1.把圆的半径缩小到原来的14,那么圆的面积缩小到原来的A.12B.14C.18D.1162.半径为5的圆的一条弦长不可能是A.3 B.5 C.10 D.12考向二垂径定理1.垂径定理中的“弦”为直径时,结论仍然成立.2.垂径定理是证明线段相等、弧相等的重要依据,同时也为圆的计算和作图问题提供了理论依据.典例2如图,已知⊙O的半径为6 cm,两弦AB与CD垂直相交于点E,若CE=3 cm,DE=9 cm,则AB=A3cm B.3cm C.3D.3【答案】D【解析】如图,连接OA,∵⊙O的半径为6 cm,CE+DE=12 cm,∴CD是⊙O的直径,∵CD⊥AB,∴AE=BE,OE=3,OA=6,∴AE=2233OA OE-=,∴AB=2AE=63,故选D.典例3如图,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为A.2 cm B.3cmC.23cm D.25cm【答案】C【解析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.作OD⊥AB于D,连接OA.根据题意得OD=12OA=1cm,再根据勾股定理得:AD3,根据垂径定理得AB3.故选C.3.如图,⊙O的直径为10,圆心O到弦AB的距离OM的长为4,则弦AB的长是A.3 B.6 C.4 D.84.如图,某菜农在蔬菜基地搭建了一个横截面为圆弧形的蔬菜大棚,大棚的跨度弦AB的长为8515米,大棚顶点C离地面的高度为2.3米.(1)求该圆弧形所在圆的半径;(2)若该菜农的身高为1.70米,则他在不弯腰的情况下,横向活动的范围有几米?考向三弧、弦、圆心角、圆周角1.圆心角的度数等于它所对弧的度数,把顶点在圆心的周角等分成360份,每一份的圆心角是1°的角,1°的圆心角对着1°的弧.2.圆周角要具备两个特征:①顶点在圆上;②角的两边都和圆相交,二者缺一不可.典例4如图,在⊙O中∠O=50°,则∠A的度数为A.50°B.20°C.30°D.25°【答案】D【解析】∠A=12BOC=12×50°=25°.故选D.典例5如图,AB是⊙O的直径,△ACD内接于⊙O,延长AB,CD相交于点E,若∠CAD=35°,∠CDA=40°,则∠E的度数是A.20°B.25°C.30°D.35°【答案】B【解析】如图,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,由三角形内角和定理得,∠ACD=180°﹣∠CAD﹣∠CDA=105°,∴∠ABD=180°﹣∠ACD=75°,∴∠BAD=90°﹣∠ABD=15°,∴∠E=∠CDA﹣∠DAB=25°,故选B.5.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC的长为A.103πB.109πC.59πD.518π6.如图,AB是⊙O的直径,=BC CD DE,∠COD=38°,则∠AEO的度数是A.52°B.57°C.66°D.78°考向四点、直线与圆的位置关系1.点和圆的位置关系:①在圆上;②在圆内;③在圆外.2.直线和圆的位置关系:相交、相切、相离.典例6已知⊙O的半径是5,点A到圆心O的距离是7,则点A与⊙O的位置关系是A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.点A与圆心O重合【答案】C【解析】∵O的半径是5,点A到圆心O的距离是7,即点A到圆心O的距离大于圆的半径,∴点A在⊙O外.故选C.【点睛】直接根据点与圆的位置关系的判定方法进行判断.典例7在△ABC中,AB=AC=2,∠A=150°,那么半径长为1的⊙B和直线AC的位置关系是A.相离B.相切C.相交D.无法确定【答案】B【解析】过B作BD⊥AC交CA的延长线于D,∵∠BAC=150,∴∠DAB=30°,∴BD=11222AB=⨯=1,即B到直线AC的距离等于⊙B的半径,∴半径长为1的⊙B和直线AC的位置关系是相切,故选B.【点睛】本题考查了直线与圆的位置关系的应用,过B作BD⊥AC交CA的延长线于D,求出BD和⊙B的半径比较即可,主要考查学生的推理能力.7.如图,⊙O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与⊙O的位置关系是A.在⊙O内B.在⊙O上C.在⊙O外D.以上都有可能8.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC 所在直线向下平移__________cm时与⊙O相切.考向五切线的性质与判定有圆的切线时,常常连接圆心和切点得切线垂直半径,这是圆中作辅助线的一种方法.典例8如图,⊙O以AB为直径,PB切⊙O于B,近接AP,交⊙O于C,若∠PBC=50°,∠ABC=A.30°B.40°C.50°D.60°【答案】B【解析】∵⊙O以AB为直径,PB切⊙O于B,∴∠PBA=90°,∵∠PBC=50°,∴∠ABC=40°.故选B.典例9如图,Rt△ABC中,∠C=90°,AB=5,AC=3,点E在中线AD上,以E为圆心的⊙E分别与AB、BC相切,则⊙E的半径为A.78B.67C.56D.1【答案】B【解析】作EH⊥AC于H,EF⊥BC于F,EG⊥AB于G,连接EB,EC,设⊙E的半径为r,如图,∵∠C=90°,AB=5,AC=3,∴BC22AB AC-,而AD为中线,∴DC=2,∵以E为圆心的⊙E分别与AB、BC相切,∴EG=EF=r,∴HC=r,AH=3–r,∵EH∥BC,∴△AEH∽△ADC,∴EH∶CD=AH∶AC,即EH=233r-(),∵S △ABE +S △BCE +S △ACE =S △ABC , ∴()1112154333422232r r r ⨯⨯+⨯⨯+⨯⨯-=⨯⨯,∴67r =.故选B .9.已知四边形ABCD 是梯形,且AD ∥BC ,AD <BC ,又⊙O 与AB 、AD 、CD 分别相切于点E 、F 、G ,圆心O 在BC 上,则AB +CD 与BC 的大小关系是 A .大于 B .等于C .小于D .不能确定10.如图,以等腰△ABC 的腰AB 为⊙O 的直径交底边BC 于D ,DE AC ⊥于E .求证:(1)DB DC =; (2)DE 为⊙O 的切线.1.下列关于圆的叙述正确的有①圆内接四边形的对角互补; ②相等的圆周角所对的弧相等;③正多边形内切圆的半径与正多边形的半径相等; ④同圆中的平行弦所夹的弧相等.A .1个B .2个C .3个D .4个2.如图,AB 是⊙O 的直径,C 是⊙O 上一点(A 、B 除外),∠AOD =136°,则∠C 的度数是A .44°B .22°C .46°D .36°3.如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD ,已知DE =6,∠BAC +∠EAD =180°,则弦BC 的长等于A .41B .34C .8D .64.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,则圆心坐标是A .点(1,0)B .点(2,1)C .点(2,0)D .点(2.5,1)5.如图,O 的直径8AB =,30CBD ∠=︒,则CD 的长为A .2B .3C .4D .36.如图,一圆内切四边形ABCD ,且BC =10,AD =7,则四边形的周长为A .32B .34C .36D .387.已知在⊙O 中,AB =BC ,且34AB AMC =∶∶,则∠AOC =__________.8.如图,A 、B 、C 、D 都在⊙O 上,∠B =130°,则∠AOC 的度数是__________.9.如图,PA 、PB 分别切⊙O 于A 、B ,并与圆O 的切线DC 分别相交于D 、C .已知△PCD 的周长等于14 cm ,则PA =__________cm .10.如图,在⊙O 的内接四边形ABCD 中,AB AD =,120C ∠=︒,点E 在弧AD 上.若AE 恰好为⊙O的内接正十边形的一边,DE 的度数为__________.11.如图,半圆O 的直径是AB ,弦AC 与弦BD 交于点E ,且OD ⊥AC ,若∠DEF =60°,则tan ∠ABD =__________.12.如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF 的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tan D=34,求AE的长.13.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.14.如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,CD=2,AD=4,求直径AB的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.1.如图,在O 中,AB 所对的圆周角50ACB ∠=︒,若P 为AB 上一点,55AOP ∠=︒,则POB ∠的度数为A .30°B .45°C .55°D .60°2.如图,AD 是O 的直径,AB CD =,若40AOB ∠=︒,则圆周角BPC ∠的度数是A .40︒B .50︒C .60︒D .70︒3.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .25B .4C .213D .4.84.如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是A .PA =PB B .∠BPD =∠APDC .AB ⊥PDD .AB 平分PD5.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于A .55°B .70°C .110°D .125°6.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C =40°,则∠B 的度数为A .60°B .50°C .40°D .30°7.如图,AB 是⊙O 的直径,点C 、D 是圆上两点,且∠AOC =126°,则∠CDB =A .54°B .64°C .27°D .37°8.如图,AB 为O 的直径,BC 为O 的切线,弦AD ∥OC ,直线CD 交的BA 延长线于点E ,连接BD .下列结论:①CD 是O 的切线;②CO DB ⊥;③EDA EBD △∽△;④ED BC BO BE ⋅=⋅.其中正确结论的个数有A .4个B .3个C .2个D .1个9.如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD =__________.10.如图,△ABC 内接于⊙O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D ,若⊙O 的半径为2,则CD 的长为__________.11.如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=45,求tan∠BAD的值.12.如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是BD上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是BD的中点,则DF的长为__________;②取AE的中点H,当∠EAB的度数为__________时,四边形OBEH为菱形.1.【答案】D【解析】设原来的圆的半径为r ,则面积S 1=πr 2, ∴半径缩小到原来的14后所得新圆的面积22211π()π416S r r ==, ∴22211π116π16rS S r ==,故选D . 2.【答案】D【解析】∵圆的半径为5,∴圆的直径为10,又∵直径是圆中最长的弦,∴圆中任意一条弦的长度10l ≤,故选D . 3.【答案】B【解析】如图,连接OA ,∵O 的直径为10,5OA ∴=,∵圆心O 到弦AB 的距离OM 的长为4, 由垂径定理知,点M 是AB 的中点,12AM AB =, 由勾股定理可得,3AM =,所以6AB =.故选B .4.【解析】(1)如图所示:CO ⊥AB 于点D ,设圆弧形所在圆的半径为xm ,根据题意可得:DO 2+BD 2=BO 2, 则(x –2.3)2+851×12)2=x 2,解得x =3. 变式训练答:圆弧形所在圆的半径为3米;(2)如图所示:当MN =1.7米,则过点N 作NF ⊥CO 于点F ,可得:DF =1.7米,则FO =2.4米,NO =3米,故FN =223 2.4-=1.8(米), 故该菜农身高1.70米,则他在不弯腰的情况下,横向活动的范围有3.6米. 5.【答案】B【解析】根据题意可知:∠OAC =∠OCA =50°,则∠BOC =2∠OAC =100°,则弧BC 的长度为:100π210π1809⨯=,故选B .6.【答案】B【解析】∵=BC CD DE =,∴∠BOC =∠DOE =∠COD =38°, ∴∠BOE =∠BOC +∠DOE +∠COD =114°,∴∠AOE =180°–∠BOE =66°, ∵OA =OE ,∴∠AEO =(180°–∠AOE )÷2=57°,故选B . 7.【答案】A【解析】如图,连接OA ,则在直角△OMA 中,根据勾股定理得到OA =223 3.823.445+=<. ∴点A 与⊙O 的位置关系是:点A 在⊙O 内.故选A .8.【答案】2【解析】连接OA .∵直线和圆相切时,OH =5,又∵在直角三角形OHA 中,HA =AB ÷2=4,OA =5,∴OH =3. ∴需要平移5–3=2(cm ).故答案为:2.【点睛】本题考查垂径定理及直线和圆的位置关系.注意:直线和圆相切,应满足d =R . 9.【答案】B【解析】如图,连接OF ,OA ,OE ,作AH ⊥BC 于H .∵AD 是切线,∴OF ⊥AD ,易证四边形AHOF 是矩形,∴AH =OF =OE , ∵S △AOB =12•OB •AH =12•AB •OE ,∴OB =AB ,同理可证:CD =CO , ∴AB +CD =BC ,故选B .【点睛】本题考查了切线的性质,切线垂直于过切点的半径,正确作出辅助线是关键. 10.【解析】(1)如图,连AD ,∵AB 是直径,∴90ADB ∠=︒,AD BC ⊥, 又AB AC =,∴D 为BC 中点,DB DC =; (2)连OD ,∵D 为BC 中点,OA OB =, ∴OD 为ABC △中位线,OD AC ∥, 又DE AC ⊥于,E ∴90ODE DEC ∠=∠=︒, ∴DE 为⊙O 的切线.1.【答案】B【解析】①圆内接四边形的对角互补;正确;②相等的圆周角所对的弧相等;错误;③正多边形内切圆的半径与正多边形的半径相等;错误;④同圆中的平行弦所夹的弧相等;正确; 正确的有2个,故选B . 2.【答案】B【解析】∵∠AOD =136°,∴∠BOD =44°,∴∠C =22°,故选B . 3.【答案】C【解析】如图,延长CA ,交⊙A 于点F ,考点冲关∵∠BAC+∠BAF=180°,∠BAC+∠EAD=180°,∴∠BAF=∠DAE,∴BF=DE=6,∵CF是直径,∴∠ABF=90°,CF=2×5=10,∴BC=228CF BF-=.故选C.4.【答案】C【解析】根据勾股定理可知A、B、C点到(2,0)的距离均为5,然后可知圆心为(2,0)或者通过AB、BC的垂直平分线求解也可以.故选C.5.【答案】C【解析】如图,作直径DE,连接CE,则∠DCE=90°,∵∠DBC=30°,∴∠DEC=∠DBC=30°,∵DE=AB=8,∴12DC DE==4,故选C.6.【答案】B【解析】由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2×(7+10)=34.故选B.7.【答案】144°【解析】根据AB=BC可得:弧AB的度数和弧BC的度数相等,则弧AMC的度数为:(360°÷10)×4=144°,则∠AOC =144°. 8.【答案】100°【解析】∵∠B =130°,∴∠D =180°-130°=50°,∴∠AOC =2∠D =100°.故答案为100°. 9.【答案】7【解析】如图,设DC 与⊙O 的切点为E ;∵PA 、PB 分别是⊙O 的切线,且切点为A 、B ,∴PA =PB ; 同理,可得:DE =DA ,CE =CB ;则△PCD 的周长=PD +DE +CE +PC =PD +DA +PC +CB =PA +PB =14(cm ); ∴PA =PB =7cm ,故答案是:7. 10.【答案】84︒【解析】如图,连接BD ,OA ,OE ,OD ,∵四边形ABCD 是圆的内接四边形,∴180BAD C ∠+∠=︒, ∵120C ∠=︒,∴60BAD ∠=︒,∵AB AD =,∴ABD △是正三角形,∴60ABD ∠=︒,2120AOD ABD ∠=∠=︒, ∵AE 恰好是⊙的内接正十边形的一边,∴3603610AOE ︒∠==︒, ∴1203684DOE ∠=︒-︒=︒,∴DE 的度数为84°.故答案为:84°.113【解析】∵OD ⊥AC ,∠DEF =60°, ∴∠D =30°,∵OD=OB,∴∠ABD=∠D=30°,∴tan∠ABD=33,故答案为:33.12.【解析】(1)连接OC,如图.∵点C为弧BF的中点,∴弧BC=弧CF,∴∠BAC=∠FAC.∵OA=OC,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AE.∵AE⊥DE,∴OC⊥DE,∴DE是⊙O的切线;(2)在Rt△OCD中,∵tan D=34OCCD=,OC=3,∴CD=4,∴OD=22OC CD+=5,∴AD=OD+AO=8.在Rt△ADE中,∵sin D=35OC AEOD AD==,∴AE=245.13.【解析】(1)直线DE与⊙O相切,理由如下:如图,连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°–90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8–x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8–x)2=22+x2,解得:x=4.75,则DE=4.75.14.【解析】(1)如图1,连接OC.∵OB=OC,∴∠OCB=∠B,∵∠DCA=∠B,∴∠DCA=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠DCA+∠ACO=∠OCB+∠ACO=90°,即∠DCO=90°,∴CD是⊙O的切线.(2)∵AD⊥CD,CD=2,AD=4.∴222425AC=+=由(1)可知∠DCA=∠B,∠D=∠ACB=90°,∴△ADC∽△ACB,∴AD ACAC AB=2525=,∴AB=5.(3)2AC BC EC=+,如图2,连接BE,在AC上截取AF=BC,连接EF.∵AB 是直径,∠DAB =45°, ∴∠AEB =90°,∴△AEB 是等腰直角三角形, ∴AE =BE ,又∵∠EAC =∠EBC ,∴△ECB ≌△EFA ,∴EF =EC , ∵∠ACE =∠ABE =45°, ∴△FEC 是等腰直角三角形, ∴2FC EC =,∴2AC AF FC BC EC =+=.1.【答案】B【解析】∵∠ACB =50°,∴∠AOB =2∠ACB =100°,∵∠AOP =55°,∴∠POB =45°,故选B . 2.【答案】B【解析】∵AB CD =,40AOB ∠=︒,∴40COD AOB ∠=∠=︒, ∵180AOB BOC COD ∠+∠+∠=︒,∴100BOC ∠=︒, ∴1502BPC BOC ∠=∠=︒,故选B . 3.【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =--=,∵OD AC ⊥,∴142CD AD AC ===, 直通中考在Rt CBD △中,2246213BD =+=.故选C .4.【答案】D【解析】∵PA ,PB 是⊙O 的切线,∴PA =PB ,所以A 成立;∠BPD =∠APD ,所以B 成立; ∴AB ⊥PD ,所以C 成立;∵PA ,PB 是⊙O 的切线,∴AB ⊥PD ,且AC =BC ,只有当AD ∥PB ,BD ∥PA 时,AB 平分PD ,所以D 不一定成立,故选D . 5.【答案】B【解析】如图,连接OA ,OB ,∵PA ,PB 是⊙O 的切线,∴PA ⊥OA ,PB ⊥OB ,∵∠ACB =55°,∴∠AOB =110°, ∴∠APB =360°-90°-90°-110°=70°.故选B .6.【答案】B【解析】∵AC 是⊙O 的切线,∴AB ⊥AC ,且∠C =40°,∴∠ABC =50°,故选B . 7.【答案】C【解析】∵∠AOC =126°,∴∠BOC =180°-∠AOC =54°,∵∠CDB =12∠BOC =27°.故选C . 8.【答案】A【解析】如图,连接DO .∵AB 为O 的直径,BC 为O 的切线,∴90CBO ∠=︒,∵AD OC ∥,∴DAO COB ∠=∠,ADO COD ∠=∠. 又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.在COD △和COB △中,CO CO COD COB OD OB =⎧⎪∠=∠⎨⎪=⎩,∴COD COB △≌△,∴90CDO CBO ∠=∠=︒.又∵点D 在O 上,∴CD 是O 的切线,故①正确,∵COD COB △≌△,∴CD CB =,∵OD OB =,∴CO 垂直平分DB ,即CO DB ⊥,故②正确; ∵AB 为O 的直径,DC 为O 的切线,∴90EDO ADB ∠=∠=︒,∴90EDA ADO BDO ADO ∠+∠=∠+∠=︒,∴ADE BDO ∠=∠, ∵OD OB =,∴ODB OBD ∠=∠,∴EDA DBE ∠=∠, ∵E E ∠=∠,∴EDA EBD △∽△,故③正确;∵90EDO EBC ∠=∠=︒,E E ∠=∠,∴EOD ECB △∽△, ∴ED ODBE BC=,∵OD OB =, ∴ED BC BO BE ⋅=⋅,故④正确,故选A . 9.【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1. 10.【答案】2【解析】如图,连接CO 并延长交⊙O 于E ,连接BE ,则∠E =∠A =30°,∠EBC =90°,∵⊙O 的半径为2,∴CE =4,∴BC =12CE =2, ∵CD ⊥AB ,∠CBA =45°,∴CD =22BC =2,故答案为:2. 11.【解析】(1)∵AB =AC ,∴AB AC =,∠ABC =∠ACB ,∴∠ABC =∠ADB ,∠ABC =(180°-∠BAC )=90°-∠BAC ,∵BD⊥AC,∴∠ADB=90°-∠CAD,∴12∠BAC=∠CAD,∴∠BAC=2∠CAD.(2)∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=12∠BDC=12∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=45,设AE=x,CE=10-x,由AB2-AE2=BC2-CE2,得100-x2=80-(10-x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE=648AE CEBE⋅⨯==3,∴BD=BE+DE=3+8=11,如图,作DH⊥AB,垂足为H,∵12AB·DH=12BD·AE,∴DH=11633105 BD AEAB⋅⨯==,∴BH2244 5BD DH-=,∴AH=AB-BH=10-446 55=,∴tan∠BAD=331162 DHAH==.12.【解析】(1)∵BA=BC,∠ABC=90°,∴∠BAC=45°,∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠DAF+∠BGD=∠DBG+∠BGD=90°,∴∠DAF=∠DBG,∵∠ABD+∠BAC=90°,∴∠ABD=∠BAC=45°,∴AD=BD,∴△ADF≌△BDG.(2)①如图2,过F作FH⊥AB于H,∵点E是BD的中点,∴∠BAE=∠DAE,∵FD⊥AD,FH⊥AB,∴FH=FD,∵FHBF=sin∠ABD=sin45°2,∴22FDBF=BF2FD,∵AB=4,∴BD=4cos45°2,即BF+FD22+1)FD2,∴FD=2221=4-22,故答案为:4-22.②连接OH,EH,∵点H是AE的中点,∴OH⊥AE,∵∠AEB=90°,∴BE⊥AE,∴BE∥OH,∵四边形OBEH为菱形,∴BE=OH=OB=12 AB,∴sin∠EAB=BEAB=12,∴∠EAB=30°.故答案为:30°.31。

分类讨论思想在初中数学解题中的应用

分类讨论思想在初中数学解题中的应用

分类讨论思想在中学数学解题中的应用摘要:在中学数学教学中,我们要有计划、有意识、有步骤地渗透一些数学思想方法,引导学生去感悟基本的数学思想。

分类讨论就是一种重要的思想方法,本文尝试通过几个典型例题的解析,揭示分类讨论思想的解题策略,感受分类讨论思想在解题中的使用。

关键词: 分类讨论思想应用初中数学的基础知识主要是“初中代数、几何中的概念、法则、性质、公式、公理以及由内容所反映出来的数学思想和方法。

”学生从小学进入初中,数学学科不管是学习内容、学习方法,还是思维方法都发生很大变化,解决数学问题的思想方法将得到持续的充实更新。

渗透在数学概念和方法中的数学思想需要在教学中充分的挖掘和应用,成为教学目标的不可缺少的组成局部。

分类讨论是一种重要的数学思想,在解题中准确、合理、严谨的分类,可将一个复杂的问题大大的简化,达到化繁就简,化难为易,分而治之的目的,这是学习任何科学,包括数学学习的一种科学方法。

假如能让学生理解并掌握分类讨论的思想方法,就能够培养学生的综合分析水平和思维的条理性、严谨性和完整性,提升和发展他们的思维水平。

分类讨论是依据数学对象本质属性的异同,选择适当的标准不重复不遗漏地将其分为若干类,然后逐类实行讨论来解决问题的一种数学思想方法,是数学发现的重要手段。

如在学习有理数、三角形、四边形、圆周角和弦切角定理的证明、一元二次方程求根公式的推导等知识时,就使用了分类讨论的思想。

分类讨论思想的原则是:标准统一、不重不漏。

分类讨论能够使问题化繁为简,化难为易,能很好地训练一个人思维的条理性和概括性。

二、分类讨论思想的原则一个数学问题是否要分类及如何分类,这种经验的积累是十分重要的。

一般情况下,当被研究的问题包含有多种可能的情况,导致我们不能将它们一概而论时,迫使我们将可能出现的所有情况来分类讨论,得出各种情况下相对应的结论,而后实行综合。

分类讨论一般应遵循以下的原则:1.对问题中的某些条件实行分类,要遵循同一标准。

【九年级数学几何培优竞赛专题】专题1 巧构圆,妙解题【含答案】

【九年级数学几何培优竞赛专题】专题1 巧构圆,妙解题【含答案】

第一章 圆专题1巧构圆,妙解题知识解读在处理平面几何中的许多问题时,常常需要借助圆的性质,问题才能解决.而有时候我们需要的圆并不存在,这就需要我们能利用已知的条件,借助图形的特点把实际存在的圆找出来,从而运用圆中的性质来解决问题,往往有事半功倍的效果,使问题获得巧解或简解,这是我们解题必须要掌握的技巧. 作辅助圆的常用依据有以下几种:①圆的定义:若几个点到某个固定点的距离相等,则这几个点在同一个圆上; ②有公共斜边的两个直角三角形的顶点在同一个圆上;③对角互补的四边形四个顶点在同一个圆上,简记为:对角互补,四点共圆;④若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,则这两个三角形有公共的外接圆,简记为:同旁张等角,四点共圆.培优学案典例示范例1将线段AB 绕点A 逆时针旋转60°得到线段AC ,继续旋转(0120)αα<<得到线段AD ,连接CD . (1)连接BD .①如图1-1-1①,若α=80°,则∠BDC 的度数为;②在第二次旋转过程中,请探究∠BDC 的大小是否改变?若不变,求出∠BDC 的度数;若改变,请说明理由;(2)如图1-1-1②,以AB 为斜边作Rt △ABE ,使得∠B =∠ACD ,连接CE ,DE .若∠CED =90°,求α的值.图1-1-1②①EDCBADBA【提示】(1)①∠BDC =∠ADC -∠ADB ,利用“等边对等角及三角形内角和为180°”可求出∠BDC 为30°; ②由题意知,AB =AC =AD ,则点B ,C ,D 在以A 为圆心,AB 为半径的圆上,利用“一条弧所对的圆周角等于它所对的圆心角的一半”可快速求出∠BDC 仍然为30°;(2)过点A 作AM ⊥CD 于点M ,连接EM ,证明“点A ,C ,D 在以M 为圆心,MC 为半径的圆上”.跟踪训练如图1-1-2,菱形ABCD 中,∠B =60°,点E 在边BC 上,点F 在边CD 上.若∠EAF =60°,求证:△AEF 是等边三角形.角相等”获证.图1-1-2BFEDC A例2 (1)如图1-1-3①,正方形ABCD 中,点E 是BC 边上的任意一点,∠AEF =90°,且EF 交正方形外角平分线CF 于点F .求证:AE =EF ;(2)若把(1)中的条件“点E 是BC 边上的任意一点”,改为“点E 是BC 边延长线上的一点”,其余条件不变,如图1-1-3②,那么结论AE =EF 是否还成立?若成立,请证明;若不成立,请说明理由.①②图1-1-3A B E CFDFDCEBA【提示】连接AC ,AF ,显然∠ACF =∠AEF =90°,所以A ,E ,C ,F 四点在以AF 为直径的圆上. (1)如图1-1-4①,当点E 在BC 边上,则∠AFE =∠ACE =45°,于是△AEF 是等腰直角三角形,AE =EF 获证;(2)如图1-1-4②,当点E 在BC 边的延长线上,则∠F AE =∠FCE =45°,于是△AEF 是等腰直角三角形,AE=EF 获证.F图1-1-4②①【拓展】本题将“正方形”改为“正三角形”,“∠AEF =90°”相应改为“∠AEF =60°”,仍然可以运用构造“辅助圆”的思路.还可进一步拓展为“正n 边形”,360180AEF =-∠,仍然可延续这种思路,读者可自己完成.跟踪训练已知,将一副三角板(Rt △ABC 和Rt △DEF )如图1-1-5①摆放,点E ,A ,D ,B 在一条直线上,且D 是AB的中点.将Rt △DEF 绕点D 顺时针方向旋转角(090)αα<<,在旋转过程中,直线DE ,AC 相交于点M ,直线DF ,BC 相交于点N ,分别过点M ,N 作直线AB 的垂线,垂足为G ,H . (1)如图1-1-5②,当α=30°时,求证:AG =DH ; (2)如图1-1-5③,当α=60°时,(1)中的结论是否成立?请写出你的结论,并说明理由; (3)当090α<<时,(1)中的结论是否成立?请写出你的结论,并根据图1-1-5④说明理由.③④图1-1-5②①HGEAF D C (N )BFE DCBA【提示】本题除了常规解法外,还可考虑构造“辅助圆”.例3 已知,在△ABC 中,AB =AC ,过A 点的直线a 从与边AC 重合的位置开始绕点A 按顺时针方向旋转角θ,直线a 交BC 边于点P (点P 不与点B ,点C 重合),△BMN 的边MN 始终在直线a 上(点M 在点N 的上方),且BM =BN ,连接CN . (1)当∠BAC =∠MBN =90°时.①如图1-1-6①,当θ=45时,∠ANC 的度数为 ; ②如图1-1-6②,当45θ≠时,①中的结论是否发生变化?说明理由;(2)如图1-1-6③,当∠BAC =∠MBN ≠90°时,请直接写出∠ANC 与∠BAC 之间的数量关系,不必证明.③②C【提示】由于在旋转过程中不变的关系是:∠BAC =∠MBN ,AB =AC ,BM =BN ,易知∠ABC =∠ACB =∠BMN =∠BNM .由∠ACB =∠BNM 可知A ,B ,N ,C 四个点在同一个圆上(如图1-1-7),则∠ANC =∠ABC =1902BAC -∠,这样思考,所有问题都会迎刃而解.跟踪训练在△ABC 中,BA =BC ,∠BAC =α,M 是AC 的中点,P 是线段BM 上的动点,将线段P A 绕点P 顺时针旋转2α得到线段PQ . (1)若α=60°且点P 与点M 重合(如图1-1-8①),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出∠CDB 的度数;(2)在图1-1-8②中,点P 不与点B ,M 重合,线段CQ 的延长线与射线BM 交于点D ,猜想∠CDB 的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ =QD ,请直接写出α的范围.①图1-1-8②DP BACMQQM (P )CB A例4如图1-1-9,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使∠APB=30°的点P有个;(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标;(3)当点P在y轴上移动时,∠APB是否有最大值?若有,求点P的坐标,并说明此时∠APB最大的理由;若没有,也请说明理由.图1-1-9【提示】(1)已知点A、点B是定点,要使∠APB=30°,只需点P在过点A、点B的圆上,且弧AB所对的圆心角为60°即可,显然符合条件的点P有无数个.(2)结合(1)中的分析可知:当点P在y轴的正半轴上时,点P是(1)中的圆与y轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P的坐标;当点P在y轴的负半轴上时,同理可求出符合条件的点P的坐标.(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB最大,只需构造过点A、点B且与y轴相切的圆,切点就是使得∠APB最大的点P,然后结合切线的性质、三角形外角的性质、矩形的判定与性质、勾股定理等知识即可解决问题.跟踪训练已知,如图1-1-10①,,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=43,在∠MON的内部,△AOB的外部有一点P,且AP=BP,∠APB=120°.(1)求AP的长;(2)求证:点P在∠MON的平分线上.(3)如图1-1-10②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,P A的中点,连接CD,DE,EF,FC,OP.若四边形CDEF的周长用t表示,请直接写出t的取值范围.图1-1-10例5已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.、① ②③图1-1-11【提示】本题除了建立方程模型,将问题转化为方程是否有解的判断外,还可以通过构造辅助圆,将问题转化为直线与圆的位置关系来讨论.跟踪训练1.如图1-1-12,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).(1)求该反比例函数的关系式;(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;①求△A′BC的周长和sin∠BA′C的值;②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC1m .图1-1-12【提示】(1)①由直线y=-x+3写出OA=3,OB=3;由等腰直角三角形的边长关系,可得AB2;由PC⊥y轴,可得QC=1,BC=2;由对称知A'B=AB2,OA'=0A=3,然后用勾股定理求出A'C的长,也就可以求出△A'BC的周长;(2)②如果选用上一题的思路求∠BMC的正弦值,会陷入计算的麻烦,这里采用转化的思想,找到外接圆的半径,另外还应分类讨论。

关于圆中的分类讨论问题

关于圆中的分类讨论问题

关于圆中的分类讨论问题摘要:本文章简要讨论了在数学中有关圆的不遗漏、不重复的一些问题。

通过典型例题与思维方法相结合,强调了师生不要忽视这种问题。

关键词:圆弦圆心距分类思想是根据数学对象本质属性的相同点和不同点,将数学对象区分为不同种类的数学思想。

学习并掌握分类的思想方法,不仅仅是学习数学的需要,也是学习其他学科和今后工作的需要。

分类必须有一定的标准,标准不同分类的结果也就不同,但要做到不遗漏、不重复。

在分类中对各类进行研究,使问题在各个不同情况下分别得到各种结论,就是讨论。

本文中,根据我的实验,通过具体例子介绍了分类思想在数学题中的应用。

实际上,初中数学中分类讨论问题比较多,我现在要分析圆中的分类讨论问题。

一、求已知长度弦所形成的角度问题上面的是一种情况,实际上,点A也可能在⊙O的外部说明:点与圆的位置关系的问题在题设中没有指明它们之间的关系时,应该考虑点在圆内、圆上和圆外三种可能的位置。

三、求给定平分弦长和半径长度的两个弦距离的问题说明:在解圆内两条平行弦的有关问题时,应该注意考虑两条平行弦在圆心的同侧和异侧两种情况。

一般,在考虑圆内两条弧有关的问题时,应该注意圆心的同侧和异侧两种情况。

四、求给定圆上的一点到直径的距离问题说明:老师遇到这种的问题时,应该重视点D在圆心的右边和左边的两种情况。

五、给定两圆的公共弦长的比值和两圆的半径值时,求两圆的圆心距的问题说明:画两圆相交的图形时,把公共弦习惯性地画在两圆心之间,课本及参考书都是这样画的,忽视了公共弦可能在两圆心之外的情况。

六、关于互相垂直的公共切线的问题说明:解互相垂直公切线的问题时,应该注重利用直角坐标系。

七、给定圆的弦长等于圆的半径,求此弦所对的圆周角问题说明:在解圆内一条弦所对的圆周角的有关问题时,要注意圆周角的顶点可以在这条弦所对的优弧上,也可以在这条弦所对的劣弧上。

八、给定两个圆的半径和运动路线,求这两个圆的相切的问题总结来说:我们当解决数学问题时,应该全面地思考,数学的本质是不允许任何一个点的遗落,因为数学的要求是真正的认真和聚精会神。

初中数学专题复习分类讨论问题(含解答)

初中数学专题复习分类讨论问题(含解答)

分类讨论问题一、内容提要: 分类讨论的主要因素: (1)根据本身就是分类定义;(2)有些性质、公式在不同条件下有不同的结论; (3)一些定义、定理、公式和法则有范围或条件限制; (4)题目的条件或结论不唯一时;(5)解含参数(字母系数)的题目时,必须根据参数(字母系数)的不同取值范围进行讨论;(6)推理过程中,遇到数量的大小不确定,图形的位置或形状不确定的。

四个步骤: (1)确定分类对象 (2)进行合理分类 (3)逐类讨论,分级进行 (4)归纳并作出结论 二、例题精选 1.按图形的性质分类例1 如图1,⊙O 是等边ΔABC 的外接圆,D 是 BC上异于B 、C 的一点。

若 BD与 DC 的度数之比是1∶3,⊙O 的半径为1,取点F ,使ΔDCF 为等腰三角形,且顶角为钝角,试指出这时DF 的长或其取值范围。

分析:题目中,没有确定DC 是等腰三角形的底还是腰,所以要分为不同的情况讨论,在不同状态下求DF 。

解:因为 BC为120°, BD 与 DC 的度数的比是1∶3,所以 DC 为90°, DCB AO连结OC、OD,则=①以CD为底边时,如图2,DF可变化,若∠F为直角,则DF=1,而本题∠F为钝角,有<DF<1。

②以CF为底边时,如图3,DF确定,DF=DC=。

③以DF为底边时,如图4,DF可变化,若∠C=90°,则DF=2,所以∠C为钝角时,DF>2。

又DF<2,所以2<DF<2。

说明:题目中的已知条件只是用来确定DC的长度,而后面的分类讨论内容与圆没有关系,是对等腰三角形的边进行计算,分类讨论注意全面,不要遗漏。

例2、抛物线y=m x2-(3m+)x+4与x轴交于两点A,B,与y轴交于C点,若ΔABC是等腰三角形,求抛物线的解析式。

解:在y=mx2-(3m+)x+4中令x=0, 得到y=4,∴ c(0,4 )令y=0,则m x2-(3m+)x+4=0∵ m≠0, ∴ x1=3, x2=。

初中数学圆的重要概念性质定理总结与解题技巧

初中数学圆的重要概念性质定理总结与解题技巧

初中数学圆的重要概念性质定理总结与解题技巧1. 圆的对称性圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.2. 垂径定理及其推论垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.3. 圆心角定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.同样还可以得到:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等.4. 圆周角定理及推论圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90。

的圆周角所对的弦是直径.5. 圆内接四边形的性质:圆内接四边形的对角互补.6. 点和圆的位置关系(1)点和圆的位置关系有三种:点在圆外、点在圆上、点在圆内.(2)设(DO的半径为r.点P到圆心的距离OP=d,则有:①点P在圆外od>「;②点P在圆上<=>d=r;③点P在圆内od<r.7. 直线和圆的位置关系(1)直线和圆有三种位置关系:相交、相切和相离.(2 )设。

0的半径为「,圆心0到直线I的距离为d,则有:①直线I和00相交od<「;②直线I和(DO相切od=r;③直线I和00相离od>r.8. 切线的判定定理和性质定理(1) 切线的判定定理:经过半径的外端并且垂苴于这条半径的直线足圆的切线.(2) 切线的性质定理:|员I的切线垂直于过切点的半径.9. 圆的切线的性质(1) 切线和圆只有一个公共点;(2) 切线和I员]心的距离等于圆的半径;(3) 切线垂直于过切点的半径;(4) 经过恻心且垂直于切线的直线必过切点;(5) 经过切点且垂直于切线的直线必过恻心.10. 切线长经过岡外一点的圆的切线上,这点和切点之间线段的长,叫做这点到闖的切线长.11 •切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等.这一点和圆心的连线平分两条切线的夹角.12. 三角形的内切圆(1) 与三角形各辺都相切的圆叫做三角形的内切圆.(2) 三角形的内切圆的岡心是三角形三条角平分线的交点,叫做三角形的内心.13. 圆和圆的位置关系(1)圆和ia的位置关系有五种:外离、外切、相交、内切、内含.(2)如果两圆的半径分别为h和「2( r«2),圖心距(两岡圆心的距离)为d.则两圆的位置关系如下表;14 •正多边形的有关计算设正多边形的边数为g半径为R,边心距为r,边长为a,则有,(1)正多边形的每个内拜:82卜180。

初中数学圆中常见的两解及多解问题_徐静

初中数学圆中常见的两解及多解问题_徐静

线 MN 的交点以每秒 1 cm 的速度( 左边的交点) 向左、( 右边的
交点) 向右运动,两圆相切有四种情形,①当 2t + t = 9 时,即 t =
3
秒时,两圆第一次相切;
②当
2t
+
t
=
11
时,即
t
=
11 3
秒时,两圆
第二次相切; ③当 2t - t = 11 时,即 t = 11 时,两圆第三次相切;
例 5 圆 O1 的半径为 17,圆 O2 的半径为 10,两圆相交于 A、B 两
点,AB = 16,求 O1 O2 . 分析: 两种情况 ( 1) 两圆圆心在公共弦两侧,如图 5 ( 1 ) ,
( 2) 两圆圆心在公共弦同侧,如图 5( 2) .
图5
解析: ( 1) 连接 O1 A,O2 A,O1 O2 交 AB 于点 C,如图 5( 1) . 由
现在的问题是点 P 是假设出来的,点 A 已知,点 B 可以任 意确定,但点 C 的位置是不确定的. 因此在作图时,可以先任意 确定点 C 的位置,也就是在直线 l 上,任意截取线段 BC( 如图 6) ,然后过这三点作平行四边形.
图5
图6
图7
此图中,AB、BC 都是确定的线段,我们可以分别以 A、B 为
动,与此同时,⊙B 的半径也不断增大,其半径 r( cm) 与时间 t
( 秒) 之间的关系式为 r = 1 + t( t≥0) ,当点 A 出发后
秒两圆相切.
分析: ⊙A 以每秒 2cm 的速度自左向右运动,则⊙A 与直线
MN 的交点也以每秒 2cm 的速度自左向右运动,⊙B 的半径 r
( cm) 与时间 t( 秒) 之间的关系式为 r = 1 + t( t≥0) ,则⊙B 与直

初中数学 圆 知识点 考点 思维导图 圆的概念与性质 与圆有关的位置关系 圆有关的计算 正多边形与圆

初中数学 圆 知识点 考点 思维导图 圆的概念与性质 与圆有关的位置关系 圆有关的计算 正多边形与圆

1、与圆的位置关系可从形和数两方面来判断,思维单一容易致误. 2、切线长定理不能与三角函数结合致误. 3、两圆相交时,半径与圆心距的关系考虑不全.
点在圆内台d <r 点在圆上台 d=r
1.有切线,作过切点的半径.
2.有半径,过端点作圆的切线.
常作的
辅助线
点在圆外 与d>r
3.有切线长,作以切线、过切点的半径、圆心
2.在同圆或等圆中,同弧或等弧所对的圆周角相等;
相等的圆周角所对的弧相等.
定义 顶点都在同一圆上的多边形.
顶点都在同一圆上的三角形称圆内接三角形,
圆内接三角形 定义 圆心称三角形外心.
2.直径所对圆周角的特征
或三角形外接圆 性质 外心到各顶点距离相等,是三角形各边的中垂线的交点.
(1)作辅助线,构造"直径所对的圆周角是直角"
初初中中数数学学 圆 思思维维导导图图
考点 知识点 快速理解记忆
超超实实用用一一看看就就明明白白 极易记忆
第一节 圆的概念与性质
第二节 与与圆圆有关的位置关系
第三节 与圆有关的计算 第四节节 正多边形与圆
初中数学 第七章 圆 第一节 圆的概念与性质
在平面内,线段OA绕它固定的一个端点O旋转一周,另
(1)判定方法
1定义法∶与圆只有一个交点的直线
②数量法∶与圆心的距离d=/的直线.
(2)相切判定
③判定定理.
有明确交点,连半径,证直线与半径垂直. (3)证明直
无明确的交点,过圆心作垂线段,证其等于半径.线与圆相切
已知直线满足∶①过圆心;②过切点;
③垂直于切线.可知二推出另一个.
(4)切线性 质的拓展
线交点组成的正多边形叫圆外切正多边形.
性质 正多边形都有一外接圆,反之,同一个圆有无数多个内接正多边形

初中数学竞赛奥数培优资料第三辑专题23 圆与圆的位置关系

初中数学竞赛奥数培优资料第三辑专题23 圆与圆的位置关系

专题23圆与圆的位置关系【阅读与思考】两圆的半径与圆心距的大小量化确定圆与圆的外离、外切、相交、内切、内含五种位置关系.圆与圆相交、相切等关系是研究圆与圆位置关系的重点,解题中经常用到相关性质.解圆与圆的位置关系问题,往往需要添加辅助线,常用的辅助线有:1.相交两圆作公共弦或连心线;2.相切两圆作过切点的公切线或连心线;3.有关相切、相离两圆的公切线问题常设法构造相应的直角三角形.熟悉以下基本图形和以上基本结论.【例题与求解】【例1】如图,大圆⊙O 的直径a AB cm ,分别以OA ,OB 为直径作⊙O 1和⊙O 2,并在⊙O 与⊙O 1和⊙O 2的空隙间作两个等圆⊙O 3和⊙O 4,这些圆互相内切或外切,则四边形3241O O O O 的面积为________cm 2.(全国初中数学竞赛试题)解题思路:易证四边形3241O O O O 为菱形,求其面积只需求出两条对角线的长.【例2】如图,圆心为A ,B ,C 的三个圆彼此相切,且均与直线l 相切.若⊙A ,⊙B ,⊙C 的半径分别为a ,b ,c (b a c <<<0),则a ,b ,c 一定满足的关系式为()A .c a b +=2B .c a b +=2C .ba c 111+=D .ba c111+=(天津市竞赛试题)解题思路:从两圆相切位置关系入手,分别探讨两圆半径与分切线的关系,解题的关键是作圆的基本辅助线.【例3】如图,已知两圆内切于点P ,大圆的弦AB 切小圆于点C ,PC 的延长线交大圆于点D .求证:(1)∠APD =∠BPD ;(2)CB AC PC PB P A ∙+=∙2.(天津市中考试题)解题思路:对于(1),作出相应辅助线;对于(2),应化简待证式的右边,不妨从AC ·BC =PC ·CD 入手.【例4】如图⊙O 1和⊙O 2相交于点A 及B 处,⊙O 1的圆心落在⊙O 2的圆周上,⊙O 1的弦AC 与⊙O 2交于点D .求证:O 1D ⊥BC .(全俄中学生九年级竞赛试题)解题思路:连接AB ,O 1B ,O 1C ,显然△O 1BC 为等腰三角形,若证O 1D ⊥BC ,只需证明O 1D 平分∠B O 1C .充分运用与圆相关的角.【例5】如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =1,AB =2,DC =22,点P 在边BC 上运动(与B ,C 不重合).设PC =x ,四边形ABPD 的面积为y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)若以D 为圆心,21为半径作⊙D ,以P 为圆心,以PC 的长为半径作⊙P ,当x 为何值时,⊙D 与⊙P 相切?并求出这两圆相切时四边形ABPD 的面积.(河南省中考题)解题思路:对于(2),⊙P 与⊙D 既可外切,也可能内切,故需分类讨论,解题的关键是由相切两圆的性质建立关于x 的方程.【例6】如图,ABCD 是边长为a 的正方形,以D 为圆心,DA 为半径的圆弧与以BC 为直径的半圆交于另一点P ,延长AP 交BC 于点N ,求NCBN的值.(全国初中数学联赛试题)解题思路:AB 为两圆的公切线,BC 为直径,怎样产生比例线段?丰富的知识,不同的视角激活想象,可生成解题策略与方法.【能力与训练】A 级1.如图,⊙A ,⊙B 的圆心A ,B 在直线l 上,两圆的半径都为1cm .开始时圆心距AB =4cm ,现⊙A ,⊙B 同时沿直线l 以每秒2cm 的速度相向移动,则当两圆相切时,⊙A 运动的时间为_______秒.(宁波市中考试题)2.如图,O 2是⊙O 1上任意一点,⊙O 1和⊙O 2相交于A ,B 两点,E 为优弧AB 上的一点,EO 2及延长线交⊙O 2于C ,D ,交AB 于F ,且CF =1,EC =2,那么⊙O 2的半径为_______.(四川省中考试题)(第1题图)(第2题图)(第3题图)3.如图,半圆O 的直径AB =4,与半圆O 内切的动圆O 1与AB 切于点M .设⊙O 1的半径为y ,AM 的长为x ,则y 与x 的函数关系是_________________.(要求写出自变量x 的取值范围)(昆明市中考试题)4.已知直径分别为151+和315-的两个圆,它们的圆心距为115-,这两圆的公切线的条数是__________.5.如图,⊙O 1和⊙O 2相交于点A ,B ,且⊙O 2的圆心O 2在圆⊙O 1的圆上,P 是⊙O 2上一点.已知∠A O 1B =60°,那么∠APB 的度数是()A .60°B .65°C .70°D .75°(甘肃省中考试题)6.如图,两圆相交于A 、B 两点,过点B 的直线与两圆分别交于C ,D 两点.若⊙O 1半径为5,⊙O 2的半径为2,则AC :AD 为()A .52:3B .3:52C .1:52D .2:5(第5题图)(第6题图)(第7题图)7.如图,⊙O 1和⊙O 2外切于点T ,它们的半径之比为3:2,AB 是它们的外公切线,A ,B 是切点,AB =64,那么⊙O 1和⊙O 2的圆心距是()A .65B .10C .610D .1339208.已知两圆的半径分别为R 和r (r R >),圆心距为d .若关于x 的方程0)(222=-+-d R rx x 有两相等的实数根,那么这两圆的位置关系是()A .外切B .内切C .外离D .外切或内切(连云港市中考试题)9.如图,⊙O 1与⊙O 2相交于A ,B 两点,点O 1在⊙O 2上,点C 为⊙O 1中优弧AB ⌒上任意一点,直线CB 交⊙O 2于D ,连接O 1D .(1)证明:DO 1⊥AC ;(2)若点C 在劣弧AB ⌒上,(1)中的结论是否仍成立?请在图中画出图形,并证明你的结论.(大连市中考试题)图1图210.如图,已知⊙O 1与⊙O 2外切于点P ,AB 过点P 且分别交⊙O 1和⊙O 2于点A ,B ,BH 切⊙O 2于点B ,交⊙O 1于点C ,H .(1)求证:△BCP ∽△HAP ;(2)若AP :PB =3:2,且C 为HB 的中点,求HA :BC .(福州市中考试题)11.如图,已知⊙B ,⊙C 的半径不等,且外切于点A ,不过点A 的一条公切线切⊙B 于点D ,切⊙C 于点E ,直线AF ⊥DE ,且与BC 的垂直平分线交于点F .求证:BC =2AF .(英国数学奥林匹克试题)12.如图,AB 为半圆的直径,C 是半圆弧上一点.正方形DEFG 的一边DG 在直径AB 上,另一边DE 过△ABC 得内切圆圆心O ,且点E 在半圆弧上.(1)若正方形的顶点F 也在半圆弧上,求半圆的半径与正方形边长的比;(2)若正方形DEFG 的面积为100,且△ABC 的内切圆半径4 r ,求半圆的直径AB .(杭州市中考试题)B 级1.相交两圆的半径分别为5cm 和4cm ,公共弦长为6cm ,这两圆的圆心距为_______.2.如图,⊙O 过M 点,⊙M 交⊙O 于A ,延长⊙O 的直径AB 交⊙M 于C .若AB =8,BC =1,则AM =_______.(黑龙江省中考试题)(第2题图)(第3题图)(第4题图)3.已知圆环内直径为a cm ,外直径为b cm ,将50个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度为___________cm .4.如图,已知PQ =10,以PQ 为直径的圆与一个以20为半径的圆相切于点P .正方形ABCD 的顶点A ,B 在大圆上,小圆在正方形的外部且与CD 切于点Q .若AB =n m +,其中m ,n 为整数,则=+n m ___________.(美国中学生数学邀请赛试题)5.如图,正方形ABCD 的对角线AC ,BD 交于点M ,且分正方形为4个三角形,⊙O 1,⊙O 2,⊙O 3,⊙O 4,分别为△AMB ,△BMC ,△CMD ,△DMA 的内切圆.已知AB =1.则⊙O 1,⊙O 2,⊙O 3,⊙O 4所夹的中心(阴影)部分的面积为()A .(4)(316π--B .(34π-C .(4)(34π--D .416π-(太原市竞赛试题)(第5题图)(第6题图)(第7题图)6.如图,⊙O 1与⊙O 2内切于点E ,⊙O 1的弦AB 过⊙O 2的圆心O 2,交⊙O 2于点C ,D .若AC :CD :BD =2:4:3,则⊙O 2与⊙O 1的半径之比为()A .2:3B .2:5C .1:3D .1:47.如图,⊙O 1与⊙O 2外切于点A ,两圆的一条外公切线与⊙O 1相切于点B ,若AB 与两圆的另一条外公切线平行,则⊙O 1与⊙O 2的半径之比为()A .2:5B .1:2C .1:3D .2:3(全国初中数学联赛试题)8.如图,已知⊙O 1与⊙O 2相交于A ,B 两点,过点A 作⊙O 1的切线,交⊙O 2于点C ,过点B 作两圆的割线分别交⊙O 1,⊙O 2于点D ,E ,DE 与AC 相交于点P .(1)求证:PA PE PC PD∙=∙(2)当AD 与⊙O 2相切且PA =6,PC =2,PD =12时,求AD 的长.(黄冈市中考试题)9.如图,已知⊙O 1和⊙O 2外切于A ,BC 是⊙O 1和⊙O 2的公切线,切点为B ,C .连接BA 并延长交⊙O 1于D ,过D 点作CB 的平行线交⊙O 2于E ,F .(1)求证:CD 是⊙O 1的直径;(2)试判断线段BC ,BE ,BF 的大小关系,并证明你的结论.(四川省中考试题)10.如图,两个同心圆的圆心是O ,大圆的半径为13,小圆的半径为5,AD 是大圆的直径,大圆的弦AB ,BE 分别与小圆相切于点C ,F ,AD ,BE 相交于点G ,连接BD .(1)求BD 的长;(2)求2ABE D ∠+∠的度数;(3)求BGAG的值.(淄博市中考试题)11.如图,点H 为△ABC 的垂心,以AB 为直径的⊙O 1与△BCH 的外接圆⊙O 2相交于点D ,延长AD 交CH 于点P .求证:P 为CH 的中点.(“《数学周报杯”全国初中数学竞赛试题)12.如图,已知AB 为半圆O 的直径,点P 为直径AB 上的任意一点,以点A 为圆心,AP 为半径作⊙A ,⊙A与半圆O相交于点C,以点B为圆心,BP为半径作⊙B,⊙B与半圆O相交于点D,且线段CD的中点为M.求证:MP分别与⊙A,⊙B相切.(“《数学周报杯”全国初中数学竞赛试题)专题23圆与圆的位置关系例121a 6提示:连接14QP CP ==必过点O ,则34O O ⊥AB ,设⊙3O ,⊙4O 的半径为xcm ,在Rt △31O O O 中,有222a a a x =x 424⎛⎫⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得x=a 6.例2D提示:连接AB ,1AA ,1BB ,作2AB ⊥1BB ,则22222AB AB BB =+,即()()2222a b =b a AB ++-,得22211=A B 4ab AB =,同理,211A 4ac C =,2114bc C B =,由111111=A B A C C B +++例3提示:⑴过P 点作两圆的公切线.⑵即证PA PB PC PD ∙=∙.例412BO C BAC ∠=∠,1112BO D BAC BO C ∠=∠=∠,则1O D 为1BO C ∠的平分线,又11O B O C =,故1O D BC ⊥.例5⑴过D 作DQ ⊥BC 于Q ,则BQ=AD=1,AB=DQ=2,CQ=,故()1y=13x 2=4x 2+-⨯-(0<x<3).⑵分两种情况讨论:①当⊙P 与⊙D 外切时,如图1,QC=2,PC=x ,QP=2x -,PD=x+12,DQ=2,在Rt △DQP 中,由()22212x 2=x+2⎛⎫-+ ⎪⎝⎭得,31x=20,3149y=4=2020-.②当⊙P 与⊙D 内切时,如图2,PC=x ,QC=2,PQ=x-2,PD=x-12,DQ=2,在Rt △DPQ 中,由()2221x 22=x-2⎛⎫-+ ⎪⎝⎭得,31x=12,3117y=4=1212-.例6就图1给出解答:连接CP 并延长交AB 于点Q ,连接BP ,得∠BPC90°,又22QA QP CQ QB =∙=,得AQ=QB=12AB ,在Rt △CQP 中,2214BQ QP CQ QP BC CP CQ CP ∙===∙.过Q 作QM ∥BC 交AN 于M ,则MQ=12BN .由△MQP ∽△NCP ,得14MQ QP CN CP ==,故BN NC =2142MQ MQ =.A 级1.12或32 2.23.y =214x -+x (0<x <4) 4.3条5.D 6.D 7.B 8.D9.提示:(1)连结AB ,A 1O ,并延长交⊙1O 于E ,连结CE .(2)结论仍然成立.10.(1)略(2)提示:设AP =3t ,由BC ·BH =BP ·BA ,BH =2BC ,BC =5t .易证△HAP ∽△BAH ,得HA =15t ,故155HA t BC t ==3.11.连结BD ,CE ,作BM ⊥CE 于M ,作HN ⊥CE 于N ,则BM ∥HN .∵H 是BC 的中点,故N 是CM 的中点,∴CN =12CM =12(CE -EM )=12(CE -BD ),而AH =BH -AB =12BC -AB =12(AB +AC )–AB =12(AC -AB ),因此CN =AH .由CE ⊥DE ,AF ⊥DE ,得CE //AF ,故∠NCH =∠HAF ,又∠CNH =∠AHF =90°,得△CNH ≌△AHF ,从而BC =2CH =2AF .12.(l )5:2提示:由题意,设正方形边长为l ,则22212R l l ⎛⎫=+ ⎪⎝⎭,得R :l =5:2.由2ED =AD ×DB ,DE=10,得AD ×DB =l 00.设AC 与内切圆交点S ,CB 与内切圆交点H ,设AD =r ,DB =100x .AB =x +100x,AS =AD =x ,BH =BD =100x .又△ABC 为直角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学有关圆的分类讨论题型解题技巧随着新课改推进,近几年中考也发生很大变化,从过去侧重知识概念考核,逐渐过渡到综合能力考查,尤其是对数学思想的综合运用。

其中分类讨论就是一种非常重要数学思想,可以说是全国很多地方每年中考必考类型,而在不同知识点中,分类讨论的出题方式又不一样。

今天我们就讲讲分类讨论在圆当中的综合运用。

由于圆中的点、线在圆中的位置分布可能有多种情况,经常会导致其答案的不唯一性。

如:点与圆的位置关系,点可能在圆内,也可能在圆外;两条弦的位置关系,可能在某一条直径的同侧,也可能在直径的异侧;圆与圆相切,可能外切,也可能内切,等等。

因此,求解圆的有关问题时,要注意分类讨论思想。

第1页/共1页。

相关文档
最新文档