MRI 基本原理及读片 (NXPowerLite)
磁共振基本原理和读片课件
主要内容
医学影像学概况及磁共振技术的发展 简要介绍磁共振成像基本原理及概念 磁共振检查方法及临床应用 磁共振成像的主要优点及限度 如何阅读磁共振图像 影像学检查常见名词概念 读片
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本人删除。
水成像 文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本人删除。
胆道成像(Magnetic Resonance Cholangiopancreatography )MRCP 不使用造影剂,利用 胆汁(水)进行成像。用于胆道梗阻检查。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本人删除。
Communication System, PACS)
影像科管理、quality control,QC、quality assurance,QA.
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本人删除。
全新的医学影像学在医学领域的应用包括:
★ 影像诊断学:X线、CT、DSA、MRI、US、 ECT等。
进入静磁场后,H核磁矩发生规律性排列(正负方向),正负方向的磁矢量相互 抵消后,少数正向排列(低能态)的H核合成总磁化矢量M,即为MR信号基础
z M
x
按照单一核子 进动原理,质子 群在静磁场中 y 形成的宏观磁 化矢量M
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本人删除。
特殊检查:
血管成像(Magnetic Resonance Angiography MRA)利用流动的血液进行血流的直接成像
可用于动脉或静脉的检查,若同时使用造影剂,称 增强血管成像(CE-MRA)。
MRI基本原理及读片
MRI基本原理及读片MRI(Magnetic Resonance Imaging)是一种利用核磁共振原理来获取人体内部组织器官影像的医学影像技术。
MRI的基本原理是利用氢原子在强磁场里的自旋共振现象。
人体组织中的氢原子核具有自旋,当置于强磁场中时,氢核的自旋朝向会与磁场方向保持平行或相反。
施加一个特定的脉冲磁场,可以使氢核自旋发生共振,这时氢核会从低能级跃迁到高能级,并放出能量。
MRI设备会通过感应线圈产生一系列电流脉冲,这些脉冲可以生成有特定频率和角度的磁场。
当这些脉冲磁场作用于患者身上时,会使得氢核自旋共振,并发射出信号。
这些信号通过感应线圈采集,并通过计算机进行处理,最终形成人体内部的影像。
MRI影像的读片过程包括以下几个步骤:1.图像质量评估:读片前首先需要评估图像质量,包括图像的清晰度、对比度和噪声水平等。
如果图像质量不佳,可能需要重新进行扫描。
2.基本解剖结构识别:读片人员需要熟悉人体解剖结构,对不同组织器官、血管和神经进行识别。
这需要对人体解剖学有较好的了解,以便准确地识别各个结构。
3.病理改变的观察:在识别基本解剖结构的基础上,读片人员还需要观察和识别患者身体内部是否存在异常的病理改变,如肿瘤、炎症、损伤等。
通过比较患者的影像与正常图像或其他病例的影像,可以帮助确定病例是否存在异常。
4.总结分析:读片人员需要将所观察到的病理改变进行总结和分析,包括病变的部位、大小、类型等。
他们还需要判断这些病变对患者的健康状况有何影响,并提出治疗建议。
在进行MRI读片时,除了以上步骤外,读片人员还可能会使用一些辅助工具,如注释软件、对比增强剂等,以帮助他们更准确地诊断和分析病例。
总的来说,MRI的基本原理是通过利用核磁共振现象来获取人体内部组织器官的影像。
MRI的读片过程需要对解剖结构和病理改变进行识别和分析,以帮助判断患者的疾病状况,并提出相应的治疗建议。
网上发CT原理 NXPowerLite ppt课件
但在扫描肝脏和胰时,一般将层厚度从10毫米变 成3毫米,改进图像质量,导致噪声增加80%。为了 保证图像质量,必然要提高mA率80%或更多,或者 加长扫描时间。
网上发CT原理 NXPowerLite
螺旋CT helical CT Spiral CT
网上发CT原理 NXPowerLite
CT之父
CT成功应用于临床,值得一提的另一位人物 是核物理学家 Cormack (美国Tufts University, 出身于 Johannesburg),解决了CT图像重建的数 学问题。
1979年诺贝尔生理和医学奖破例授予两位 没有医学经历的科学家:
Godfrey N.Hounsfield
网上发CT原理 NXPowerLite
基本参数:扫描时间
由于运动会造成图像质量下降,如呼吸和心脏动 作,对腹、中隔和肺,扫描时间尽可能短。
减少扫描时间,对图像重建,可减少运动伪影。 增加扫描时间,在剂量一定时,可得到较好空间 分辨率。有时为了降低mA率,延长X管寿命,也可 增加扫描时间。
网上发CT原理 NXPowerLite
CT历史
1971年第一台CT机安装于Atkinson-Morley医院,成像需 20分钟,采用微处理器后,时间缩至4分钟。 1973年美国 Mayo Clinic 和麻省总医院安装颅脑CT。 1974年美国George Town医疗中心工程师Ledley设计出全 身CT,76年开始应用。 1983年中国研制成第一台颅脑CT 1990年中国研制成第三代全身CT
概
1. CT的成像方式特点
念 与
2. 螺旋CT与常规CT特点
思
3. CT数,常见组织CT数范围
MRI磁共振成像基本原理及读片
MRI磁共振成像基本原理及读片MRI(磁共振成像)是一种医学影像技术,利用磁共振原理来获得身体内部的高分辨率图像。
本文将详细介绍MRI的基本原理及读片过程。
一、MRI的基本原理1.磁共振现象:MRI利用磁共振现象来获得图像。
人体组织主要由氢原子构成,而氢原子含有一个质子,质子带有正电荷。
在强磁场的作用下,质子将朝向磁场的方向旋转。
质子的旋转频率与外部磁场的强度成正比。
2.弹性波:磁共振装置内的一套辅助磁场可以加入特定的辅助磁场,这些辅助磁场将会给氢原子的原子核一个脉冲的影响,并造成它们间接或直接在周围的分子上加入一个特定的力,这个力的效应可以用声音形容,并且它的效应在短时间之内会消失。
3.回弹:当辅助磁场停止作用时,氢原子的原子核会回到基本对齐的状态。
在这个过程中,它们会向周围发出信号,被称为MR信号或回声。
回声信号会被感应线圈捕获并送到计算机中进行处理和图像重建。
4.信号解析:计算机将回声信号解析为图像。
这里有几种常用的重建方法,包括傅立叶变换、快速傅立叶变换和回声信号积分。
二、MRI读片过程1.图像质量评估:在开始读片之前,需要对图像质量进行评估。
评估因素包括图像分辨率、对比度、噪声、伪影等。
图像质量好与否对于正确认识病灶和提供准确诊断至关重要。
2.解剖结构分析:先观察解剖结构,包括脑、脊髓、血管、骨骼等。
通过比较对称性、大小、形态等,可以初步判断是否存在异常。
3.病灶检测与定位:在观察解剖结构的基础上,进行病灶的检测与定位。
常见的病灶包括肿瘤、脑梗死、脑出血等。
通过对信号强度、位置、边界特征等进行分析,可以初步判断病灶的类型和范围。
4.强度与序列分析:MRI图像的信号强度与脉冲序列有关。
不同的脉冲序列可以提供不同的对比度和重建方式。
通过比较不同脉冲序列的信号强度变化,可以更好地分析病灶的性质,并提供更准确的诊断依据。
5.影像报告编写:根据对图像的分析和判断,编写MRI影像报告。
报告通常包括病人基本信息、病灶的位置、大小、特征、诊断意见等。
磁共振基本原理及读片课件
腰椎间盘突出
磁共振成像能够视察腰椎间盘突 出的程度、位置以及对脊髓和神 经根的压迫情况,有助于诊断腰
椎间盘突出并指点手术方案。
脊柱肿瘤
磁共振成像能够发现脊柱肿瘤的 位置、大小、与周围组织的毗邻 关系以及是否有转移灶,有助于 诊断脊柱肿瘤并制定手术和放化
疗方案。
骨关节疾病
骨肿瘤
磁共振成像能够视察骨肿瘤的位置、大小、形态以及与周围组织 的毗邻关系,有助于诊断骨肿瘤的性质和制定手术方案。
功能成像
除了传统的形态学成像外,磁共振功能成像技术不断发展,能够提供更多关于器官和组织 功能的信息,有助于深入了解疾病的产生和发展机制。
分子成像
分子成像是未来磁共振技术的重要发展方向之一,能够从分子水平上揭示疾病的本质和过 程,为疾病的早期诊断和治疗提供新的手段。
THANKS
感谢观看
,但仍需要在检查前告知医生,并遵循医生的建议。
03
潜伏风险
虽然磁共振检查相对安全,但仍存在一些潜伏的风险,如磁场对磁性物
质的吸引力、对心脏起搏器的影响等,因此在检查前需要进行充分评估
和准备。
磁共振技术的未来发展
高场强磁共振
随着技术的进步,高场强磁共振设备逐渐应用于临床,能够提供更高分辨率和更准确的图 像,有助于疾病的早期诊断和治疗。
关节炎
磁共振成像能够视察关节软骨的损伤、炎症以及关节腔积液等情况 ,有助于诊断关节炎并指点治疗方案。
肌肉和软组织疾病
磁共振成像能够视察肌肉和软组织的炎症、损伤以及肿瘤等病变, 有助于诊断肌肉和软组织疾病并指点治疗方案。
04
磁共振新技术与应用
功能成像
功能成像是一种利用磁共振技术来视察活体器官或组织的功 能活动的技术。
垂体肿瘤MRI诊断_(NXPowerLite)
常规增强
增 强 早 期
动态增强是诊断微腺瘤的重要技术
注意
中间囊部和某些技术伪影在 MRI上可以与微腺瘤表现相似
垂体瘤(大于10mm)
瘤体在T1加权像上呈低信号,在T2加权像上等信号或较 高信号。
肿瘤形态显示可以明确垂体腺瘤与视交叉、两侧海绵窦 的关系。
坏死、囊变区在T1加权上呈更低信号,在T2加权上呈高 信号。
垂体腺增强往往低于邻近的海绵窦。两侧海绵窦信号强度 不对称是海绵窦受侵犯最敏感的征象,然而特异性差。
颈内动脉海绵窦段受包绕特异性高,但敏感性差。一些作 者倾向于以下判断:
1.如果肿瘤包绕颈内动脉达67%或以上,海绵窦累及可以确诊 2.如果海绵窦显示不清楚或海绵窦上、内侧壁与肿瘤相连,应高度怀疑; 3.如果肿瘤包绕颈内动脉小于25%或海绵窦内、上壁未与肿瘤接触, 可 以明确海绵窦未累及。
颅咽管瘤
颅咽管瘤最常见部位为鞍内和鞍上(75%),完 全位于鞍上(20%),完全位于鞍内(5%), 极少数生长在第三脑内。
颅咽管瘤
囊性成份在T1加权像上呈高信号或中等信号, 在T2加权像上呈高信号 。
肿瘤实质部分以等T1和长T2信号为主。 增强扫描后无钙化的肿瘤实质部分明显强化 。
囊 性 颅 咽 管 瘤
灰结节异位瘤 (错构瘤)
增强扫描后肿瘤有强化
生殖细胞瘤
肿瘤侵袭与其大小有关
微腺瘤无周围结构的侵袭。 肿瘤10~20mm,可出现微侵袭,即镜下局限性
硬脑膜浸润。 肉眼侵袭多发生在20~40mm大的肿瘤。 弥漫性或破坏性侵袭,肿瘤多在30~40mm以上。
侵袭性垂体腺瘤 的MRI判断
侵袭性垂体腺瘤可以侵袭海绵窦、鞍底骨质和蝶窦,其中 以海绵窦受累为MRI的一个重要征象。
核磁共振MRI基本原理及读片
核磁共振MRI基本原理及读片核磁共振成像(Magnetic Resonance Imaging,MRI)是一种医学影像技术,利用核磁共振现象对人体组织进行成像和诊断的方法。
它不需要使用X射线,因此可以避免X射线造成的辐射损害。
下面将介绍MRI的基本原理和读片方法。
MRI的基本原理MRI的基本原理是基于核磁共振现象,核磁共振是指原子核在一定条件下被外加强磁场激发并回到基态时放射出的能量。
人体组织中的氢原子核是MRI常用的成像核素。
在一个强磁场的作用下,氢原子核的自旋会朝向磁场方向,但不是完全朝向,而是有一定的偏差角度。
在外加的射频脉冲作用下,氢原子核会从其原有的自旋状态受到扰动,然后重新返回到基态,放射出能量。
这些能量会被接收线圈捕捉到,并转化为图像。
MRI的读片方法对于一张MRI图像,医生需要综合考虑信号强度、形态和局部解剖结构等因素进行综合分析。
以下是MRI读片的一般方法:1.T1加权图像和T2加权图像的对比:T1加权图像和T2加权图像这两种常用的MRI序列相互对照,可以更好地观察组织的对比度和解剖特征。
T1加权图像对脂类物质高亮,T2加权图像对液体高亮。
2.脏器解剖结构的识别:根据不同的MRI序列,医生可以辨识各种脏器的位置和形态。
脑部MRI常见在T1加权图像上显示灰白质分界清晰,T2加权图像上显示脑脊液。
3.病变的识别:医生需要查找MRI图像上的异常信号,如肿瘤、炎症、梗死等病变。
病变通常表现为信号异常区域,这些区域可以在T1加权图像和T2加权图像中显示不同的强度和形态。
4.扫描的范围和层数:为了获得全面的信息,医生需要了解MRI扫描的范围和层数。
常见的MRI扫描范围包括头颅、颈椎、胸部、腹部、骨盆等,每个范围可以有多个层面的切片。
5.功能性MRI:功能性MRI(fMRI)可以用来研究脑部的功能活动。
在进行fMRI分析时,医生需要关注激活的脑区和激活强度,以及与特定任务相关的激活模式。
总之,核磁共振MRI是一种非常重要的医学影像学检查方法,可以提供更详细和准确的成像信息。
MRI 基本原理及读片 (NXPowerLite)
影响因素:病变区的血流;灌注;血脑屏障。与血液
内的药浓度不绝对成正比,达一定浓度后不起作用。
特殊检查:
血管成像(Magnetic Resonance Angiography
MRA)利用流动的血液进行血流的直接成像
可用于动脉或静脉的检查,若同时使用造影剂,
称增强血管成像(CE-MRA)。
血管成像用于血管畸形、动脉瘤、血管狭窄或闭 塞。但目前仍不能代替DSA。 特点:简便、无创伤
Z
纵向弛豫或称 自旋-晶格弛 豫 (T1弛豫)
横向弛豫或 称自旋自旋 弛豫 (T2弛豫)
● 人体——进入磁场——磁化——施加射频脉冲、H核磁矩发生90。偏转,产
生能量——射频脉冲停止、弛豫过程开始,释放所产生的能量(形成MR信 号)——信号接收系统——计算机系统
● 在弛豫过程中,即释放能量(形成MR信号),涉及到2个时间常数:纵向
MRM 不使用造影剂,利用脑脊液进行成像。
内耳膜迷路成像(Magnetic Resonance Labyrinthography) MRL 不使用造影剂利用
迷路内的淋巴液进行成像。
结肠水成像:向结肠内注入水后,进行结肠人工
水造影。胃、小肠也同样可进行此项检查。
仿真内窥镜:同CT一样,利用计算机所
方法。与MRA不同的是:MRA观察的是宏观的血流现象,
而DWI观察的是微观的水分子流动扩散现象
脑发生缺血时,PWI先有异常,出在6小时内(超急期), 此时溶栓治疗, 疗效最佳;若出现DWI异常时,则易出血; 若T2WI出现病灶时,则为不可逆的。 PWI-DWI-T2WI
脑弥散加权成像(DWI)是使用一对大小相 等、方向相反的扩散敏感梯度场。该梯度场对 静止组织作用的总和为零,但水分子在不断扩
磁共振基本原理及读片
磁共振检查注意事
05
项
检查前准备
告知医生病史和用药情况
穿着舒适宽松的衣服
去除金属饰品和电子设备
配合医生进行必要的准备
检查中配合
保持静止不动: 在检查过程中, 需要保持静止 不动,不要随
意移动身体
不要佩戴金属 饰品:金属饰 品可能会影响 磁共振成像质
磁共振应用范围
神经系统疾病诊断
心血管系统疾病诊断
骨关节系统疾病诊断 腹部及盆腔疾病诊断
03
磁共振读片方法
读片步骤
观察图像:首先观察图像的整体情况,包括图像的清晰度、对比度等。 寻找异常:在图像中寻找异常信号或异常结构,例如肿瘤、炎症等。 分析异常:对异常信号或结构进行分析,包括大小、形态、边缘、信号强度等。 诊断结论:根据分析结果,给出诊断结论,包括疾病类型、严重程度等。
单击添加标题
熟悉解剖结构:熟悉人体各部位的解剖结构,包括骨骼、 肌肉、血管等,以便更好地识别图像中的异常表现。
单击添加标题
观察图像特征:注意观察图像中的异常表现,如信号强度、 分布范围、形态等,以便准确判断病变的性质和范围。
单击添加标题
结合临床病史:结合患者的临床病史和症状,对图像进行 分析,以便更准确地诊断疾病。
读片技巧
掌握基本原理: 了解磁共振成 像的基本原理 和图像特点, 为读片打下基
础。
观察图像特征: 注意观察图像 的细节和特征, 如病灶的大小、 形态、边缘、 信号强度等, 以确定病灶的 性质和范围。
结合临床病史: 结合患者的临 床病史和临床 表现,对图像 进行综合分析, 以提高诊断的 准确性和可靠
YOUR LOGO
磁共振基本原理及读片PPT
组织结构变化
观察组织结构的变化,如 肿瘤的浸润、扩散和转移 等。
血流动力学改变
分析血流动力学参数,如 血流速度、血流量和血管 通透性等,以判断病变的 性质和程度。
功能代谢变化
利用磁共振波谱分析等方 法,检测组织的功能代谢 变化,如能量代谢、氧化 还原状态等。
多模态影像融合分析
融合方法
将磁共振图像与其他影像学检查 (如CT、超声等)进行融合,以
共振信号
共振信号是磁共振成像的基础,当射频脉冲停止后,原子核 会释放出共振信号,通过接收这些信号,可以获得物体的内 部结构信息。
磁共振成像原理
磁共振成像
磁共振成像是一种基于磁共振现象的医学影像技术,通过外加磁场和射频脉冲使 人体内的氢原子核发生能级跃迁,然后接收这些原子核返回的共振信号并重建图 像。
磁共振检查技术
常规磁共振检查
01
02
03
原理
利用强磁场和射频脉冲使 人体组织中的氢原子核发 生共振,通过测量共振信 号来获取图像。
应用
主要用于检测病变、肿瘤 、炎症等。
优势
无电离辐射,对软组织分 辨率高。
功能磁共振成像
原理
利用磁场变化检测血流动力学反 应,反映器官或组织的生理功能
。
应用
主要用于脑功能研究、肿瘤诊断等 。
详细描述
磁共振成像技术能够清晰地显示人体解剖结构,包括脑组织、脊髓、肌肉、骨 骼等,为医生提供丰富的诊断信息。在读片过程中,医生需要熟悉各组织器官 的正常形态和位置,以便准确判断是否存在异常。
病理征象分析
总结词
病理征象是疾病在磁共振图像上的表现,通过分析这些征象可以推断病变的性质和程度 。
详细描述
扩散加权成像(DWI)有助于评估肿 瘤的恶性程度和预后。
第四篇 磁电选矿 (NXPowerLite)
与磁场强度间为直线关系; ④若弱磁性矿物中混入强磁性矿物,即使量少也会对磁特
性产生较大的影响。 由弱磁性的矿物与非磁性矿物构成的连生体,其比磁化率
大致与弱磁性矿物的含量成 正比,连生体的比磁化率等于各矿物比磁化率的加权平均值。
f磁= F磁/m= μ0ΧH gradH
(1-1-6)
磁场力的定义表明,磁选时,仅仅只有一个适宜的磁
场强度是不够的,这个磁场还必须有一定的磁场梯度。 这就是在前面强调的磁选是在一个非均匀的磁场中进行 的原因。
磁力或比磁力公式均表明,作用在磁选颗粒上的磁力 决定于颗粒的磁性和磁选设备的磁场力HgradH。无论是 提高磁场力或提高颗粒的比磁化率,都可以提高颗粒所 受的磁力。
B、磁场强度H、磁化强度M之间存在如下关系:
B=μ0(H+M)
(1-1-4)
1.1 磁选基本原理
磁选是在磁选设备所提供的非均匀磁场中 进行的。被选矿石进入磁选设备的分选空间 后,受到磁力和机械力的共同作用,沿着不 同的路径运动,对矿浆分别截取,就可得到 不同的产品。
磁性颗粒在磁选机中成功分选的必要条件 是:作用在较强磁性矿石上的磁力F1必须 大于所有与磁力方向相反的机械力的合力, 同时,作用在较弱磁性颗粒上的磁力F2必 须小于相应机械力之和。即
对于弱磁性铁矿物,可以通过磁化焙烧的方法人为地提高 它们的磁性。
1.2 磁选设备
一、概述 磁选机的结构多种多样,分类方法也比较多。通
常根据以下特征来分类。 (1)根据承载介质的不同,磁选机可分成干式和 湿式两种: (2)根据磁选机磁场强度的高低,磁选机分成弱 磁场磁选机和强磁场磁选机两大类:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正常腰椎
椎间盘突出
椎间盘突出,颈髓损伤
脊椎关节病
黄 韧 带 肥 厚
固有性椎管狭窄
脊膜瘤
胸椎转移瘤侵犯硬膜外
左下肺癌
小细胞肺癌
正 常 心 脏 电 影 ( 静 态 图 )
MRI T1WI
MRCP (MR胆胰管水成像) MRI T2WI
正常胰腺MRI表现
肝囊肿
T2
T1
增强扫描
迷路内的淋巴液进行成像。
结肠水成像:向结肠内注入水后,进行结肠人工
水造影。胃、小肠也同样可进行此项检查。
仿真内窥镜:
MRI三维重建
MR电影成像(Magnetic Resonance cine MRC ):
对运动的脏器实施快速成像。采集脏器运动中的不
MR心肌灌注成像
造影剂首次通过相 造影剂延迟增强相
诊断 1、正常的心肌 2、缺血的心肌 3、心肌梗死后心肌存活状况(顿抑心肌及冬眠心肌) 4、死亡心肌
心肌缺血发现的敏感性和特异性:MR灌注成像: 敏感性92%-94%,特异性87%-96%。ECT:敏感 性65%,特异性82%
磁共振波谱(MRS):研究人体能量代谢病生理改变。通过 显示组织生化学波谱,发现病变,这种生化代谢异常更早于病理 形态学异常。MRI + MRS = 诊断 ,更敏感、更早期、更特异
密度增高或信号增强的这种变化称为强化
无论CT或MR,在增强检查中,一些正常的组织结构可以出现 强化,称生理性强化;凡正常时不应出现强化的组织结构出现强
化则称病理性强化,或异常强化
病变出现强化时,一定程度上反映病变的血供情况、血流灌 注特点以及血脑屏障的完整程度,对判断病变的性质有帮助
正常颈椎
正常胸椎
散,受该梯度场影响而产生相位变化。梗死区
域水含量增加,其早期细胞毒性水肿使水分子
扩散下降,而在产生T2信号改变之前,在DWI显
示出早期的脑梗死。
右侧急性轻瘫,症状4小时 T2加权像无 异常 同一时间,弥散加 权像(4秒)见大 片高信号
C-E同一时间,团注对比剂5-10秒内的灌注成像。缺血区显示对 比剂到达延迟(C)。D为病变区对比剂消散延迟。E为45秒后灌注基 本趋于正常
度对比),该中心即为窗位处理(window level processing) 同理,仅选择性显示某一定范围的部分灰阶,而该范围之
上、下的灰阶则均从图像上删除(全“白”或 “黑”),这称
为窗宽处理(window width processing)。这犹如在一面很宽的 墙面上开窗,使观者只能透过开的窗子观察到限定范围的窗外
血管成像(Magnetic Resonance Angiography
MRA)利用流动的血液进行血流的直接成像
可用于动脉或静脉的检查,若同时使用造影剂,
称增强血管成像(CE-MRA)。
血管成像用于血管畸形、动脉瘤、血管狭窄或闭 塞。但目前仍不能代替DSA。 特点:简便、无创伤
水成像
胆道成像(Magnetic Resonance Cholangiopancreatography )MRCP 不使用造影剂,利用胆
窗技术
影像学中常见的名词概念的一般性了解
阴影、回声、信号 密度:影像学术语。密度有双重含义,即物质密度与影像密度二
种。物质密度系指单位体积内的物质质量,由物质的组成
成分和空间排布情况决定。影像密度则指照片上模拟影像 的黑化程度,即对光的吸收程度 高密度、低密度、等密度、混杂密度:影像学术语 在CT或X线检查中,以相邻结构作参照,进行兴趣区 密度的判定。传统的X线技术仅以肉眼作大致的分辨,而 CT值:影像学术语。在CT扫描中,X线衰减系数的单位。(CT 图像中兴趣区组织的密度单位)
人 体 不 同 组 织 的 MR 信 号 特 点
黑白灰度对比:X光片、CT均以密度高低为特征 MR图象是以信号高低/强弱为特征
水: 长T1(黑)、长T2(白) 骨皮质、完全性的钙化:黑(无信号)
脂肪:短T1(白)、短T2(暗灰)
肌肉:长T1(黑)、短T2(黑)
血流:常规扫描为流空(黑)
大多数肿瘤:长T1、长T2 黑色素瘤:短T1、短T2
同时段(时相)的“静态”图像,再利用计算机技
术快速、连续显示。例如:关节、心脏等。
正常心脏电影(静态图)
轻看flash
功能MR成像(fMRI):从范围上有
1、灌注加权成像(Perfusion-Weighted Imaging) PWI
包括外源性和内源性。 2、弥散加权成像(Diffusion-Weighted Imaging)DWI 3、MR波谱分析(Magnetic Resonancespectroscopy)MRS
磁 共 振 成像 检 查 方 法
MR检查方法
普通检查:采用不同脉冲序列、不同方位,对 病变部位进行扫描(包括脂肪或水抑制)。
FS
FLAIR(Fluid Attenuated Inversion Recovery)
抑制水的重度T2加权像,也称黑水技术。即抑制 自由水,如脑脊液,对邻近脑脊液病变的显示更 有利。
CT则可获得标定的密度值,即CT值,获得病变密度的定量。
窗技术:影像学术语。包括窗位(窗中心)、窗宽
数字成像使用的后处理技术。人眼密度分辨能力仅16-20
个灰阶,不能同时区分数字影像全灰阶(如CT有2000个灰阶)。 若在数字化影像上以某一灰阶为中心点,使该中心上、下一定
范围内的灰阶作选择性显示(获得病变区最适宜肉眼观察的灰
缩短H质子的T1、T2弛豫 (但T2的缩短不如T1明显) 造影剂入血行——病变组织间隙—— 与病变组织大 分子结合——T1驰豫接近脂肪或Larmor频率———T1缩 短——强化(白),(称间接增强)
影响因素:病变区的血流;灌注;血脑屏障。与血液
内的药浓度不绝对成正比,达一定浓度后不起作用。
特殊检查:
MR检查的限度及存在的问题
某些病变定性困难 MR成像仍相对较长(主要是限于信号采集) 运动伪影 某些部位的血管成像尚需DSA、如冠脉,某些血管
性病变术前的金标准仍借助DSA
引进和检查费用相对昂贵 禁忌症:带心脏起搏器、胰岛素泵、体内金属
假肢、眼球内金属异物,颅内动脉瘤银夹术后 时间较短者
肝囊肿
胆囊颈部及胆总管结石
肝癌
平扫
左肾癌
增强
女,9岁,血尿。
Wilms氏瘤
男,51,无自 觉症状,超声 发现双侧肾上 腺占位病变。
右侧肾上腺嗜铬细胞瘤
男,4岁。左侧肾上腺神经母细胞瘤
多囊肝、多囊肾
4、通过不同方位图像观察,确定病变形态、数量、大小、位置 5、观察病变邻近器官或组织结构有无异常:受压、移位(占位 效应);扩张、增大(失空间效应);破坏或吸收;等等 6、增强扫描观察病变有无强化及强化程度;延迟扫描强化特点
7、综合MR所见,结合临床及其他影像学检查材料作出诊断
常用术语
阴影、密度、回声、信号 增强扫描 强化 高密度、低密度、等密度、混杂密度 高信号、低信号、等信号、混杂信号 占位效应、失空间效应
内源性PWI称血氧水平依赖法(BOLD)简单原理
神经元兴 奋区兴奋 性 兴奋区静脉血 中氧和血红蛋 白相对 去氧血红蛋 白相对 去氧血红蛋白 的顺磁作用, 可使T2*信号
神经元兴奋区 信号相对
由于去氧血 红蛋白的减 少
外源性灌注加权成像PWI:用超快速MR扫描技术,进
行造影剂跟踪,显示造影剂首次通过的组织血流灌注 情况并依需要作延迟增强(常用于脑、心肌的检查) 弥散加权成像DWI:是以MR流动效应为基础的成像
增强检查:静脉内注射造影剂进行扫描,用 于鉴别诊断等。MR所用造影剂与CT的造影剂不
同,除不是碘剂不存在过敏之外,其作用的原
理也不同。
CT造影剂 (碘制剂)
血管丰富程度 血流灌注如何 血液内碘浓度高低 血脑屏障完整与否
直接提高 病变区X线衰减值 (称直接增强)
MR造影剂 (顺磁性物质)是改变病变部位磁环境,
MRS是一种化学位移技术。
均匀磁场中,同种元素的同 一种原子由于其化学结构差 异,拉莫尔频率也不相同, 这种频率差异称化学位移 MRS实际是某种原子的化 学位移分布图。横轴:化学 位移,纵轴:各种具有不同 化学位移原子的相对含量
MR全身一次成像
水知道:答 案
磁 共 振 成 像 主 要 优 点 与 限 度
源于弥散方向性 的张量(ADC’)
本征值 三个本征矢 量的矩阵
弓形纤维的神经束图
弓形纤维
短联合纤维束
胼胝体的神经束图
a
冠状面 (与彩色 编码的FA 图融合)
横断面
矢状面
多神经束的神经束图
胼胝体
上纵束
下纵束
皮质脊髓 束 矢状面 横断面
各神经束可随意标示为各种不同颜色
脑膜上皮型脑膜瘤
何神经束受犯? 良性脑膜瘤瘤? 较大量瘤细胞浸润?
严重不合作者,精神病,危重病人,幽闭恐怖症
怎样阅读常规检查的MR图像
1、熟悉图像上的常用标记:姓名、年龄、日期、左右、层厚以 及增强的标记等 2、仔细观察每一帧图像,目的在于发现疾病或异常的征象 3、当发现病变后,应看其病变在T1加权、T2加权上的信号特
征,是高信号/低信号/等信号/混杂信号/无信号
方法。与MRA不同的是:MRA观察的是宏观的血流现象,
而DWI观察的是微观的水分子流动扩散现象
脑发生缺血时,PWI先有异常,出在6小时内(超急期), 此时溶栓治疗, 疗效最佳;若出现DWI异常时,则易出血; 若T2WI出现病灶时,则为不可逆的。 PWI-DWI-T2WI
脑弥散加权成像(DWI)是使用一对大小相 等、方向相反的扩散敏感梯度场。该梯度场对 静止组织作用的总和为零,但水分子在不断扩