交通流三个参数K Q V之间关系
第七章交通流三参数之间的关系
参考文献
1、任福田,刘小明,荣建等.交通工程学. 北京:人民交通 出版社,2003.7
2、刘建军.交通工程学基础. 北京:人民交通出版社, 1995.7
第七章 交通流量、速度和密度之间来自关系授课内容:1、三参数之间的关系
2、速度—密度之间的关系
3、交通流量—密度之间的关系
4、交通流量—速度之间的关系
授课要求:
掌握交通流中交通流量、速度和密度各参数之间
的关系,会分析和应用三参数之间的关系。
第一节 三参数之间的关系
一、交通流的三个参数关系
描述交通流的三个参数是交通量、速度和交通密 度,它们之间的关系可以用下式表示:
Q VK
式中:Q——交通量(辆/h);
V——速度(km/h);
K——交通密度(辆/km)。
二、交通量、速度和交通密度的关系曲线 由交通量、速度和交通密度三者关系图(图 7-1 ) 可见:
图7—1交通量、速度和交通密度的关系
(1)Qm是速度-流量图上的峰值,表示最大流量。
(2)Vm是流量取最大值(Q=Qm)时的速度,称为 临界速度。
例7-1已知某公路上畅行速度Vf=80 km/h,阻塞密度Kj =105veh/km,速度一密度符合直线关系式。 求:(1)在该路段上期望得到的最大流量? (2)此时所对应的车速是多少? 解:(1)该路段上期望得到的最大流量为: Qm=1/4 KjVf=1/4*80*105= 2100(veh/h)
阻塞密度值:kj=1000/hd=1000/8.05=124辆 /km,如假定ht=1.5s,由于 ht=3600/Q
因此,最大通行能力Qm=3600/1.5=2400辆/h。 此时的速度Vm=Qm/Km=2400/62=38.7km/ h。
交通流三个参数K Q V之间关系概要
V=60-3/4*70=7.5(km/h)
Q= KV=7.5*70=525(veh/h)
Qm=1/4 KjVf=1/4*60*80=1200(veh/h)
例7-3假定车辆平均长度为6.lm,在阻塞密度时,单车 道车辆间的平均距离为1.95m,因此车头间距h= 8.05m,试说明流量与密度的关系。 解:因为hd=1000/k
第二节 速度和密度之间的关系
1934年,格林希尔兹(Greenshields)提出了 速度一密度线性模型。
K v v( ) f 1Kj
式中:Vf-一畅行速度; Kj——阻塞密度。
这一模型较为直观、实用(图7-2),且与实 测数据拟合良好。
当 K = 0 时, V 值可达理论最高速度,即畅行速度 Vf 。实际上, AE 线不与纵坐标轴相交,而是趋于该 轴因为在道路上至少有一辆车V以速度Vf行驶。这时, Vf只受道路条件限制。该图也可以表示流量,根据直 线关系,直线上任意点的纵横坐标与原点O所围成的 面积表示交通量,如运行点 C ,速度为 Vm ,密度为 Km,其交通量为 Qm=VmKm,即图上的矩形面积。
过C点作一条平行于流量坐标轴的线,将曲线分 成两部分,这条线以上的部分,为不拥挤部分,速度 随流量的增加而降低,直至达到通行能力的流量Qm 为止,速度为Vm;这条线以下部分为拥挤部分,流 量和速度都下降。
综合以上三个参数的关系可知:当道路上交通密 度小时,车辆可自由行驶,平均车速高,交通流量不 大;随着交通密度增大,交通流量也增加,但车速下 降;当交通密度增加到最佳密度时,交通流量达到最 大值,即交通流量达到了道路的通行能力,车辆的行 驶形成了车队跟随现象,车速低且均衡;当交通密度 继续增大,即超过了最佳密度,交通流量下降,车速 明显下降,直到车速接近于零,道路出现阻塞,交通 密度达到最大值,即阻塞密度,交通流量等于零。
交通流三个参数K Q V之间关系
例7-1已知某公路上畅行速度Vf=80 km/h,阻塞密度Kj =105veh/km,速度一密度符合直线关系式。 求:(1)在该路段上期望得到的最大流量? (2)此时所对应的车速是多少? 解:(1)该路段上期望得到的最大流量为: Qm=1/4 KjVf=1/4*80*105= 2100(veh/h)
当车流密度很大时,用直线关系描述就不准确了, 可以采用格林伯(Greenberg)提出的数模型:
v vm ln (
Kj K
)
当密度很小时,可采用安德伍德(Underwood)提 出的指数模型:
v vf e
K / Km
第三节 交通量和密度的关系
可由格林希尔兹模型导出。
K2 Q v f (K ) Kj
第七章 交通流量、速度和密度之间的关系
授课内容:
1、三参数之间的关系
2、速度—密度之间的关系
3、交通流量—密度之间的关系
4、交通流量—速度之间的关系
授课要求:
掌握交通流中交通流量、速度和密度各参数之间
的关系,会分析和应用三参数之间的关系。
第一节 三参数之间的关系
一、交通流的三个参数关系
描述交通流的三个参数是交通量、速度和交通密 度,它们之间的关系可以用下式表示:
式 表明速度与流量的关系曲 线同样是一条抛物线(图7-4)
v2 Q K j (v ) vf
图7—4 速度与流量的关系
当交通密度为零时,畅行交通流的车速就可能达 到最高车速,如图中曲线的最高点A,就是畅行速度 Vf,而流量等于零。当交通密度等于阻塞密度时,速 度等于零,流量也等于零,因此,曲线通过坐标原点。
2.已知流量一密度关系曲线如图7-5,指出B、C、D 三点代表交通流的何种运行状态?并指出车辆的畅行 点为何点?
交通流三个参数KQV之间关系解读
图7-3所示。
图7-3交通量和密度的关系
当交通密度为零时,流量为零,故曲线通过坐标 原点。当交通密度增加,流量增大,直至达到道路的 通行能力,即曲线C点的交通量达到最大值,对应的 交通密度为最佳密度Km;从C点起,交通密度增加, 速度下降,交通量 减少,直到阻塞密度Kj,速度等 于零,流量等于零;由坐标原点向曲线上任一点画矢 径。这些矢径的斜率,表示矢端的平均速度。通过A 点的矢径与曲线相切,其斜率为畅行速度Vf;对于密 度比Km小的点,表示不拥挤情况,而密度比Km大 的点,表示拥挤情况。
例7-2 在长400m的道路上行驶28辆车,速度-密度为直 线关系,V=60-3/4 K,
求:该道路的Vf ,Kj ,Q ,Qm 。 解:V=60-3/4 K=60(1- K/80)
Vf=60 km/h K=N/L=28/0.4=70(veh/km) V=60-3/4*70=7.5(km/h) Q= KV=7.5*70=525(veh/h) Qm=1/4 KjVf=1/4*60*80=1200(veh/h)
线同样是一条抛物线(图7-4)
图7—4 速度与流量的关系
当交通密度为零时,畅行交通流的车速就可能达 到最高车速,如图中曲线的最高点A,就是畅行速度 Vf,而流量等于零。当交通密度等于阻塞密度时,速 度等于零,流量也等于零,因此,曲线通过坐标原点。
过C点作一条平行于流量坐标轴的线,将曲线分 成两部分,这条线以上的部分,为不拥挤部分,速度 随流量的增加而降低,直至达到通行能力的流量Qm 为止,速度为Vm;这条线以下部分为拥挤部分,流 量和速度都下降。
对于式(7-6)若另dQ/dK=0,则可求出对应于 Qm的Km值:
km
1 2
k
j
从而
交通量、速度、密度之间的关系
2
交通量—密度的关系
K Q Vf ( K ) Kj
(1)0<K<Km:密度增大,交 通流增大 (2)K=临界密度Km时,交 通流最大为Qm (3)Km<K<Kj:密度增加, 交通流减小。到达阻塞密 度时,Q为0
2
交通量—速度的关系
Q=KV (1)
K=Kj(1-V/Vf) (2)
V Q Kj (V ) Vf
安德伍德制造
V Vf (1 e
Kj Km
)
广义速度—密度模型
K N V Vf (1 ) Kj
式子中:N是大于零的实数,当N等于一时,该式 变为线性关系式
交通量—密度的关系
K V Vf (1 ) Kj
K2 Q Vf ( K ) Kj
Q KV
同理可得,将不同的速度密度关系模型带入式子中则可以得到不同的交通量 密度公式及相应曲线
三参数之间的关系
Q KV
L路段上的车流密度: K=N/L N号车通过L所用的时间: t=L/v N号车通过A断面时的交通量: Q=N/t=Kv
三参数关系图
• 直线关系模型:
速度—密度关系
K V Vf (1 ) Kj
• 对数关系模型:
• 指数模型: • 广义模型:
K V Vm In( ) Kj
交通量 速度 密度 之间的关系
11交通 徐卓斌 1104028
授课大纲
• • • • 三个参数之间的关系 速度密度的关系 交通量密度的关系 交通量速度时间通过某道路断面的交通体数量 辆/h 辆/(h.l) 密度:单位长度道路区段上的车辆数 辆/km 辆/(km.l) 速度:区间平均车速 km/h
第六章 流量速度密度三者关系
2
Q k jv
kj vf
v
2
2 i
13931 .65
463.92
x y k v
i i
12590 .04
20 *12590 .04 463.92 * 703.6 ( ) 1.177 2 kj 20 *13931 .65 463.92
1 1 * 703 .6 (1.177 * * 463 .92 62.47 20 20
一、概述
1. 交通流——交通体组成的粒子流。如同其它流 体一样,也可以用流量、速度、密度三个参数来 描述。
Q K V
式中:Q——流量,辆/h K——密度,辆/公里 V——区间平均速度,km/h
一、概述
三维空间曲线投影到二维 空间:
Qm
(1) Qm是u—q图上的峰值,表示 最大流量; (2)Vm是流量取最大值(Qm)时 的速度; (3)u—k图上:k↓,u↑。k→0 u u f , 畅行速度;当 k k j 时, 时(max),车流水泄不通,u=0 时, k j 为阻塞密度; (4)对应 Qm时的密度称为最佳密
a
Vf
二、流量、速度、密度三者关系
2.Q——k关系: 抛物线关系
2
K K Q KV K V f (1 ) V f ( K ) Kj Kj
二、流量、速度、密度三者关系
当K=0, Q=0 曲线通过坐标原点。
dQ 0 dK
1 K K j Km 2
从C点起,K增加,Q减少,直到 K=Kj时,V=0 Q=0。
当车流密度小于最佳车流密度时,车流处于自由行 驶状态,平均车速高。交通量没有达到最大值,密 度增大,交通量也增大;当车流密度接近或等于最
交通工程-交通流三参数之间的关系06
❖
V=60-3/4*70=7.5(km/h)
❖
Q= KV=7.5*70=525(veh/h)
❖ Qm=1/4 KjVf=1/4*60*80=1200(veh /h)
❖ 4、假定车辆平均长度为6.lm,在阻塞密度时,
单车道车辆间的平均距离5m,试说明流量与密度的关系。
❖试计算该道路的最大流量。 ❖解:对照车速-密度的对数模型,可得: ❖Vm=40km/h;则Vf=80km/h; ❖Kj=82辆/km; ❖则Qm=1/4Vf*Kj=1640辆/h。
3、交通量三参数之间关系的应用
拥挤收费——交通需求管理策略
流量-密度关系曲线
交通量三参数之间关系的应用
拥挤收费
通过对驶入城市中心区的车辆征收额外的 通行费达到调节中心区交通流的目的,从 而使城市中心区的交通流运行在最佳状态。
❖ 1998年8月,新加坡政府将ERP扩充到整个中心 商业区、高速公路和交通拥挤的区域。新加坡拥 挤收费的目的非常单一,就是为了控制交通拥挤 现象,同时辅以高达130%的小汽车牌照税进一 步限制小汽车的保有,削弱了拥挤收费政策的负 面影响,增强了拥挤收费实施的效果。
❖ 技术手段
❖ 早期的ALS和RPS均采取出入收费区域出示纸质凭证 的方式运行。
实施效果: 收费区域交 通量减少了 22%;
交通事故降 低5~10%;
公交利用率 大幅提高, 增减了16条 公交线路和 200多辆公交 车。
3、交通量三参数之间关系的应用
拥挤收费需解 决的关键问题
拥挤区域、拥挤收费时段、拥挤收费 费率、收费方式等。
新加 坡电 子拥 挤收 费区 域入 口图
❖ 新加坡交通拥挤收费典型成功案例
❖ 收费水平和收益分析 ❖ 新加坡的电子收费系统(ERP)是一种单次分级
交通调查与分析-概念复习
1、交通流三要素:交通流量(Q),平均车速(V)和车流密度(K)。
关系式:Q=Kv2、年平均日交通量(AADT):一年12个月内365天交通量的总和,除以一年的总天数。
2、月平均日交通量(MADT):求各月交通量的和,除以各月的实际天数。
3、各周日的平均日交通量(ADT):将各周日的交通量相加,除以这一年各周日的天数(52)。
4、月交通量变化系数(M):年平均日交通量(AADT)除以月平均日交通量(MADT)。
5、周日交通量变化系数(D):年平均日交通量(AADT)除以周日的平均日交通量(ADT)。
6、K16=16h平均交通量/平均日交通量。
7、Kd=主要方向行车交通量/双向总交通量*100%8、PhF=高峰小时交通量/扩大高峰小时交通量*100%PhF(5)=高峰小时交通量/(12*5min最高交通量)*100%PhF(15)=高峰小时交通量/(4*15min最高交通量)*100%9、K30=第30位年最高小时交通量/年平均日交通量=30HV/AADT10、交通量资料表示方法:汇总表,柱状图,曲线图,交叉口流量流向图,路网流量图,出入交通量示意图。
11、地点车速测定方法:人工测速法,雷达测速法,自动计数器测速,录像法。
12、第85%位车速:在样本中有85%的车辆未达到的车速,即在累计车速分布曲线中,累计频率为85%时的相应车速,常作为观测路段的最大限制速度。
第15%位车速:在样本中有15%的车辆未达到的车速,即在累计车速分布曲线中,累计频率为15%时相应时的车速,常作为最低限制速度第50%位车速:即中位车速。
13、采用系统调节的效能:1.使高速公路行驶行程时间有所缩短2.使高速公路行驶里程达到最大可能值3.平均车速由43Km/h提高到58Km/h14、道路通行能力分四种情况:1.路段的通行能力2.信号交叉口3.匝道4.交织路段。
15、道路通行能力:指在一定的道路、交通、环境条件下,道路上某一断面在单位时间内能通过的最大车辆数,单位是辆/h。
交通流三要素之间的关系
谢谢各位的聆听
Vf
安德伍德模型
的适用范围
A(K1,V1)
B(0.5Kj,0. 5Vf)
格林伯模型 的适用范围
C(K2,V2)
Kj K
4、广义模型(派普斯模型)
V
Vf(1 -
K )n Kj
n是大于零的实数,当n=1时,为线性关系 式
➢ 是一组V-K模型通用的线族。 ➢ n=1是其中一个特例。
三、流量- 密度关系模型
教学内容及目标
掌 握
理 解
交通流三要素
请思考:三要素从不同的角度描述了交通流的特性, 那么他们之间是否存在着某些关系,如果存在,这些 关系能否更深入、更综合的描述交通情况?
➢ 交通流量(Q):单位时间内
度通量过车道辆路对断面交或通车设道备的的车需辆数求;
➢ 车流密度(K):单位路段长 度上存在的车辆数;
现象:当道路上的车辆增多、车流密度增大时, 驾驶员被迫降低车速。当车流密度由大变小时, 车速又会增加。
探求速度和密度之间的关系
车流密度适中 直线关系模型
车流密度很大 对数关系模型
车流密度很小 指数关系模型
广义速度-密度模型
1、线性V-K模型(格林.希尔治模型)
交通密度适中时观察所得数据。
1、线性V-K模型(格林.希尔治模型)
反映车辆能获取的服务质量
➢ 车辆速度(V):单位时间内 车辆移动的距离;
一、交通流三要素基本关系
1、三要素基本关系式推导
假设交通流为自由流,在长度为 L 的路段 上有连续前进的 N 辆车,其速度为V,则:
Hale Waihona Puke L路段上的车流密度为: K = N L
A
N辆车通过A断面所用的时间为: t = L V
交通流量速度密度三者之间的关系
式中:Q——流量,辆/h K——密度,辆/公里 V——区间平均速度,km/h
一、概述
三维空间曲线投影到二维空间:
一、概述
(1)最大流量 Qm 。是Q-V关系曲线上的最大值; (2)最佳速度Vm 。是流量达到最大Qm时的速度; (3)最佳密度Km 。是流量达到最大Qm时的密度; (4)阻塞密度Kj 。车流密集到所有车辆无法移动
交通流量、速度、密度三者之间的关系
交通流量、速度、密度三者之间的关系
交通流量、速度、密度是描述交通流基本特 征的三个主要参数,它们之间相互联系、相 互制约。
主要内容:
一、概述 二、流量、速度、密度三者之间的关系
一、概述
1.交通流近似看作是由交通体组成的一种粒子流体, 同其他流体一样,可以用交通流量、速度和密度三 个基本参数来描述。
谢谢!
曲线在速度等于零和最大值之间, 曲线凸向最大流量形成闭合环线;
过C点做平行线(平行Q轴):上 部为不拥挤部分,Q↑,V↓直到 Q=Qm,V=Vm为止;下部分为拥 挤部分:Q↓,V↓直到Q=0,V=0为 止;
拥挤部分: Q Qm , K Km ,V Vm 不拥挤部分: Q Qm , K Km ,V Vm
(V=0)时的速度; (5)畅行速度Vf。车流密度趋于零,
车辆可以畅行无阻时的平均速度。
一、概述
2.密度:
密度K:单位长度车道上某一瞬间所存在的车 辆数,表示道路空间上的车辆密集程度,即
KN L
式中:N——某瞬间在长度为L的路段上行驶的 车辆数,单位:辆
L——路段长度,单位:km
二、流量、速度、密度三者关系
1. V—K 关系(Greenshields模型(线性模型) ):
❖ 假设线性关系:V = a – bK(1) a、b待定常数:
交通工程学第四章公式,重点知识点总结
交通工程学第四章公式,重点知识点总结第一篇:交通工程学第四章公式,重点知识点总结第四章道路交通流理论4.1交通流特性 4.1.2连续流特征1.总体特征交通量Q、行车速度VS、车流密度K是表征交通流特性的三个基本参数。
此三参数之间的基本关系为:Q=VS•K式中:Q——平均流量(辆/h);VS——空间平均车速(km/h);K——平均密度(辆/km)。
能反映交通流特性的一些特征变量:(1)极大流量Qm,就是Q-V 曲线上的峰值。
(2)临界速度Vm,即流量达到极大时的速度。
(3)最佳密度Km,即流量达到极大时的密量。
(4)阻塞密度Kj,车流密集到车辆无法移动(V=0)时的密度。
(5)畅行速度Vf,车流密度趋于零,车辆可以畅行无阻时的平均速度。
2.数学描述(1)速度与密度关系格林希尔茨(Greenshields)提出了速度一密度线性关系模型:V=Vf(1-KK)j 当交通密度很大时,可以采用格林柏(Grenberg)提出的对数模型:V=VmlnKjK式中:Vm——对应最大交通量时速度。
(4—1)(4—2)(4—3)当密度很小时,可采用安德五德(Underwood)提出的指数模型:V=Vfe-KKm(4—4)式中:Km—为最大交通量时的速度。
(2)流量与密度的关系Q=KVf(1-(3)流量与速度的关系K)(4—5)KjV2Q=KJ(V-)(4—6)Vf综上所述,按格林希尔茨的速度—密度模型、流量—密度模型、速度—流量模型可以看出,Qm、Vm和Km是划分交通是否拥挤的重要特征值。
当Q≤Qm、K>Km、V<Vm时,则交通属于拥挤;当Q≤Qm、K≤Km、V≥Vm时,则交通属于不拥挤。
4.1.2间断流特征在一列稳定移动的车队中观察获得的不变的车头间距被称为饱和车头间距h,假设车辆进入交叉耗时为h,那么一个车道上进入交叉的车辆数可以按式(4—7)计算:S=3600(4—7)h式中:S——饱和交通量比率(单车道每小时车辆数);h——饱和车头时距(s)。
交通流三参数之间的关系
适合于所有稳定的交通流
最大流量 Qm 临界速度 (critical density )vm 临界密度 (critical density )Km 阻塞密度 (jam density )Kj 自由流速度 (free-flow speed)Vf
22、、交停通车流三场参布数局之间原的则关系
交通流三参数之间的关系
2 、交通停流车三场参数布之局间原的则关系
(1) 连续流和间断流 (2) 流量-速度-密度之间的关系 (Q-V-K 关系) (3) 速度-密度之间的关系 (V-K 关系) (4) 流量-密度之间的关系 (Q-K 关系) (5) 流量-速度之间的关系 (Q-V 关系)
22、、交停通车流三场参布数局之间原的则关系
?试用格林希尔茨线性模型求该路段在密度为 30辆 /Km 时的路段平均交通量。该道路的最大交通量 为多少?对应的速度和密度值是多少?
200
400
600
800
q (pcu /h /lane )
速度—密度线性关系模型与实测结果对比
2、停车场布局原则
(3) 速(1度) -密度之间的关系 (b) Grenberg (对数)模型
V
?
Vm
ln
Kj K
适用于交通流密度很大时
2、停车场布局原则
(3) 速(1度) -密度之间的关系 (c) Underwood (指数)模型
) /h
50
m
v(k 40
30
20 0
南京市:龙蟠南路路段
)
ne
/la
2min Underwood 2min Greenberg
(pcu/h
5min Underwood
第七章 交通流量、速度和密度之间的关系
速度(km/h) 流量(辆/h) 速度(km/h)
交通工程电子教程
最大流量
Qm
0
Km Kj
第七章 流量、速度和密度之间的关系
畅行速度
vf
vi
vm
vm
临界速度
最佳密度
0
Km Kj
密度(辆/km)
0
Qm
流量(辆/h)
阻塞密度
交通工程电子教程
第七章 流量、速度和密度之间的关系
反映交通流特性的特征变量:
Q mVf4 Kj 8 0 4 102 00v0e/0 hh
2.当交通流量为最大时,速度为: VmVf 282 04k0m /h
结论
• 综上所述,按格林希尔茨的速度-密度模型、流量 -密度模型、速度-流量模型可以看出,Qm 、Vm和 Km (流量 ·速度关系曲线图)是划分交通是否拥 挤的重要特征值。
交通工程电子教程
第七章 流量、速度和密度之间的关系
第七章 交通流量、速度和密度之间的关系
第一节 三参数之间的关系
交通流宏观指标: 交通量Q、速度V、密度K是 表征交通流特性的三个基本参数。其基本关系为:
Q=VK
交通流基本关系是一种三维空间关系,可用三 维坐标系表示这种空间曲线。
交通工程电子教程
第七章 流量、速度和密度之间的关系
最大流量Qm Q-V图上的峰值 临界速度vm 流量达到最大值时的速度 畅行速度vf 当密度趋于零时,车辆畅行行驶
时的速度 最佳密度Km 流量达到最大时的密度 阻塞密度Kj 当车辆阻塞时,即V趋于0时的
密度
交通工程电子教程
第七章 流量、速度和密度之间的关系
第二节 速度——密度的关系
1933年格林息尔治(Greenshield)提出的线性关系模型:
交通流三参数之间的关系
600
800
速度—密度线性关系模型与实测结果对比
2、停车场布局原则
(3) 速度-密度之间的关系 (1) (b) Grenberg(对数)模型
V Vm ln
Kj K
适用于交通流密度很大时
2、停车场布局原则
(3) 速度-密度之间的关系 (1) (c) Underwood(指数)模型
V Vf e
800 600 400 200 0 0
南京市:龙蟠南路路段
q (pcu /h /lane )
v (km /h )
2min 2min 5min 5min 15min 10 20 k (pcu /km /lane )
Underwood Greenberg Underwood Greenberg Underwood 30
K Km
适用于交通流密度很小时
2、停车场布局原则 交通流三参数之间的关系
(4) 流量-密度之间的关系 (1)
Q K V
K V V f (1 ) Kj
K2 Q V f (K ) Kj
2、停车场布局原则 2、交通流三参数之间的关系
(4) 流量-密度之间的关系 (1)
70 60 50 40 30 20 0 200 400 q (pcu /h /lane ) 600 800 2min 2min 5min 5min 15min Underwood Greenberg Underwood Greenberg Underwood
3、交通量三参数之间关系的应用
实施效果: 收费区域交 通量降低了 18%; 平均延误降 低了30%; 车速提高了 17km/h;
公交利用率 提高38%。
伦敦拥挤收费区域示意图(2003年以来)
第七章交通流三参数之间的关系
式 表明速度与流量的关系曲 线同样是一条抛物线(图7-4)
v2 Q K j (v ) vf
图7—4 速度与流量的关系
当交通密度为零时,畅行交通流的车速就可能达 到最高车速,如图中曲线的最高点A,就是畅行速度 Vf,而流量等于零。当交通密度等于阻塞密度时,速 度等于零,流量也等于零,因此,曲线通过坐标原点。
对于式(7-6)若另dQ/dK=0,则可求出对应于 Qm的Km值:
km
1 kj 2
从而
Qm K m vm
K mv f 4
第四节 速度和流量的关系
由式
K v v f (1 ) Kj
可得:
v K K j (1 ) vf
代人式Q=KV,得
v2 Q K j (v ) vf
例7-1已知某公路上畅行速度Vf=80 km/h,阻塞密度Kj =105veh/km,速度一密度符合直线关系式。 求:(1)在该路段上期望得到的最大流量? (2)此时所对应的车速是多少? 解:(1)该路段上期望得到的最大流量为: Qm=1/4 KjVf=1/4*80*105= 2100(veh/h)
(2)此时所对应的车速是:
Vm=Vf/2=1/2*80=40 km/h
例7-2 在长400m的道路上行驶28辆车,速度-密度为直 线关系,V=60-3/4 K, 求:该道路的Vf ,Kj ,Q ,Qm 。 解:V=60-3/4 K=60(1- K/80) Vf=60 km/h K=N/L=28/0.4=70(veh/km)
(3)在速度、密度图上,车辆减少,密度随着变小, 速度增大。当密度趋于零时,速度可达最大值,这时 车辆可畅行无阻,所以Vf是畅行速度。若车辆增多时; 则密度增大,车速随之减小。当密度达到最大值Kj时, 车流受阻即Q = 0。此时的密度Kj称阻塞密度。
交通流量速度和密度之间的关系
K增大, Q增大, V减小
不拥挤 拥挤
Q=Qm V=Vm
K增大, Q减小, V减小
Q Qm
车流密度适中
车流密度很大
车流密度很小
直线关系模型
对数关系模型
指数模型
广义速度-密度模型
特征变量
划分交通是否拥挤的重要特征值
极大流量 Qm 临界速度 Vm 即流量达到最大值时对应的速度
最佳密度 Km 即流量达到最大值时对应的密度
阻塞密度Kj 即车流密集到所有车辆无法移动时 的速度
畅行速度Vf 即车流密度趋于零,车辆可畅行无阻 时的平均速度
K
=Vf
(1-
K Kj
)
K=0,V=Vf
V
Vf
K=Kj,V=0
?状态Vm=38.7交 Nhomakorabea量最大Qm=KmVm= 2400
Km=62
?状态
Kj K
二、对数关系模型——车流密度很大
V
V
= Vm
ln(
Kj K
)
K
三、指数模型——车流密度很小
V
Kj
V =Vf ( 1-e Km )
K
模型缺点:当K K j时,V 0,需修正
不拥挤
拥挤
Km
K增大, Q减小
K K=Kj Kj Q=0
1 Km = 2 K j
1 Vm = 2 V f
1 Qm = 4 V f K j
第四节 速度-交通流量的关系
数学模型
Q=0, V V=Vf Vf
Vm
K=Kj Q=0 V=0
V
V2
Q = KV = K j ( 1 - Vf )V = K j (V - Vf )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过C点作一条平行于流量坐标轴的线,将曲线分 成两部分,这条线以上的部分,为不拥挤部分,速度 随流量的增加而降低,直至达到通行能力的流量Qm 为止,速度为Vm;这条线以下部分为拥挤部分,流 量和速度都下降。
综合以上三个参数的关系可知:当道路上交通密 度小时,车辆可自由行驶,平均车速高,交通流量不 大;随着交通密度增大,交通流量也增加,但车速下 降;当交通密度增加到最佳密度时,交通流量达到最 大值,即交通流量达到了道路的通行能力,车辆的行 驶形成了车队跟随现象,车速低且均衡;当交通密度 继续增大,即超过了最佳密度,交通流量下降,车速 明显下降,直到车速接近于零,道路出现阻塞,交通 密度达到最大值,即阻塞密度,交通流量等于零。
(2)此时所对应的车速是:
Vm=Vf/2=1/2*80=40 km/h
例7-2 在长400m的道路上行驶28辆车,速度-密度为直 线关系,V=60-3/4 K, 求:该道路的Vf ,Kj ,Q ,Qm 。 解:V=60-3/4 K=60(1- K/80) Vf=60 km/h K=N/L=28/0.4=70(veh/km)
上式是二次函数关系,可用一条抛物线表示,如 图7-3所示。
图7-3交通量和密度的关系
当交通密度为零时,流量为零,故曲线通过坐标 原点。当交通密度增加,流量增大,直至达到道路的 通行能力,即曲线C点的交通量达到最大值,对应的 交通密度为最佳密度Km;从C点起,交通密度增加, 速度下降,交通量 减少,直到阻塞密度Kj,速度等 于零,流量等于零;由坐标原点向曲线上任一点画矢 径。这些矢径的斜率,表示矢端的平均速度。通过A 点的矢径与曲线相切,其斜率为畅行速度Vf;对于密 度比Km小的点,表示不拥挤情况,而密度比Km大 的点,表示拥挤情况。
参考文献
1、任福田,刘小明,荣建等.交通工程学. 北京:人民交通 出版社,2003.7
2、刘建军.交通工程学基础. 北京:人民交通出版社, 1995.7
阻塞密度值:kj=1000/hd=1000/8.05=124辆 /km,如假定ht=1.5s,由于 ht=3600/Q
因此,最大通行能力Qm=3600/1.5=2400辆/h。 此时的速度Vm=Qm/Km=2400/62=38.7km/ h。
Based on Greenberg’s speed-density model and Underwood’s speed-density model, substantiate that the capacity for Greenberg and Underwood is as follows:
Qm Vm
Qm k m
kj e
Greenberg
Underwood
kj k
vf e
)
As the model was that put forward by Greenberg, showing a logarithmic relationship:
v v m ln(
)
Q= K×V=K×vm
5.已知某公路上畅行速度Vf=60km/h,阻塞密度Kj= 86辆/km,速度—密度关系为线性关系。试问:
(l)该路段上期望得到的最大流量是多少? (2)此时所对应的车速是多少?
6.在长400m的道路上行驶24辆车,速度-密度为直线 关系,V=60-3/4 K,求:该道路的Vf ,Kj ,Q , Qm 。 7.试述交通量、速度和密度之间相互的关系?
第七章 交通流量、速度和密度之间的关系
授课内容:
1、三参数之间的关系
2、速度—密度之间的关系
3、交通流量—密度之间的关系
4、交通流量—速度之间的关系
授课要求:
掌握交通流中交通流量、速度和密度各参数之间
的关系,会分析和应用三参数之间的关系。
第一节 三参数之间的关系
一、交通流的三个参数关系
描述交通流的三个参数是交通量、速度和交通密 度,它们之间的关系可以用下式表示:
2.已知流量一密度关系曲线如图7-5,指出B、C、D 三点代表交通流的何种运行状态?并指出车辆的畅行 点为何点?
图7-5 流量一密度关系曲线
3.在道路上有一拥挤车流,车流跟随行驶无法超车, 其V—K关系符合对数模型V=40ln82/K。 试计算该道路的最大流量。 4.高速公路上的交通流其V一K关系为V=a—bK,其 中a,b为常数,要求实际交通流量不大于最大流量的 0.8倍,求高速公路车流控制应保持的密度范围?
第二节 速度和密度之间的关系
1934年,格林希尔兹(Greenshields)提出了 速度一密度线性模型。
K v v( - ) f 1 Kj
式中:Vf-一畅行速度; Kj——阻塞密度。
这一模型较为直观、实用(图7-2),且与实 测数据拟合良好。
当K=0时,V值可达理论最高速度,即畅行速度 Vf。实际上,AE线不与纵坐标轴相交,而是趋于该 轴因为在道路上至少有一辆车V以速度Vf行驶。这时, Vf只受道路条件限制。该图也可以表示流量,根据直 线关系,直线上任意点的纵横坐标与原点O所围成的 面积表示交通量,如运行点C,速度为Vm,密度为 Km,其交通量为 Qm=VmKm,即图上的矩形面积。
例7-1已知某公路上畅行速度Vf=80 km/h,阻塞密度Kj =105veh/km,速度一密度符合直线关系式。 求:(1)在该路段上期望得到的最大流量? (2)此时所对应的车速是多少? 解:(1)该路段上期望得到的最大流量为: Qm=1/4 KjVf=1/4*80*105= 2100(veh/h)
(3)在速度、密度图上,车辆减少,密度随着变小, 速度增大。当密度趋于零时,速度可达最大值,这时 车辆可畅行无阻,所以Vf是畅行速度。若车辆增多时; 则密度增大,车速随之减小。当密度达到最大值Kj时, 车流受阻即Q = 0。此时的密度Kj称阻塞密度。
(4)在流量一密度图上,密度过小,速度虽大,但流 量仍达不到最大值。密度过大,速度会降低,流量也 不能有最大值。只有当密度合适时,通过的流量才最 大,对应流量为最大值的密度称为最佳密度,用Km 表示。
当车流密度很大时,用直线关系描述就不准确了, 可以采用格林伯(Greenberg)提出的数模型:
v vm ln (
Kj K
)
当密度很小时,可采用安德伍德(Underwood)提 出的指数模型:
v vf e
K / Km
第三节 交通量和密度的关系
可由格林希尔兹模型导出。
K2 Q v f (K ) Kj
ln(
kj k
)
kj dQ 0 v m ln( ) v m dk k
ln( k
j
k
k k
) 1
带入格林柏格公式得:
j
e
最后:
v vm
Qm v m kj e
安德伍德公式:
v vf e
Q= K×V=k×
(
k ) km
( k ) km
k
vf e
k dQ k km 0 v f (e km e ) dk km
式 表明速度与流量的关系曲 线同样是一条抛物线(图7-4)
v2 Q K j (v ) vf
图7—4 速度与流量的关系
当交通密度为零时,畅行交通流的车速就可能达 到最高车速,如图中曲线的最高点A,就是畅行速度 Vf,而流量等于零。当交通密度等于阻塞密度时,速 度等于零,流量也等于零,因此,曲线通过坐标原点。
k 1 km
Qm k m
vf e
例7-4对某路上的交通流进行观测,发现速度与密度 的关系是对数关系:V=40ln(180/K),式中车速 单位为:km/h,密度单位为:辆/km。试问该路 段阻塞密度是多少?车速为何值时交通流量最大?
解:车流密度大时,速度一密度的关系用对数关系式 V=Vmln(Kj/K):
将式 V= 40In180/K式V=Vmln(Kj/K)比较可知该 路段阻塞密度Kj= 180辆/km;速度 Vm=40km/h, 通过的交通流量最大为40×180/e。
思考作业题
1.用电子秒表在高峰小时内于路段(L=AB=200m) 两端断面A和B同步连续观测跟踪车队每辆车的到达 时间tA和tB记录如下表: 试确定车队的参数Q、K、 V?
对于式(7-6)若另dQ/dK=0,则可求出对应于 Qm的Km值:
km
1 kj 2
从而
Qm K m vm
K mv f 4
第四节 速度和流量的关系
由式
K v v f (1 ) Kj
可得:
v K K j (1 ) vf
代人式Q=KV,得
v2 Q K j (v ) vf
Q VK
式中:Q——交通量(辆/h);
V——速度(km/h);
K——交通密度(辆/km)。
二、交通量、速度和交通密度的关系曲线 由交通量、速度和交通密度三者关系图(图7-1) 可见:
图7—1交通量、速度和交通密度的关系
(1)Qm是速度-流量图上的峰值,表示最大流量。
(2)Vm是流量取最大值(Q=Qm)时的速度,称为 临界速度。
V=60-3/4*70=7.5(km/h)
Q= KV=7.5*70=525(veh/h)
Qm=1/4 KjVf=1/4*60*80=1200(veh/h)
例7-3假定车辆平均长度为6.lm,在阻塞密度时,单车 道车辆间的平均距离为1.95m,因此车头间距h= 8.05m,试说明流量与密度的关系。 解:因为hd=1000/k