交通流三个参数K Q V之间关系
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.已知某公路上畅行速度Vf=60km/h,阻塞密度Kj= 86辆/km,速度—密度关系为线性关系。试问:
(l)该路段上期望得到的最大流量是多少? (2)此时所对应的车速是多少?
6.在长400m的道路上行驶24辆车,速度-密度为直线 关系,V=60-3/4 K,求:该道路的Vf ,Kj ,Q , Qm 。 7.试述交通量、速度和密度之间相互的关系?
上式是二次函数关系,可用一条抛物线表示,如 图7-3所示。
图7-3交通量和密度的关系
当交通密度为零时,流量为零,故曲线通过坐标 原点。当交通密度增加,流量增大,直至达到道路的 通行能力,即曲线C点的交通量达到最大值,对应的 交通密度为最佳密度Km;从C点起,交通密度增加, 速度下降,交通量 减少,直到阻塞密度Kj,速度等 于零,流量等于零;由坐标原点向曲线上任一点画矢 径。这些矢径的斜率,表示矢端的平均速度。通过A 点的矢径与曲线相切,其斜率为畅行速度Vf;对于密 度比Km小的点,表示不拥挤情况,而密度比Km大 的点,表示拥挤情况。
第七章 交通流量、速度和密度之间的关系
授课内容:
1、三参数之间的关系
2、速度—密度之间的关系
3、交通流量—密度之间的关系
4、交通流量—速度之间的关系
授课要求:
掌握交通流中交通流量、速度和密度各参数之间
的关系,会分析和应用三参数之间的关系。
第一节 三参数之间的关系
一、交通流的三个参数关系
描述交通流的三个参数是交通量、速度和交通密 度,它们之间的关系可以用下式表示:
将式 V= 40In180/K式V=Vmln(Kj/K)比较可知该 路段阻塞密度Kj= 180辆/km;速度 Vm=40km/h, 通过的交通流量最大为40×180/e。
思考作业题
1.用电子秒表在高峰小时内于路段(L=AB=200m) 两端断面A和B同步连续观测跟踪车队每辆车的到达 时间tA和tB记录如下表: 试确定车队的参数Q、K、 V?
Qm Vm
Qm k m
kj e
Greenberg
Underwood
kj k
vf e
)
As the model was that put forward by Greenberg, showing a logarithmic relationship:
v v m ln(
)
Q= K×V=K×vm
Q VK
式中:Q——交通量wk.baidu.com辆/h);
V——速度(km/h);
K——交通密度(辆/km)。
二、交通量、速度和交通密度的关系曲线 由交通量、速度和交通密度三者关系图(图7-1) 可见:
图7—1交通量、速度和交通密度的关系
(1)Qm是速度-流量图上的峰值,表示最大流量。
(2)Vm是流量取最大值(Q=Qm)时的速度,称为 临界速度。
阻塞密度值:kj=1000/hd=1000/8.05=124辆 /km,如假定ht=1.5s,由于 ht=3600/Q
因此,最大通行能力Qm=3600/1.5=2400辆/h。 此时的速度Vm=Qm/Km=2400/62=38.7km/ h。
Based on Greenberg’s speed-density model and Underwood’s speed-density model, substantiate that the capacity for Greenberg and Underwood is as follows:
参考文献
1、任福田,刘小明,荣建等.交通工程学. 北京:人民交通 出版社,2003.7
2、刘建军.交通工程学基础. 北京:人民交通出版社, 1995.7
当车流密度很大时,用直线关系描述就不准确了, 可以采用格林伯(Greenberg)提出的数模型:
v vm ln (
Kj K
)
当密度很小时,可采用安德伍德(Underwood)提 出的指数模型:
v vf e
K / Km
第三节 交通量和密度的关系
可由格林希尔兹模型导出。
K2 Q v f (K ) Kj
第二节 速度和密度之间的关系
1934年,格林希尔兹(Greenshields)提出了 速度一密度线性模型。
K v v( - ) f 1 Kj
式中:Vf-一畅行速度; Kj——阻塞密度。
这一模型较为直观、实用(图7-2),且与实 测数据拟合良好。
当K=0时,V值可达理论最高速度,即畅行速度 Vf。实际上,AE线不与纵坐标轴相交,而是趋于该 轴因为在道路上至少有一辆车V以速度Vf行驶。这时, Vf只受道路条件限制。该图也可以表示流量,根据直 线关系,直线上任意点的纵横坐标与原点O所围成的 面积表示交通量,如运行点C,速度为Vm,密度为 Km,其交通量为 Qm=VmKm,即图上的矩形面积。
例7-1已知某公路上畅行速度Vf=80 km/h,阻塞密度Kj =105veh/km,速度一密度符合直线关系式。 求:(1)在该路段上期望得到的最大流量? (2)此时所对应的车速是多少? 解:(1)该路段上期望得到的最大流量为: Qm=1/4 KjVf=1/4*80*105= 2100(veh/h)
k 1 km
Qm k m
vf e
例7-4对某路上的交通流进行观测,发现速度与密度 的关系是对数关系:V=40ln(180/K),式中车速 单位为:km/h,密度单位为:辆/km。试问该路 段阻塞密度是多少?车速为何值时交通流量最大?
解:车流密度大时,速度一密度的关系用对数关系式 V=Vmln(Kj/K):
过C点作一条平行于流量坐标轴的线,将曲线分 成两部分,这条线以上的部分,为不拥挤部分,速度 随流量的增加而降低,直至达到通行能力的流量Qm 为止,速度为Vm;这条线以下部分为拥挤部分,流 量和速度都下降。
综合以上三个参数的关系可知:当道路上交通密 度小时,车辆可自由行驶,平均车速高,交通流量不 大;随着交通密度增大,交通流量也增加,但车速下 降;当交通密度增加到最佳密度时,交通流量达到最 大值,即交通流量达到了道路的通行能力,车辆的行 驶形成了车队跟随现象,车速低且均衡;当交通密度 继续增大,即超过了最佳密度,交通流量下降,车速 明显下降,直到车速接近于零,道路出现阻塞,交通 密度达到最大值,即阻塞密度,交通流量等于零。
对于式(7-6)若另dQ/dK=0,则可求出对应于 Qm的Km值:
km
1 kj 2
从而
Qm K m vm
K mv f 4
第四节 速度和流量的关系
由式
K v v f (1 ) Kj
可得:
v K K j (1 ) vf
代人式Q=KV,得
v2 Q K j (v ) vf
2.已知流量一密度关系曲线如图7-5,指出B、C、D 三点代表交通流的何种运行状态?并指出车辆的畅行 点为何点?
图7-5 流量一密度关系曲线
3.在道路上有一拥挤车流,车流跟随行驶无法超车, 其V—K关系符合对数模型V=40ln82/K。 试计算该道路的最大流量。 4.高速公路上的交通流其V一K关系为V=a—bK,其 中a,b为常数,要求实际交通流量不大于最大流量的 0.8倍,求高速公路车流控制应保持的密度范围?
(3)在速度、密度图上,车辆减少,密度随着变小, 速度增大。当密度趋于零时,速度可达最大值,这时 车辆可畅行无阻,所以Vf是畅行速度。若车辆增多时; 则密度增大,车速随之减小。当密度达到最大值Kj时, 车流受阻即Q = 0。此时的密度Kj称阻塞密度。
(4)在流量一密度图上,密度过小,速度虽大,但流 量仍达不到最大值。密度过大,速度会降低,流量也 不能有最大值。只有当密度合适时,通过的流量才最 大,对应流量为最大值的密度称为最佳密度,用Km 表示。
V=60-3/4*70=7.5(km/h)
Q= KV=7.5*70=525(veh/h)
Qm=1/4 KjVf=1/4*60*80=1200(veh/h)
例7-3假定车辆平均长度为6.lm,在阻塞密度时,单车 道车辆间的平均距离为1.95m,因此车头间距h= 8.05m,试说明流量与密度的关系。 解:因为hd=1000/k
ln(
kj k
)
kj dQ 0 v m ln( ) v m dk k
ln( k
j
k
k k
) 1
带入格林柏格公式得:
j
e
最后:
v vm
Qm v m kj e
安德伍德公式:
v vf e
Q= K×V=k×
(
k ) km
( k ) km
k
vf e
k dQ k km 0 v f (e km e ) dk km
式 表明速度与流量的关系曲 线同样是一条抛物线(图7-4)
v2 Q K j (v ) vf
图7—4 速度与流量的关系
当交通密度为零时,畅行交通流的车速就可能达 到最高车速,如图中曲线的最高点A,就是畅行速度 Vf,而流量等于零。当交通密度等于阻塞密度时,速 度等于零,流量也等于零,因此,曲线通过坐标原点。
(2)此时所对应的车速是:
Vm=Vf/2=1/2*80=40 km/h
例7-2 在长400m的道路上行驶28辆车,速度-密度为直 线关系,V=60-3/4 K, 求:该道路的Vf ,Kj ,Q ,Qm 。 解:V=60-3/4 K=60(1- K/80) Vf=60 km/h K=N/L=28/0.4=70(veh/km)