推覆 弹塑性静力分析

合集下载

弹塑性分析在超高层建筑结构设计中的应用探讨

弹塑性分析在超高层建筑结构设计中的应用探讨

弹塑性分析在超高层建筑结构设计中的应用探讨摘要:在当今社会,随着社会经济的发展,建筑行业也在不断发展,并且所建设的楼层也越来越高,其中超高层建筑结构设计能够为人们提供舒适的生活环境,然而,由于超高层建筑的楼层较高,因此在对其进行设计时,对地震防御的设计显得尤为重要。

对于超高层建筑结构设计中的抗震设计而言,具体可以是静力弹塑性分析法,这种方法不仅能够关注到超高层建筑结构的抗震性,而且也能够关注到超高层建筑质量但由于我国对弹塑性分析还存在一些问题,因此,使得弹塑性分析的作用不能充分发挥。

本文则是根据谭弹塑性分析,在超高层建筑结构设计中的应用所进行的探讨,希望能够有效促进超高层建筑结构设计的发展。

关键词:弹塑性分析;超高层建筑结构;应用探讨随着社会经济的发展,城镇化水平在不断提高,因此,城市能够建设的空间也在不断减少,面对这一现象,城市在进行建设时会选择超高层建筑,这样不仅能够扩大人们的生存空间,而且也能够有效缓解土地问题。

然而,在对超高层建筑进行建设时,也存在一些问题,其中最主要的问题就是建筑结构的稳定性。

在进行建设时,不仅要保证施工技术等资源的应用质量,而且也要促进施工与设计环节的契合性,进而解决在建筑过程中所遇到的问题。

一、提升超高层建筑结构设计稳定性的重要性随着社会经济的发展,城镇化水平的发展,城市建设逐渐向超高层建筑结构设计发展。

而建筑超高层发展能够有效缓解中低层建筑的密集拥堵问题。

这也在一定程度上对建筑结构的稳定性提出了更高的要求。

如果建筑结构无法保证稳定性,那么在后期就可能会对人们的生命财产安全造成影响。

为了能够有效保证建筑结构的稳定性,施工人员可以采用弹塑性分析技术,这样不仅能够对施工技术和材料的使用进行优化,而且也能够有效促进超高层结构建设稳定性的提高。

另外,在具体的建设过程中,工作人员也要对地震灾害所产生的影响进行重视,并把其考虑到建设中,进而促进超高层建筑结构稳定性的提升。

二、弹塑性分析技术概述弹塑性分析技术从本质上来讲就是从建筑结构变化角度展开分析,通过对建筑结构施加外在应力,进而判断建筑结构是否具有稳定性。

建筑弹塑性分析PUSHOVER

建筑弹塑性分析PUSHOVER

2.需求谱法
结构抗震性能需求谱是在给定地震作用下, 不同周期结构的承载力和位移响应的需求 值。
先将能力曲线转化为A-D格式,能力谱曲线
将不同的周期结构的加速度响应需求Sa和位
移响应需求Sd也在A-D坐标系下给出,由此得
到的Sa-Sd关系曲线即为需求谱。对于弹性结
构,弹性谱加速度需求Sa可以采用地震弹性
其中 Dntqnt/,n D表n 示t 一个对应原结构
第n阶振型的单自由度体系在地震作用 下u g ( t ) 的位移响应,圆频率和阻尼比分别为 和 n 。
从而可n 求得结构第n阶振型的位移,内力,层
间位移等。
对前N阶振型都采用上述方法求算其最大响应 量,并采用某种方法进行组合(SASS法或 CQC法)—振型分解反应谱法。
Fass
T
ass
fs(D,signD)
aTssm ;对于地震响应由结构振型
向 量量成正控a s 比s制a s的s的荷弹载塑进性行结推构覆,,仍即采:用振型sa向ss mass
得到
Fass
Vb Mass
uroof
,DБайду номын сангаасass
roof ass
u u V
V
b
基底剪力, r o o顶f 点位移。 — r o 的o f 关系曲线称为
b
“结构的能力曲线”。或“推覆曲线”
为便于评价结构抗震性能是否达到要求,还
可以按照单阶振型反应谱法将推覆曲线上
各店的承载力和位移转化为谱加速度与谱 位移的关系曲线,得到结构的能力谱曲线,
即 S a S格d 式能力谱曲线。
Sa
Vb M
,
Sd
uroof
roof

某超高层建筑静力弹塑性推覆分析

某超高层建筑静力弹塑性推覆分析

某超高层建筑静力弹塑性推覆分析发布时间:2022-05-09T06:47:26.924Z 来源:《工程建设标准化》2022年37卷1月2期作者:朱伟锋[导读] 此项目位于广东省中山市,地下1层,地上共32层,总高度144.6m朱伟锋工程概况:此项目位于广东省中山市,地下1层,地上共32层,总高度144.6m,结构类型为部分框支剪力墙结构,其中第2层楼面为转换层楼面。

场地抗震设防烈度为7度,设计分组为第1组,设计基本地震加速度为0.10g,场地类别为Ⅲ类。

抗震等级:三层及三层以下为一级,三层以上为二级。

建筑物标准层结构布置如下图所示:分析模型与计算假定:分析软件采用中国建筑科学研究院的多高层建筑结构弹塑性静力、动力分析软件PUSH 。

PUSH程序是一个完全三维的有限元空间弹塑性静力分析程序,非线性梁(柱)构件单元采用标准的有限元方法(微观方法)构造,单元切线刚度直接基于混凝土材料微元和钢筋材料微元的本构关系,这种模型通常被称为纤维束模型。

非线性墙单元面内刚度采用平面应力膜,可考虑开洞,面外刚度相对次要,用简化的弹塑性板元考虑。

对于本构模型,混凝土受压考虑SAENZ曲线,忽略混凝土受拉能力;钢筋采用理想弹塑性曲线。

PUSH分析参数设置如下图所示:强度准则:采用构件承载力极限值进行计算,材料强度取平均值。

根据《混凝土结构设计规范》(GB50010-2010(2015版))附录C第C.1.1条,取钢筋,混凝土强度变异系数分别为0.06,0.10,则混凝土强度fm/fk=1.20,钢筋强度fm/fk=1.10。

参考广东省标准《建筑工程混凝土结构抗震性能设计规程》(DBJ/T 15-151-2019)附录D第D.3.1条的Kent-Scott-Park模型及常规Mander 模型,对于约束混凝土强度延性提高系数,取1.20。

参考美国应用技术委员会编制的《混凝土建筑抗震评估和修复》(ATC-40),构件塑性铰的位移限值如图1。

结构抗震静力弹塑性分析方法(Pushover)的研究与改进的开题报告

结构抗震静力弹塑性分析方法(Pushover)的研究与改进的开题报告

结构抗震静力弹塑性分析方法(Pushover)的研究与改进的开题报告一、研究背景随着建筑结构设计的发展,抗震设计成为其中的重点和难点。

为了保障建筑安全,结构的抗震能力得到了越来越广泛的重视。

在结构抗震设计中,抗震静力弹塑性分析方法(Pushover)已经成为全球广泛使用的一种分析方法。

该方法根据结构某一方向施加分布荷载,通过对结构力学性能的分析,评估结构抗震能力。

二、研究目的与意义随着现代建筑的不断发展,建筑的结构形式日益复杂。

在这种情况下,传统的计算方法已经不能满足抗震设计的需求。

因此,本研究旨在对抗震静力弹塑性分析方法进行研究和改进,扩充其适用范围,提高其计算精度和效率,以更准确地评估结构的抗震能力。

三、研究内容1. 国内外相关研究的调研和综述,对Pushover分析方法的基本原理和步骤进行总结和阐述。

2. 提出一种结构抗震静力弹塑性分析方法的改进方案,探讨在模型参数、荷载模拟、材料本构关系等方面的改进思路。

3. 基于实际工程,使用所提出的改进方法对不同类型的建筑结构进行抗震分析,评估其抗震能力。

4.设计和编写Pushover分析方法改进程序,验证改进方案的正确性和有效性。

四、预期成果和考核指标本研究旨在对抗震静力弹塑性分析方法进行改进研究。

主要的预期成果包括:1.提出一种结构抗震静力弹塑性分析方法的改进方案,改进方案应能够在某些方面比传统的方法更加准确和高效。

2.通过实际工程评估所提出的改进方法的优缺点,验证其适用性和实用性。

3.设计和编写Pushover分析方法改进程序,展示改进方案的正确性和有效性。

预计的考核指标包括:论文的质量、研究方法是否合理、研究成果是否能够达到预期目标、研究结果的可重复性和实用性。

五、研究步骤与进度安排1.查阅相关文献,了解国内外关于结构抗震静力弹塑性分析方法的研究现状和进展,设计改进方案。

预计用时2周。

2.对所提出的改进方案进行模拟,并对改进方案中涉及的各项参数进行详细分析研究。

静力弹塑性分析方法与与动力弹塑性分析方法的优缺点

静力弹塑性分析方法与与动力弹塑性分析方法的优缺点

静力弹塑性分析方法与与动力弹塑性分析方法的优缺点Pushover)分析法1、静力弹塑性分析方法(Pushover)分析法优点:(1)作为一种简化的非线性分析方法,Pushover方法能够从整体上把握结构的抗侧力性能,可以对结构关键机构及单元进行评估,找到结构的薄弱环节,从而为设计改进提供参考。

(2)非线性静力分析可以获得较为稳定的分析结果,减小分析结果的偶然性,同时花费较少的时间和劳力,较之时程分析方法有较强的实际应用价值。

2、静力弹塑性分析方法(Pushover)分析法缺点:(1)它假定所有的多自由度体系均可简化为等效单自由度体系,这一理论假定没有十分严密的理论基础。

(2)对建筑物进行Pushover分析时首先要确定一个合理的目标位移和水平加载方式,其分析结果的精确度很大程度上依赖于这两者的选择。

(3)只能从整体上考察结构的性能,得到的结果较为粗糙。

且在过程中未考虑结构在反复加载过程中损伤的累积及刚度的变化。

不能完全真实反应结构在地震作用下性状。

二、弹塑性时程分析法1、时程分析法优点:(1)采用地震动加速度时程曲线作为输入,进行结构地震反应分析,从而全面考虑了强震三要素,也自然地考虑了地震动丰富的长周期分量对高层建筑的不利影响。

(2)采用结构弹塑性全过程恢复力特性曲线来表征结构的力学性质,从而比较确切地、具体地和细致地给出结构的弹塑性地震反应。

(3)能给出结构中各构件和杆件出现塑性铰的时刻和顺序,从而可以判明结构的屈服机制。

(4)对于非等强结构,能找出结构的薄弱环节,并能计算出柔弱楼层的塑性变形集中效应。

2、时程分析法缺点:(1)时程分析的最大缺点在于时程分析的结果与所选取的地震动输入有关,地震动时称所含频频成分对结构的模态n向应有选择放大作用,所以不同时称输入结果差异很大。

(2)时程分析法采用逐步积分的方法对动力方程进行直接积分,从而求得结构在地震过程中每一瞬时的位移、速度和加速度反应。

所以此法的计算工作十分繁重,必须借助于计算机才能完成。

浅谈静力弹塑性分析(Pushover)的理解与应用

浅谈静力弹塑性分析(Pushover)的理解与应用

浅谈静力弹塑性分析(Pushover )的理解与应用摘要:本文首先介绍采用静力弹塑性分析(Pushover )的主要理论基础和分析方法,以Midas/Gen 程序为例,采用计算实例进行具体说明弹塑性分析的步骤和过程,表明Pushover 是罕遇地震作用下结构分析的有效方法。

关键词:静力弹塑性 Pushover Midas/Gen 能力谱 需求谱 性能点一、基本理论静力弹塑性分析方法,也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种静力分析方法,在一定精度范围内对结构在罕遇地震作用下进行弹塑性变形分析。

简要地说,在结构计算模型上施加按某种规则分布的水平侧向力或侧向位移,单调加荷载(或位移)并逐级加大;一旦有构件开裂(或屈服)即修改其刚度(或使其退出工作),进而修改结构总刚度矩阵,进行下一步计算,依次循环直到控制点达到目标位移或建筑物倾覆为止,得到结构能力曲线,之后对照确定条件下的需求谱,并判断是否出现性能点,从而评价结构是否能满足目标性能要求。

Pushover 分析的基本要素是能力谱曲线和需求谱曲线,将两条曲线放在同一张图上,得出交会点的位移值,同位移容许值比较,检验是否满足特定地震作用下的弹塑性变形要求。

能力谱曲线由能力曲线(基底剪力-顶点位移曲线)转化而来(图1)。

与地震作用相应的结构基底剪力与结构加速度为正相关关系,顶点位移与谱位移为正相关关系,两种曲线形状一致。

其对应关系为:1/αG V S a =roofroof d X S ,11γ∆=,图1 基底剪力-顶点位移曲线转换为能力谱曲线其中1α、1γ、roof X ,1分别为第一阵型的质量系数,参与系数、顶点位移。

该曲线与主要建筑材料的本构关系曲线具有相似性,其实其物理意义亦有对应,在初始阶段作用力与变形为线性关系,随着作用力的增大,逐渐进入弹塑性阶段,变形显著增长,不论对于构件,还是结构整体,都是这个规律。

需求谱曲线由标准的加速度响应谱曲线转化而来。

Pushover分析(弹塑性分析)

Pushover分析(弹塑性分析)

Pushover曲线 能力谱加速度Sa 基底剪力Vb
能力谱曲线
V Sa G1
(Sdt,sat)
Sd
top
1 X top ,1
顶点位移Dt
能力谱位移Sd
有效质量比
1
[ (Gi X i1 ) / g ]2
i 1
n
Sd T 2 Sa G
Gi 为结构第i楼层重量
[ Gi / g ][ (Gi X i2 1) / g]
Push-over的基本问题可以概括为三个方面:
如何求得结构的能力曲线? 如何确定结构的目标位移? 如何对计算结果进行评价?
结构能力曲线的计算包括两个方面的主要内容 一 计算模型的建立 二 侧向力的分布形式
结构计算模型—纤维模型
基于平截面假定,将梁柱的内力-变形关系转化成混凝土与钢 筋的单轴应力-应变关系。
为阻尼修正系数,取0.3~1.0
ED为阻尼所消耗的能量(图中虚线部分平行四边形的面积) EE为最大应变能(图中斜线阴影部分的三角形的面积)
Sa A1 A2 T 能力谱曲线 Sa api ay T 能力谱曲线 P EE
P
dy Sd ED
dpi
Sd
用双线型代替能力谱曲线的条件:A1=A2
Teq
T 1
T 2 Sdp Sd ( ) Sa R R 2
R表示由于结构的非弹性变 形对弹性地震力的折减系数
R ( 1) T 1 T T0 T0

R T T0
T0 0.65 0.3Tg Tg
采用Push-over方法对 抗震性能进行评估
最简单的方法是直接得到目标位移点(性能点)与结构的能力曲线。 得到性能点后,经过转化可以得到能力曲线上相应的点,能力曲线上的每 一个点都对应着结构的一个变形状态。根据性能点对应的变形,可以对结 构进行以下方面的评价:顶点侧移和层间位移角是否满足抗震规范规定的 位移限值;构件的局部变形(指梁、柱等构件的塑性铰变形),检验他是 否超过建筑某一性能水平下的允许变形;结构构件的塑性铰分布是否构成 倒塌机构。

静力弹塑性分析方法

静力弹塑性分析方法

静力弹塑性分析方法(pushover法)的确切含义及特点结构弹塑性分析方法有动力非线性分析(弹塑性时程分析)和静力非线性分析两大类。

动力非线性分析能比较准切而完整的得出结构在罕遇地震下的反应全过程,但计算过程中需要反复迭代,数据量大,分析工作繁琐,且计算结果受到所选用地震波及构件恢复力和屈服模型的影响较大,一般只在设计重要结构或高层建筑结构时采用。

静力弹塑性分析方法,是对结构在罕遇地震作用下进行弹塑性变形分析的一种简化方法,从本质上说它是一种静力分析方法。

具体地说,就是结构计算模型上施加按某种规则分布的水平侧向力,单调加载并逐级加大;一旦构件开裂(或屈服)即修改其刚度(或使其推出工作),进而修改结构总刚度矩阵,进行下一步计算,依次循环直到结构达到预定的状态(成为机构、位移超限或达到目标位移),从而判断是否满足相应的抗震能力要求。

静力弹塑性分析方法(pushover法)分为两个部分,首先建立结构荷载-位移曲线,然后评估结构的抗震能力,基本工作步骤为:第一步:准备结构数据:包括建立模型、构件的物理参数和恢复力模型等;第二步:计算结构在竖向荷载作用下的内力。

第三步:在结构每层质心处,沿高度施加按某种规则分布的水平力(如:倒三角、矩形、第一振型或所谓自适应振型分布等),确定其大小的原则是:施加水平力所产生的结构内力与第一步计算的内力叠加后,恰好使一个或一批构件开裂或屈服。

在加载中随结构动力特征的改变而不断调整的自适应加载模式是比较合理的,比较简单而且实用的加载模式是结构第一振型。

第四步:对于开裂或屈服的杆件,对其刚度进行修改,同时修改总刚度矩阵后,在增加一级荷载,又使得一个或一批构件开裂或屈服;不断重复第三、四步,直到结构达到某一目标位移(当多自由度结构体系可以等效为单自由度体系时)或结构发生破坏(采用性能设计方法时,根据结构性能谱与需求谱相交确定结构性能点)。

对于结构振型以第一周期为主、基本周期在2s以内的结构,pushover方法能够很好地估计结构的整体和局部弹塑性变形,同时也能揭示弹性设计中存在的隐患(包括层屈服机制、过大变形以及强度、刚度突变等)。

pushover分析

pushover分析
载和变振型加载。
(a)倒三角形加载
(b)抛物线加载
(c)均匀加载
(d)变振形加载
由于在一种固定荷载分布方式作用下不可能预测结构构件的各种变 形情况,因此建议至少用两种固定的侧向荷载分布方式来进行弹塑性分 析。较低的结构可采用倒三角形加载和基本振形加载方式中的一种,与 均匀加载组成两种加载方式; 高层结构可采用基本振形加载,与均匀加 载或变振型加载方式中的一种组成两种加载方式。
00.1
(Tg T
)
2max
[20.21(T5Tg)]max
T (s)
Tg
5T g
6.0
目标位移的确定
等效单自由度体系的周期为
Teq 2
M 2
K
xyrMr Qyr
当结构进入塑性阶段以后,结构的固有黏滞阻尼及滞回阻尼会导 致结构在运动过程中产生耗能的作用,因此需要对需求谱进行折减。
eqe 0
0
ED 4EE
(d)变振形加载
变振型加载(自适应加载,SRSS法) 利用前一步加载获得的结构周期与振型,采用振型分解反应谱法确定
结构各楼层的层间剪力,再由各层层间剪力反算出各层的水平荷载,
作为下一步施加的水平荷载模式,考虑了地震过程中结构上惯性力的
分布,比较合理但工作量大为增加。
(3)随着侧向荷载的增加,结构薄弱部位的构件达到屈服,此时对屈 服的构件的刚度予以修正,然后继续增加侧向荷载直至有新的构件屈服。 1: 将已达到抗弯强度的梁、柱、剪力墙等受弯构件的末端设置为铰接点; 2: 将楼层上已达到抗剪强度的剪力墙去掉; 3: 将已经屈曲、且屈曲后强度下降很快的支撑构件去掉; 4: 对于那些刚度己降低,但可承受更多荷载的构件,则修改其刚度特性。
Sa Vb

浅析静力弹塑性(pushover)分析

浅析静力弹塑性(pushover)分析

1 概述
为 了 满 足 《建 震 设 计 规 范》
(GB50011- 2001)中“小震不坏,中震可修,大震
不倒”的抗震设防目标,设计人员需要了解结构
从小震作用下的弹性状态逐步随着地震作用的
增大而进入弹塑性状态,即结构在(设防烈度地
震)和大震作用下的工作性能,并采用适当的抗
震措施以保证结构的抗震性。对结构进行罕遇
-10-
建筑工程
建筑的可持续发展
刘 闻 张伟健 (黑龙江省建筑设计研究院,黑龙江 哈尔滨 150008)
摘 要“: 可持续发展”是建筑设计师面临的新的挑战,也是建筑现代化所不可回避的问题。现从绿色建筑和生态建筑两方面论述“可持续发展” 在设计中的体现,并提出一些设想。
关 键 词 :可持续发展;绿色建筑;生态建筑;自然环境;减少污染
Sd 为横坐标的新的地震影响系数曲线,即为静
由结构的性能点,可得相应结构的顶点位
力弹塑性分析法中的地震作用需求谱。
移,相应的结构各层变形即反映结构在罕遇地
2.2 建立能力谱
震下各层的位移。计算结构层间位移角,与规范
在等效于地震作用的某种水平力作用下, 要求对比,判断结构是否满足分析,直 结构塑性铰的分布,判断结构薄弱层所在。
进行弹塑性变形分析的一种简化方法与反应谱
法类似,本质上是一种用静力来模拟地震力的
分析方法。具体地说,就是在结构计算模型上施
加按某种规则分布的水平侧向力 (例如按振型
分解反应谱法计算得出的水平地震力),单调加
载并逐级加大;一旦有构件开裂(或屈服)则修
改其刚度(或使其退出工作),进而修改结构总
刚度矩阵,进行下一步计算,依次循环直到结构
科技论坛
浅析静力弹塑性(p u sh o ver)分析

midas-gen钢筋混凝土结构静力弹塑性推覆分析解读

midas-gen钢筋混凝土结构静力弹塑性推覆分析解读

7、3 Pushover图形-层间位移角
最大弹塑性层 间位移角,判 断是否满足 《建筑抗震设 计规范》5.5.5 条或高规4.6.5 条要求
7、4 铰状态表格统计
根据出铰情况判断结构的抗震性能
最大弹塑性层 间位移角,判 断是否满足 《建筑抗震设 计规范》5.5.5 条或高规4.6.5 条要求
7、5 塑性铰状态过程显示
最大迭代/增幅步骤数:
在每次荷载增幅中输入最大迭代次数, 以此为满足结构的平衡条件而进行重复的分 析。
收敛标准:
指定一个容许极限收敛值。如果累加误 差在这个收敛值范围内,则迭代及相应的分 析步骤在达到设定的最大值前将停止迭代且 继续进行随后的分析步骤。
4、定义铰特性值
定义梁铰为弯矩-Y,Z(弯矩铰); 柱铰为P-My-Mz(轴力弯矩铰); 墙铰为P-My-Mz(轴力弯矩铰); 相关有限元理论可参考MIDAS技术手册2关于“静力弹塑性分析”内容
MIDAS/Gen 培训资料
静力弹塑性分析
分析目的
---曲线的性能控制点 ---层间剪力 ---大震作用下的弹塑性层间位移角 ---出铰状态
操作步骤
---静力分析后进行配筋设计,并更新配筋 ---定义铰特性值,并分配铰 ---定义静力弹塑性分析控制 ---定义静力弹塑性分析工况 ---查看静力弹塑性分析结果
分析 模型 柱: 500x500
主梁: 250x600 混凝土: C30 剪力墙: 250 层高: 一层:4.5m
二~九层 :3.6m 设防烈度:7º(0.10g) 场地: Ⅱ类
六层钢筋混凝土框-剪结构
0、建模及进行静力分 析
步骤同“钢筋混凝土结构抗震分析及设计”
1、更新配筋(方法1:利用程序配筋设计的结果)

静力弹塑性分析方法Push-over

静力弹塑性分析方法Push-over

静力弹塑性分析方法Push-overPush-over从字面可以理解为推-覆,即对结构进行侧推。

为何进行侧推呢?对结构的侧推(pushover)目的是为了估计结构的抗震能力。

在解释通过侧推来评估结构抗震能力之前,先来看一下《抗震设计规范》中采用线弹性反应谱的方法来估计结构抗震能力有何不足?《抗震设计规范》中采用线弹性反应谱的方法,在一定场地条件下对线弹性结构进行反应估计,再进行结构设计。

而整个的设计过程中,对结构的假定都是线弹性的。

而结构在振动过程中会出现塑性状态,此状态可以减小地震作用并同时具有耗能的作用,因此,对结构的抗震能力评估需要考虑结构的塑性状态。

若仿照《抗震设计规范》中采用线弹性反应谱方法,来考虑结构的弹塑性状态,会遇到两个问题:一个是非线性结构难以转化为单自由度体系;二是线弹性反应谱不再适用,需要建立非线性结构反应谱。

而针对这两个问题,在Pushover分析中是分别通过建立能力谱和需求谱来解决的。

能力谱简单的说是通过单自由度体系力与位移关系来反映多自由度结构弹塑性特性的曲线。

更确切地说是通过单自由度体系受侧向集中水平力得到的力与位移关系,来描述多自由度结构受到侧向推力得到的顶层位移与基地剪力的关系,从而诠释了推覆的含义。

然后仅通过推覆得到的能力谱,是难以评估结构的抗震能力的。

原因在于能力谱虽然能够反映了结构本身的弹塑性特点,比如侧向刚度大小,屈服强度等。

然而能力谱不能反映出地震特性,因此需要建立需求谱。

需求谱如设计规范中的弹性反应谱一样,反映不同周期结构在某类场地作用下的最大反应。

然而弹性反应谱难以描述结构弹塑性特性,主要在于弹性反应谱没有考虑弹塑性结构屈服时的屈服点,以及屈服后刚度。

需求谱考虑了结构的弹塑性特点,将弹性反应谱通过折减及变换,得到弹性需求谱。

为了考虑地震场地特性,将能力谱与需求谱画于同一图中,相交的点为性能点,如下图:性能点反映了具有特定周期、特定屈服强度与延性等特点的弹塑性结构在某种场地条件下的抗震能力。

浅谈静力弹塑性pushover分析方法

浅谈静力弹塑性pushover分析方法

浅谈静力弹塑性pushover分析方法摘要:Pushover分析方法是逐渐得到广泛应用的一种评估结构抗震性能的简化方法,已被引入我国新的建筑结构抗震设计规范。

侧向力分布模式的选取是pushover分析中的一个关键问题,它的选取直接影响pushover分析的结果。

本文主要综述了pushover分析方法的原理、应用和实施过程,pushover分析中侧向力分布模式及其影响,对结构设计提供借鉴。

关键词:pushover;侧向力分析分布模式1、引言结构抗震非线性时程分析方法能真实地反映结构在地震作用下的破坏机制及构件的塑性破坏过程,但其计算过程复杂,在实际工程的应用中还较难推广。

Pushover分析乃是一种结构非线性地震反应的简化方法,易为广大工程设计人员所接受。

2、pushover分析方法的原理、应用和实施过程2.1pushover分析方法的原理和应用Pushover方法从本质上说是一种静力分析方法,即对结构进行静力单调加载下的弹塑性分析。

具体地说,在结构分析模型上施加按某种方式模拟地震惯性力的侧向力,并逐级单调加大,构件如有开裂或屈服,修改其刚度,直到结构到达预定的状态(成为机构、位移超限或达到目标位移)。

Pushover方法可用于建筑物的抗震鉴定和加固,及对新建结构的抗震设计和性能的评估,也可以对所设计的地震运动作用在结构体系和它的组件上的抗震需求提供充足的信息;在结构可靠性设计中,通过pushover分析来确立结构极限承载力的初始设计值;利用pushover分析法来检测结构的抗震性能并由此相应调整结构设计,使之满足抗震要求;对结构进行pushover分析,可得层间剪力—层间位移曲线,即该结构的剪切层的层间滞回曲线的骨架线,将其折线化为合理的恢复力模型,即可进行层模型的弹塑性时程分析。

2.2pushover分析方法的实施步骤(1)准备结构数据:包括建立结构模型,构件的物理常数和恢复力模型等;(2)计算结构在竖向荷载作用下的内力(将其与水平力作用下的内力叠加,作为某一级水平力作用下构件的内力,以判断构件是否开裂或屈服);(3)施加一定量的水平荷载。

23静力弹塑性说明手册

23静力弹塑性说明手册
但静力弹塑性分析概念清晰,便于工程师理解,且结果整理相对容易,而且静力弹塑性 具有以下优点:
不用选择地震波,推覆荷载采用倒三角、等加速度、振型组合荷载。省去了选择合适地 震波的工作。
可以一次性得到屈服及屈服后的结构性能,结构性能水准及安全储备查看方便、直观。 而动力弹塑性需输入不同的地震动峰值加速度做多次计算后才能做出评价。 工程师可以依据工程具体特征选用弹塑性分析方法。
2.5 能力/需求曲线
在能力/需求曲线菜单中可查看各推覆分析工况的能力曲线与谱曲线。 选择任意工况后,点击应用按钮,弹出该推覆工况下的结构顶层节点位移与基底剪力曲 线,即能力曲线。顶层节点为距离顶层质心最近的节点。
顶层节点位移-基底剪力曲线 将能力曲线与规范谱曲线(地震影响系数曲线)经变换后,由能力谱法计算求取结构在 某地震水平下的性能点。变换前的能力曲线为顶层位移(mm)-基底剪力(kN)关系曲线, 规范谱曲线为周期(s)-影响系数(m/ s^2)关系曲线,变换后的曲线称之为能力谱曲线和 需求谱曲线,能力谱曲线和需求谱曲线均以谱位移 Sd 为横坐标(m)、谱加速度为纵坐标 ((m/s^2),变换后曲线的交点为结构性能点,或者称之为需求位移点(求解过程见第 3 节)。
容许不收敛: 即使迭代求解次数达到最大迭代次数值,软件也不停止计算。而是继续下一个加载步, 本步的残余力累积到下一个荷载步。 停机条件: 通常情况下,如果任何一个楼层的位移角超过正常范围较多时,再往下进行求解已经没 有太大意义,此时应及时停止计算,检查模型后再重新计算。默认值为 1/5,工程师可以根 据经验自行修改。
式中:
γ1
=
∑������������=1(������������ ������������������ ) ∑������������=1(������������ ���������2��������� )

静力弹塑性Pushover分析方法在高层建筑结构中的应用共3篇

静力弹塑性Pushover分析方法在高层建筑结构中的应用共3篇

静力弹塑性Pushover分析方法在高层建筑结构中的应用共3篇静力弹塑性Pushover分析方法在高层建筑结构中的应用1静力弹塑性Pushover分析方法是一种在高层建筑结构中广泛应用的结构分析方法,它可以用于评估建筑物的破坏机制和耐震性能,并为施工和维护提供有用的指导和建议。

本文将详细介绍该方法的原理和应用。

Pushover分析方法基于弹塑性理论,可以很好地模拟结构的非线性特性,并预测其塑性极限以及峰值位移。

该方法在分析中采用了非常简便的工具,比如一维曲线(Capacity Curve)和位移时程,因此可以更好地理解分析结果。

Pushover分析方法通常在进行性能评估时使用,其主要目标是确定结构的破坏机制。

该方法通常包括以下步骤:1.建立结构的有限元模型在进行Pushover分析之前,需要建立结构的有限元模型。

有限元模型必须准确地描述结构的几何形状、材料属性和边界条件。

通常情况下,有限元模型是由保密的BUILDING INFORMATION MODELING(BIM)或其他建模软件生成。

2.确定结构的荷载模型在确定荷载模型时,需要考虑结构所受的地震、风荷载和重力荷载等因素。

在进行Pushover分析之前,需要将自重和其它固定荷载先施加在结构上,然后再考虑施加的横向载荷。

3.确定分析属性分析属性是指用于模拟结构响应的材料模型、纵横向构型变化以及分析强度等因素。

静力弹塑性Pushover分析采用材料的弹性模量及屈服强度,在结构滞回曲线上用刚度和残余形变表达了结构的非线性本质。

4.进行Pushover分析进行Pushover分析时,需要使用一种称为Capacity Curve的曲线来描述结构的响应。

该曲线可以通过在结构中逐步增加侧向荷载来构建。

在每个荷载步长上,都会根据结构的强度、刚度和残留形变来计算结构的响应。

通过计算位移和弧度等参数,可以建立结构的Capacity Curve。

5.进行破坏模式分析通过Capacity Curve,可以确定结构的塑性极限和层间的响应状况。

静力弹塑性分析在ETABS程序中的应用参数设

静力弹塑性分析在ETABS程序中的应用参数设
4
静力推覆分析的适用范围 ✓什么情况下需要考虑使用静力推覆分析? ✓这种方法过时了吗?
5
静力推覆分析的适用范围
高度?
6
静力推覆分析的适用范围
难度?
7
静力推覆分析的适用范围
✓什么情况下需要考虑使用静力推覆分析? 一般认为:超A级高度建筑、或者特别不规则建筑、或者 存在高位错层转换等明显薄弱部位的一般不规则建筑, 均需要做弹塑性分析。 ✓这种方法过时了吗?是否一使用动力弹塑性时程分析静 力推覆分析就靠边站了呢? 否
(3)杆构件塑性铰定义中的参数——程序默认P-MM铰参数与设计
值的差异 按我国规范——独立设计的构件截面P-MM参数
800x800,1%
Nmax=15379 kN
18000
N-M相关曲线
Mmax=1714 kN.m
15000
800X800-C50
12000
N-值 kN
右图按GB50010-2002 由此能得到更加贴近我国实情的 P-MM包络线
因此按实算P-M输入为宜
9000 6000
3000
0 0
500
1000 1500 2000
M-值 kN.m
23
ETABS中推覆分析的参数 及其设置方法
(3)杆构件塑性铰定义中的参数——M铰参数 300x500,C30, ρ端部=1.2%(支座顶筋); ρ端部=0.52%(支座底筋) ETABS默认铰结果: Mpos=95.1 kN.m Mneg=155.1 kN.m ETABS设计结果:
30
C20
C30
25
C35
C40
C50
C60
20
C70
15

10

1-钢筋混凝土静力弹塑性推覆分析

1-钢筋混凝土静力弹塑性推覆分析
21
例题 钢筋混凝土静力弹塑性推覆分析
13.荷载组合
主菜单选择 结果>组合>荷载组合: 一般组合:用于查看内力变形等,一般组合中有包络组合 混凝土设计:用于结构设计部分组合 点击自动生成 设计规范:GB50010-10
注: 1. 考虑双向地震, 勾选双向地震“考 虑正交结果”,程序 会在荷载组合中自 动添加。 2.用户亦可自定义 所需的荷载组合, 先在左侧名称一栏 定名称,在右侧选 择荷载工况和组合 系数。
例题 钢筋混凝土静力弹塑性推覆分析
10.定义结构类型
主菜单选择 结构>类型>结构类型: 三维分析,地震荷载作用方向 结构类型:3-D (三维分析) 将结构的自重转换为质量:转换到 X、Y (地震作用方向)
注: 当只考虑水平向 地震作用的时候,转 换到 X、Y 方向;需要 考虑竖向地震分析的 话,要转换到 X、Y、Z 三个方向上。
2
例题 钢筋混凝土静力弹塑性推覆分析
1.简介
本例题介绍使用 midas Gen 的静力弹塑性分析功能来进行抗震设计的方法。例题模
型为九层钢筋混凝土框-剪结构。(该例题数据仅供参考)
基本数据如下:
轴网尺寸:见平面图
柱:
500mmx500mm
主梁: 250mmx600 mm
混凝土: C30
图 23 定义结构类型
20
例题 钢筋混凝土静力弹塑性推覆分析
11.定义质量
主菜单选择 荷载>静力荷载>结构/质量>节点质量>将荷载转换成质量 质量方向:X,Y 荷载工况:DL LL 组合系数:1.0 0.5
注:此处转换的荷 载不包括自重。
图 24 荷载转换成质量
12.运行分析

midas Gen-钢筋混凝土静力弹塑性推覆分析

midas Gen-钢筋混凝土静力弹塑性推覆分析

例题钢筋混凝土静力弹塑性推覆分析2 例题. 钢筋混凝土静力弹塑性推覆分析概要此例题介绍使用midas Gen 的反应谱分析功能来进行钢筋混凝土结构分析的方法。

此例题的步骤如下:1.简介2.设定操作环境及设定材料截面3.用建模助手建立模型4.建立框架柱及剪力墙5.楼层复制及生成层数据文件6.定义边界条件7.输入楼面及梁单元荷载8.输入风荷载9.定义质量10.运行分析11.荷载组合12.一般设计参数13.钢筋混凝土构件设计参数14.钢筋混凝土构件设计15.静力弹塑性分析例题 钢筋混凝土静力弹塑性推覆分析31.简介本例题介绍使用midas Gen 的静力弹塑性分析功能来进行抗震设计的方法。

例题模型为九层钢筋混凝土框-剪结构。

(该例题数据仅供参考) 基本数据如下: 轴网尺寸:见平面图柱: 500mmx500mm 主梁: 250mmx600 mm 混凝土: C30 剪力墙: 250mm图2 分析模型例题钢筋混凝土静力弹塑性推覆分析4 2.设定操作环境及定义材料和截面1.主菜单选择文件>新项目文件>保存:输入文件名并保存2.主菜单选择工具>设置>单位系:长度 m, 力 kN图3 定义单位体系3.主菜单选择特性>材料>材料特性值:添加:定义C30混凝土材料号:1 数据库:C30 规范:GB10(RC)例题 钢筋混凝土静力弹塑性推覆分析5图4 定义材料4.主菜单选择 特性>截面>截面特性值:添加:定义梁、柱截面尺寸例题钢筋混凝土静力弹塑性推覆分析6图5 定义梁、柱截面5.主菜单选择特性>截面>厚度:添加:定义剪力墙厚度图6 定义剪力墙厚度例题 钢筋混凝土静力弹塑性推覆分析73.使用建模助手建立模型主菜单选择 结构>建模助手>基本结构>框架:输入:添加X 坐标,距离6,重复5;添加Z 坐标,距离6,重复3;编辑: Beta 角,90度;生成框架 材料:C30; 截面:250*600插入:插入点,0,0,0;Alpha ,-90。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PUSHOVER 弹塑性静力分析
PUSHOVER应用背景
结构遭受强震作用后,一般将进入弹塑性状态。 为了满足结构在大震作用下的抗震要求,有必要对结 构进行弹塑性变形验算。 近年来,静力弹塑性分析(pushover analysis)作为 对新结构进行抗震设计或对现有结构进行抗震能力评 价的新方法,以其概念清楚,实施相对简单,同样能 使设计者在某种程度上了解结构在强震作用下的弹塑 性反应的特点,在国外得到了广泛的应用。
PUSHOVER分析原理
pushover方法卞要用于对现有结构或设计方案进行抗侧能力的计算,对结 构的抗震性能进行评估,自从基于位移胜能的抗震设计理论提出之后,该方 法的应用范围逐渐扩大到对新建建筑结构的弹塑性抗震分析。这种方法实质 上是一种静力非线性计算方法,与传统的抗震静力计算方法不同之处在于它
PUSHOVER分析的两个假设
pushover分析方法一般基于以下两个假定: (1)结构(一般为多自由度体系MDOF )的反应与该结构的等效单自由 度体系(SDOF)的反应是相关的,这表明结构的反应仅由结构的第 一振型控制。 (2)在每一加载步内,结构沿高度的变形由形状向量{Φ}表示,在这一 步的反应过程中,不管变形大小形状向量{Φ}保持不变。 严格说来,这两个假定是不完全准确的,但是研究说明,这些假定能 够很好地预测多自由度体系的地震反应,并且这些地震反应确实是由第 一振型控制的(尤其是对于基本周期小于1s的结构)。
考虑了结构的弹塑性性能并将设计反应谱引入了计算过程和计算成果的解释.
在施加外力时,首先在结构上施加竖向荷载并保持不变,同时根据结构的具 体情况沿高度施加某种侧向分布形式的水平荷载,模拟地震水平惯性力,并
逐步增加水平力,使得结构构件逐渐进入塑性状态,结构的梁、柱等构件出
现塑性铰,直到结构达到某预定状态(达到某预定日标位移、位移超限或者成 为机构)。这一过程反映了结构的抗侧力弹塑性性能,并得到结构基底剪力和 顶点位移的关系曲线,也就是pushover曲线。
ห้องสมุดไป่ตู้
计算实例
使用SAP2000建模 建立一个2层平面框架结构,钢结构,已加载恒 荷载。
计算实例
布置铰:选用弯矩铰M3。
计算实例
分析结果 step1
计算实例
step3
计算实例
step4
计算实例
step6
计算实例
step7
计算实例
step9
计算实例
step10
计算实例
pushover 曲线
PUSHOVER分析方法基本步骤
pushover分析方法的基本步骤可以分为两个阶段,总体来说分为 以下几步: 1. 确定结构的几何尺寸、物理参数等,建立结构的计算模型; 2. 对结构模型施加竖向荷载,然后施加以某种分布方式的水平 侧向荷载,使一个或者一部分构件进入屈服状态; 3. 对于上一步进入屈服的构件,改变其状态,形成一个“新” 的结构,并且修改结构的刚度矩阵,在其上增加水平侧向荷 载值,又使一部分构件进入屈服状态; 4. 不断重复上一步,直到结构侧向位移达到目标位移或者构件 进入屈服后产生的塑性铰过多而使结构变为机构为止; 5. 确定结构的侧向总剪力和顶端位移曲线; 6. 对结构性能进行评估,判断结构在该水平地震作用下是否可 以满足变形受力功能要求。
问题:
1.
如何设定目标位移? 如何选用水平荷载分布模式?
2.
谢谢!
相关文档
最新文档