高炉炉型设计

合集下载

高炉设计

高炉设计

序言高炉炉型设计是钢铁联合企业进行生产的重要一步,它关系到高炉年产生铁的数量及质量,以及转炉或者电炉炼钢的生产规模及效益。

现代化高炉的机械化与自动化水平都比较高,在操作方面以精料为基础,强化冶炼为手段,适应大风量,高风温,大喷吹量,现代高炉炉型的发展趋势应能满足和适应上述发展。

整个设计过程应根据实际情况做出适合本地区条件的高炉炉型,为后续的生产做好准备,为祖国的钢铁事业锦上添花。

由于时间紧迫,加之设计者水平有限,本设计存在的缺点和不足之处,敬请批评指正。

1700m3高炉炉型设计1 高炉座数及有效容积的确定1.1 高炉座数从投资、生产效率、经营管理方面考虑,高炉座数少些为好,如从供应炼钢车间铁水及轧钢、烧结等用户所需的高炉煤气来看,则高炉座数宜多一些。

由公式:P Q=M×T ×ηv×V v式中:P Q——高炉车间年生铁产量,吨;M——高炉座数;T——年平均工作日,我国采用355天。

ηv——高炉有效容积利用系数,t/(m3.d);V v——高炉有效容积,m3;1.2 高炉有效容积根据各方面的考察研究,决定本地区适合建设一个年产量为185万吨的钢铁厂。

为了满足生产上的需要,特此计算本设计的高炉有效容积为:V v= 1700m3高炉有效容积的利用系数:ηv=2.6t/(m3.d) 。

已知Vu=1700m3,ηv =2.6t/(m3.d),T=355天,则:M=1座综上所述,根据本地区的条件,设计一个年产量为185万吨生产,有效容积为1700m3,有效容积利用系数为ηv=2.6t/(m3.d) 的高炉炉型。

2 炉型设计2.1高炉有效高度(Hu)的确定高炉的有效高度决定着煤气热能和化学能的利用,也影响着顺行。

增加有效高度能延长煤气与炉料的接触时间,有利于传热与还原,使煤气能量得到充分利用,从而有利于降低焦比。

但有效高度过高,煤气流通过料柱的阻力增大,不利于顺行。

所以,实际确定高炉有效高度时,首先应考虑原燃料质量,其次是炉容和鼓风机性能。

年产值刚生铁450吨的高炉车间中高炉内型设计

年产值刚生铁450吨的高炉车间中高炉内型设计

课程设计说明书题目名称:年产值钢生铁450吨的高炉车间中高炉型设计系部:机械系工程系专业班级:学生:学号:指导教师:完成日期:2014.6.20新疆工程学院课程设计评定意见设计题目系部_________________ 专业班级学生_________________ 学生学号评定意见:评定成绩:指导教师(签名):年月日新疆工程学院____________系(部)课程设计任务书学年学期年月日教研室主任(签名)系(部)主任(签名)目录前言 (1)配料计算方法 (3)配料计算原始条件 (3)吨铁简易配料计算 (5)物料平衡计算方法 (10)物料平衡计算的原始条件 (10)吨铁物料平衡计算 (10)高炉型设计方法 (15)炉缸 (15)炉腹 (16)炉身 (17)炉腰 (17)炉喉 (17)死铁层厚度 (18)高炉型计算 (18)高炉型图 (20)参考资料 (21)一、前言近年来,随着我国经济的快速发展,在基础设施建设,房地产,汽车,家电,机电等行业的带动下我国炼铁工业也处于高速发展阶段,2007年全国生铁产量达到4.6944亿t,比上年度增长15.19%,占世界总产量的49.74%,08年全国生铁产量4.7067亿t,炼铁生产能力超过6亿t,09年全国生铁产量达5.4375亿t,但有6000万t/年的生产能力居于淘汰之列(主要是300m³以下容积小高炉)。

在产量不断增长的同时,我国的高炉炼铁技术也取得了较大的进步,入炉焦比和炼铁工序能耗不断下降,喷煤比、热风温度和利用系数也不断提高,高炉操作技术也日趋成熟,各项技术经济指标得到进一步改善。

我国现有高炉1300多座,大于1000m3以上容积的高炉有150多座。

近年来,高炉大型化的步伐加快,宝钢建成三座4 000m³级的高炉,另外已建成和在建的7 座4000m³级高炉以及首钢曹妃甸2座5500 m³高炉。

大型高炉均采用了先进的技术装备,一大批成熟高新技术和装备的应用大大降低了生产成本和劳动强度,自动化程度也进一步提升,生产环境有了很大改善,企业生产效率和经济效益得到明显提高。

高炉炉型设计

高炉炉型设计

4、炉腹高度h2 ;炉腰直径D;炉腹角α
• 选取炉腹角α : 一般取值79o~83o h2 =
1 2 ( D d ) tg
选取 D/d 炉型 D/d 小型高炉 1.25~1.5 中型高炉 1.15~1.25 大型高炉 1.09~1.15
5、选取炉身角β; 炉身高度 h4 ; 炉喉直径 d1
世界高炉之王——沙钢5860立方米炼铁高炉
日本第二大钢铁集团——日本JFE钢铁福山厂 。
(左起)第2高炉、第3高炉、第4高炉、第5高炉,4号高炉 2006年5月扩容到5000立方米,5号高炉扩容到5500立方米
全世界共有9座5500m³ 以上特大型炼铁高炉
• 1、沙钢的5860m³ 高炉;
• 2、日本新日铁大分厂1号、2号高炉(容积均为5775m³ ) • 3、俄罗斯北方钢铁切列波维茨厂5号高炉(容积5580m³ ) 4、日本新日铁君津厂4号高炉(容积5555m³ ) • 5、德国蒂森钢铁斯韦尔根厂2号高炉(容积5513m³ ), • 6、日本JFE福山厂5号高炉(容积5500m³ ) • 7、韩国浦项光阳钢厂4号高炉(容积5500m³ )
h z 1 . 27
0 . 45
bP ' Nc d 铁
2
hf
hz k
― 渣口高度与风口高度之比
k = 0.5~0.6 ; k
炉缸高度: h =h + a ; 1 f
a―风口结构尺寸,一般取值0.35~0.5m
hz― 渣口与铁口中心线的距离称为渣口高度 P ― 生铁日产量,t b ― 生铁产量波动系数,一般取值1.2 N ― 昼夜出铁次数,8~12次/d (大高炉取大值)
• 通过对高炉炉型的大量研究和探索,人们 逐步认识了高炉炉型与原燃料和鼓风制度 的适应关系,即炉型与炉料运动和煤气流 运动规律的适应性。炉型是随着原燃料条 件的改善,操作技术水平的提高,科学技 术的进步而不断发展变化的,逐步形成了 现代的五段式高炉炉型。

炼铁原理与工艺6(高炉炉体与维护)

炼铁原理与工艺6(高炉炉体与维护)

6. 2高炉炉衬的选择与砌筑
② 高炉炉腹、炉腰和炉身耐火材料用陶瓷质耐火 材料的要求: A. 化学成分中AL2O3要高,Fe2O3含量要少。 B. 耐火度要高。测温锥测定 C. 荷重软化点要高。0.2Mpa载荷下的软化温度 D. 重烧收缩率要小。残余收缩,是表示耐火材料 升到高温后产生的裂纹可能性大小的一种性质。 E. 气孔率要低。
6. 2高炉炉衬的选择与砌筑
B. 从从传热学角度讲分为: 综合炉底结构和全碳砖炉底结构两大 流派。综合炉底是绝热和导热的结合,全 碳砖炉底则是完全的导热基理。目前国内 外炉底、炉缸结构主要有以下几种: a. 大块炭砖砌筑,炉底设陶瓷垫。 b. 热压小块炭砖砌筑,炉底设陶瓷垫。 c. 大块或小块炭砖砌筑,炉底和炉缸设陶瓷 杯。
炉型尺寸各符号表示的意义
• • • • • • • • • • • • • • Hu---有效高度 Vu---有效容积 D---炉腰直径 d---炉缸直径 d1---炉喉直径 h0---死铁层高度 h1--炉缸高度 h2---炉腹高度 h3---炉腰高度 h4---炉身高度 h5---炉喉高度 hf---风口高度 α---炉腹角 β---炉身角
NMA
3层大块炭砖
2层刚玉砖
NMD
刚玉砖
炉缸侧壁:
NMA和NMD小块炭砖
NMA
大块炭砖
石墨砖
6. 2高炉炉衬的选择与砌筑
2. 炉腹、炉腰和炉身 ① 破损机理: 炉身、炉腰部位主要是考虑抗热应力 破坏性能,和炉料、煤气的冲刷。一般以 黏土质和高铝质耐火砖,但是在高炉大型 化和强化后也对砖衬材质提高了要求。
6.1高炉本体结构
③ 美国料式高炉的零位是取大钟开启时底 面以下915mm处。零料线位置到风口中 心线之间的容积为工作容积。 欧美也有用高炉全容积的。全容积 是指零料线到炉底砖衬表面之间(包括 死铁层)的容积。

高炉炉体设计说明书

高炉炉体设计说明书

学校代码: 10128学号: 2课程设计说明书题目:年产炼钢生铁550万吨的高炉车间的高炉炉体设计学生姓名:王卫卫学院:材料科学与工程班级:冶金11—2指导教师:代书华2014年12 月29日内蒙古工业大学课程设计(论文)任务书课程名称:冶金工程课程设计学院:材料科学与工程班级:冶金11-2 学生姓名:王卫卫学号: 2 指导教师:代书华摘要本设计主要从高炉炉型设计、炉衬设计、高炉冷却设备的选择、风口及出铁口的设计。

高炉本体自上而下分为炉喉、炉身、炉腰、炉腹、炉缸五部分。

高炉的横断面为圆形的炼铁竖炉,用钢板作炉壳,高炉的壳内砌耐火砖内衬。

同时为了实现优质、低耗、高产、长寿炉龄和对环境污染小的方针设计高炉,高炉本体结构和辅助系统必须满足耐高温,耐高压,耐腐蚀,密封性好,工作可靠,寿命长,产品优质,产量高,消耗低等要求。

在设计高炉炉体时,根据技术经济指标对高炉炉体尺寸进行计算确定炉型。

对耐火砖进行合理的配置,对高炉冷却设备进行合理的选择、对风口及出铁口进行合理的设计。

目录第一章文献综述 (1)1.1国内外高炉发展现状 (1)1.2我国高炉发展现状 (1)1.3 高炉发展史 (2)1.4五段式高炉炉型 (4)第二章高炉炉衬耐火材料 (5)2.1高炉耐火材料性能评价方法的进步 (5)2.2高炉炉衬用耐火材料质量水平分析 (5)2.3陶瓷杯用砖 (7)2.4炉腹、炉身和炉腰用砖 (7)第三章高炉炉衬 (8)3.1炉衬破坏机理 (8)3.2高炉炉底和各段炉衬的耐火材料选择和设计 (9)第四章高炉各部位冷却设备的选择 (11)4.1冷却设备的作用 (11)4.2炉缸和炉底部位冷却设备选择 (11)4.3炉腹、炉腰和炉身冷却设备选择 (11)第五章高炉炉型设计 (13)5.1炉型设计要求 (13)5.2炉型设计方法 (13)5.3主要技术经济指标 (14)5.4设计与计算 (14)5.5校核炉容 (16)参考文献 (17)第一章文献综述1.1国内外高炉发展现状在近年来钢铁产业竞争日益加剧的形势下,《京都议定书》和《哥本哈根协议》将引领钢铁行业未来走向绿色环保的低碳型产业。

高炉内型设计

高炉内型设计

Key words Blast furnace smelting, high strength, high oxygen enrichment

攀枝花学院本科课程设计(论文)
摘要
目录
摘 要………………………………………………………………………………………… ABSTRACT………………………………………………………………………………

攀枝花学院本科课程设计(论文)
摘要
大、原料透气性好、燃料可燃性好的燃烧强度可选大些,否则选低值。 (2)炉缸高度 炉缸高度的确定,包括渣口高度、风口高度以及风口安装尺
寸的确定。 铁口位于炉缸下水平面,铁口数目根据高炉炉容或高炉产量而定,一 般 1000m3 以下高炉设一个铁口,1500~3000m3 高炉设 2~3 个铁口,3000m3 以上高 炉设 3~4 个铁口,或以每个铁口日出铁量 1500—3000t 设铁口数目。原则上出铁 口数目取上限,有利于强化高炉冶炼。 渣口中心线与铁口中心线间距离称为渣口 高度,它取决于原料条件,即渣量的大小。渣口过高,下渣量增加,对铁口的维 护不利;渣口过低,易出现渣中带铁事故,从而损坏渣口,大、中型高炉渣口高 度多为 1.5~1.7m。
课题背景
我国高炉大型化的发展模式与国外基本相近,主要是采取新建大型高炉、以 多座旧小高炉合并成大型高炉和高炉大修扩容等形式来推动着高炉的大型化发 展。据不完全统计,我国自 2004 年以来相继建成投产的 3200m3 级 15 座,4000m3 级 8 座,5000m3 级 3 座,且有越来越大的趋势。目前,河北迁钢和山东济钢等企 业也正在建设 4000m3 级高炉,近来宝钢湛江和武钢防城港项目也在规划筹建 5500m3 级超大型高炉。

高炉炉型选择以及炉容计算

高炉炉型选择以及炉容计算

3600高炉本体设计原始数据:高炉有效容积:Vu=3600高炉年工作日:355天高炉利用系数:设计内容:1.高炉炉型的选择;2.高炉内型尺寸的计算(包括风口、铁口、渣口数量,大型高炉一般不设渣口);3.高炉耐火材料的选用;4.高炉冷却方式和冷却器的确定;5.高炉炉壳厚度的确定。

高炉本体包括高炉基础、炉衬、冷却装置、以及高炉炉型设计计算等。

高炉的大小以高炉有效容积()表示,本设计高炉有效容积为3600,按我国规定,属于大型高炉;高炉炉衬用耐火材料,是由陶瓷质和砖质耐火材料构成的综合结构;有些高炉也采用高纯度的刚玉砖和碳化硅砖;高炉冷却设备器件结构也在不断更新,软水冷却、纯水冷却都得到了广泛的应用。

1.高炉炉型选择高炉是竖炉。

高炉内部工作剖面的形状称为高炉炉型或称高炉内型。

高炉冶炼的实质是上升的煤气流和下降的炉料之间所进行的传热传质过程,因此必须提供燃料燃烧的空间,提供高温煤气流与炉料进行传热传质的空间。

炉型要适合原料的条件,保证冶炼过程的顺行。

近代高炉炉型为圆断面五段式,是两头小中间大的准圆筒形。

高炉内型如图1。

高炉有效高度(炉腰直径(D)与有效高度()之比值是表示高炉“细长”或“矮胖”的一个重要指标,在我国大型高炉Hu/D =—,随着有效容积的增加,这一比值在逐渐降低。

在该设计中,。

炉缸高炉炉型下部圆筒部分为炉缸,炉缸的上、中、下部位分别装有风口、渣口、铁口。

炉缸下部容积盛液态渣铁,图1 高炉内型上部空间为风口燃烧带。

铁口位于炉缸下水平面,铁口数目依炉容或产量而定,对于3000的高炉,设置3—4个铁口,以每个铁口日出铁量1500—3000t设置铁口数目。

在该设计中,设置4个铁口。

渣口与铁口中心线的距离称为渣口高度(),它取决于原料条件,即渣量的大小。

渣口高度的确定参照下式计算:= =式中:P——生铁日产量,t;B——生铁产量波动系数,取;N——昼夜出铁次数,取9;——铁水密度,取;C——渣口以下炉缸容积利用系数,一般为,在该设计中,取;d——炉缸直径m。

一座年产100万吨炼钢生铁的高炉炉型设计

一座年产100万吨炼钢生铁的高炉炉型设计

一座年产100万吨炼钢生铁的高炉炉型设计1. 摘要高炉炉型是指高炉内部耐火材料构成的几何空间,近代高炉炉型由炉缸、炉腹、炉腰、炉身和炉喉五部分组成。

炉型的设计要适应原燃料条件,保证冶炼过程的顺行。

高炉炉型设计的依据是单座高炉的生铁产量,由产量确定高炉有效容积,以高炉有效容积为基础,计算其它尺寸。

本设计主要从高炉炉型设计、炉衬设计、高炉冷却设备的选择、风口及出铁口的设计。

高炉本体自上而下分为炉喉、炉身、炉腰、炉腹、炉缸五部分。

高炉的横断面为圆形的炼铁竖炉,用钢板作炉壳,高炉的壳内砌耐火砖内衬。

同时为了实现优质、低耗、高产、长寿炉龄和对环境污染小的方针设计高炉,高炉本体结构和辅助系统必须满足耐高温,耐高压,耐腐蚀,密封性好,工作可靠,寿命长,产品优质,产量高,消耗低等要求。

在设计高炉炉体时,根据技术经济指标对高炉炉体尺寸进行计算确定炉型。

对耐火砖进行合理的配置,对高炉冷却设备进行合理的选择、对风口及出铁口进行合理的设计。

2. 高炉高炉炉型设计与计算(一)、确定容积1、确定年工作日高炉的工作日是指高炉一代寿命中,扣除大、中、小修时间后,平均每年的实际生产时间。

根据国内经验,不分炉容大小,年工作日均可定为355天。

利用系数ηv =2.0t/(m 3·d)。

2、确定高炉日出铁量 年工作日年产量高炉日出铁量= = 1000000/355=2816 t/d 3、确定高炉的有效容积V uU u P V η高炉有效容积利用系数高炉日出铁量== 2816/2=1408(二)、高炉缸尺寸1、炉缸直径d炉缸直径的计算可参考下述经验公式:大型高炉 45.032.0u V d = =0.32×1408^0.45≈8 m2、炉缸高度'hA 渣口高度h 渣= (1.27×1.2×2816)/(9×0.55×7.1×8^2) ≈1.91m 式中:b ——生铁产量波动函数,一般取值1.2N ——昼夜出铁次数,取9227.1d c N bp h 铁渣γ⋅=铁γ——铁水密度,取值7.1t/m3C ——渣口以下炉缸容积利用系数,取值055一般小高炉设一个渣口,大中型高炉设两个渣口,高低渣口标高差一般为100~200mm ,2000m 3以上高炉渣口数目应和铁口数目一起考虑,如有两个铁口,可以设二个渣口。

高炉炉体设计说明书

高炉炉体设计说明书

学校代码:10128学号:201120411032课程设计说明书题目:年产炼钢生铁550万吨的高炉车间的高炉炉体设计学生姓名:王卫卫学院:材料科学与工程班级:冶金11— 2指导教师:代书华2014 年12 月29 日内蒙古工业大学课程设计(论文)任务书课程名称: 冶金工程课程设计学院: 材料科学与工程 班级: 冶金11-2 学生姓名: 王卫卫 学号: 201120411032 指导教师: 代书华一、题目年产铁水量 550万吨的高炉炉体设计二、目的与意义1. 通过课程设计,巩固、加深和扩大在冶金工程专业课程及相关课程教育中所学到的知识, 训练学生综合运用这些知识去分析和解决工程实际问题的能力。

2. 学习冶金炉设计的一般方法,了解和掌握常用冶金设备或简单冶金设备的设计方法、设计 步骤,为今后从事相关的专业课程设计、毕业设计及实际的工程设计打好必要的基础。

3. 使学生在计算、制图、运用设计资料,熟练有关国家标准、规范、使用经验数据、进行经 验估算等方面受全面的基础训练。

三、要求 (包括原始数据、技术参数、设计要求、图纸量、工作量要求等) 3 1、设计年产炼钢生铁 550 万吨的高炉车间的高炉炉型, 高炉 2 座,高炉工作日 347d ,冶炼强度 I=0.9~1.2t/(m·d),高炉有效利用系数 η=2.0t/(m 3·d),燃烧强度 i=1.1t/m 3·d2、高炉炉容校核误差< 1%3、完成高炉的纵向剖面图、俯视图、风口布置图和风口结构剖面图,要求完成图纸二张。

4、图纸要求整洁、干净,图形线条准确,清晰四、工作内容、进度安排课程设计可分为以下几个阶段进行。

2014.12.22 — 2014.12.28查阅相关资料。

2014.12.29 — 2015.1.11计算、画图、设计说明书的完成。

2015.1.12 — 2015.1.16 图纸,设计说明书的完善。

五、主要参考文献[1] 郝素菊等编 . 高炉炼铁设计原理 . 北京:冶金工业出版社, 1992.[2] 周传典等编 . 高炉炼铁生产技术手册 . 北京:冶金工业出版社, 2002.[3] 朱苗勇主编 . 现代冶金学 . 北京:冶金工业出版社, 2005.[4] 刘麟瑞等编 . 冶金炉料手册 ( 第 2 版). 北京:冶金工业出版社, 2005.审核意见系(教研室)主任(签字)指导教师下达时间 年 月 日指导教师签字: _______________摘要本设计主要从高炉炉型设计、炉衬设计、高炉冷却设备的选择、风口及出铁口的设计。

高炉炉型计算

高炉炉型计算

高炉炉型计算高炉炉型是指高炉内部耐火材料构成的几何空间,近代高炉炉型由炉缸、炉腹、炉腰、炉身和炉喉五部分组成。

炉型的设计要适应原燃料条件,保证冶炼过程的顺行。

高炉炉型设计的依据是单座高炉的生铁产量,由产量确定高炉有效容积,以高炉有效容积为基础,计算其它尺寸。

一、确定容积1、确定年工作日高炉的工作日是指高炉一代寿命中,扣除大、中、小修时间后,平均每年的实际生产时间。

根据国内经验,不分炉容大小,年工作日均可定为355天。

2、确定高炉日出铁量年工作日年产量高炉日出铁量=t/d3、确定高炉的有效容积V uUu PV η高炉有效容积利用系数高炉日出铁量=二、高炉缸尺寸1、炉缸直径d炉缸直径的计算可参考下述经验公式:大型高炉 45.032.0u V d =3620m 以下高炉 37.0564.0u V d = 计算后取整2、炉缸高度'hA 渣口高度h 渣 m 式中:b ——生铁产量波动函数,一般取值1.2 N ——昼夜出铁次数,取9铁γ——铁水密度,取值7.1t/m3C ——渣口以下炉缸容积利用系数,取值055一般小高炉设一个渣口,大中型高炉设两个渣口,高低渣口标高差一般为100~200mm ,2000m 3以上高炉渣口数目应和铁口数目一起考虑,如有两个铁口,可以设二个渣口。

B 、风口高度h 风k ——渣口高度与风口高度的比,一般k 二0.5~0.6(渣量大取低值)。

C 、炉缸高度h 1h 1=h 风+a式中a ——风口结构尺寸,一般a=0.35~0.5m ,中小高炉取下限,大高炉取上限。

227.1d c N bp h 铁渣γ⋅=kh h 渣风=三、死铁层厚度h 0死铁层的作用在于防止炉底炉渣,煤气侵蚀和冲刷,使炉底温度均匀稳定。

通常死铁层厚度为450~600mm ,新设计的大型高炉多在1000mm 左右或更高。

四、炉腰直径D 1、炉腰直径D大型高炉D/d=1.10~1.15 中型高炉D/d=1.15~1.25 小型高炉D/d=1.25~1.5 2、炉腹角α炉腹角α一般为79°~82°。

高炉设计的基础概念

高炉设计的基础概念

高炉设计的基础概念(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--文献综述高炉炉型概述高炉炉型的发展高炉是一种竖炉型的冶炼炉,它由炉体内耐火材料砌成的工作空间、炉体设备、炉体冷却设备、炉体钢结构等组成。

高炉生产实践表明:合理的炉体结构,对高炉一代炉龄的高产、优质、低耗和长寿起到保证作用,由此可以看出高炉的炉型应该有炉型和炉龄两个方面阐述。

近代高炉,由于鼓风机能力进一步提高,原料燃料处理更加精细,高炉炉型向着“大型横向”发展。

对于炉型而言,从20世纪60年代开始,高炉逐步大型化,大型高炉的容积由当时的1000~1500m3逐步发展到现在的4000~5500m3。

随着炉容的扩大,炉型的变化出现以下特征:高炉的H/D即高径比缩U小,大型高炉的比值已降到,1000m3级高炉降到,300m3级高炉也降到左右。

和大小同步的还有高炉矮胖炉型发展,矮胖高炉的特征是炉子下部容积扩大,在适当的配合条件下利于增加产量,提高利用系数.但如矮胖得过分,易导致上部煤气利用差,使燃料比升高.此外,从全国节能要求出发,在高炉建设和炼铁生产经营管理中,应既抓产量,又抓消耗、质量和寿命的优秀实例进行总结推广,提倡全面贯彻“高产、优质、低耗、长寿,”八字方针。

与盛高炉型相比,矮胖炉型的主要优点是:与炉料性能相适应,料柱阻力减小;风口增多,利于接受风量;高护更易顺行稳定。

这些优点,给高炉带来了多产生铁,改进生铁质量,降低燃料消耗和延长寿命的综合效果。

通过研究发现,当今用于炼铁的高炉炉喉直径均偏小,其炉喉直径与炉缸直径的比值均小于。

通过研究发现,炉喉直径偏小影响炉身的间接还原效率,致使高炉能耗较高,影响高炉经济效益,因此,为了提高高炉炉身的间接还原效率,改善高炉产生技术指标和进行节能减排,特别推出一种扩大炉喉直径的新炉型高炉。

采用的技术方案是:它包含炉缸、炉腹、炉腰、炉身、炉喉五部分,其中炉缸在炉腹的下面,炉缸上面连接炉腹,炉腹上面连接炉腰,炉腰上面连接炉身,炉身上面连接炉喉;由上述5部分组成的高炉内型,5个部分的横截面均呈圆形,其中炉缸直径用d表示,炉腰直径用D表示,炉喉直径用d表示,炉喉直径d与炉缸直径d之比1在~之间。

2000m3高炉炉型设计

2000m3高炉炉型设计
1
2000m3 高炉炉型设计说明书
摘要:本设计要求建 2000m3 炼铁高炉。设计主要内容包括高炉炉型设计计算及高炉本体立 剖图,同时对所设计高炉的特点进行简述。设计高炉有效容积为 2000m3,高径比取 2.3,高 炉利用系数取值为 2.0,据此设计高炉炉型。设计本着优质、高产、低耗和对环境污染小的 宗旨,为日产生铁 4000t 的高炉提供高炉内型设计。设计说明书对 2000m3 高炉内型进行了 的详细的计算,并结合国内外相同炉容高炉的先进生产操作经验及相关的数据,力求设计的 高炉达到高度机械化、自动化和大型化,达到最佳的生产效益。 关键词:高炉发展;高炉炉型;炉型计算;
3
②炉缸 高炉炉型下部的圆筒部分为炉缸,炉缸的上、中、下部位分别没有 风口、渣口与铁口,现代大型高炉多不设渣口。炉缸下部容积盛装液态渣铁,上 部空间为风口的燃烧带。
(1)炉缸直径 炉缸直径过大和过小都直接影响高炉生产。直径过大将导 致炉腹角过大,边缘气流过分发展,中心气流不活跃而引起炉缸堆积,同时加速 对炉衬的侵蚀;炉缸直径过小限制焦炭的燃烧.影响产员的提高。炉缸截面积应 保证一定数量的焦炭和喷吹燃料的燃烧,炉缸截面燃烧强度是高炉冶炼的一个重 要指标,它是指每 1h 每 1m3 炉缸截面积所烧侥的焦炭的数量,一般为 1.00~ 1.25t/(m 2·h)。炉缸截面燃烧强度的选择,应与风机能力和原燃料条件相适应, 风机能力大、原料透气性好、燃料可燃性好的燃烧强度可选大些,否则选低值。
(1)无型阶段-又称生吹法。在土坡挖洞,四周砌行块,以木炭冶炼,这 是原始的方法。
(2)大腰阶段-炉腰尺寸过大的炉型。出于当工业不发达,高炉冶炼以人 力、蓄力、风力、水力鼓风,鼓风能力很弱,为了保证整个炉缸截面获得高温, 炉缸直径很小,冶炼以木炭或无烟煤为燃料,机械强度很低,为了避免高炉下部 燃料被压碎,从而影响料柱透气性,故有效高度很低;为了人工装料方便并能够 将炉料装到炉喉中心.炉喉直径也很小,而大的炉腰直径减小了烟气流速度,延 长了烟气在炉内停留时间,起到焖住炉内热量的作用。因此,炉缸和炉喉直径小, 有效高度低,而炉腰直径很大。这类高炉生产率很低,一座 28m3 高炉日产量只 有 1.5 t 左右。

高炉炉型选择以及炉容计算

高炉炉型选择以及炉容计算

3600m3高炉本体设计原始数据:高炉有效容积:Vu=3600 m3高炉年工作日:355天⁄ )高炉利用系数:h v=2.0t ( d. m3设计内容:1.高炉炉型的选择;2.高炉内型尺寸的计算(包括风口、铁口、渣口数量,大型高炉一般不设渣口);3.高炉耐火材料的选用;4.高炉冷却方式和冷却器的确定;5.高炉炉壳厚度的确定。

高炉本体包括高炉基础、炉衬、冷却装置、以及高炉炉型设计计算等。

高炉的大小以高炉有效容积(V u)表示,本设计高炉有效容积为3600 m3,按我国规定,属于大型高炉;高炉炉衬用耐火材料,是由陶瓷质和砖质耐火材料构成的综合结构;有些高炉也采用高纯度 Al2O3的刚玉砖和碳化硅砖;高炉冷却设备器件结构也在不断更新,软水冷却、纯水冷却都得到了广泛的应用。

1.高炉炉型选择高炉是竖炉。

高炉内部工作剖面的形状称为高炉炉型或称高炉内型。

高炉冶炼的实质是上升的煤气流和下降的炉料之间所进行的传热传质过程,因此必须提供燃料燃烧的空间,提供高温煤气流与炉料进行传热传质的空间。

炉型要适合原料的条件,保证冶炼过程的顺行。

近代高炉炉型为圆断面五段式,是两头小中间大的准圆筒形。

高炉内型如图1。

1.1高炉有效高度(H u)炉腰直径(D)与有效高度(H u)⁄是表示高炉“细长”或之比值(H u D)“矮胖”的一个重要指标,在我国大型高炉Hu/D =2.5—3.1,随着有效容积的增加,这一比值在逐渐降低。

在该设计⁄ 2.23。

中,H u D=1.2炉缸高炉炉型下部圆筒部分为炉缸,炉缸的上、中、下部位分别装有风口、渣口、铁口。

炉缸下部容积盛液态渣铁,图1 高炉内型上部空间为风口燃烧带。

铁口位于炉缸下水平面,铁口数目依炉容或产量而定,对于3000m3以上的高炉,设置3—4个铁口,以每个铁口日出铁量1500—3000t设置铁口数目。

在该设计中,设置4个铁口。

渣口与铁口中心线的距离称为渣口高度(H Z),它取决于原料条件,即渣量的大小。

第三章 高炉本体设计(炉型)1

第三章  高炉本体设计(炉型)1

一般炉腰直径(D)与炉缸直径(d)有一定比例关系,D/d取 值:
大型:1.10 ~1.15; 中型1.15 ~1.25; 小型高炉1.25~1.5 h3一般取值1~3m,炉容大取上限,设计时可通过调整炉腰高 度修定炉容。
炉腹上部的圆柱形空间为炉腰,是高炉炉型中直径最大的部位。
作用:
(1)炉腰处恰是冶炼的软熔带,透气性变差, 炉腰的存在扩大了该部位的横向空间,改善了透 气条件。 (2)在炉型结构上,起承上启下的作用,使炉 腹向炉身的过渡变得平缓,减小死角。
高炉内型变化情况表
Hu/D 高炉容积/m3 1000~2000 300~1000 <300
20世纪70~80年代
<2.9 2.9~3.5 >3.5
20世纪90年代以后
2.5~2.7 2.7~3.2 >3.2
3 高炉本体设计
3.1 炉型 3.1.1 高炉五段炉型 1)炉型及其意义: 牵涉到高炉冶炼顺行,还与高炉冶炼能量消耗有 关,高炉寿命的长短。 2)五段炉型(尺寸要素是约定俗成) 高炉内型从下往上分为炉缸、炉腹、炉腰、炉身 和炉喉五个部分,该容积总和为它的有效容积, 反映高炉所具备的生产能力。 我国高炉内型尺寸的表示方法(P76) 五段炉型是适应炉料变化,T↑―V↑,T煤气↓― V↓
3 高炉本体设计
高炉本体包括炉型(形)--工作空间;炉衬(耐火材 料);冷却;金属结构(炉壳、支柱);高炉基础。 目前高炉本体发展方向


1)炉型向大型横向发展
2)炉衬由单一陶瓷质向陶瓷质和碳质耐火材料综
合结构发展

3)高炉冷却设备不断改进,贯流式风口,软水密 闭循环广泛使用
1一炉底耐火材料: 2一炉壳; 3一炉内砖衬生产后的侵 蚀线; 4一炉喉钢砖, 5一炉顶封盖; 6一炉体砖衬; 7一带凸台镶砖冷却壁; 8一镶砖冷却壁; 9一炉底碳砖; 10一炉底水冷管; 11一光面冷却壁

2500m3高炉炉型设计

2500m3高炉炉型设计

1 原燃料条件(1)原料成分表 1原料Fe Mn P S Fe2O3FeO MnO2MnO CaO烧结矿天然矿混合矿55.6358.7256.090.090.170.10.050.020.040.0330.1340.04870.367.9469.958.1814.29.083—0.260.0390.12—0.10210.51.59.15续上表原料MgO SiO2Al2O3P2O5FeS2FeS SO2烧损CO2合计烧结矿天然矿混合矿2.610.652.3165.811.76.6851.132.321.310.110.050.101—0.250.0380.09—0.0765———1.161.131.16100.00100.00100.00备注:烧结矿:原矿=85:15(2)焦炭成分表 2固定碳灰分12.17 挥发分0.91SiO2Al2O3CaO MgO FeO FeS P2O5CO2CO CH4H2N285.63 5.7 4.8 0.8 0.1 0.8 0.1 0.01 0.33 0.33 0.04 0.05 0.16有机物,1.30合计全S 游离水H2N2S0.40 0.40 0.50 100.00 0.52 4.80 (3)煤粉成分表 3品种 C H2O2H2O N2S灰分,12.27合计SiO2Al2O3CaO MgO FeO煤粉77.5 4.35 4.05 0.79 0.42 0.66 7.48 3.42 0.6 0.3 0.45 100.00主要技术经济指标:矿石配比,烧结矿:原矿=85:15;焦比: 350kg/t;煤比:150kg/t;鼓风湿度: 1.5% ;热风温度:1200℃;炉顶温度:200℃;rd=0.42。

(4)预定铁水成分表 4成分Si Mn S P C Fe 合计% 0.35 0.09 0.03 0.08 4.45 95.00 100.00(5)元素分配表 5元素Fe Mn P S生铁炉渣煤气0.9970.0030.50.51.00 0.062 配料计算2.1铁矿石的用量单位: Kg铁平衡:Fe铁+ Fe渣+Fe尘= Fe矿+ Fe熔+ Fe焦+ Fe煤焦炭带入Fe量 =560.0075560.0005350() 2.1()7288kg ⨯⨯⨯+=煤粉带入Fe量560.0045150)0.53()72kg⨯=⨯=进入渣中Fe0.003950) 2.86()0.997kg =⨯=需要混合矿量950 2.10.53 2.86)1694.1()0.5609kg --+==每吨生铁的实际用量:混合矿:1694.1 1.0031699.2()(0.003)kg⨯=其中为机械为机械损失350 1.051=367.85()kg⨯焦炭:(其中机械损失:0.003;水分:0.048)煤粉:150kg;所以,每顿生铁实际用量为:1699.2+367.85+150=2217.05kg2.2生铁成分的校对[P]:36210(1694.10.000443500.0001)0.076%142-⨯⨯+⨯⨯=[S]:0.03%;[Si]:0.35%[Mn]:原料带入的锰有50%进入生铁,炉渣中含量为1.1kg ,故[Mn]=1.1×55/71×1/1000=0.09%[C] :(100-95-0.35-0.09-0.03-0.076)/100=4.454%校核后的生铁成分:表 6Fe Si Mn S P C 合计95.00 0.35 0.09 0.03 0.076 4.454 100.00 2.3渣量和炉渣成分的计算(1)S含量计算原料,燃料带入的硫总量:1694.10.00053500.00521500.0066 3.66()kg⨯+⨯+⨯=进入生铁的S : kg3.0进入煤气的S :kg183.0%666.3=⨯炉渣中的S kg 177.3183.03.066.3=--(2)FeO :kg 68.35672997.0003.0950=⨯⨯(3)MnO :711694.10.0010.5 1.09()55kg ⨯⨯⨯=(4)2SiO :601694.10.06693500.05651500.0748 3.5136.83()28kg ⨯+⨯+⨯-⨯= (5)CaO :1694.10.09153500.000761500.006=156.18()kg ⨯+⨯+⨯ (6)MgO :kg 17.400012.0350003.0150%32.21.1694=⨯+⨯+⨯ (7)Al 2O 3:kg 23.440483.03500342.0150%31.11.1694=⨯+⨯+⨯总渣量:kg 347.38523.4417.4018.15683.13609.168.3177.3=++++++。

(第 四 章)高炉本体及附属设备

(第 四 章)高炉本体及附属设备

内部冷却:将冷却介质通入冷却设备内 部进行冷却。包括冷却壁、冷却板、板 壁结合冷却结构、炉身冷却模块及炉底 冷却等。 冷却壁设臵于炉壳与炉衬之间,有光 面冷却壁和镶砖冷却壁两种 。光面冷 却壁用于炉底和炉缸,镶砖冷却壁用 于炉镶砖冷却壁;c-上部带凸 台镶砖冷却壁;d-中间带凸台镶砖冷却壁
3) 合理炉型:促进改善高炉冶炼指标, 并利于长寿的炉型。
Hu——有效高度; h0——死铁层厚度;
d1
h1——炉缸高度; h2——炉腹高度; h3——炉腰高度; h4——炉身高度; h5——炉喉高度;
Hu
h4
h5
hf——风口高度; hz——渣口高度; d——炉缸直径; D——炉腰直径; d1——炉喉直径; α——炉腹角; β——炉身角;
高炉本体及附属设备
The Blast Furnace Facility and Equipment
李杰
学习目的:
高炉结构
高炉附属设备
高炉 本体结构
1、高炉本体介绍
高炉炉型
冷却设施
风口装置
铁口装置
炉顶装料装置
炉型:高炉的内部工作空间是由炉墙砖砌 成的,这个空间的几何形状就是炉型或内 型。 1) 设计炉型:设计时通过高炉中心线绘 在图纸上的炉型; 2) 操作炉型:投产后,炉墙内表面受损 所形成的炉型;
3)冷却水箱(冷却板):这是埋设在高炉砖衬
中的冷却器。其材质以铸铁为主,也有用铸钢和 钢板焊接的。从外形上可分为扁平卧式和支梁 式.
风口装臵:从热风炉来的热风先通过呈环状围
绕着高炉的围管中,再经风口装臵进入高炉。风 口装臵由热风围管以下的送风支管、弯管、直吹 管、风口水套等组成。
1、热风围管; 2、送风支管; 3、弯管;4、直吹管; 5、风口水套;

高炉工艺参数

高炉工艺参数

高炉工艺参数炼铁厂高炉内型尺寸 m³1280m³三、1800m³高炉内型尺寸工长常用调剂参数原燃料质量要求一、焦炭质量要求二、烧结矿化学成份:球团矿质量要求块矿质量要求喷吹煤粉质量要求看水工艺参数一、450m³高炉1、450m³要求2、各部位冷却器水温差规定:四、1280 m³高炉和1800 m³高炉冷却系统参数规定煤气工艺参数一、煤气系统指标1、煤气净化指标:净煤气含尘量≤5mg/m3温度:100℃≤T≤280℃2、煤气压力控制:450m³、1280m³净煤气支管压力不小于3KPa,1800m³净煤气支管压力不小于4KPa3、热风炉部分二、1280 m³高炉热风炉1、各部分工艺设计参数2、1280m³操作参数3、1280m³换热器设计参数三、1800m³高炉1、1800m³煤气系统控制要求2、1800m³煤气系统设计参数3、1800m³煤气系统操作参数上料系统一、450m3上料二、1280m3高炉三、1800m3高炉上料操作参数炉前操作参数规定1、铁口深度参数2、打泥量的规定3、液压参数的规定4、耐材浇注规定水泵房操作参数一、高炉对软水要求二、、密闭系统运行控制指标风机房一、450高炉二、汽拖风机正常运行指标三、汽拖风机报警值一、空压机工艺参数及报警、停机参数表:TRT 一、1280m³高炉TRT工艺参数二、1280m³高炉TRT润滑系统各调整项目与联锁报警##。

第三章 高炉本体设计(炉型)1资料

第三章  高炉本体设计(炉型)1资料
炉缸和炉喉直径小,有效高度低,而炉腰直径很大。
3.近代高炉
3 高炉本体设计
原始高炉炉型
1-中国;2-德国;3-英国(P75)
近代高炉炉型(1:500)
1-攀钢高炉,V有1000m3,H有/D=3.05;2-本钢高炉,V有2000m3,H有/D=2.68; 3-日本鹿岛,V有5050m3,H有/D=1.95(P75)
3.1.2 炉型尺寸的确定 2)d、h1
①炉缸作用: ②d的确定 J-燃烧强度;J=24~28t/(m2·d) 法一: A J Vu I 1 d 2 J Vu I d 1.13 Vu I 4 J 2 J=1.0~1.20t/(m ·h) 设计时往小取,高炉强化留有余地,J↓→d↑ i :30 ~ 50 t/(m2·h) I Vu
3 高炉本体设计
高炉本体包括炉型(形)--工作空间;炉衬(耐火材 料);冷却;金属结构(炉壳、支柱);高炉基础。 目前高炉本体发展方向


1)炉型向大型横向发展
2)炉衬由单一陶瓷质向陶瓷质和碳质耐火材料综
合结构发展

3)高炉冷却设备不断改进,贯流式风口,软水密 闭循环广泛使用
1一炉底耐火材料: 2一炉壳; 3一炉内砖衬生产后的侵 蚀线; 4一炉喉钢砖, 5一炉顶封盖; 6一炉体砖衬; 7一带凸台镶砖冷却壁; 8一镶砖冷却壁; 9一炉底碳砖; 10一炉底水冷管; 11一光面冷却壁
3 高炉本体设计
3.1 炉型 3.1.2 炉型尺寸的确定 1)Vu、Hu
内容积:料线到铁口中心线之间的距离。 工作容积:料线到风口中心线之间的距离。 Hu大,可以延长煤气与炉料的接触时间,有利于煤气的热 能和化学能的充分利用;煤气流穿过料柱的阻力大,不利于 高炉顺行。 Hu 过大,可增大煤气流穿过料柱的阻力,不利于高炉顺行。

高炉炉型设计

高炉炉型设计

高炉比较完善的形式结构是5段式:炉喉、炉身、炉腰、炉腹、炉缸。

其中,炉喉、炉腰、炉缸均为圆筒形,而炉身和炉腹则分别为上小下大和上大下小的圆锥台。

5段式的炉型结构既满足了炉料下降时受热膨胀而引起体积增大的需要,同时又适应了炉料的还原熔化以及选渣过程,也适应了煤气上升过程中冷却收缩的情况。

实践已经证明,5段式作为一个现代炉型结构满足了炼铁生产的要求,并取得了明显的效果。

高炉内型作为一个外部条件对冶炼过程确实有很大的影响,现就内型各段在冶炼过程中的特征表现及作用分述如下:高炉有效容积和有效高度1)有效高度:高炉大钟下降位置的下缘到铁口中心线的距离称为高炉有效高度(H u),对于无钟炉顶为旋转溜槽最低位置的下缘到铁口中心线之间的距离。

2)高炉有效容积:在有效高度范围内,炉型所包括的容积称为高炉有效容积(V u)。

Hu/D :有效高度与炉腰直径的比值(Hu/D)是表示高炉“矮胖”或“细长”的一个重要设计指标不同炉型的高炉,其比值的范围是:巨型高炉~2.0大型高炉2.5~3.1中型高炉2.9~3.5小型高炉3.7~4.5。

炉喉:主要起着保护炉衬,合理布料和限制煤气灰被气体大量带出的作用。

在这里形成煤气流的3次分布,从炉喉煤气曲线可以从另一侧面看出高炉的冶炼行为。

其炉喉形状大小随高炉使用原料条件的变化而变化。

一般炉喉直径与炉腰直径之比为0.69-0.72,其高度在3m以内。

正常生产时,炉喉的温度为400─500℃。

由于炉料的撞击和摩擦比较剧烈,钢砖一般选用铸钢件。

炉身:主要起着炉料的余热、加热、还原和造渣的作用。

在这里发生了一系列的物理化学变化。

为了是炉料顺利下降和煤气不断上升,炉身要有一定的倾斜度,以利于边缘煤气有适当发展。

当炉身角太大的时候,边缘煤气不发展,便会发生悬料事故,造成高炉不顺行;反之,炉身角太小,大量的煤气会从边缘跑掉,煤气能量利用变差,矿石就得不到充分的加热和还原,以致焦化比升高。

因此,合适的炉身角很重要。

高炉炉体系统设计

高炉炉体系统设计

高炉炉体系统设计(blast furnace proper system design)高炉炉体系统的范围是从基础至炉顶圈(也叫炉顶法兰盘)(图1)。

设计内容包括高炉内型、高炉内衬、高炉钢结构型式、炉体设备和长寿技术等。

高炉内型高炉内部工作空间的形状和主要尺寸必须适合炉料和煤气在炉内运动的规律。

合理的内型有利于高炉操作顺行,高产低耗。

高炉内型(图2)从下往上分为炉缸、炉腹、炉腰、炉身和炉喉五部分。

各国对高炉容积的表示方法不尽相同。

在中国,对于钟式炉顶高炉,有效容积通常是指从铁口中心线至大钟全开位置下沿所包括的容积;对于无钟炉顶高炉,有效容积是指从铁口中心线至炉喉上沿之间的容积。

欧美诸国把从风口中心线至料线之间的容积称为工作容积。

日本把从铁口底端至料线之间的容积称为内容积。

料线位置,日本定在大钟全开位置底面以下一米的水平面上,美国一般定在炉喉高度的一半处。

对于高炉内型各部尺寸的合理比例及算法,是雷得布尔(A.jejeyp)在他1878年出版的著作里首次提出的。

巴甫洛夫(M.A.ПaBJoB)提出用下式表示全高(H)与有效容积(V u)的关系:H= n (V u )1/3。

式中n是大于2.85的数字,并且H:D的比值愈高,n的数值愈大。

有效容积按要求的生铁日产量和利用系数求出后,用上式可求出全高H。

炉腰直径D可按公式D =(V u/0.54H) 1/2求出,然后再决定内型其它尺寸。

巴氏建议选择炉缸直径应以燃烧强度(每小时每m2炉缸面积燃烧的焦炭量,用kg表示)为出发点。

美国莱斯(Owen Rice)在计算燃烧强度时所指的炉缸面积是从风口前端起6f t 环状带的面积。

拉姆(A.H.Pamm)内型每个尺寸都是与有效容积成一定方次的函数,建议用经验公式x=cV n u 计算内型各部分尺寸x,式中n和c对内型各部分尺寸是固定的系数。

高炉内型主要与原、燃料条件和操作制度有关。

合适的内型来源于生产实践,实际上高炉内型的设计大都是根据冶炼条件类似的同级高炉的生产实践进行分析和比较确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、炉型设计的要求
• 高炉炉型的合理性,是高炉能实现高产、优质、 低耗、长寿的重要条件。实践证明,合理的设计 炉型能促进高炉冶炼指标的改善,利于寿命的延 长。因此,炉型是高炉最基本的要素。合理炉型 应该是使炉型能够很好的适应于炉料的顺利下降 和煤气流的上升运动。既要符合高炉冶炼规律, 又要和原燃料、设备和生产技术等条件所达到的 水平相适应。
h z 1 . 27
0 . 45
bP ' Nc d 铁
2
hf
hz k
― 渣口高度与风口高度之比
k = 0.5~0.6 ; k
炉缸高度: h =h + a ; 1 f
a―风口结构尺寸,一般取值0.35~0.5m
hz― 渣口与铁口中心线的距离称为渣口高度 P ― 生铁日产量,t b ― 生铁产量波动系数,一般取值1.2 N ― 昼夜出铁次数,8~12次/d (大高炉取大值)
c ― 渣口以下炉缸容积利用系数,一般取0.55~0.6,
炉容大,渣量大取低值

― 铁水密度,可取7.1 t/m3
d ― 炉缸直径,m
3、死铁层厚度ho :铁口中心线到炉底砌砖 表面之距离
炉型
Vu(m ) ho
3
中小型高炉
≤620 450~600mm
大型高炉
> 620 1000mm
巨型高炉
>4000 1.8~2.5mm
d 0 . 32 V u
0 .2

H u ― 有效高度
0 . 45
d ― 炉缸直径
中小型高炉:
H u 4 . 05 V u
0 . 256
d 0 . 564 V u
0 . 37
2、炉缸尺寸(炉缸直径、渣口高度、 风口高度、炉缸高度)
• 炉缸直径: • 渣口高度: 风口高度:
d——沙钢5860立方米炼铁高炉
日本第二大钢铁集团——日本JFE钢铁福山厂 。
(左起)第2高炉、第3高炉、第4高炉、第5高炉,4号高炉 2006年5月扩容到5000立方米,5号高炉扩容到5500立方米
全世界共有9座5500m³ 以上特大型炼铁高炉
• 1、沙钢的5860m³ 高炉;
• 2、日本新日铁大分厂1号、2号高炉(容积均为5775m³ ) • 3、俄罗斯北方钢铁切列波维茨厂5号高炉(容积5580m³ ) 4、日本新日铁君津厂4号高炉(容积5555m³ ) • 5、德国蒂森钢铁斯韦尔根厂2号高炉(容积5513m³ ), • 6、日本JFE福山厂5号高炉(容积5500m³ ) • 7、韩国浦项光阳钢厂4号高炉(容积5500m³ )
• 打印高炉炉型图 (A3纸)
高炉炉型设计学生分成6组
第一组 第二组 第三组 第四组 第五组 第六组
人数 W1 制钢铁/年 (万吨) W2
铸造生铁/年
5 720
5 270
5 500
5 480
5 700
6 260
70
40
60
65
50
30
(万吨)
• 高炉有效高度Hu选取 :
炉型 Vu(m ) Hu / D
3
小型高炉 ≤100 3.7~4.5
中型高炉 255~620 2.9~3.5
大型高炉 > 620 2.5~3.1
巨型高炉 >4000 1.29~2.19
h3 = Hu -h1- h2 - h4 - h5 (炉腰高度h3等于有效高度减去其他各段高之差值)
例如:β =80.50o~85.5o
(一般大高炉炉身角取小值,小高炉取大值)
Vu
4000~5000m3, β≈81o30,
d1/D = 0.65-0.73 d1 = (0.65-0.73)*D 1 h4= ( D d 1 ) tg
2
6、选取炉喉高度 h5,炉腰高度h3
• 一般h5=2~3m
四、 炉型设计的方法
• 1、高炉炉型设计分3种方法: • (1)比较法; • (2)计算法Ⅰ:经验数据的统计法,对一 些比较先进的高炉炉型进行统计分析,得 到炉型中某些主要尺寸与炉容的关系式, 以及各部分尺寸间的关系式。 • (3)计算法Ⅱ
• 在高炉炉型设计的各种方法中,理论计算 法是十分重要的一种方法。通过理论计算 得到的设计炉型,我们暂且称为理论炉型。 尽管理论炉型一般不直接作为最终的设计 结果,甚至可能与合理炉型相差较大,但 是理论计算方法是建立在长期理论研究和 生产实践经验总结的基础之上,并且直接 从设计条件开始逐步计算直到得到完整的 炉型参数,相对比较严格。
2、高炉有效容积(Vu)的选取
• 理论计算的依据是单座高炉的生铁产量,由产量 确定高炉有效容积,再以有效容积为基础,计算 其它尺寸。 • 设计年产制钢生铁W1万吨,年产铸造生铁W2万吨 • 按换算系数为1.1将铸造生铁换算成制钢生铁, • 年产制钢生铁合计=W1+1.1W2 ; • 日产制钢生铁=年产量/一年按350个工作日 • =(W1+1.1W2)/ 350
7、高炉有效容积较核
•有效容积 Vu等于各段容积之和:
• 误差ΔV
=
Vu Vu V
' u
'
< 1%
• Vu = V1 +V2+V3+V4+V5 与规划炉
容误差小于 1%,则计算符合要求
六、高炉炉型设计要求
• (1)炉型设计
• 高炉容积及座数确定 • 高炉内型设计计算 • 炉容校核
• (2)CAD绘制高炉本体图一张
4、炉腹高度h2 ;炉腰直径D;炉腹角α
• 选取炉腹角α : 一般取值79o~83o h2 =
1 2 ( D d ) tg
选取 D/d 炉型 D/d 小型高炉 1.25~1.5 中型高炉 1.15~1.25 大型高炉 1.09~1.15
5、选取炉身角β; 炉身高度 h4 ; 炉喉直径 d1
• 通过对高炉炉型的大量研究和探索,人们 逐步认识了高炉炉型与原燃料和鼓风制度 的适应关系,即炉型与炉料运动和煤气流 运动规律的适应性。炉型是随着原燃料条 件的改善,操作技术水平的提高,科学技 术的进步而不断发展变化的,逐步形成了 现代的五段式高炉炉型。
• 五段式高炉炉型由炉缸(Hearth)、炉腹 (Bosh)、炉腰(Belly)、炉身(Shaft)和炉喉 (Throat)组成。其中炉缸、炉腰和炉喉呈圆 筒形,炉腹呈倒圆台形,炉身呈圆台形。 这种两头小中间大的准圆筒型,符合炉料 下降时受热膨胀、松动和软化熔化的要求, 同时也与煤气上升过程中温度下降、体积 收缩相适应。随着精料和高压操作等新技 术的发展,高炉炉型进一步向着“矮胖”、 “大型横向”发展。
高炉炉型设计
----课程设计2
一、 高炉炉型的概念

高炉是一种生产液态生铁的鼓风竖炉。其工作空 间是用耐火材料砌筑而成的,高炉内部工作空间 剖面的形状称为高炉炉型或高炉内型(Blast Furnace Profile)。高炉冶炼的实质是上升的煤 气流和下降的炉料之间进行传热和传质的过程, 因此必须提供相应的空间。高炉炉型必须适应原 燃料条件的要求,保证冶炼过程的顺行。
图1 高炉炉型示意图
• h1 ― 炉缸高度,mm • h2 ― 炉腹高度,mm; • h3 ― 炉腰高度,mm; • h4 ― 炉身高度,mm • h5 ― 炉喉高度,mm; • hf ―风口高度,mm; • hz― 渣口高度,mm • h0 ― 死铁层高度,mm;
• • • • • • d ― 炉缸直径,mm; D― 炉腰直径,mm d1― 炉喉直径,mm; α― 炉腹角,°; β ― 炉身角,°; A ―炉缸面积
• 若设计n座高炉: • 单座高炉日产P=(W1+1.1W2)/ 350n • 利用系数 v = 单座高炉日产/单座高炉有效容积= • p '
Vu
p Vu
'
v
• 取 v =2― 2.25 t / m3 •d
五、按计算法Ⅰ进行炉型设计 • 1、大型高炉: H u 6 . 44 V u
• 8、中国京唐钢铁1号高炉(容积5500m³ )。
• (截止到2009年11月)
中国高炉现状
• 由于我国存在大量高污染、高能耗的小型高炉,国家 从2005年制定钢铁产业政策时,就明确要淘汰300m³ 以下 的高炉。2009年初,进一步将高炉淘汰标准提高到 1000m³ ,这将直接压缩落后钢铁产能1.8亿吨以上。 从2009年 后,我国大型炼铁高炉将进入建设高潮。5 月21日,唐山曹妃甸首钢京唐公司新建成的5500立方米1 号高炉试生产成功。10月21日,沙钢5860m³ 高炉投产。 2010年首钢京唐5500立方米2号高炉将投产。此外宝钢湛 江、武钢防城港项目均有建设5000立方米以上大型高炉的 计划。

二、 高炉炉型的表示方法
• 高炉炉型通常用通过高炉中心线的纵剖面 内型轮廓线来表示。我国高炉炉型的表示 方法如图 1 所示。
高炉有效容积(Vu):
炉型 Vu(m3)
小型高炉 ≤100
中型高炉 255~620
大型高炉 > 620
巨型高炉 >4000
• Hu ―有效高,mm; • Vu ― 有效容积, m3 ;
相关文档
最新文档