八年级上数学多边形精选练习2(新人教版带答案)
八年级数学上册多边形训练题(含答案)
八年级数学上册多边形训练题(含答案)一.选择题(共11小题)1.八边形的内角和为()A.180°B.360°C.1080°D.1440°2.已知一个正多边形的每个外角等于60°,则这个正多边形是()A.正五边形B.正六边形C.正七边形D.正八边形3.正n边形每个内角的大小都为108°,则n=()A.5 B.6C.7D.84.已知一个多边形的内角和等于它的外角和,则这个多边形的边数为()A.3 B.4C.5D.65.一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27 B.35 C.44 D.546.下列图形中,多边形有()A.1个B.2个C.3个D.4个7.七边形的对角线共有()A.10条B.15条C.21条D.14条8.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6 B.7C.8D.99.在六边形内任取一点,把这个点与六边形的各顶点分别连接可以得到()A.4个三角形B.5个三角形C.6个三角形D.7个三角形10.过多边形某个顶点的所有对角线,将这个多边形分成7个三角形,这个多边形是()A.八边形B.九边形C.十边形D.十一边形11.如图,正四边形有2条对角线,正五边形有5条对角线,正六边形有9条对角线,则正十边形有()条对角线.A.27 B.35 C.40 D.44二.填空题(共8小题)12.十边形有个顶点,从一个顶点出发可画条对角线,它共有条对角线.13.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是边形.14.一个四边形截去一个角后变成.15.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.16.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5= .17.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2 = .18.若正多边形的一个内角等于140°,则这个正多边形的边数是.(16题图)(17题图)(19题图)19.如图,小明从A点出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°…照这样走下去,他第一次回到出发地A点时,一共走了米.三.解答题(共6小题)20.如果一个多边形的各边都相邻,且各内角也都相等,那么这个多边形就叫做正多边形.如图,就是一组正多边形,观察每个正多边形中∠α的变化情况,解答下列问题:(1)将下面的表格补充完整:正多边形边数 3 4 5 6 …n∠α的度数60°45°…(2)根据规律,是否存在一个正多边形,其中的∠α=21°?若存在,请求出n的值,若不存在,请说明理由.21.在一个正多边形中,一个内角是它相邻的一个外角的3倍.(1)求这个多边形的每一个外角的度数.(2)求这个多边形的边数.22.观察下面图形,解答下列问题:(1)观察规律,把下表填写完整:边数三四五六七…n对角线条数0 2 5 …(2)若一个多边形的内角和为1440°,求这个多边形的边数和对角线的条数.23.如图,(1)在图1中,猜想:∠A1+∠B1+∠C1+∠A2+∠B2+∠C2=度.并试说明你猜想的理由.(2)如果把图1称为2环三角形,它的内角和为:∠A1+∠B1+∠C1+∠A2+∠B2+∠C2;图2称为2环四边形,它的内角和为∠A1+∠B1+∠C1+∠D1+∠A2+∠B2+∠C2+∠D2;图3称为2环5五边形,它的内角和为∠A1+∠B1+∠C1+∠D1+∠E1++∠A2+∠B2+∠C2+∠D2+∠E2请你猜一猜,2环n边形的内角和为度(只要求直接写出结论).24.(1)如图1,已知△ABC为直角三角形,∠A=90°,若沿图中虚线剪去∠A,则∠1+∠2等于A.90°B.135°C.270°D.315°(2)如图2,已知△ABC中,∠A=50°,剪去∠A后成四边形,则∠1+∠2= °.(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是.(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.25.已知任意三角形的内角和为180°,试利用多边形中过某一顶点的对角线的条数,探求多边形内角和公式.(1)如图所示,一个四边形可以分成个三角形;于是四边形的内角和为;(2)一个五边形可以分成个三角形;于是五边形的内角和为;(3)按此规律,n(n≥3)边形可分成多少个三角形?n边形的内角和是多少度?人教版八年级数学上册第11章11.3.1多边形训练题参考答案一.选择题(共11小题)1.C 2.B 3.A 4.B 5.C 6.B 7.D 8.C9.C 10.B 11.B二.填空题(共8小题)12.10 7 35 13.13 14.三角形或四边形或五边形15.616.360°17.240°18.9 19.120三.解答题(共6小题)20.解:(1)观察上面每个正多边形中的∠α,填写下表:正多边形边数 3 4 5 6 …n∠α的度数60°45°36°30°…()°(3)不存在,理由如下:设存在正n边形使得∠α=21°,得∠α=21°=()°.解得:n=8,n是正整数,n=8(不符合题意要舍去),不存在正n边形使得∠α=21°.21.解:(1)设这个多边形的每一个外角的度数为x度.根据题意,得:3x+x=180,解得x=45.故这个多边形的每一个外角的度数为45°;(2)360°÷45°=8.故这个多边形的边数为8.22.解:(1)边数三四五六七…n对角线条数0 2 5 9 14 …(2)设多边形的边数为n.则(n﹣2)×180=1440,解得n=10.∴对角线的条数为:=35(条).故答案为9,14,.23.解:(1)连结B1B2,则∠A2+∠C1=∠B1B2A2+∠B2B1C1,∠A1+∠B1+∠C1+∠A2+∠B2+∠C2=∠A1+∠B1+∠B1B2A2+∠B2B1C1+∠B2+∠C2=360度;(2)如图,A1A2之间添加两条边,可得B2+∠C2+∠D2=∠EA1D+∠A1EA2+∠EA2B2则∠A1+∠B1+∠C1+∠D1+∠A2+∠B2+∠C 2+∠D2=∠A1+∠B1+∠C1+∠D1+∠A2+∠EA1D+∠A1EA2+∠EA2B2=720°;2环n边形添加(n﹣2)条边,2环n边形的内角和成为(2n﹣2)边形的内角和.其内角和为180(2n﹣4)=360(n﹣2)度.故答案为:(1)360;(2)360(n﹣2)24.解:(1)∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.∴∠1+∠2等于270°.故选C;(2)∠1+∠2=180°+50°=230°.故答案是:230;(3)∠1+∠2与∠A的关系是:∠1+∠2=180°+∠A;故答案是:∠1+∠2=180°+∠A;(4)∵△EFP是由△EFA折叠得到的,∴∠AFE=∠PFE,∠AEF=∠PEF∴∠1=180°﹣2∠AFE,∠2=180°﹣2∠AEF∴∠1+∠2=360°﹣2(∠AFE+∠AEF)又∵∠AFE+∠AEF=180°﹣∠A,∴∠1+∠2=360°﹣2(180°﹣∠A)=2∠A,即∠1+∠2=2∠A.25.解:(1)∵四边形可分为两个三角形,∴四边形的内角和=180°×2=360°.故答案为:2,360°;(2))∵五边形可分为三个三角形,∴四边形的内角和=180°×3=540°.故答案为:3,540°;(3)由(1)﹨(2)可知,过n边形一个顶点的对角线将n边形可以分成(n﹣2)个三角形,于是n边形的内角和为(n﹣2)•180°.故答案为:n﹣2,(n﹣2)•180°.。
人教版数学八年级上册第一单元《多边形》同步练习2(含参考答案与解析)
人教版数学八年级上册第一单元《多边形》同步练习(含参考答案)一.选择题(共5小题)1.已知一个多边形的外角都等于40°,那么这个多边形的边数为()A.6 B.7 C.8 D.92.下列哪个度数不可能是一个多边形的内角和()A.360°B.600°C.900°D.1800°3.多边形的边数由3增加到2021时,其外角和的度数()A.不能确定B.减少C.增加D.不变4.已知正多边形的一个内角是140°,则这个正多边形的边数是()A.九边形B.八边形C.七边形D.六边形5.一个多边形的外角和比内角和的多60°,则这个多边形的边数是()A.五B.六C.七D.八二.填空题(共5小题)6.第五套人民币中的5角硬币色泽为镍白色,正,反面的内周边缘均为正十一边形.则其内角和为°.7.若一个四边形的四个内角的度数比为1:3:4:2,则这四个内角的度数分别为.8.一个多边形的内角和与外角和的度数总和为1260°,多边形的边数是.9.已知一个多边形的每个外角都等于相邻内角的,则该多边形的边数为.10.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为.三.解答题(共2小题)11.12.已知一个多边形的边数为n.(1)若n=5,求这个多边形的内角和.(2)若这个多边形的内角和的比一个四边形的内角和多90°,求n的值.参考答案与解析1.【分析】根据多边形的外角和等于360°可计算求解.【解答】解:由题意得360°÷40°=9,∴四边形的边数为9.故选:D.2.【分析】根据n边形的内角和为(n﹣2)×180°,求出对应的n,即可得出选项.【解答】解:因为n边形的内角和为(n﹣2)×180°,A、(n﹣2)×180°=360°,n=4,是四边形的内角和,故本选项不符合题意;B、(n﹣2)×180°=600°,n=,边数不能为分数,故本选项符合题意;C、(n﹣2)×180°=900°,n=7,是七边形的内角和,故本选项不符合题意;D、(n﹣2)×180°=1800°,n=12,是12边形的内角和,故本选项不符合题意;故选:B.3.【分析】根据多边形的外角和定理即可求解判断.【解答】解:∵任何多边形的外角和都是360°,∴多边形的边数由3增加到2021时,其外角和的度数不变,故选:D.4.【分析】首先根据求出外角度数,再利用外角和定理求出边数.【解答】解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,360°÷40°=9.即这个正多边形是九边形.故选:A.5.【分析】设这个多边形的边数为n,由n边形的内角和是(n﹣2)•180°,多边形的外角和是360°列出方程,解方程求出n的值即可.【解答】解:设这个多边形的边数为n,依题意得:(n﹣2)180°+60°=360°,解得n=5,故选:A.二.填空题(共5小题)6.【分析】把多边形的边数代入n边形的内角和是(n﹣2)•180°,就得到多边形的内角和.【解答】解:十一边形的内角和等于:(11﹣2)•180°=1620°.故答案为:1620.7.【分析】设四边形4个内角的度数分别是x,3x,4x,2x,根据四边形的内角和定理列方程求解.【解答】解:设四边形4个内角的度数分别是x,3x,4x,2x.∴x+3x+4x+2x=360°,解得x=36°.∴这个四边形四个内角的度数分别为36°,108°,144°,72°.故答案为:36°,108°,144°,72°.8.【分析】设多边形的边数为n,根据多边形内角和公式及外角和定理可列出方程,解方程即可.【解答】解:设多边形的边数是n,由题意得,(n﹣2)×180°+360°=1260°,解得:n=7.故答案为:7.9.【分析】设每个内角为x,根据题意列出关于x的方程,求出方程的解得到x的值,从而得到外角度数,即可确定出边数.【解答】解:设每个内角为x,根据题意得:x+x=180°,解得:x=120°,所以每个外角度数为60°,则这个多边形的边数为360°÷60°=6.故答案为:6.10.【分析】利用三角形外角的性质及三角形的内角和定理即可计算.【解答】解:如图,∠AKH=∠A+∠B=∠HGK+∠KHG,∠CGK=∠C+∠D=∠GKH+∠KHG,∠FHB=∠E+∠F=∠HKG+∠KGH,∴∠A+∠B+∠C+∠D+∠E+∠F=2(∠HGK+∠KHG+∠GKH)=2×180°=360°.故答案为:360°.三.解答题(共2小题)11.12.【分析】(1)把n=5,代入多边形内角和公式解答即可;(2)根据多边形内角和公式解答即可.【解答】解:(1)当n=5时,(5﹣2)×180°=540°.∴这个多边形的内角和为540°.(2)由题意,得,解得n=12.∴n的值为12.。
新人教版数学八年级上册11.3.1多边形同步练习
初中数学试卷新人教版数学八年级上册11.3.1多边形同步练习一、选择题(共15题)1.下列结论正确的是()A.在平面内,有四条线段组成的图形叫做四边形B.由不在同一直线上的四条线段组成的图形叫做四边形C.在平面内,由不在同一直线上的四条线段组成的图形叫做四边形D.在平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形答案:D知识点:四边形解析:解答:四边形的概念与三角形的概念类似,三角形的概念:在平面内,由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形;所以,D项的结论更准确.分析:此题考查多边形的定义:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形;四边形也是多边形的一种.2.下列图形中,是正多边形的是()A.直角三角形B.等腰三角形C.长方形D.正方形答案:D知识点:正多边形和圆解析:解答:正方形的四条边相同,四个内角也相等,则正方形是正多边形.分析:此题考查正多边形的定义.3.一个四边形截去一个角后内角个数是()A.3B.4C.5D.3、4、5答案:B知识点:多边形的内角与外角解析:解答:如图可知,一个四边形截去一个角后变成三角形或四边形或五边形.分析:截去一个角,有多种截法,要注意分类讨论.4.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是()A.十三边形B.十二边形C.十一边形D.十边形答案:A知识点:多边形的对角线解析:解答:设这个多边形是n边形.依题意,得n-3=10,∴n=13.故这个多边形是十三边形.分析:根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n-3)条对角线,由此可得到答案.5.下列说法不正确的是()A.各边都相等的多边形是正多边形B.正多形的各边都相等C.正三角形就是等边三角形D.各内角相等的多边形不一定是正多边形答案:A知识点:正多边形和圆解析:解答:正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形;各边都相等的多边形不一定是正多边形.分析:此题考查正多边形的定义,熟练掌握定义是解题的关键.6.下列属于正多边形的特征的有()(1)各边相等(2)各个内角相等(3)各个外角相等(4)各条对角线都相等(5)从一个顶点引出的对角线将正n边形分成面积相等的(n-2)个三角形A.2个B.3个C.4个D.5个答案:B知识点:正多边形和圆;多边形的对角线解析:分析:本题考查了多边形的对角线,n边形过一个顶点有(n-3)条对角线,它们把n边形分割成了(n-2)个三角形.10.从n边形的一个顶点出发作对角线,可以把这个n边形分成9个三角形,则n等于()A.9 B.10 C.11 D.12答案:C知识点:多边形的对角线解析:解答:n=9+2=11.分析:要熟练掌握正多边形的边数(n)、一个顶点可以作的对角线条数(n-3)和它们能分成的不重叠的三角形数(n-2)有关系.11.要使一个六边形的木架稳定,至少要钉()根木条A.3B.4C.6D.9答案:A知识点:多边形的对角线;三角形的稳定性解析:解答:根据三角形的稳定性,可将六边形木架分成几个三角形,则需要6-3=3根木条.分析:此题考查多边形的对角线及三角形的稳定性.12.一个正十边形的某一边长为8cm,其中一个内角的度数为144º,则这个正十边形的周长和内角和分别为()A.64cm,1440ºB.80cm,1620ºC.80cm,1440ºD.88cm,1620º答案:D知识点:正多边形和圆;多边形的内角与外角解析:解答:根据正多边形的性质可知每条边相等,每个内角都相等,则周长为10×8=80(cm),内角和为144º×10=1440º.分析:此题考查正多边形的性质.13.如图所示,四边形ABCD是凸四边形,AB=2,BC=4,CD=7,则线段AD的取值范围为()A.0<AD<7B.2<AD<7C.0<AD<13D.1<AD<13答案:D知识点:三角形三边关系解析:解答:连接AC.∵AB=2,BC=4,在△ABC中,根据三角形的三边关系,4-2<AC<2+4,即2<AC<6.∴-6<-AC<-2,1<CD-AC<5,9<CD+AC<13,在△ACD中,根据三角形的三边关系,得CD-AC<AD<CD+AC,∴1<AD<13.分析:本题综合考查了三角形的三边关系.连接AC,求出AC的取值范围是解题关键.14.下列图中不是凸多边形的是()答案:A知识点:多边形解析:解答:多边形可分为凸多边形和凹多边形,辨别凸多边形可用两种方法:①画多边形任何一边所在的直线整个多边形都在此直线的同一侧.②每个内角的度数均小于180°,通常所说的多边形指凸多边形.分析:此题考查多边形,关键是掌握凸多边形和凹多边形的区别.15.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的ABCD边数不可能是()A.16 B.17 C.18 D.19答案:A知识点:多边形解析:解答:当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.分析:此题主要考查了多边形,剪去一个角的方法可能有三种:经过两个相邻顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.二、填空题(共5题)16.一个四边形它有条边,有个内角,有个外角,从一个顶点出发可以引条对角线,一共可以画条对角线.答案:4 4 4 1 2知识点:四边形;多边形的对角线解析:解答:根据四边形的特点填空即可.分析:根据四边形的特点.17.过m边形的一个顶点有7条对角线,n边形没有对角线,则n-m= .答案:-7知识点:多边形的对角线解析:解答:三角形没有对角线,则n=3;过m边形的一个顶点有7条对角线,则m=7+3=10,则n-m=3-10=-7.分析:此题考查多边形的一个顶点上的对角线数与边数之间的关系;即n边形的一个顶点可作(n-3)条对角线.18.正三角形、正方形、正六边形都是大家熟悉的特殊多边形,它们有很多共同特征,请写出其中的两点:答案:(1)每条边都相等(2)每个内角都相等知识点:正多边形和圆解析:解答:正三角形、正方形、正六边形都属于正多边形,正多边形的特征是每条边都相等,每个内角都相等.分析:本题主要考查正多边形的性质.19.如图,在正六边形ABCDEF内放入2008个点,若这2008个点连同正六边形的六个顶点无三点共线,则该正六边形被这些点分成互不重合的三角形共个.答案:4020知识点:正多边形和圆解析:解答:∵正六边形ABCDEF内放入2008个点,这2008个点连同正六边形的六个顶点无三点共线,∴共有2008+6=2014个点.∵在正六边形内放入1个点时,该正六边形被这个点分成互不重合的三角形共6个;即当n=1时,有6个;然后出现第2个点时,这个点必然存在于开始的6个中的某一个三角形内,然后此点将那个三角形又分成3个三角形,三角形数量便增加2个;又出现第3个点时,同理,必然出现在某个已存在的三角形内,然后又将此三角形1分为3,增加2个…,∴内部的点每增加1个,三角形个数便增加2个.于是我们得到规律:存在n个点时,三角形数有:6+2(n-1)=2n+4(n≥1).由题干知,2008个点的总数为2×2008+4=4020(个).分析:先求出点的个数,进一步求出互不重合的三角形的个数.20.如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为 .答案:n(n+1)知识点:正多边形和圆;探索图形的规律解析:解答:∵①正三边形“扩展”而来的多边形的边数是12=3×4,②正四边形“扩展”而来的多边形的边数是20=4×5,③正五边形“扩展”而来的多边形的边数为30=5×6,④正六边形“扩展”而来的多边形的边数为42=6×7,∴正n边形“扩展”而来的多边形的边数为n(n+1).分析:首先要正确数出这几个图形的边数,从中找到规律,进一步推广.正n边形“扩展”而来的多边形的边数为n(n+1).三、解答题(共5题)21.(1)如图(1),O为四边形ABCD内一点,连接OA、OB、OC、OC可以得几个三角形?它与边数有何关系?(2)如图(2),O在五边形ABCDE的AB上,连接OC、OD、OE,可以得到几个三角形?它与边数有何关系?(3)如图(3),过A作六边形ABCDEF的对角线,可以得到几个三角形?它与边数有何关系?答案:(1)连接OA、OB、OC、OD可以得4个三角形,它与边数相等,(2)连接OC、OD、OE可以得4个三角形,它的个数比边数小1,(3)过点A作六边形ABCDEF的对角线,可以得到4个三角形,它的个数比边数小2.知识点:多边形的对角线;探索图形的规律解析:解答:观察图形,可得到每个图形分得的三角形数,与多边形的边数作比较即可.分析:此题考查了多边形的对角线,关键是观察图形,找出三角形的个数与多边形的边数之间的关系.22.把一个多边形沿着几条直线剪开,分割成若干个多边形.分割后的多边形的边数总和比原多边形的边数多13条,内角和是原多边形内角和的1.3倍.求:(多边形的内角和公式:(n-2)·180º)(1)原来的多边形是几边形?(2)把原来的多边形分割成了多少个多边形?答案:(2)12边形(2)分割成了6个小多边形论n 取任何大于2的正整数,a 与b 一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n 的值.答案:(1)20 (2)知识点:正多边形和圆解析:解答:(1)a=20;(2)此说法不正确.理由如下:尽管当n=3、20、120时,a >b 或a <b ,但可令a=b ,得6077n n =+, ∴60n+420=67n ,解得n=60,经检验n=60是方程的根.∴当n=60时,a=b ,即不符合这一说法的n 的值为60.分析:(1)根据正多边形的每条边相等,可知边长=周长÷边数;(2)分别表示出a 和b 的代数式,让其相等,看是否有相应的值.25.如图,在五边形A 1A 2A 3A 4A 5中,B 1是A 1对边A 3A 4的中点,连接A 1B 1,我们称A 1B 1是这个五边形的一条中对线.如果五边形的每条中对线都将五边形的面积分成相等的两部分.求证:五边形的每条边都有一条对角线和它平行.答案:(1)70% (2)1170美元知识点:多边形的对角线;平行线的判定;三角形的面积解析:解答:证明:取A 1A 5中点B 3,连接A 3B 3、A 1A 3、A 1A 4、A 3A 5,∵A 3B 1=B 1A 4,∴131A A B S V =114A B A S V ,又∵四边形A 1A 2A 3B 1与四边形A 1B 1A 4A 5的面积相等,∴123A A A S V =145A A A S V ,-------------------------------------------------------------------奋斗没有终点任何时候都是一个起点-----------------------------------------------------信达 同理123A A A S V =345A A A S V ,∴145A A A S V =345A A A S V ,∴△A 3A 4A 5与△A 1A 4A 5边A 4A 5上的高相等,∴A 1A 3∥A 4A 5,同理可证A 1A 2∥A 3A 5,A 2A 3∥A 1A 4,A 3A 4∥A 2A 5,A 5A 1∥A 2A 4.分析:此题要能够根据面积相等得到两条直线间的距离相等,从而证明两条直线平行;可以再作五边形的一条中对线,根据它们分割成的两部分的面积相等,都是五边形的面积的一半,导出两个等底的三角形的面积相等,从而得到它们的高相等,则得到五边形的每条边都有一条对角线和它平行.。
八年级数学上册多边形及其内角和专项测试题(二)新
11.3多边形及其内角和专项测试题(二)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、设四边形内角和等于,五边形外角和等于,则与之间的关系是()A.B。
C.D.【答案】B【解析】解:多边形边数为,则内角和为,四边形内角和,多边形外角和为,五边形外角和,因此.故正确答案为:.2、在六边形的一边上取一点与顶点连结,将六边形分割成三角形的个数为( )A.B.C.D。
【答案】C【解析】解:如图:在六边形的一边上取一点与顶点连结,将六边形分割成三角形的个数为.3、若过多边形的一个顶点有条对角线,则这个多边形是( )A。
五边形B。
六边形C。
七边形D。
八边形【答案】C【解析】解:多边形,有几个顶点就是几边形,对于某一个顶点,和自身及相邻顶点的连线不是对角线。
所以顶点数对角线数,多边形的边数顶点数对角线数。
若过多边形的一个顶点共有条对角线,那这个多边形是七边形。
4、六盘水市“琼都大剧院”即将完工,现需选用同一批地砖进行装修,以下不能镶嵌的地板是()A。
正五边形地砖B. 正三边形地砖C. 正六边形地砖D。
正四边形地砖【答案】A【解析】解:正五边形每个内角是,不是的约数,不能镶嵌平面,符合题意;正三角形每个内角度数为,是的约数,能镶嵌平面,不符合题意;正六边形每个内角度数为,是的约数,能镶嵌平面,不符合题意;正四边形每个内角度数为,是的约数,能镶嵌平面,不符合题意.5、正多边形的一个内角是,则这个正多边形的边数为()A。
B。
C.D.【答案】C【解析】解:外角是:,.则这个正多边形是正六边形.6、将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是( )A。
B。
C.D.【答案】D【解析】解:①将矩形沿对角线剪开,得到两个三角形,两个多边形的内角和为:;②将矩形从一顶点剪向对边,得到一个三角形和一个四边形,两个多边形的内角和为:;③将矩形沿一组对边剪开,得到两个四边形,两个多边形的内角和为:.③将矩形沿顶点与边的一点连线剪开,得到一个五边形和三角形,两个多边形的内角和为:.不可能的是.7、设四边形的内角和等于,五边形的外角和等于,则与的关系是()A。
2022年人教版八年级上册《多边形的内角和2》同步练习(附答案)
11.3.2 多边形的内角和1.n 边形的内角和=________度,外角和=_______度。
2.从n 边形(n>3)的一个顶点出发,可以画_______条对角线,.这些对角线把n 边形分成______三角形,分得三角形内角的总和与多边形的内角和_______。
.3.如果一个多边形的内角和与它的外角和相等,那么这个多边形是____边形。
4.如果一个多边形的内角和等于它的外角和5倍,那么这个多边形是____边形。
°,那么n=____。
°,这个多边形是______边形。
每个内角都相等,且内角的度数是与它相邻的外角度数的2倍,那么这个边形的每个内角是_____度,其内角和等于______度。
8.假设一个多边形的内角和是1800°,那么这个多边形的边数是_______。
9.假设一个多边形的边数增加1,那么它的内角和 〔 〕.°°10.当一个多边形的边数增加时,其外角和 〔 〕11.某学生在计算四个多边形的内角和时,得到以下四个答案,其中错误的选项是〔 〕°°°°12.分别画出以下各多边形的对角线,并观察图形完成以下问题:〔1〕试写出用n 边形的边数n 表示对角线总条数S的式子:__________。
〔2〕从十五边形的一个顶点可以引出________条对角线,十五边形共有______条对角线:〔3〕如果一个多边形对角线的条数与它的边数相等,求这个多边形的边数。
.13.n 边形的内角和等于______度。
任意多边形的外角和等于______度。
41,这个多边形是______边形。
15.如果十边形的每个内角都相等,那么它的每个内角都等于______度,每个外角都等于______度。
°,那么这个多边形是______边形。
°,那么这个多边形的对角线的条数是〔 〕18.如果一个多边形的内角和是它的外角和的n 倍,那么这个多边形的边数是〔 〕A.n B.2n-2 C.2n D.2n+2 19.一个多边形截去一个角〔不过顶点〕后,形成的多边形的内角和是2520°,那么原多边形的边数是〔 〕A.13 B.14 C.15 D.13或15 20.假设两个多边形的边数之比为1:2,两个多边形的内角和之和为1440°,求这两个多边形的边数。
11.3.1多边形精选练习(2)含答案(新人教版八年级上)
A BC DABCD第3题第7题 11.3 多边形及其内角和11.3.1 多边形一、选择题1.下列图形中,是正多边形的是( )A.直角三角形B.等腰三角形C.长方形D.正方形 2.九边形的对角线有( )A.25条B.31条C.27条D.30条3. 如图,下面四边形的表示方法:①四边形ABCD ;②四边形ACBD ;③四边形ABDC ;④四边形ADCB .其中正确的有( ) A .1种 B .2种 C .3种 D .4种4. 四边形没有稳定性,当四边形形状改变时,发生变化的是( ) A .四边形的边长 B .四边形的周长 C .四边形的某些角的大小 D .四边形的内角和5.下列图中不是凸多边形的是( ) 6.(2006•柳州)把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是( ) A . 六边形 B . 五边形 C . 四边形 D . 三角形7.如图,木工师傅从边长为90cm 的正三角形木板上锯出一正六边形木块,那么正六边形木板的边长为( ) A . 34cm B . 32cm C . 30cm D . 28cm8.下列图形中具有稳定性的有( ) A .正方形 B .长方形 C .梯形 D .直角三角形二、填空题9.以线段a=7,b=8,c=9,d=11为边作四边形,可作_________个.10.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是_________边形.11.在平面内,由一些线段________________相接组成的_____________叫做多边形。
12.多边形_________组成的角叫做多边形的内角。
13.多边形的边与它的的邻边的__________组成的角叫做多边形的外角。
14.连接多边形_________的两个顶点的线段叫做多边形的对角线。
15._________都相等,_________都相等的多边形叫做正多边形。
2022年人教版八年级上册《多边形》同步练习(附答案)
11.3 多边形及其内角和11.3.1 多边形一、填空题1.一个多边形是正多边形的条件是___________.2.从多边形的一个顶点可以引出3条对角线,这个多边形是________________________.3.一个多边形共有5条对角线,这个多边形是______________________4.从八边形的—个顶点可以引___________条对角线,八边形总共有___________条对角线.5.n边形一共有___________条对角线.6.如果一个多边形的边数恰好是从—个顶点引出的对角线条数的2倍,那么此多边形的边数为_____________.7.过四边形的一个顶点可以把四边形分成两个三角形;过五边形或六边形的一个顶点的对角线,可以分别把它们分成___________个三角形;过n边形的一个顶点的对角线可以把n边形分成___________个(用含n的代数式表示)三角形.二、选择题8.六边形内角和为( )A.360°° C.720°°9.把一张形状是多边形的纸片剪去其中某一个角,剩下的局部是一个四边形,那么这张纸片原来的形状不可能是( )A.三、解答题10.下面的两个网格中,每个小正方形的边长均为1 cm,请你分别在每个网格中画出—个顶点在格点上,且周长为12 cm的形状和大小不同的凸多边形.11.如图,在六边形ABCDEF中,AF∥CD,AB∥DE,且∠A=120°,∠B=80°,求∠C和∠D 的度数.参考答案:1.4. 5;205.2)3(-nn6. 67. 3或4;(n-2)8.C 9.A10.11. 向两边延长AB、CD、EF,分别交于H、M、G.因为∠BAF=120°,∠ABC=80°,根据邻补角定义知∠GAF=60°,∠HBC=100°.又因为AF∥CD,根据两直线平行,同位角相等,可得∠H=∠GAF=60°. 又因为∠BCD是△BHC的一个外角,所以∠BCD=∠H+∠HBC=160°.因为AB∥DE,根据两直线平行,同位角相等,可得∠EDM=∠H=60°. 由邻补角的定义可得∠CDE°=180°-∠EDM=120°.《用计算器求锐角三角函数》解答题1.用计算器求以下锐角三角函数值:︒︒︒36tan,20cos,20sin2.用计算器求以下锐角三角函数值:3488tan ,8149cos ,2315sin '︒'︒'︒3.用计算器求以下锐角三角函数值:312111tan ,139332cos ,728116sin '''︒'''︒'''︒4.A ∠为锐角,根据以下锐角三角函数值,求其相应的锐角A : .8816.0tan ;6252.0cos ;6275.0sin ===A A A5.用计算器求以下余切值:036219cot ,8171cot ;32cot '''︒'︒︒6.8816.0cot =A ,用计算器求锐角A 。
人教版八年级数学上册多边形及其内角和同步练习题精选(附答案)
人教版八年级数学上册多边形及其内角和同步练习题精选一、选择题。
1.下列图形中具有稳定性的有()A.正方形B.长方形C.梯形D.直角三角形2.四边形没有稳定性,当四边形形状改变时,发生变化的是()A.四边形的边长B.四边形的周长C.四边形的某些角的大小D.四边形的内角和3.九边形的对角线有()A.25条B.31条C.27条D.30条4.下列图中不是凸多边形的是()ABCD5.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形6.如图,木工师傅从边长为90cm的正三角形木板上锯出一正六边形木块,那么正六边形木板的边长为()A. 34cm B.32cmC.30cm D.28cm7.六边形内角和为()A.360°B.540°C.720°D.1080°8.某学生在计算四个多边形的内角和时,得到下列四个答案,其中错误的是()A.180°B.540°C.1900°D.1080°9.下列多边形中,内角和与外角和相等的是()A.四边形B.五边形C.六边形D.八边形10.当一个多边形的边数增加时,其外角和()A.增加B.减少C.不变D.不能确定11.如果一个多边形的内角和是720°,那么这个多边形的对角线的条数是()A.6 B.9 C.14 D.2012.已知正n边形的一个内角为135°,则边数n的值是()A.6 B.7 C.8 D.1013.如图,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为()A.120°B.180°C.240°D.300°第13题第16题14.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5 B.5或6 C.5或7 D.5或6或715.一个多边形截去一个角(不过顶点)后,形成的多边形的内角和是2520°,那么原多边形的边数是()A.13B.14C.15D.13或1516.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30°B.36°C.38°D.45°17.若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.618.如果一个多边形的内角和是它的外角和的n倍,则这个多边形的边数是()A.n B.2n-2C.2n D.2n+2二、填空题。
八年级数学人教版上册同步练习多边形(解析版)
11.3.1多边形一、单选题1.为了丰富同学们的课余生活,东辰学校初二年级计划举行一次篮球比赛,从3个分部中选出15支队伍参加比赛,比赛采用单循环制(即每个队与其他各队比赛一场),则这次联赛共有()场比赛.A.30 B.45 C.105 D.210【答案】C【分析】根据多边形对角线的计算方式可得出,m支球队举行比赛,若每个球队与其他队比赛(m-1)场,则两队之间比赛两场,由于是单循环比赛,则共比赛12m(m-1).【详解】15支球队举行单循环比赛,比赛的总场数为:12×15×(15-1)=105.故选:C.【点评】本题考查多边形的对角线的知识,解题的关键是读懂题意,明确单循环赛制的含义,利用多边形的对角线条数的知识进行解答.2.多边形每一个内角都等于135°,则从该多边形一个顶点出发,可引出对角线的条数为()A.3条B.4条C.5条D.8条【答案】C【分析】根据正多边形内角与外角的性质,求出此多边形边数,从而求出这个多边形从一个顶点出发引出的对角线的条数.【详解】∵一个多边形的每一个内角都等于135°,∴此多边形的每一个外角是180°-135°=45°,∵任意多边形的外角和是:360°,∴此多边形边数是:360°÷45°=8,∴这个多边形从一个顶点出发引出的对角线的条数是:n-3=8-3=5.故选:C.【点评】此题主要考查了正多边形内角与外角的性质,以及多边形对角线求法,题目综合性较强,同学们应熟练掌握相关公式.3.如果从一个多边形的一个顶点出发作它的对角线,最多能将多边形分成2011个三角形,那么这个多边形是()A.2012边形B.2013边形C.2014边形D.2015边形【答案】B【分析】经过n边形的一个顶点的所有对角线把多边形分成(n-2)个三角形,根据此关系式求边数.【详解】设多边形有n条边,则n−2=2011,解得:n=2013.所以这个多边形的边数是2013.故选B.【点评】本题考查了多边形的知识点,解题的关键是熟练的掌握多边形对角线的性质与运用.4.下列图形中,是正多边形的是( )A.三条边都相等的三角形B.四个角都是直角的四边C.四边都相等的四边形D.六条边都相等的六边形【答案】A【分析】根据正多边形的定义即可解答.【详解】选项A,三条边都相等的三角形是等边三角形,它的三个角相等,三条边都相等,是正多边形;选项B、C、D不符合正多边形的定义,都不是正多边形.故选A.【点评】本题主要考查了正多边形的定义,熟练运用正多边形的定义是解决问题的关键.5.过n边形的其中一个顶点有10条对角线,则n的值为( )A.11 B.12 C.13 D.14【答案】C【分析】n边形中过一个顶点的所有对角线有n-3条,根据这一点即可解答.【详解】这个多边形的边数是10+3=13,故选C.【点评】此题考查多边形的对角线,解题关键在于掌握运算公式.6.下列说法不正确的是()A.各边相等的多边形是正多边形B.等边三角形是正多边形C.正多边形的各个内角都相等D.正多边形的各条边都相等【答案】A【分析】根据正多边形的定义:各个边相等,各个角相等的多边形是正多边形,除正三边形以外,各边相等,各角相等,两个条件必须同时成立.【详解】A. 各个边相等,各个角相等的多边形是正多边形,故选项A错误;B. 等边三角形三条边相等,三个角相等,是正多边形,故选项B正确;C. 正多边形的各个内角都相等,故选项C正确;D. 正多边形的各条边都相等,故选项D正确.故选A.【点评】本题考查了正多边形的定义,注意各边相等,各角相等,两个条件必须同时成立.7.如果从一个多边形的一个顶点出发作它的对角线,最多能将多边形分成2016个三角形,那么这个多边形是()边形.A.2020 B.2019 C.2018 D.2017【答案】C【解析】【分析】经过n边形的一个顶点的所有对角线把多边形分成(n-2)个三角形,根据此关系式求边数.【详解】设多边形有n条边,则n−2=2016,解得:n=2018,故选C.【点评】此题考查多边形的对角线,解题关键在于掌握计算公式.8.要使一个六边形的木架稳定,至少要钉()根木条A.3 B.4 C.6 D.9【答案】A【解析】如图,最少钉三根木条可以把六边形分成四个三角形,使木架稳定。
人教版2023-2024学年八年级上册数学《多边形及其内角》同步练习(含答案)
人教版2023-2024学年八年级上册数学《多边形及其内角》同步练习一、单选题1.一个多边形的每个外角都等于与它相邻的内角,这个多边形是( )边形A .四B .五C .六D .八2.若一个多边形的每个内角都是,那么它的边数是( )140︒A .5B .7C .9D .113.中国古代建筑具有悠久的历史传统和光辉的成就,其建筑艺术也是美术鉴赏的重要对象.如图是中国古代建筑中的一个正八边形的窗户,则它的内角和为( )A .B .C .D .1080︒900︒720︒540︒4.如图,一束平行太阳光照射到正五边形上,若∠1=46°,则∠2的度数为( )A .46°B .108°C .26°D .134°5.如图1是一个2×5长方形方格,用图2所示的1×2的黑色长方形(允许只用一种)去填满,共有( )种不同的方法.A .7B .8C .9D .106.如图,四边形中,与相邻的两外角平分线交ABCD 90,ADC ABC ∠=∠=︒ADC ABC ∠∠、于点若则的度数为( ),E 60,A ∠=︒E ∠A .B .C .D .60 50 40 307.如图,要使一个七边形木架不变形,至少要再钉上木条的根数是( )A .1根B .2根C .3根D .4根8.七边形中,、的延长线相交于点.若图中、、、的ABCDEFG AB ED O 1∠2∠3∠4∠外角的角度和为,则的度数为( )220︒BOD ∠A .B .C .D .30︒35︒40︒45︒9.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )A .B .C .D .240︒220︒180︒330︒10.如图,直线,将一个含角的直角三角尺按图中方式放置,点E 在AB CD ∥60︒EGF 上,边、分别交于点H 、K ,若,则等于( ).AB GF EF CD 64BEF ∠=︒GHC ∠三、解答题21.若一个多边形的内角和等于它的外角和的24.已知一个正n边形的内角和是正三角形内角和的4倍.(1)求n;(2)用边长相等的正n 边形和正三角形两种地板镶嵌地面,则一个公共顶点处需要正n边形和正三角形的个数分别为x、y,求x和y的关系式.25.如图,小明从点A出发,前进10m后向右转30°,再前进10m后又向右转30°,……,如此反复下去,直到她第一次回到出发点A,他所走的路径构成了一个正多边形.(1)求小明一共走了多少米;(2)求这个正多边形的内角和.答案:1.A2.C3.A4.C5.B6.D7.D8.C9.A10.B11.512.③④13.50°或130°14. 15 60°15.18/十八16. 2 817./36度36︒18./度 144︒1443519. 144 10 144020./度180︒18021.这个多边形是十边形22.(1)15;(2)1523.(1)8(2)360︒24.(1)6n =(2)26x y +=25.(1)小明一共走了120米1800 (2)这个多边形的内角和是.。
人教版八年级多边形的练习(带答案)
C. 105°
D. 100°
05.当多边形的边数增加1时,它的内角和与外角和( B )。
A. 都不变 C. 内角和增加180°,外角和减少180°
B. 内角和增加180°,外角和不变 D. 都增加180°
E
4
C
3
1 A2B
第4题图
【例3】一只蚂蚁从点A出发,每爬行5cm便左转60°,则这只蚂蚁需要爬行多少路程才能回到点A?
第1层:6个正方形,6个正三角形 第2层:6个正方形,12个正三角形 第3层:6个正方形,18个正三角形 第n层:6个正方形,6n个正三角形 周长6+6n米
02.小明的书房地面为210cm×300cm的长方形,若仅从方便平面镶嵌的角度出发,最适宜选用的地砖规 格为( A )。
A. 30cm×30cm的正方形 C. 60cm×60cm的正方形
解:360°÷60°=6 5×6=30(cm) 这只蚂蚁需要爬行30cm才能回到点A
01.八边形的内角和为 1080 度。 02.如图,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2= 22。0° 03.n(n为整数,且n≥3)边形的内角和比(n+1)边形的内角和少 180° 度。 04.如图,小明在操场上从点A出发,沿直线前进10米后向左转40°,再沿直线前进10米后,
D
B
C
01.下列图形中,凸多边形有( B )。
A. 1个
B. 2个
C. 3个
D. 4个
①
②
③
④
⑤
02.过m边形的一个顶点有7条对角线,n边形没有对角线,k边形对角线条数等于边数, 则m= 10 ,n= 3 ,k= 5 。
n-3
n(n-3)÷2
数学人教版八年级上册多边形及其内角和同步练习(配套练习附答案)
∴∠BAG+∠AGD=90°,
则AG⊥DE.
点睛:此题考查了平行线的性质,以及外角性质,熟练掌握平行线的性质是解本题的关键.
18.如图,小东在足球场的中间位置,从A点出发,每走6m向左转60°,已知AB=BC=6m.
(1)小东是否能走回A点,若能回到A点,则需走几m,走过的路径是一个什么图形?为什么?(路径A到B到C到…)
详解:(1)由平移的性质得:△ABC≌△DEF,
∴AB=DE,AB∥DE,
∴四边形ABED为平行四边形,
∴AD∥BF,∠ADG=∠ABC,
∴∠ADG=∠DEF,
∴∠ABC=∠DEF=∠ADG,
∵∠AGE为△ADG的外角,
∴∠AGE=∠DAG+∠ADG=∠GAD+∠ABC;
(2)AG⊥DE,理由为:
由平移的性质得到∠EDF=∠BAC,
A. 200米B. 180米C. 160米D. 140米
【答案】B
【解析】
【分析】
多边形的外角和为360°每一个外角都为20°,依此可求边数,再求多边形的周长.
【详解】∵多边形的外角和为360°,而每一个外角为20°,
∴多边形的边数为360°÷20°=18,
∴小华一共走了:18×10=180米.
故选B.
∴∠AEF+∠CFE=540°-∠A-∠B-∠C=540°-90°-90°-90°=270°.
故选B.
点睛:本题考查了四边形的性质及多边形的内角和定理.解决本题亦可通过外角关系.
6.如图所示,小华从A点出发,沿直线前进10米后左转 ,再沿直线前进10米,又向左转 , ,照这样走下去,他第一次回到出发地A点时,一共走的路程是( )
(完整版)数学人教版八年级上册多边形及其内角和练习题(含答案)
11.3 多边形及其内角和基础过关作业1.四边形ABCD中,如果∠A+∠C+∠D=280°,则∠B的度数是()A.80° B.90° C.170° D.20°2.一个多边形的内角和等于1080°,这个多边形的边数是()A.9 B.8 C.7 D.63.内角和等于外角和2倍的多边形是()A.五边形 B.六边形 C.七边形 D.八边形4.六边形的内角和等于_______度.5.正十边形的每一个内角的度数等于______,每一个外角的度数等于_______.6.如图,你能数出多少个不同的四边形?7.四边形的四个内角可以都是锐角吗?可以都是钝角吗?可以都是直角吗?•为什么?8.求下列图形中x的值:综合创新作业9.(综合题)已知:如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,•DF平分∠ADC.BE与DF有怎样的位置关系?为什么?10.(应用题)有10个城市进行篮球比赛,每个城市均派3个代表队参加比赛,规定同一城市间代表队不进行比赛,其他代表队都要比赛一场,问按此规定,•所有代表队要打多少场比赛?11.(创新题)如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.12.(1)(2005年,南通)已知一个多边形的内角和为540°,则这个多边形为()A.三角形 B.四边形 C.五边形 D.六边形(2)(2005年,福建泉州)五边形的内角和等于_______度.13.(易错题)一个多边形的每一个顶点处取一个外角,这些外角中最多有钝角(• )A.1个 B.2个 C.3个 D.4个培优作业14.(探究题)(1)四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?……猜想并探索:n边形有几条对角线?(2)一个n边形的边数增加1,对角线增加多少条?15.(开放题)如果一个多边形的边数增加1,•那么这个多边形的内角和增加多少度?若将n边形的边数增加1倍,则它的内角和增加多少度?数学世界攻其不备壁虎在一座油罐的下底边沿A处.它发现在自己的正上方──油罐上边缘的B•处有一只害虫.壁虎决定捕捉这只害虫.为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿着一条螺旋路线,从背后对害虫进行突然袭击如图7-3-5.结果,•壁虎的偷袭得到成功,获得了一顿美餐.请问:壁虎沿着螺旋线爬行是最短的路程吗(线段AB除外)?答案:1.A 点拨:∠B=360°-(∠A+∠C+∠D)=360°-280°=80°.故选A.2.B 点拨:设这个多边形的边数为n,则(n-2)·180=1080.解得n=8.故选B.3.B 点拨:设这个多边形的边数为n,根据题意,得(n-2)·180=2×360.解得n=6.故选B.4.7205.144°;36°-⨯︒=144°,点拨:正十边形每一个内角的度数为:(102)18010每一个外角的度数为:180°-144°=36°.6.有27个不同的四边形.7.解:四边形的四个内角不可以都是锐角,不可以都是钝角,可以都是直角.因为四边形的内角和为360°,如果四个内角都是锐角或都是钝角,•则内角和小于360°或大于360°,与四边形的内角和为360°矛盾.•所以四个内角不可以都是锐角或都是钝角.若四个内角都是直角,则四个内角的和等于360°,与内角和定理相符,所以四个内角可以都是直角.8.解:(1)90+70+150+x=360.解得x=50.(2)90+73+82+(180-x)=360.解得x=65.(3)x+(x+30)+60+x+(x-10)=(5-2)×180.解得x=115.9.解:BE∥DF.理由:∵∠A=∠C=90°,∴∠A+∠C=180°.∴∠ABC+∠ADC=360°-180°=180°.∵∠ABE=12∠ABC,∠ADF=12∠ADC,∴∠ABE+∠ADF=12(∠ABC+∠ADC)=12×180°=90°.又∵∠ABE+∠AEB=90°,∴∠AEB=∠ADF,∴BE∥DF(同位角相等,两直线平行).10.解:12n(n-3)=12×10×(10-3)=12×10×7=35(场).答:按此规定,所有代表队要打35场比赛.点拨:问题类似于求多边形对角线的个数.11.解:(5-2)×180°÷360°×12=1.5.点拨:不能直接求出扇形的度数,用整体法圆与五边形重合部分的角度和正好是五边形的内角和.12.(1)C 点拨:设这个多边形的边数为n,依题意,得(n-2)×180°=540°,解得n=5,故选C.(2)540 点拨:(n-2)×180°=(5-3)×180°=540°.13.C14.解:(1)四边形有2条对角线;五边形有5条对角线;六边形有9条对角线;……n n-条对角线.n边形有(3)2(2)当n边形的边数增加1时,对角线增加(n-1)条.点拨:从n边形的一个顶点出发,向其他顶点共可引(n-3)条对角线,n个顶点共可引n(n-3)条,但这些对n n-.角线每一条都重复了一次,故n边形的对角线条数为(3)2 15.180°,n·180°.数学世界答案:是最短的路程.可用纸板做一个模型,沿AB 剪开便可看出结论.。
【人教版八年级数学上册同步练习试题及答案】11.3多边形及其内角和(含答案解析)
11.3多边形及其内角和专题一根据正多边形的内角或外角求值1.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.92.一个多边形的每一个外角都等于36°,则该多边形的内角和等于________°.3.已知一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数.专题二求多个角的和4.如图为某公司的产品标志图案,图中∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.540°C.630°D.720°5.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_________°.6.如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.状元笔记【知识要点】1.多边形及相关概念多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.2.多边形的内角和与外角和内角和:n边形的内角和等于(n-2)·180°.外角和:多边形的外角和等于360°.【温馨提示】1.从n边形的一个顶点出发,可以做(n-3)条对角线,它们将n边形分为(n-2)个三角形.对角线的条数与分成的三角形的个数不要弄错.2.多边形的外角和等于360°,而不是180°.【方法技巧】1.连接多边形的对角线,将多边形转化为多个三角形,将多边形问题转化为三角形问题来解决.2.多边形的内角和随边数的变化而变化,但外角和不变,都等于360°,可利用多边形的外角和不变求多边形的边数等.参考答案:1.A 解析:∵每个内角为150°,∴每个外角等于30°.∵多边形的外角和是360°,360°÷30°=12,∴这个正多边形的边数为12.故选A.2.1440 解析:∵多边形的边数为360°÷36°=10,多边形的内角为180°-36°=144°,∴多边形的内角和等于144°×10=1440°.3.解:设多边形的边数为n,根据题意,得(n-2)·180°=9×360°,解得n=20.所以这个多边形的边数为20.4.B 解析:∵∠1=∠C+∠D,∠2=∠E+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠1+∠2+∠G=540°.故选B.5.360°解析:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.6.解:∵∠POA是△OEF的外角,∴∠POA=∠E+∠F.同理:∠BPO=∠D+∠C.∵∠A+∠B+∠BPO+∠POA=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。
2023-2024学年人教版数学八年级上册 11.3多边形及其内角和同步练习(含答案)
2023-2024学年人教版数学八年级上册11.3多边形及其内角和同步练习(含答案)2023-2024学年人教版数学八年级上册11.3 多边形及其内角和同步练习一、单选题1.五边形的内角和为()A.720° B.540° C.360° D.180°2.下列角度中,不能成为多边形内角和的是()A.600° B.720° C.900° D.1080°3.一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形4.若从一个正多边形的一个顶点出发,最多可以引5条对角线,则它的一个内角为()A.B.C.D.5.如果一个四边形的面积正好等于它的两条对角线乘积的一半,那么这个四边形一定是()A.菱形B.矩形C.正方形D.对角线互相垂直的四边形6.在一个凸n边形的纸板上切下一个三角形后,剩下一个内角和为1080°的多边形,则n的值为()A.7 B.8C.9 D.以上都有可能7.一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.14或15或16 B.15或16或17 C.15或16 D.16或178.下列说法中,正确的个数有()①若一个多边形的外角和等于360°,则这个多边形的边数为4;②三角形的高相交于三角形的内部;③三角形的一个外角大于任意一个内角;④一个多边形的边数每增加一条,这个多边形的内角和就增加;⑤对角线共有5条的多边形是五边形.A.1个B.2个C.3个D.4个二、填空题9.若一个正多边形的一个外角等于18°,则这个正多边形的边数是.10.一个多边形的内角和与外角和的比是4:1,则它的边数是.11.如图,点O是正五边形ABCDE的中心,连接BD、OD,则∠BDO =°.12.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.13.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=度.三、解答题14.一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.15.如图,是四边形的一个外角,且.那么与互补吗?为什么?16.如图,CD∠AF,∠CDE=∠BAF,AB∠BC,∠C=120°,∠E=80°,试求∠F的度数.17.如图,四边形ABCD中,BA丄DA,CD丄BC,BE、DF分别是∠ABC、∠ADC的平分线.(1)∠1与∠2有什么数量关系,为什么?(2)BE与DF有什么位置关系?请说明理由.18.如图,将六边形纸片ABCDEF沿虚线剪去一个角(∠BCD)后,得到∠1+∠2+∠3+∠4+∠5=460°.(1)求六边形ABCDEF的内角和;(2)求∠BGD的度数.19.如图,五边形中,.(1)求的度数;(2)直接写出五边形的外角和.参考答案1.B 2.A 3.C 4.D 5.D 6.D 7.A 8.B 9.2010.1011.1812.24°13.360 °14.解:根据题意,得(n﹣2)180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.15.解:与互补,理由如下:∠ ,∠ABC+=180∠∠ABC+∠D=180 ,∠四边形内角和等于360 ,∠ + =360°-(∠ABC+∠D)=180°∠ 与互补.解:如图,连结AD在四边形ABCD中,∠BAD+∠ADC+∠B+∠C=360°.∠AB∠BC,∠∠B=90°.又∠∠C=120°,∠∠BAD+∠ADC=150°.∠CD∠AF,∠∠CDA=∠DAF.又∠∠CDE =∠BAF,∠∠EDA=∠BAD.在四边形ADEF∠DAF+∠EDA+∠F+∠E=360°,∠∠F+∠E=360°(∠ADC+∠BAD)=210°.又∠∠E=80°,∠∠F=130°17.(1)解:∠1+∠2=90°;理由如下:∠BE,DF分别是∠ABC,∠ADC的平分线,∠∠ABC=2∠1,∠ADC=2∠2,∠BA丄DA,CD丄BC,∠∠A=∠C=90°,∠∠ABC+∠ADC=180°,∠2(∠1+∠2)=180°,∠∠1+∠2=90°;(2)解:BE∠DF;理由如下:在∠FCD中,∠∠C=90°,∠∠DFC+∠2=90°,∠∠1+∠2=90°,∠∠1=∠DFC,∠BE∠DF.18.(1)解:六边形ABCDEF的内角和为:180°×(6-2)=720°;(2)解:∠∠1+∠2+∠3+∠4+∠5=460°,∠∠GBC+∠C+∠CDG=720°-460°=260°,∠∠G=360°-(∠GBC+∠C+∠CDG)=100°.19.(1)解:∠AE∠CD,∠∠D+∠E=180°,∠五边形ABCDE中,∠A=100°,∠B=120°,∠.(2)解:根据多边形的外角和定理:五边形的外角和是:°。
数学人教版八年级上册多边形及其内角和练习题(含答案)
11.3 多边形及其内角和基础过关作业1.四边形ABCD中,如果∠A+∠C+∠D=280°,则∠B的度数是()A.80° B.90° C.170° D.20°2.一个多边形的内角和等于1080°,这个多边形的边数是()A.9 B.8 C.7 D.63.内角和等于外角和2倍的多边形是()A.五边形 B.六边形 C.七边形 D.八边形4.六边形的内角和等于_______度.5.正十边形的每一个内角的度数等于______,每一个外角的度数等于_______.6.如图,你能数出多少个不同的四边形?7.四边形的四个内角可以都是锐角吗?可以都是钝角吗?可以都是直角吗?•为什么?8.求下列图形中x的值:综合创新作业9.(综合题)已知:如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,•DF平分∠ADC.BE与DF有怎样的位置关系?为什么?10.(应用题)有10个城市进行篮球比赛,每个城市均派3个代表队参加比赛,规定同一城市间代表队不进行比赛,其他代表队都要比赛一场,问按此规定,•所有代表队要打多少场比赛?11.(创新题)如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.12.(1)(2005年,南通)已知一个多边形的内角和为540°,则这个多边形为()A.三角形 B.四边形 C.五边形 D.六边形(2)(2005年,福建泉州)五边形的内角和等于_______度.13.(易错题)一个多边形的每一个顶点处取一个外角,这些外角中最多有钝角(• )A.1个 B.2个 C.3个 D.4个培优作业14.(探究题)(1)四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?……猜想并探索:n边形有几条对角线?(2)一个n边形的边数增加1,对角线增加多少条?15.(开放题)如果一个多边形的边数增加1,•那么这个多边形的内角和增加多少度?若将n边形的边数增加1倍,则它的内角和增加多少度?数学世界攻其不备壁虎在一座油罐的下底边沿A处.它发现在自己的正上方──油罐上边缘的B•处有一只害虫.壁虎决定捕捉这只害虫.为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿着一条螺旋路线,从背后对害虫进行突然袭击如图7-3-5.结果,•壁虎的偷袭得到成功,获得了一顿美餐.请问:壁虎沿着螺旋线爬行是最短的路程吗(线段AB除外)?答案:1.A 点拨:∠B=360°-(∠A+∠C+∠D)=360°-280°=80°.故选A.2.B 点拨:设这个多边形的边数为n,则(n-2)·180=1080.解得n=8.故选B.3.B 点拨:设这个多边形的边数为n,根据题意,得(n-2)·180=2×360.解得n=6.故选B.4.7205.144°;36°-⨯︒=144°,点拨:正十边形每一个内角的度数为:(102)18010每一个外角的度数为:180°-144°=36°.6.有27个不同的四边形.7.解:四边形的四个内角不可以都是锐角,不可以都是钝角,可以都是直角.因为四边形的内角和为360°,如果四个内角都是锐角或都是钝角,•则内角和小于360°或大于360°,与四边形的内角和为360°矛盾.•所以四个内角不可以都是锐角或都是钝角.若四个内角都是直角,则四个内角的和等于360°,与内角和定理相符,所以四个内角可以都是直角.8.解:(1)90+70+150+x=360.解得x=50.(2)90+73+82+(180-x)=360.解得x=65.(3)x+(x+30)+60+x+(x-10)=(5-2)×180.解得x=115.9.解:BE∥DF.理由:∵∠A=∠C=90°,∴∠A+∠C=180°.∴∠ABC+∠ADC=360°-180°=180°.∵∠ABE=12∠ABC,∠ADF=12∠ADC,∴∠ABE+∠ADF=12(∠ABC+∠ADC)=12×180°=90°.又∵∠ABE+∠AEB=90°,∴∠AEB=∠ADF,∴BE∥DF(同位角相等,两直线平行).10.解:12n(n-3)=12×10×(10-3)=12×10×7=35(场).答:按此规定,所有代表队要打35场比赛.点拨:问题类似于求多边形对角线的个数.11.解:(5-2)×180°÷360°×12=1.5.点拨:不能直接求出扇形的度数,用整体法圆与五边形重合部分的角度和正好是五边形的内角和.12.(1)C 点拨:设这个多边形的边数为n,依题意,得(n-2)×180°=540°,解得n=5,故选C.(2)540 点拨:(n-2)×180°=(5-3)×180°=540°.13.C14.解:(1)四边形有2条对角线;五边形有5条对角线;六边形有9条对角线;……n n-条对角线.n边形有(3)2(2)当n边形的边数增加1时,对角线增加(n-1)条.点拨:从n边形的一个顶点出发,向其他顶点共可引(n-3)条对角线,n个顶点共可引n(n-3)条,但这些对n n-.角线每一条都重复了一次,故n边形的对角线条数为(3)2 15.180°,n·180°.数学世界答案:是最短的路程.可用纸板做一个模型,沿AB 剪开便可看出结论.。
【八年级数学试题】八年级上数学多边形精选练习2(新人教版带答案)
八年级上数学多边形精选练习2(新人教版带答案)
113 多边形及其内角和
1131 多边形
一、选择题
1下列图形中,是正多边形的是()
A直角三角形 B等腰三角形 c长方形 D正方形
2九边形的对角线有()
A 25条 B31条 c27条 D30条
3 如图,下面四边形的表示方法①四边形ABcD;②四边形AcBD;
③四边形ABDc;④四边形ADcB.其中正确的有()
A.1种B.2种c.3种D.4种
4 四边形没有稳定性,当四边形形状改变时,发生变化的是()
A.四边形的边长B.四边形的周长
c.四边形的某些角的大小D.四边形的内角和
5下列图中不是凸多边形的是()
6.( 3,n-2,
20.解添加的条Ac⊥BD
理由
解条Ac⊥BD,理由
∵Ac⊥BD,
∴ ,,
∴S四边形ABcD=S△AcD+S△AcB= +
=
= .
21.解分别过B、c作x轴的垂线BE、cG,垂足为E,G.
所以SABcD=S△ABE+S梯形BEGc+S△cGD= ×3×6+ ×(6+8)×11+。
最新人教版初中八年级上册数学《多边形及其内角和》同步练习含答案解析
《11.3 多边形及其内角和》一、选择题:1.一个多边形的外角中,钝角的个数不可能是()A.1个B.2个C.3个D.4个2.不能作为正多边形的内角的度数的是()A.120°B.(128)°C.144°D.145°3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1 B.1:1 C.5:2 D.5:44.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个5.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角 B.都是锐角C.是一个锐角、一个钝角 D.互补6.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形 B.十二边形 C.十一边形 D.十边形7.若一个多边形共有十四条对角线,则它是()A.六边形B.七边形C.八边形D.九边形8.一个凸多边形除一个内角外,其余各内角的和为2570°,则这个内角的度数等于()A.90° B.105°C.130°D.120°二、中考题与竞赛题9.若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D.6三、填空题:10.多边形的内角中,最多有个直角.11.从n边形的一个顶点出发可以引条对角线,这些对角线将这个多边形分成个三角形.12.如果一个多边形的每一个内角都相等,且每一个内角都大于135°,那么这个多边形的边数最少为.13.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为.14.每一个内角都是144°的多边形有条边.四、基础训练:15.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(N=20)时,需要多少根火柴?16.一个多边形的每一个外角都等于24°,求这个多边形的边数.五、提高训练17.一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.六、探索发现18.从n边形的一个顶点出发,最多可以引多少条对角线?请你总结一下n边形共有多少条对角线.《11.3 多边形及其内角和》参考答案与试题解析一、选择题:1.一个多边形的外角中,钝角的个数不可能是()A.1个B.2个C.3个D.4个【考点】多边形内角与外角.【专题】计算题.【分析】根据n边形的外角和为360°得到外角为钝角的个数最多为3个.【解答】解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选D.【点评】本题考查了多边形的外角和:n边形的外角和为360°.2.不能作为正多边形的内角的度数的是()A.120°B.(128)°C.144°D.145°【考点】多边形内角与外角.【分析】根据n边形的内角和(n﹣2)•180°分别建立方程,求出n,由于n≥3的整数即可得到D 选项正确.【解答】解:A、(n﹣2)•180°=120•n,解得n=6,所以A选项错误;B、(n﹣2)•180°=(128)°•n,解得n=7,所以B选项错误;C、(n﹣2)•180°=144°•n,解得n=10,所以C选项错误;D、(n﹣2)•180°=145°•n,解得n=,不为整数,所以D选项正确.故选D.【点评】本题考查了多边形的内角和定理:n边形的内角和为(n﹣2)•180°.3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1 B.1:1 C.5:2 D.5:4【考点】多边形内角与外角.【分析】多边形的外角和是360°,且根据多边形的各内角都相等则各个外角一定也相等,根据选项中的比例关系求出外角的度数,根据多边形的外角和定理求出边数,如果是≥3的正整数即可.【解答】解:A、外角是:180×=60°,360÷60=6,故可能;B、外角是:180×=90°,360÷90=4,故可能;C、外角是:180×=度,360÷=7,故可能;D、外角是:180×=80°.360÷80=4.5,故不能构成.故选D.【点评】本题主要考查了多边形的外角和定理,理解外角与内角的关系是解题的关键.4.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个【考点】多边形内角与外角.【分析】利用多边形的外角和是360度即可求出答案.【解答】解:因为多边形的外角和是360度,在外角中最多有三个钝角,如果超过三个则和一定大于360度,多边形的内角与相邻的外角互为邻补角,则外角中最多有三个钝角时,内角中就最多有3个锐角.故选A.【点评】本题考查了多边形的内角问题.由于内角和不是定值,不容易考虑,而外角和是360度不变,因而内角的问题可以转化为外角的问题进行考虑.5.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角 B.都是锐角C.是一个锐角、一个钝角 D.互补【考点】多边形内角与外角.【分析】由四边形的内角和等于360°,又由有一组对角都是直角,即可得另一组对角一定互补.【解答】解:如图:∵四边形ABCD的内角和等于360°,即∠A+∠B+∠C+∠D=360°,∵∠A=∠C=90°,∴∠B+∠D=180°.∴另一组对角一定互补.故选D.【点评】此题考查了四边形的内角和定理.此题难度不大,解题的关键是注意掌握四边形的内角和等于360°.6.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形 B.十二边形 C.十一边形 D.十边形【考点】多边形的对角线.【分析】根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n﹣3)条对角线,由此可得到答案.【解答】解:设这个多边形是n边形.依题意,得n﹣3=10,∴n=13.故这个多边形是13边形.故选:A.【点评】多边形有n条边,则经过多边形的一个顶点所有的对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.7.若一个多边形共有十四条对角线,则它是()A.六边形B.七边形C.八边形D.九边形【考点】多边形的对角线.【分析】根据多边形对角线公式,可得答案.【解答】解:设多边形为n边形,由题意,得=14,解得n=7,故选:B.【点评】本题考查了多边形的对角线,熟记公式并灵活运用是解题关键.8.一个凸多边形除一个内角外,其余各内角的和为2570°,则这个内角的度数等于()A.90° B.105°C.130°D.120°【考点】多边形内角与外角.【专题】计算题.【分析】可设这是一个n边形,这个内角的度数为x度,利用多边形的内角和=(n﹣2)•180°,根据多边形内角x的范围,列出关于n的不等式,求出不等式的解集中的正整数解确定出n的值,从而求出多边形的内角和,减去其余的角即可解决问题.【解答】解;设这是一个n边形,这个内角的度数为x度.因为(n﹣2)180°=2570°+x,所以x=(n﹣2)180°﹣2570°=180°n﹣2930°,∵0<x<180°,∴0<180°n﹣2930°<180°,解得:16.2<n<17.2,又n为正整数,∴n=17,所以多边形的内角和为(17﹣2)×180°=2700°,即这个内角的度数是2700°﹣2570°=130°.故本题选C.【点评】本题需利用多边形的内角和公式来解决问题.二、中考题与竞赛题9.若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D.6【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故选:B.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.三、填空题:10.多边形的内角中,最多有 4 个直角.【考点】多边形内角与外角.【分析】由多边形的外角和为360°可求得答案.【解答】解:当内角和90°时,它相邻的外角也为90°,∵任意多边形的外角和为360°,∴360°÷90°=4.故答案为:4.【点评】本题主要考查的是多边形的内角与外角,明确任意多边形的外角和为360°是解题的关键.11.从n边形的一个顶点出发可以引n﹣3 条对角线,这些对角线将这个多边形分成n﹣2 个三角形.【考点】多边形的对角线.【分析】根据n边形对角线的定义,可得n边形的对角线,根据对角线的条数,可得对角线分成三角形的个数.【解答】解从n边形的一个顶点出发可以引n﹣3条对角线,这些对角线将这个多边形分成n﹣2个三角形,故答案为:n﹣3,n﹣2.【点评】本题考查了多边形的对角线,由对角线的定义,可画出具体多边形对角线,得出n边形的对角线.12.如果一个多边形的每一个内角都相等,且每一个内角都大于135°,那么这个多边形的边数最少为9 .【考点】多边形内角与外角.【分析】根据多边形的外角和定理,列出不等式即可求解.【解答】解:因为n边形的外角和是360度,每一个内角都大于135°即每个外角小于45度,就得到不等式:,解得n>8.因而这个多边形的边数最少为9.【点评】本题已知一个不等关系就可以利用不等式来解决.13.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为11 .【考点】多边形内角与外角.【分析】先根据多边形的内角和外角的关系,求出一个外角.再根据外角和是固定的360°,从而可代入公式求解.【解答】解:设多边形的一个内角为9x度,则一个外角为2x度,依题意得9x+2x=180°解得x=()°360°÷[2×()°]=11.答:这个多边形的边数为11.【点评】本题考查多边形的内角与外角关系、方程的思想.关键是记住多边形的一个内角与外角互补、及外角和的特征.14.每一个内角都是144°的多边形有10 条边.【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为所给多边形的每个内角均相等,故又可表示成120°n,列方程可求解.此题还可以由已知条件,求出这个多边形的外角,再利用多边形的外角和定理求解.【解答】解:解法一:设所求n边形边数为n,则144°n=(n﹣2)•180°,解得n=10;解法二:设所求n边形边数为n,∵n边形的每个内角都等于144°,∴n边形的每个外角都等于180°﹣144°=36°.又因为多边形的外角和为360°,即36°•n=360°,∴n=10.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.四、基础训练:15.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(N=20)时,需要多少根火柴?【考点】规律型:图形的变化类.【分析】关键是通过归纳与总结,得到其中的规律,按规律求解.【解答】解:n=1时,有1个三角形,需要火柴的根数为:3×1;n=2时,有5个三角形,需要火柴的根数为:3×(1+2);n=3时,需要火柴的根数为:3×(1+2+3);…;n=20时,需要火柴的根数为:3×(1+2+3+4+…+20)=630.【点评】此题考查的知识点是图形数字的变化类问题,本题的关键是弄清到底有几个小三角形.16.一个多边形的每一个外角都等于24°,求这个多边形的边数.【考点】多边形内角与外角.【分析】根据多边形外角和为360°及多边形的每一个外角都等于24°,求出多边形的边数即可.【解答】解:设这个多边形的边数为n,则根据多边形外角和为360°,可得出:24×n=360,解得:n=15.所以这个多边形的边数为15.【点评】本题考查了多边形内角与外角,解答本题的关键在于熟练掌握多边形外角和为360°.五、提高训练17.一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.【考点】多边形内角与外角.【分析】设多边形的边数为a,多边形内角和为(a﹣2)180度,外角和为360度得到m:n=180(a ﹣2):360,从而用m、n表示出a的值.【解答】解:设多边形的边数为a,多边形内角和为(a﹣2)180度,外角和为360度,m:n=180(a﹣2):360a=,因为m,n 是互质的正整数,a为整数,所以n=2,故答案为:,2.【点评】本题考查了多边形的内角与外角,解答本题的关键在于熟练掌握多边形内角和与多边形外角和.六、探索发现18.从n边形的一个顶点出发,最多可以引多少条对角线?请你总结一下n边形共有多少条对角线.【考点】多边形的对角线.【分析】从n边形的一个顶点出发,最多可以引n﹣3条对角线,然后即可计算出结果.【解答】解:过n边形的一个顶点可引出n﹣3条对角线;n边形共有条对角线.【点评】本题主要考查的是多边形的对角线,掌握多边形的对角线公式是解题的关键.非常感谢!您浏览到此文档。
人教版八年级数学上册《第十一章11.3多边形及内角和》课后练习(含答案)
八年级数学上册《第十一章11.3多边形及其内角和》课后练习一、单选题1.一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.62.正十边形的外角和为()A.180°B.360°C.720°D.1440°3.如图,足球图片正中的黑色正五边形的内角和是( ).A.180°B.360°C.540°D.720°4.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A.12 B.10 C.8 D.65.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或96.一个多边形的每个内角都等于144°,那么这个多边形的内角和为()A.1980°B.1800°C.1620°D.1440°7.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.50°B.55°C.60°D.65°二、填空题∠=_______°.8.如图,六边形ABCDEF的内角都相等,//AD BC,则DAB9.用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可∠=____度.以得到如图2所示的正五边形ABCDE.图中,BAC10.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=度.11.通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是_____度.12.如图,正方形MNOK和正六边形ABCDEF的边长相等,边OK与边AB重合.将正方形在正六边形内绕点B顺时针旋转,使边KM与边BC重合,则KM旋转的度数是______ °.三、解答题13.(1)若多边形的内角和为2340°,求此多边形的边数.(2)一个多边形的每个外角都相等,如果它的内角与外角的度数之比为13:2,求这个多边形的边数.14.已知n边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.∠+∠+∠+∠+∠+∠的度数.15.如图所示,求A B C D E F16.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4.求∠CAD的度数.∠的变化情况,解答下列问题:17.观察每个正多边形中α(1)将下面的表格补充完整:(2)根据规律,是否存在一个正n边形,使其中的∠α=21°?若存在,直接写出n的值;若不存在,请说明理由.18.(1)已知:如图1,P为△ADC内一点,DP、CP分别平分∠ADC和∠ACD,如果∠A=90°,那么∠P=______°;如果∠A=x°,则∠P=____________°;(答案直接填在题中横线上)(2)如图2,P为四边形ABCD内一点,DP、CP分别平分∠ADC和∠BCD,试探究∠P与∠A+∠B的数量关系,并写出你的探索过程;(3)如图3,P为五边形ABCDE内一点,DP、CP分别平分∠EDC和∠BCD,请直接写出∠P与∠A+∠B+∠E的数量关系:________________;(4)若P为n边形A1A2A3…A n内一点,PA1平分∠A n A1A2,PA2平分∠A1A2A3,请直接写出∠P与∠A3+A4+A5+…∠A n的数量关系:__________________________.(用含n 的代数式表示)答案:1.B 2.B 3.C 4.B 5.D 6.D 7.C.8.60°.9.36°. 10.360°.11.540 12.30. 13.解:(1)设边数为n,则解得:n=15,答:边数为15;(2)每个外角度数为180°×=24°,∴多边形边数为=15,答:边数为15.14.解:(1)甲对,乙不对.∵θ=360°,∴(n-2)×180°=360°,解得n=4.∵θ=630°,∴(n-2)×180°=630°,解得n=.∵n为整数,∴θ不能取630°.(2)由题意得,(n-2)×180+360=(n+x-2)×180,解得x=2.15.解:∵∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,又∵∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.16.解:∵五边形的内角和是540°,∴每个内角为540°÷5=108°,∴∠E=∠B=∠BAE=108°,又∵∠1=∠2,∠3=∠4,由三角形内角和定理可知,∠1=∠2=∠3=∠4=(180°-108°)÷2=36°,∴∠CAD=∠BAE-∠1-∠3=108°-36°-36°=36°.17.解:(1)正三角形中∠α=60°,正四角形中∠α=45°,正五角形中∠α=36°,正六角形中∠α=30°,(2)18021oo n,解得n 不是整数,所以不存在这样的n 值. 18.解:(1)∵DP 、CP 分别平分∠ADC 和∠ACD ,∴∠PDC=12∠ADC ,∠PCD=12∠ACD , ∴∠DPC=180°﹣∠PDC ﹣∠PCD=180°﹣12∠ADC ﹣12∠ACD =180°﹣12(∠ADC+∠ACD ) =180°﹣12(180°﹣∠A ) =90°+ 12∠A , ∴如果∠A=90°,那么∠P=135°;如果∠A=x°,则∠P=(90+2x )°; (2)∵DP 、CP 分别平分∠ADC 和∠BCD ,∴∠PDC=12∠ADC ,∠PCD=12∠BCD , ∴∠DPC=180°﹣∠PDC ﹣∠PCD=180°﹣12∠ADC ﹣12∠BCD =180°﹣12(∠ADC+∠BCD ) =180°﹣12(360°﹣∠A ﹣∠B ) =12(∠A+∠B ); (3)五边形ABCDEF 的内角和为:(5﹣2)•180°=540°,∵DP 、CP 分别平分∠EDC 和∠BCD ,∴∠PDC=12∠EDC ,∠PCD=12∠BCD , ∴∠P=180°﹣∠PDC ﹣∠PCD=180°﹣12∠EDC ﹣12∠BCD =180°﹣12(∠EDC+∠BCD ) =180°﹣12(540°﹣∠A ﹣∠B ﹣∠E ) =12(∠A+∠B+∠E )﹣90°, 即∠P=1(∠A+∠B+∠E )﹣90°;(4)同(1)可得,∠P=12(∠A 3+∠A 4+∠A 5+…∠A n )﹣(n ﹣4)×90°. 故答案为:(1)如果∠A=90°,那么∠P=135°;如果∠A=x°,则∠P=(90+2x )°(2)∠P=180°﹣∠PDC ﹣∠PCD=12(∠A+∠B )(3)∠P=12(∠A+∠B+∠E )﹣90°(4)∠P=12(∠A 3+∠A 4+∠A 5+…∠A n )﹣(n ﹣4)×90°人教版八年级数学上册《第十一章11.3多边形及内角和》课后练习(含答案)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上数学多边形精选练习2(新人教版带答案)
11.3 多边形及其内角和 11.3.1 多边形一、选择题 1.下列图形中,是正多边形的是() A.直角三角形 B.等腰三角形 C.长方形 D.正方形 2.九边形的对角线有() A. 25条 B.31条 C.27条 D.30条 3. 如图,下面四边形的表示方法:①四边形ABCD;②四边形ACBD;③四边形ABDC;④四边形ADCB.其中正确的有() A.1种 B.2种 C.3种 D.4种
4. 四边形没有稳定性,当四边形形状改变时,发生变化的是()A.四边形的边长 B.四边形的周长 C.四边形的某些角的大小 D.四边形的内角和
5.下列图中不是凸多边形的是()6.(2006•柳州)把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形 B.五边形 C.四边形 D.三角形 7.如图,木工师傅从边长为90cm的正三角形木板上锯出一正六边形木块,那么正六边形木板的边长为() A. 34cm B. 32cm C. 30cm D. 28cm 8.下列图形中具有稳定性的有() A.正方形 B.长方形 C.梯形 D.直角三角形
二、填空题 9.以线段a=7,b=8,c=9,d=11为边作四边形,可作
_________个. 10.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是
_________边形. 11.在平面内,由一些线段________________相接组成的_____________叫做多边形。
12.多边形_________组成的角叫做多边形的内角。
13.多边形的边与它的的邻边的__________组成的角叫做多边形的外角。
14.连接多边形_________的两个顶点的线段叫做多边形的对角线。
15._________都相等,_________都相等的多边形叫做正多边形。
16.在四边形ABCD中,AC⊥BD,AC=6cm,BD=10cm,则四边形ABCD的面积等于_________ . 17.将一个正方形截去一个角,则其边数_________ . 18.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是_________ .三、解答题:19.(1)从四边形的一个顶点出发可以画_____条对角线,把四边形
分成了个三角形;四边形共有____条对角线.• (2)从五边形的一个顶点出发可以画_____条对角线,把五边形分成了个三角形;五边形共有____条对角线.• (3)从六边形的一个顶点出发可以画_____条对角线,把六边形分成了个三角形;六边形共有____条对角线.• (4)猜想:①从100边形的一个顶点出发可以画_____条对角线,把100边形分成了个三角形; 100边形共有___•条对角线.②从n边形的一个顶点出发可以画_____条对角线,把n分成了个三角形;n 边形共有_____条对角线. 20.如图,在四边形ABCD中,对角线AC 与BD相交于P,请添加一个条件,使四边形ABCD的面积为:S四边形ABCD= AC•BD,并给予证明.解:添加的条件:_________ 21.如图所示,在直角坐标系中,四边形ABCD各个顶点的坐标分别是A(0,0),B(3,6),C(14,8),D(16,0),确定这个四边形的面积. 22.四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.(1)四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形(如图①),其中相对的两对三角形的面积之积相等.你能证明这个结论吗?试试看.已知:在四边形ABCD中, O是对角线BD上任意一点.(如图①)求证:S△OBC•S△OAD=S△OAB•S△OCD;(2)在三角形中(如图②),你能否归纳出类似的结论?若能,写出你猜想的结论,并证明:若不能,说明理由.
23.用两个一样大小的含30°角的三角板可以拼成多少个形状不同的四边形?请画图说明.
11.3.1 多边形一、选择题 1.D 2.C 3.B 4.C 5.A 6.A 7.C 8.D
二、填空题 9.无数 10.六 11.首尾顺次,图形 12.相邻两边 13.延长线 14.不相邻 15.各边,各角 16.30cm2 17.3或4或5 18.(n+1)2-1或n2+2n 三、解答题 19.⑴1,2,2 ⑵2,3,5 ⑶3,4,9 ⑷①97,98,4750 ②n-3,n-2, 20.解:添加的条件:AC⊥BD理由:解:条件:AC⊥BD,理由:∵AC⊥BD,∴ ,,∴S四边形
ABCD=S△ACD+S△ACB= + = = .
21.解:分别过B、C作x轴的垂线BE、CG,垂足为E,G.所以SABCD=S△ABE+S梯形BEGC+S△CGD= ×3×6+ ×(6+8)×11+
×2×8=94. 22.证明:(1)分别过点A、C,做AE⊥DB,交DB的
延长线于E,CF⊥BD于F,则有:S△AOB= BO•AE,S△COD= DO•CF,S△AOD= DO•AE,S△BOC= BO•CF,∴S△AOB•S△COD= BO•DO•AE•CF,S△AOD•S△BOC= BO•DO•CF•AE,∴S△AOB•S△COD=S△AOD•S△BOC.;(2)能.从三角形的一个顶点与对边上任意一点的连线上任取一点,与三角形的另外两个顶点连线,将三角形分成四个小三角形,其中相对的两对三角形的面积之积相等.或S△AOD•S△BOC=S△AOB•S△DOC,已知:在△ABC中,D为AC上一点,O为BD上一点,求证:
S△AOD•S△BOC=S△AOB•S△DOC.证明:分别过点A、C,作AE⊥BD,交BD的延长线于E,作CF⊥BD于F,则有:S△AOD= DO•AE,S△BOC= BO•CF,S△OAB= OB•AE,S△DOC= OD•CF,∴S△AOD•S△BOC= OB•OD•AE•CF,S△OAB•S△DOC= BO•OD•AE•CF,
∴S△AOD•S△BOC=S△OAB•S△DOC. 23. 解:四个.如图所示:。