热力学与统计物理复习总结年级相关试题
(完整word版)热力学与统计物理期末复习题
热力学统计物理1、请给出熵、焓、自由能和吉布斯函数的定义和物理意义解:熵的定义:S B−S A=∫dQT ⟹B A dS=dQT沿可逆过程的热温比的积分,只取决于始、末状态,而与过程无关,与保守力作功类似。
因而可认为存在一个态函数,定义为熵。
焓的定义:H=U+pV焓的变化是系统在等压可逆过程中所吸收的热量的度量。
自由能的定义:F=U−TS自由能的减小是在等温过程中从系统所获得的最大功。
吉布斯函数的定义:G =F+pV= U – TS + pV在等温等压过程中,系统的吉布斯函数永不增加。
也就是说,在等温等压条件下,系统中发生的不可逆过程总是朝着吉布斯函数减少的方向进行的。
2、请给出热力学第零、第一、第二、第三定律的完整表述解:热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。
热力学第一定律:自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变。
热力学第二定律:克氏表述:不可能把热量从低温物体传到高温物体而不引起其他变化;开氏表述:不可能从单一热源吸热使之完全变成有用的功而不引起其他变化。
热力学第三定律:能氏定理:凝聚系的熵在等温过程中的改变随热力学温度趋于零,即limT→0(∆S)T=0绝对零度不能达到原理:不肯能通过有限的步骤使一个物体冷却到热力学温度的零度。
通常认为,能氏定理和绝对零度不能达到原理是热力学第三定律的两种表述。
3、请给出定压热容与定容热容的定义,并推导出理想气体的定压热容与定容热容关系式:C p−C V=nR解:定容热容: C V=(ðUðT )V表示在体积不变的条件下内能随温度的变化率;定压热容:C p=(ðUðT )p−p(ðVðT)P=(ðHðT)P表示在压强不变的情况下的熵增;对于理想气体,定容热容C V的偏导数可以写为导数,即C V=dUdT(1)定压热容C p的偏导数可以写为导数,即C P=dHdT(2)理想气体的熵为 H=U+pV=U+nRT(3)由(1)(2)(3)式可得理想气体的定压热容与定容热容关系式:C p−C V=nR4、分别给出体涨系数α,压强系数β和等温压缩系数κT的定义,并证明三者之间的关系:α=κTβp解:体涨系数:α=1V (ðVðT)P,α 给出在压强不变的条件下,温度升高1 K所引起的物体的体积的相对变化;压强系数:β=1p (ðp ðT )v ,β 给出在体积不变的条件下,温度升高1 K 所引起的物体的体积的相对变化;等温压缩系数:κT =−1V (ðV ðp )T ,κT 给出在温度不变的条件下,增加单位压强所引起的物体的体积的相对变化;由于p 、V 、T 三个变量之间存在函数关系f (p ,T ,V )=0,其偏导数存在以下关系:(ðV ðp )T (ðp ðT )v (ðT ðV )P =−1 因此α, β, κT 满足α=κT βp5、分别给出内能,焓,自由能,吉布斯函数四个热力学基本方程及其对应的麦克斯韦关系式解:内能的热力学基本方程:dU =TdS −pdV对应的麦克斯韦关系式:(ðT ðV )S =−(ðp ðS )V 焓的热力学基本方程:dH =TdS +Vdp对应的麦克斯韦关系式:(ðT ðp )s =(ðV ðS )p 自由能的热力学基本方程:dF =−SdT +Vdp对应的麦克斯韦关系式:(ðS ðV )T =(ðp ðT )V 吉布斯函数的热力学基本方程:dG =−SdT −pdV对应的麦克斯韦关系式: (ðS ðp )T =−(ðV ðT )p 6、选择T ,V 为独立变量,证明:C V =T (ðS ðT )V ,(ðU ðV )T = T (ðp ðT )V −p 证明:选择T ,V 为独立变量,内能U 的全微分为dU =(ðU ðT )V dT +(ðU ðV )T dV (1) 又已知内能的热力学基本方程 dU =TdS −pdV (2)以T ,V 为自变量时,熵S 的全微分为dS =(ðS ðT )V dT +(ðS ðV )T dV (3) 将(3)式代入(2)式可得dU =T (ðS ðT )V dT +[T (ðS ðV )T −P]dV (4) 将(4)式与(1)式比较可得C V =(ðU ðT )V =T (ðS ðT )V (5) (ðU ðV )T = T (ðp ðT )V −p (6) 7、简述节流过程制冷,气体绝热膨胀制冷,磁致冷却法的原理和优缺点解:节流过程制冷:原理:让被压缩的气体通过一绝热管,管子的中间放置一多孔塞或颈缩管。
热力学与统计物理期末复习..
E
期末复习
12
9、简述能量均分定理;用能均分定理求自由电子的内能 和定容热容量;结果与实验结果有何差异?量子统计的 结果如何解释这些差异? 10、简述能量均分定理;用能均分定理求辐射场内能U 和定容热容量CV的结果与实验有何差异?量子统计的结 果如何解释这些差异?
p p V ( ) 0 T T
若pα > pβ ,则有δ V α >0。 这时不可逆过程导致压强大的相将膨胀,压强 小的相将被压缩,即压强差异将导致物质流动。
第三章 期末复习 单元系的相变
7
若热平衡已满足,但相平衡未能满足,熵增 加原理要求
n (
T
SC 2 Nk ln T Nk ln V 2 Nk[1 ln( h
2 0
)]
3 V 3 5 2m k SQ Nk ln T Nk ln Nk[ ln( 2 )] 2 N 2 3 h
试讨论这两个熵的性质。(P212~213)
期末复习 3
3、简述熵判据;写出单元两相系的热学平衡条件、力学 平衡条件和相变平衡条件。如果在一个孤立系统内部引入 内能、体积和摩尔数的虚变动 δ Uα 、 δVα 和 δnα 所引起 的熵变为
期末复习
期末复习
1
一 期末考试题型
1 判断题(每小题2分,共20分)
2 填空题(每空2分,共20分)
3 简述题(每小题8分,共16分) 4 计算与证明题(5个小题,共44分)
热力学及统计物理试题及答案
4.对弱简并的非相对论费米气体,求:
(1)粒子数分布的零级近似f0与一级修正项Δf1;
(2)证明:与零级近似相比,粒子数的相对修正量和内能的相对修正量均正比于 。
解:费米气体分布函数为:
(1)
,
(2)
5.金属中的电子可以视为自由电子气体,电子数密度n,
(1)简述:T=0K时电子气体分布的特点,并说明此时化学势μ0的意义;
解:(1)单粒子的配分函数为:
处于基态的粒子数为:
处于激发态的粒子数为:
温度为T时处于激发态的粒子数与处于基态的粒子数之为:
极端高温时:ε0《kT, , 即处于激发态的粒子数与处于基态的粒子数基本相同;
极端低温时:ε0》kT, , 即粒子几乎全部处于基态。
(2)系统的内能:
热容量:
(3)极端高温时系统的熵:
( klnΩ)。
3.玻色统计与费米统计的区别在于系统中的粒子是否遵从(泡利不相容原理 )原理,其中(费米)系统的分布必须满足0 ≤ fs ≤ 1。
4.玻色系统和费米系统在满足( 经典极限条件(或e-α<<1) 或eα>>1)条件时,可以使用玻尔兹曼统计。
5. 给出内能变化的两个原因,其中( )项描述传热,( )项描述做功。
9.如果系统的分布函数为ρs,系统在量子态s的能量为Es,用ρs和Es表示:系统的平均能量为( ),能量涨落为( )(如写成 也得分)。
10.与宏观平衡态对应的是稳定系综,稳定系综的分布函数ρs具有特点( dρs/ dt=0 或与时间无关等同样的意思也得分 ),同时ρs也满足归一化条件。
二.计算证明题(每题10分,共60分)
能量值: 0,ω,2ω,3ω,…
(完整版)热力学与统计复习题
复习提纲一、填空题:1.特性函数是指在________选择自变量的情况下,能够表达系统_________的函数。
2.能量均分定理说:对于处在温度为T 的平衡状态的经典系统,粒子能量函数中的每一个________的平均值等于___________。
3.自然界的一切实际宏观过程都是_________过程,无摩擦的准静态过程是______ _过程。
4.熵增加原理是说,对于绝热过程,系统的熵_____________。
5.卡诺定理指出:工作于相同的高温热源和相同的低温热源之间的一切可逆机,其效率都____________, 与______________无关。
6.绝对零度时电子的最大能量称为___________________。
7.孤立系统经过足够长时间,其 不随时间改变,其所处的状态为热力学平衡态。
8.内能是 函数。
9.一般工作于两个一定温度热源之间的热机效率不大于 。
10.TH V P ∂⎛⎫= ⎪∂⎝⎭ 。
11.三维自由粒子的μ空间是 维空间。
12.体积V 内,能量在d εεε-+范围内自由粒子的可能状态数为 。
13.多元单相系的化学反应平衡条件是 。
14.克拉伯龙方程的表达式为 。
15.玻色系统中粒子的最概然分布为 。
二、选择题:1. 假设全同近独立子系统只有2个粒子,3个个体量子态。
那么下面说法错误的是:( )A. 如果该系统是玻尔兹曼系统,那么该系统共有9个系统微观状态。
B. 如果该系统是费米系统,那么该系统共有6个系统微观状态。
C. 如果该系统是费米系统,那么该系统共有3个系统微观状态。
D. 如果该系统是玻色系统,那么该系统共有6个系统微观状态。
2.关于热力学和统计物理平衡态说法错误的是: ( )A. 一个宏观的平衡状态包含了大量的系统的微观状态。
B. 它是一个动态的平衡,宏观量存在涨落,但是热力学理论不能够考虑涨落。
C. 宏观量都有对应的微观量。
D. 虽然系统的宏观量不随时间发生变化,但是它不一定就是一个平衡态。
完整版热力学统计物理试题
简述题1.写出系统处在平衡态的自由能判据。
一个处在温度和体积不变条件下的系统,处在牢固平衡态的充要条件是,对于各种可能的有限虚变动,所引起的自由能的改变均大于零。
即F0 。
2.写出系统处在平衡态的吉布斯函数判据。
一个处在温度和压强不变条件下的系统,处在牢固平衡态的充要条件是,对于各种可能的有限虚变动,所引起的吉布斯函数的改变均大于零。
即G0 。
3.写出系统处在平衡态的熵判据。
一个处在内能和体积不变条件下的系统,处在牢固平衡态的充要条件是,对于各种可能的有限虚变动,所引起的熵变均小于零。
即S 04.熵的统计讲解。
由波耳兹曼关系S k g ln可知,系统熵的大小反响出系统在该宏观状态下所拥有的可能的微观状态的多少。
而可能的微观状态的多少,反响出在该宏观平衡态下系统的凌乱度的大小。
故,熵是系统内部凌乱度的量度。
5.为什么在常温或低温下原子内部的电子对热容量没有贡献不考虑能级的精巧结构时,原子内的电子激发态与基态的能量差为1~10 eV ,相应的特点4 5温度为 10 ~ 10 K。
在常温或低温下,电子经过热运动获得这样大的能量而跃迁到激发态的概率几乎为零,平均而言电子被冻结基态,因此对热容量没有贡献。
6.为什么在常温或低温下双原子分子的振动对热容量贡献可以忽略由于双原子分子的振动特点温度 3 kT << k θv,振子经过θ ~10K,在常温或低温下v热运动获得能量 h k θv从而跃迁到激发态的概率极小,因此对热容量的贡献可以忽略。
7.能量均分定理。
对于处在平衡态的经典系统,当系统的温度为T 时,粒子能量的表达式中的每一个独立平方项的平均值为12k T 。
8等概率原理。
对于处在平衡态的孤立系统,系统的各种可能的微观状态出现的概率是相等的。
9.概率密度 ( q, p,t ) 的物理意义、代表点密度 D ( q, p,t ) 的物理意义及两者的关系。
(q, p,t ) : 在 t 时辰,系统的微观运动状态代表点出现在相点(q, p) 邻域,单位相空间体积内的概率。
热力学统计物理 课后习题 答案及热力学统计物理各章重点总结
第七章 玻耳兹曼统计7.1试根据公式Va P Lll∂∂-=∑ε证明,对于非相对论粒子 ()222222212z y x n n n L m m P ++⎪⎭⎫ ⎝⎛== πε,( ,2,1,0,,±±=zy x n n n )有V U P 32= 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
证明:处在边长为L 的立方体中,非相对论粒子的能量本征值为()22222,,2212z y x n n nn n n L m m P zy x ++⎪⎭⎫ ⎝⎛== πε ( ,2,1,0,,±±=z y x n n n )-------(1) 为书写简便,我们将上式简记为32-=aVε-----------------------(2)其中V=L 3是系统的体积,常量()22222)2(z y x n n n ma ++=π,并以单一指标l 代表n x ,n y ,n z 三个量子数。
由(2)式可得VaV V l L εε323235-=-=∂∂----------------------(3) 代入压强公式,有VUa VV a P l ll L ll3232==∂∂-=∑∑εε----------------------(4) 式中 l ll a U ε∑= 是系统的内能。
上述证明未涉及分布的具体表达式,因此上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
注:(4)式只适用于粒子仅有平移运动的情形。
如果粒子还有其他的自由度,式(4)中的U 仅指平动内能。
7.2根据公式Va P Lll∂∂-=∑ε证明,对于极端相对论粒子 ()212222z y x n n n Lccp ++== πε, ,2,1,0,,±±=z y x n n n 有VUP 31=上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
证明:处在边长为L 的立方体中,极端相对论粒子的能量本征值为()21222,,2z y x n nn n n n Lc zy x++= πε, ,2,1,0,,±±=z y x n n n -------(1)为书写简便,我们将上式简记为31-=aVε-----------------------(2)其中V=L 3是系统的体积,常量()212222zyxn n n c a ++= π,并以单一指标l 代表n x ,n y ,n z 三个量子数。
热力学与统计物理试题
热力学与统计物理试题一、选择题1. 热力学第一定律表明,一个系统内能的微小改变等于它与周围环境交换的热量与它做的功之和。
若一个气体绝热膨胀,其内能的变化量为:A. 正值B. 负值C. 零D. 无法确定2. 理想气体状态方程为 \( pV = nRT \),其中 \( p \) 代表压力,\( V \) 代表体积,\( n \) 代表物质的量,\( R \) 是气体常数,\( T \) 代表温度。
若温度和物质的量保持不变,而压力增加,则体积的变化为:A. 增加B. 减小C. 不变D. 先增加后减小3. 熵是热力学中用来描述系统无序度的物理量。
在一个孤立系统中,熵的变化趋势是:A. 持续增加B. 持续减少C. 保持不变D. 在特定条件下增加或减少4. 麦克斯韦关系是热力学中描述状态函数之间关系的一组方程。
对于一个理想气体,其等体过程中的温度与熵的关系是:A. 正比B. 反比C. 无关D. 非线性关系5. 统计物理中,微观状态与宏观状态之间的关系是通过什么原理来描述的?A. 能量均分原理B. 等概率原理C. 熵最大原理D. 能量最小原理二、填空题1. 热力学第二定律可以表述为,在一个自发的过程中,熵总是倾向于增加,这个过程是________的。
2. 理想气体的内能只与温度有关,与体积和压力________。
3. 在热力学循环中,卡诺循环的效率是由两个热库的温度决定的,其效率公式为 \( \eta = 1 - \frac{T_{c}}{T_{h}} \),其中 \( T_{c} \) 是________的温度,\( T_{h} \) 是________的温度。
4. 统计物理中,一个系统的宏观状态可以通过多个不同的________来实现。
5. 按照玻尔兹曼熵的定义,一个系统的熵与它的微观状态数目的对数成正比,数学表达式为 \( S = k_B \ln W \),其中 \( k_B \) 是________常数。
热力学统计物理期末复习试题.doc
一. 填空题1.设一多元复相系冇个0相,每相有个乞组元,组元Z 间不起化学反应。
此系统平衡时必同时满足 条件.T a= T fi=•- - 、P 、p"=..・=p®、(i = i,2,・・・k)2. 热力学第三定律的两种表述分别叫做:能特斯定律和绝对零度不能达到定律。
3. 假定一系统仅由两个全同玻色粒子组成,粒子可能的量子态有4种。
则系统可能的微观态数为:10。
4. 均匀系的平衡条件是丁 5 月.P = U .平衡稳定性条件是_ 5 > ° R (黔)「°_ 3 £ _ 3 »5玻色分布表为八八"-丨;衣米分布表为心+1 ;玻耳兹曼分布表为6热力学系统的四个状态量S 、V 、P 、T 所满足的麦克斯韦关系为(fH = (fH (IH =(料 (fH =- (IH (誇),=-(鬥。
-------------- ? ---------------- ? ---------------- ? ----------------- °u = - N ° 5 Z .7. 玻耳兹曼系统粒子配分函数用乙表示,内能统计表达式为 ____________ 广义力统计表达式为丫 = . .v a in z , S = Nk(\n Z.- /3C in Z)一卩°『,爛的统计表达式为 ______________________ ,自由能的统计表达式为 F = -NkT In Z 1 ___ o8. _______________________________________________________ 单元开系的内能、自由能、熔和吉布斯函数所满足的全微分是: __________________________________ , —, _________ , _____ o 9. 均匀开系的克劳修斯方程纟fl 包含如下四个微分方程:dU=TdS-pdV+/Ldn 薊=亦+划?+妙 dG=-SdT+Vdp+/jdn dF=-SdT-pdV+pdn, _________________ 9 ______________________ 9 ______________________10. 等温等容条件下系统屮发牛的自发过程,总是朝着自市能减小方向进行,当自市能减小到极小值 时,系统达到平衡态;处在等温等压条件下的系统中发生的自发过程,总是朝着吉布斯函数减小的方 向进行,当吉布斯函数减小到极小值时,系统达到平衡态。
热力学统计物理
《热力学统计物理》复习资料热力学部分第一章 热力学的基本定律基本概念:平衡态,热力学参量,热平衡定律,温度,三个实验系数(、、),转换关系,物态方程,功及其计算,热力学第一定律(数学表述式),热容量(C 、C V 、C P 的概念及定义),理想气体的内能,焦耳定律,绝热过程特征,热力学第二定律(文学表述、数学表述),克劳修斯不等式,热力学基本微分方程表述式,理想气体的熵,熵增加原理及应用。
综合计算:利用实验系数的任意二个求物态方程,熵增(S )计算。
第二章 均匀物质的热力学性质基本概念:焓H ,自由能F ,吉布斯函数(自由焓)G 的定义,全微分式,热力学函数的偏导数关系、麦克斯韦关系及应用,能态公式,焓态公式,节流过程的物理性质,焦汤系数定义及热容量(C P )的关系,绝热膨胀过程及性质、特性函数F 、G ,辐射场的物态方程,内能、熵,吉布函数的性质、辐射通量密度的概念。
综合运用:重要热力学关系式的证明,由特性函数F 、G 求其它热力学函数(如S 、U 、物态方程)。
第三章、第四章 单元及多元系的相变理论该两章主要是掌握物理基本概念:热动平衡判据(S 、F 、G 判据),单元复相系平衡条件,复相多元系的平衡条件,多元系的热力学函数及热力学方程,相变的分类、一级与二级相变的特点及相平衡曲线斜率的推导、吉布斯相律,单相化学反应的化学平衡条件,热力学第三定律的标准表述,绝对熵的概念。
统计物理部分第六章 近独立粒子的最概然分布基本概念:能级的简并度,μ空间,运动状态代表点,三维自由粒子的μ空间,德布罗意关系(=,=),相格,量子态数、等概率原理,对应于某种分布的玻尔兹曼系统,玻色系统,费米系统的微观态数(热力学概率)的计算公式,最概然分布,玻尔兹曼分布律(),配分函数(),用配分函数表示的玻尔兹曼分布(),f s ,P λ, P s的概念,经典配分函数(),麦克斯韦速度分布律。
综合运用:能计算在体积V 内,在动量范围p —p+dp 内,或能量范围+d ε内,粒子的量子态数;了解运用最可几方法推导三种分布。
热力学与统计物理复习总结及相关试题(5篇范例)
热力学与统计物理复习总结及相关试题(5篇范例)第一篇:热力学与统计物理复习总结及相关试题《热力学与统计物理》考试大纲第一章热力学的基本定律基本概念:平衡态、热力学参量、热平衡定律温度,三个实验系数(α,β,κT)转换关系,物态方程、功及其计算,热力学第一定律(数学表述式)热容量(C,CV,Cp的概念及定义),理想气体的内能,焦耳定律,绝热过程及特性,热力学第二定律(文字表述、数学表述),可逆过程克劳修斯不等式,热力学基本微分方程表述式,理想气体的熵、熵增加原理及应用。
综合计算:利用实验系数的任意二个求物态方程,熵增(ΔS)的计算。
第二章均匀物质的热力学性质基本概念:焓(H),自由能F,吉布斯函数G的定义,全微公式,麦克斯韦关系(四个)及应用、能态公式、焓态公式,节流过程的物理性质,焦汤系数定义及热容量(Cp)的关系,绝热膨胀过程及性质,特性函数F、G,空窖辐射场的物态方程,内能、熵,吉布函数的性质。
综合运用:重要热力学关系式的证明,由特性函数F、G求其它热力学函数(如S、U、物态方程)第三章、第四章单元及多元系的相变理论该两章主要是掌握物理基本概念:热动平衡判据(S、F、G判据),单元复相系的平衡条件,多元复相系的平衡条件,多元系的热力学函数及热力学方程,一级相变的特点,吉布斯相律,单相化学反应的化学平衡条件,热力学第三定律标准表述,绝对熵的概念。
统计物理部分第六章近独立粒子的最概然分布基本概念:能级的简并度,μ空间,运动状态,代表点,三维自由粒子的μ空ρρ间,德布罗意关系(ε=ηω,P=ηk),相格,量子态数。
等概率原理,对应于某种分布的玻尔兹曼系统、玻色系统、费米系统的微观态数的计算公式,最概然分布,玻尔兹曼分布律(al=ωle (Z1=-α-βεl)配分函数NZ1∑ωlel-βεl=∑se-βεs),用配分函数表示的玻尔兹曼分布(Z1=1hr0al=ωel-βεl),fs,Pl,Ps的概念,经典配分函数()麦态斯韦速度分布律。
热力学与统计物理期末复习笔记
《热力学统计物理》期末复习一、简答题1、写出焓、自由能、吉布斯函数的定义式及微分表达式(只考虑体积变化功)答:焓的定义H=U+PV焓的全微分dH=TdS+Vdp自由能的定义F=U-TS,自由能的全微分dF=-SdT-PdV;吉布斯函数的定义G=U-TS+PV吉布斯函数的全微分dG二SdT+VdP2、什么是近独立粒子和全同粒子?描写近独立子系统平衡态分布有哪几种?答:近独立子系统指的是粒子之间的相互作用很弱,相互作用的平均能量远小于单个粒子的平均能量,因而可以忽略粒子之间的相互作用。
全同粒子组成的系统就是由具有完全相同的属性(相同的质量、电荷、自旋等)的同类粒子组成的系统。
描写近独立子系统平衡态分布有费米-狄拉克分布、玻色-爱因斯坦分布、玻耳兹曼分布。
3、简述平衡态统计物理的基本假设。
答:平衡态统计物理的基本假设是等概率原理。
等概率原理认为,对于处于平衡状态的孤立系统,系统各个可能的微观状态出现的概率是相等的。
它是统计物理的基本假设,它的正确性由它的种种推论都与客观实际相符而得到肯定。
4、什么叫特性函数?请写出简单系统的特性函数。
答:马休在1869年证明,如果适当选择独立变量(称为自然变量),只要知道一个热力学函数,就可以通过求偏导数而求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质完全确定。
这个热力学函数称为特性函数。
简单系统的特性函数有内能U=U(S、V),焓H=H(S、P),自由能F=F(T、V),吉布斯函数G=G(T、P)。
5、什么是卩空间?并简单介绍粒子运动状态的经典描述。
答:为了形象的描述粒子的运动状态,用6,…,q r ; P i,…,P r共2r个变量为直角坐标,构成一个2r维空间,称为卩空间。
粒子在某—时刻的力学运动状态q i / ,q r;P i / , P r可用a空间的一个点表示。
6、试说明应用经典能量均分定理求得的理想气体的内能和热容量中哪些结论与实验不符(至少例举三项)。
热力学与统计物理.pdf
单选题1.一级相变和二级相变的特点()A.所有物理性质都发生突变B.化学势一阶偏导数发生突变为一级相变,二阶偏导数发生突变为二级相变C.只有比容发生突变的为一级相变,比热发生突变为二级相变D.只有比热发生突变的为一级相变,比容发生突变为二级相变答案:B2.容器中储有1摩尔理想气体,温度T为27度,则分子平均平动动能为()A.3403JB.3739JC.2493JD.6232J答案:B3.系统与系综的关系是:()A.系综是大量结构相同,宏观约束条件相同系统的集合B.系综是大量不同结构,但宏观约束条件相同系统的集合C.系统和系综都是宏观存在的实际物体D.系统和系综完全是一回事,只是在统计物理中不同的称谓答案:A4.在体系温度恒定的变化过程中,体系与环境之间:A.一定产生热交换B.一定不产生热交换C.不一定产生热交换D.温度恒定与热交换无关答案:C5.描述热力学系统无序程度的状态参量熵S与热力学概率W间满足玻耳兹曼关系式为:A.S=klnWB.S=-klnWC.S=lnWD.S=1/lnW答案:A6.某理想气体,初态温度为T,体积为V,先绝热变化使体积变为2V,再等容变化使温度恢复到T,最后等温变化使气体回到初态,则整个循环过程中,气体A.向外界放热.B.从外界吸热.C.对外界做正功.D.内能减少.答案:B7.某体系等压过程A→B的焓变∆H与温度T无关,则该过程的:()A.∆U与温度无关;B.∆S与温度无关;C.∆A与温度无关;D.∆G与温度无关。
答案:B8.一可逆的卡诺热机在27℃及127℃的两个热源之间操作,其最大理论效率为多少?A.79B.75C.25D.21答案:C9.玻色-爱因斯坦凝集()A.只有绝对零度时才能发生B.没有激发态粒子C.气体分子间平均距离极小于它的热波长D.气体分子间平均距离极大于它的热波长答案:C10.微正则系综是()A.一种假设B.正则运动方程的解C.经典力学描述的系统D.量子力学描述的系统答案:A11.一密闭系统吸收100焦耳之热量,并同时外界作功40焦耳,則其內能变化量?A.增加140JB.減少140JC.減少60JD.增加60J答案:D12.体系的微观性质和宏观性质是通过()联系起来的。
01热力学与统计物理大总结
01热力学与统计物理大总结热力学与统计物理总复习一、填空题1、理想气体满足的条件:①玻意耳定律?温度不变时,PV?C? ②焦耳定律?理想气体温标的定义P?T? ?在相同的温度和压强下③阿伏伽德罗定律,相等体积所含各种气体的物质的量相等,即n?V11等于kT ,即:axi2?kT22? 2、能量均分定理:对于处在温度为T的平衡状态的经典系统,粒子能量中每一个平方项的平均值???????kT。
广义能量均分定理:xi???x?ij?j?。
3、吉布斯相律:f?k?2??其中k是组元数量,?是相的数量。
4、相空间是2Nr 维空间,研究的是:一个系统里的N个粒子;?空间是2r 维空间,研究的是:1个粒子。
二、简答题1、特性函数的定义。
答:适当选择独立变量,只要知道一个热力学函数,就可以通过求偏导数而求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质完全确定。
这个热力学函数即称为特性函数。
2、相空间的概念。
答:为了形象地描述粒子的力学运动状态,用q1,?,qr;p1,?,pr 共2r个变量为直角坐标,构成一个2r 维空间,称为?空间。
根据经典力学,系统在任一时刻的微观运动状态f 个广义坐标q1,q2,?,qf及与其共轭的f个广义动量p1,p2,?,pf在该时刻的数值确定。
以q1,?,qf;p1,?,pf共2f个变量为直角坐标构成一个2f维空间,称为相空间或?空间。
3、写出热力学三大定律的表达和公式,分别引出了什么概念?答:热力学第零定律:如果物体A和物体B各自与处在同一状态的物体C达到热平衡,若令A与B- 1 - 进行热接触,它们也将处在热平衡,这个经验事实称为热平衡定律。
即gA(PA,V A)?gB(PB,VB),并引出了“温度T”这概念。
热力学第一定律:自然界一切物质都具有能量,能量有各种不同形式,可以从一种形式转化为另一种形式,从一个物体传递到另一个物体,在传递与转化中能量的数量不变。
即dU?dQ?dW,并引出了“内能U”的概念。
热统复习
热力学与统计物理期末总复习题moralmarket ®一、热力学1.热力学第一定律的数学表达式:dU = đQ + đW其物理意义:一个系统,其内能的增加等于吸收的热量,加上外界对该系统做的功。
2.热力学第二定律的数学表达式:đQdS ≥或者đQ∆S ≥ ∫đQđQ 物理意义(不作要求):对于可逆过程,系统熵的增加等于;对于不可逆过程,系统熵的增加大于。
3.热力学第二定律的文字表述(克劳修斯表述或者开尔文表述都可以):克劳修斯表述:不可能把热量从低温物体传到高温物体而不引起其它变化。
开尔文表述:不可能从单一热源吸热使之完全变成有用功而不引起其它变化。
4.封闭系统的热力学基本方程的数学表达式:dU = TdS − pdV(其中,p是气体的内部压强,而不是外界对气体的压强,所以是负号。
即:đW = −pdV)5.处于平衡态的理想气体,其宏观状态参量之间满足一个基本约束,我们把它称为理想气体的物态方程。
理想气体的状态方程为:pV = nRT其中,p为气体内部压强,V是气体体积,n为物质的量,R为常数,R、T为气体温度。
其物理意义(不作要求):对于理想气体,具有这些定量的物理属性:压强P,体积V,物质的量n 温度T。
对于处于平衡态的理想气体,它的这些物理属性并不是任意的,而是相互之间存在某种关联和约束。
这个约束便是P V=nRT,也就是说,处于平衡态的理想气体,其状态不管怎么变化,都满足该方程。
也正因此才叫理想气体的状态方程。
6.现在有一定量的理想气体,它经历了一次卡诺循环:1-2-3-4-1。
其中,1-2是等温过程,温度为 T ; 12-3是绝热过程;3-4是第二个等温过程,温度 T ; 24-1是第二个绝热过程。
(1)这一定量的气体,过程 1-2吸收了多少热量? (2)对外做了多少功?(1)考虑过程 1-2: 由第一定律知:đQ = dU − đW等温过程的内能不变,所以dU = 0,所以đQ = −đW , 因为外界对气体做功đW = −pdV ,代入上式,得:đQ = pdV由理想气体状态方程:pV = nRT 1得:T 1p =代入得:T 1đQ =所以 1-2过程的吸热为:2= ∫ dQ = ∫221 T 1=T ∫ 1 dV1−2 1 11212 1=T 1 ln | = T 1(ln − ln 1) = T 1 ln2 (2)做功的计算如下:同样,由于等温过程内能不变,1-2整个过程气体对外做功和吸热相等(đQ = −đW ),所以,2= ∫ (−dW) = ∫ dQ =22 1=T ln11−2 1−2 1 17. 熵是一个状态函数。
热统复习题与思考题及答案
热统复习题与思考题及答案热力学与统计物理复习题及答案一、解释如下概念⑴热力学平衡态;⑵可逆过程;⑶ 准静态过程;⑷焦耳-汤姆逊效应;⑸μ空间;⑹Γ 空间;⑺特性函数;⑻系综;⑼混合系综;⑽非简并性条件;⑾玻色——爱因斯坦凝聚;⑴热力学平衡态:一个孤立系统经长时间后,宏观性质不随时间而变化的状态。
⑵可逆过程:若系统经一过程从状态A 出发到达B 态后能沿相反的过程回到初态A ,而且在回到A 后系统和外界均回复到原状,那么这一过程叫可逆过程。
⑶ 准静态过程:如果系统状态变化很缓慢,每一态都可视为平衡态,则这过程叫准静态过程。
⑷焦耳一汤姆孙效应:气体在节流过程中气体温度随压强减小而发生变化的现象。
⑸μ空间:设粒子的自由度r ,以r 个广义坐标为横轴,r 个动量为横轴,所张成的笛卡尔直角空间。
⑹Γ空间:该系统自由度f ,则以f 个广义坐标为横轴,以f 个广义动量为纵轴,由此张成的f 2维笛卡尔直角空间叫Γ空间。
⑺特性函数:若一个热力学系统有这样的函数,只要知道它就可以由它求出系统的其它函数,即它能决定系统的热力学性质,则这个函数叫特性函数。
⑻系综:大量的彼此独立的具有相同结构但可以有不同微观状态的假想体系的集合叫系综,常见的有微正则系综、正则系综、巨正则系综。
⑼混合系综:设系统能级E 1…,E n …,系综中的n 个系统中,有n 1个处于E 1的量子态;…,有n i 个系统处于E i 的相应量子态,则这样的系综叫混合系综。
⑽非简并性条件:指1/<<="" p="">a ω,此时不可识别的粒子可视为可识别的粒子的条件。
⑾玻色―爱因斯坦凝聚:对玻色系统,当温度T 低于临界温度c T 时,处于基态的粒子数0n 有与总粒子数n 相同数量级的现象叫玻色-爱因斯坦凝聚。
二回答问题⒈写出热力学第一定律的文字叙述、数学表示、简述该定律的重要性、适用范围。
⒉写出热力学第二定律的文字叙述、数学表示、适用条件,在热力学中的重要性。
热力学统计物理期末复习试题
一. 填空题1. 设一多元复相系有个ϕ相,每相有个k 组元,组元之间不起化学反响。
此系统平衡时必同时满足条件: T T T αβϕ=== 、 P P P αβϕ=== 、 (,)i i i1,2i k αβϕμμμ====2. 热力学第三定律的两种表述分别叫做: 能特斯定律 和 绝对零度不能到达定律 。
3.假定一系统仅由两个全同玻色粒子组成,粒子可能的量子态有4种。
那么系统可能的微观态数为:10 。
4.均匀系的平衡条件是T T = 且P P = ;平衡稳定性条件是V C > 且()0TP V∂<∂ 。
5玻色分布表为1aeαβεω+=- ;费米分布表为1a eαβεω+=+ ;玻耳兹曼分布表为a e αβεω--= 。
当满足条件 e 1α-<< 时,玻色分布和费米分布均过渡到玻耳兹曼分布。
6 热力学系统的四个状态量V P T S 、、、所满足的麦克斯韦关系为()()TVSP V T ∂∂∂∂=,()()PSV TS P ∂∂∂∂=,()()TPSVPT ∂∂∂∂=-, ()()VSP TSV ∂∂∂∂=-。
7. 玻耳兹曼系统粒子配分函数用1Z 表示,内能统计表达式为1ln Z U Nβ∂=-∂ 广义力统计表达式为1ln Z N Y yβ∂=-∂,熵的统计表达式为11ln (ln )Z S Nk Z ββ∂=-∂ ,自由能的统计表达式为1ln F NkT Z =- 。
8.单元开系的内能、自由能、焓和吉布斯函数所满足的全微分是: , , , 。
9. 均匀开系的克劳修斯方程组包含如下四个微分方程:dU TdS pdV dn μ=-+ ,dH TdS Vdp dn μ=++ , dG SdT Vdp dn μ=-++ ,dF SdT pdV dn μ=--+10. 等温等容条件下系统中发生的自发过程,总是朝着自由能减小方向进行,当自由能减小到极小值时,系统到达平衡态;处在等温等压条件下的系统中发生的自发过程,总是朝着吉布斯函数减小的方向进行,当吉布斯函数减小到极小值时,系统到达平衡态。
《热力学与统计物理》知识30道选择题
《热力学与统计物理》知识30道选择题1. 热力学过程中,系统内能变化的度量是(B )。
A. 压强B. 热量C. 温度D. 熵2. 下列物理量中,与物质的微观粒子状态有关的是(D )。
A. 内能B. 热容C. 压强D. 熵3. 理想气体的内能只与(A )有关。
A. 温度B. 压强C. 体积D. 物质的量4. 在热力学中,熵增加原理适用于(A )。
A. 孤立系统B. 开放系统C. 封闭系统D. 任意系统5. 热力学第二定律表明(C )。
A. 能量可以全部转化为功B. 热可以全部转化为功C. 自发过程总是朝着熵增加的方向进行D. 以上都不对6. 对于一个孤立系统,其熵(A )。
A. 总是增加的B. 总是减少的C. 保持不变D. 无法确定7. 下列哪个过程是不可逆的?(A )A. 热从高温物体流向低温物体B. 气体自由膨胀C. 理想气体等温膨胀D. 以上都不是8. 统计物理中,最基本的概率分布是(B )。
A. 正态分布B. 麦克斯韦-玻尔兹曼分布C. 均匀分布D. 指数分布9. 玻尔兹曼常数的符号是(B )。
A. kB. k B.C. RD. γ10. 在平衡态下,系统的微观状态数最(D )。
A. 多B. 少C. 不确定D. 大11. 热力学温度的单位是(K )。
A. ℃B. FC. JD. K12. 分子的平均动能与(A )成正比。
A. 温度B. 压强C. 体积D. 熵13. 熵的单位是(J/K )。
A. JB. J/KC. KD. 无单位14. 理想气体状态方程的表达式是(pV = nRT )。
A. pV = nRTB. p = nRT/VC. V = nRT/pD. 以上都不是15. 下列哪种物质的热容较大?(A )A. 水B. 铁C. 铜D. 以上都不是16. 统计物理中,粒子的能量是(B )。
A. 连续的B. 分立的C. 以上都不是D. 不确定17. 分子的动能取决于(A )。
A. 温度B. 压强C. 体积D. 以上都不是18. 热力学第一定律可以表示为(ΔU = Q + W )。
热力学统计物理练习试题和答案
热力学统计物理练习试题和答案WORD 格式整理热力学·统计物理练习题一、填空题 . 本大题 70 个小题,把答案写在横线上。
1. 当热力学系统与外界无相互作用时 , 经过足够长时间 , 其宏观性质时间改变,其所处的为热力学平衡态。
2.系统,经过足够长时间,其不随时间改变,其所处的状态为热力学平衡态。
3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化学参量等四类参量描述,但有是独立的。
4.对于非孤立系统,当其与外界作为一个整体处于热力学平衡态时,此时的系统所处的状态是。
5.欲描述非平衡系统的状态,需要将系统分成若干个小部分,使每小部分具有小,但微观上又包含大量粒子,则每小部分都可视为。
6.描述热力学系统平衡态的独立参量和之间关系的方程式叫物态方程,其一般表达式为。
7.均匀物质系统的独立参量有个,而过程方程独立参量只有个。
8.定压膨胀系数的意义是在不变的条件下系统体积随的相对变化。
9.定容压力系数的意义是在不变条件下系统的压强随的相对变化。
10.等温压缩系数的意义是在不变条件下系统的体积随的相对变化。
11.循环关系的表达式为。
12.在无摩擦准静态过程中存在着几种不同形式的功,则系统对外界作的功 W Y i dy i ,其中 y i 是, Y i 是与 y i 相应的。
13. U B U A Q W ,其中是作的功。
W14. dUQW0 ,-W 是作的功,且 -W 等于。
22(、均为热力学平衡态1、L2 为15.Q W QW ,L 1L 1 1 2 1L 2准静态过程)。
16.第一类永动机是指的永动机。
17.内能是函数,内能的改变决定于和。
18.焓是函数,在等压过程中,焓的变化等于的热量。
19.理想气体内能温度有关,而与体积。
学习参考资料分享WORD 格式整理20.理想气体的焓温度的函数与无关。
21.热力学第二定律指明了一切与热现象有关的实际过程进行的。
22.为了判断不可逆过程自发进行的方向只须研究和的相互关系就够了。
热力学统计物理练习的题目及答案详解
U
32.范氏气体 P v 2 v b RT ,则有 V T
。
33.利用平衡判据可证明在 S、V 不变情况下平衡态
最小。
34.利用平衡判据可证明在 S、P 不变情况下平衡态
最小。
35.利用平衡判据可证明在 T、P 不变情况下平衡态
最小。
36.物质的宏观特性是大量微观粒子行为的集体表现,宏观物理量是相应
dWv
。
64.麦克斯韦速率分布律表示分子速率的取值在 v v dv 内的概率,其表
达式为 dWv
。
65.在温度为 T 时,根据能均分定理可以得到单原子分子理想气体中每一
个分子的平均能量
。
66.在温度为 T 时,根据能均分定理可以得到由 N 个单原子分子组成的理
想气体的内能 U
。
67.理想固体的爱因斯坦模型中振子的能级 n
16. 下列哪个表达式是磁介质系统对外作的功
() ()
A. ? W pdv B. ? W v 0Hdm C. ? W
Yi dy i D. ? W dA
i
17. 下列说法正确的是:
()
A. 内能是系统的状态函数。
B. 内能是绝热过程外界对系统作的功。
C. 任意准静态过程始末两个状态一定时,外界对系统作功保持不变。
B.
最有序的状态
C. 存在着热量、物质的定向运动 D. 系统整体存在宏观定向运动
6. 关于物态方程的正确说法是:
()
A.f(P,V,T)=0 是任何系统的一般表达式
B. 描述热力学系统平衡态的独立参量和温度关系的方程式
C. 物质系统状态参量所满足的方程
D. 平常说的等压、等温过程方程
7. 理想气体物态方程的一般表达式是:
热力学与统计物理试题及答案
一.选择(25分)1.下列不是热学状态参量的是( )A.力学参量B.几何参量C.电流参量 D 。
化学参量2。
下列关于状态函数的定义正确的是( )A.系统的吉布斯函数是:G=U —TS+PVB 。
系统的自由能是:F=U+TSC 。
系统的焓是:H=U —PVD.系统的熵函数是:S=U/T3.彼此处于热平衡的两个物体必存在一个共同的物理量,这个物理量就是( )A.态函数B.内能 C 。
温度 D 。
熵4。
热力学第一定律的数学表达式可写为( )A 。
W Q U U AB +=- B.W Q U U B A +=-C 。
W Q U U A B -=-D 。
W Q U U B A -=-5.熵增加原理只适用于( )A 。
闭合系统 B.孤立系统 C 。
均匀系统 D.开放系统二.填空(25分)1.孤立系统的熵增加原理可用公式表示为( ).2.热力学基本微分方程du=( )。
3.热力学第二定律告诉我们,自然界中与热现象有关的实际过程都是()。
4.在S。
V不变的情况下,平衡态的()最小。
5。
在T。
VB不变的情形下,可以利用( )作为平衡判据。
三.简答(20分)1.什么是平衡态?平衡态具有哪些特点?2.什么是开系,闭系,孤立系?四.证明(10分)证明范氏气体的定容热容量只是温度的函数,与比容无关五.计算(20分)试求理想气体的体胀系数α,压强系数β,等温压缩系数T K参考答案一。
选择 1~5AACAB二。
填空1。
ds≧02。
Tds—pdv3。
不可逆的4。
内能5。
自由能判据三.简答1.一个孤立系统,不论其初态如何复杂,经过足够长的时间后,将会达到这样状态,系统的各种宏观性质在长时间内不发生变化,这样的状态称为热力学平衡态.特点:不限于孤立系统弛豫时间涨落热动平衡2.开系:与外界既有物质交换,又有能量交换的系统闭系:与外界没有物质交换,但有能量交换的系统,孤立系:与其他物体既没有物质交换也没有能量交换的系统四.证明解证:范氏气体()RT b v v a p =-⎪⎭⎫ ⎝⎛+2 T v U ⎪⎭⎫ ⎝⎛∂∂=T V T p ⎪⎭⎫ ⎝⎛∂∂—p =T 2va pb v R =-- T v U ⎪⎭⎫ ⎝⎛∂∂=2va ⇒)(),(0T f v a U v T U +-= =V C V T U ⎪⎭⎫ ⎝⎛∂∂=)(T f ' ;与v 无关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《热力学与统计物理》考试大纲第一章 热力学的基本定律基本概念:平衡态、热力学参量、热平衡定律温度,三个实验系数(α,β,T κ)转换关系,物态方程、功及其计算,热力学第一定律(数学表述式)热容量(C ,C V ,C p 的概念及定义),理想气体的内能,焦耳定律,绝热过程及特性,热力学第二定律(文字表述、数学表述),可逆过程克劳修斯不等式,热力学基本微分方程表述式,理想气体的熵、熵增加原理及应用。
综合计算:利用实验系数的任意二个求物态方程,熵增(ΔS )的计算。
第二章 均匀物质的热力学性质基本概念:焓(H ),自由能F ,吉布斯函数G 的定义,全微公式,麦克斯韦关系(四个)及应用、能态公式、焓态公式,节流过程的物理性质,焦汤系数定义及热容量(Cp )的关系,绝热膨胀过程及性质,特性函数F 、G ,空窖辐射场的物态方程,内能、熵,吉布函数的性质。
综合运用:重要热力学关系式的证明,由特性函数F 、G 求其它热力学函数(如S 、U 、物态方程) 第三章、第四章 单元及多元系的相变理论 该两章主要是掌握物理基本概念:热动平衡判据(S 、F 、G 判据),单元复相系的平衡条件,多元复相系的平衡条件,多元系的热力学函数及热力学方程,一级相变的特点,吉布斯相律,单相化学反应的化学平衡条件,热力学第三定律标准表述,绝对熵的概念。
统计物理部分第六章 近独立粒子的最概然分布基本概念:能级的简并度,μ空间,运动状态,代表点,三维自由粒子的μ空间,德布罗意关系(k P ρηρη=,=ωε),相格,量子态数。
等概率原理,对应于某种分布的玻尔兹曼系统、玻色系统、费米系统的微观态数的计算公式,最概然分布,玻尔兹曼分布律(ll l ea βεαω--=)配分函数(∑∑-==-sll sle eZ βεβεω1),用配分函数表示的玻尔兹曼分布(l l l e Z Na βεω-=1),f s ,P l ,P s 的概念,经典配分函数(⎰⎰-=du e h Z lr βεK 011)麦态斯韦速度分布律。
综合运用:能计算在体积V 内,在动量范围P →P+dP 内,或能量范围ε→ε+d ε内,粒子的量子态数;了解运用最可几方法推导三种分布。
第七章 玻尔兹曼统计基本概念:熟悉U 、广义力、物态方程、熵S 的统计公式,乘子α、β的意义,玻尔兹曼关系(S =Kln Ω),最可几率V m ,平均速度V ,方均根速度s V,能量均分定理。
综合运用:能运用玻尔兹曼经典分布计算理想气体的配分函数内能、物态方程和熵;能运用玻尔兹曼分布计算谐振子系统(已知能量ε=(n+21)ωη)的配分函数内能和热容量。
第八章 玻色统计和费米统计 基本概念:光子气体的玻色分布,分布在能量为εs 的量子态s 的平均光子数(11-=KTs ef ωη),T =0k 时,自由电子的费米分布性质(f s =1),费米能量μ(0),费米动量P F ,T =0k 时电子的平均能量,维恩位移定律。
综合运用:掌握普朗克公式的推导;T =0k 时,电子气体的费米能量μ(0)计算,T=0k 时,电子的平均速率V的计算,电子的平均能量ε的计算。
第九章 系综理论 基本概念:Γ空间的概念,微正则分布的经典表达式、量子表达式,正则分布的表达式,正则配分函数的表达式。
经典正则配分函数。
不作综合运用要求。
四、考试题型与分值分配1、题型采用判断题、单选题、填空题、名词解释、证明题及计算题等六种形式。
2、判断题、单选题占24%,名词解释及填空题占24%,证明题占10%,计算题占42%。
《热力学与统计物理》复习资料一、单选题1、彼此处于热平衡的两个物体必存在一个共同的物理量,这个物理量就是()①态函数②内能③温度④熵2、热力学第一定律的数学表达式可写为()①WQUUAB+=-②WQUUBA+=-③WQUUAB-=-④WQUUBA-=-3、在气体的节流过程中,焦汤系数μ=)(1-αTCVP,若体账系数T1>α,则气体经节流过程后将()①温度升高②温度下降③温度不变④压强降低4、空窖辐射的能量密度u与温度T的关系是()①3aTu=②TaVu3=③4aVTu=④4aTu=5、熵增加原理只适用于()①闭合系统②孤立系统③均匀系统④开放系统6、在等温等容的条件下,系统中发生的不可逆过程,包括趋向平衡的过程,总是朝着()①G减少的方向进行②F减少的方向进行③G增加的方向进行④F增加的方向进行7、从微观的角度看,气体的内能是()①气体中分子无规运动能量的总和②气体中分子动能和分子间相互作用势能的总和③气体中分子内部运动的能量总和④气体中分子无规运动能量总和的统计平均值8、若三元Ф相系的自由度为2,则由吉布斯相律可知,该系统的相数Ф是()①3 ②2 ③1 ④09、根据热力学第二定律可以证明,对任意循环过程L,均有①⎰≥L Tζθ②⎰≤L Tζθ③⎰LT=ζθ④⎰∆LST=ζθ10、理想气体的某过程服从PV r=常数,此过程必定是()①等温过程②等压过程③绝热过程④多方过程11、卡诺循环过程是由()①两个等温过程和两个绝热过程组成②两个等压过程和两个绝热过程组成③两个等容过程和两个绝热过程组成④两个等温过程和两个绝热过程组成12、下列过程中为可逆过程的是()①准静态过程②气体绝热自由膨胀过程③无摩擦的准静态过程④热传导过程13、理想气体在节流过程前后将()①压强不变②压强降低③温度不变④温度降低14、气体在经准静态绝热过程后将()①保持温度不变②保持压强不变③保持焓不变④保持熵不变15、熵判据是基本的平衡判据,它只适用于()①孤立系统②闭合系统③绝热系统④均匀系统16、描述N个三维自由粒子的力学运动状态的μ空间是( )①6维空间②3维空间③6N维空间④3N维空间17、服从玻尔兹曼分布的系统的一个粒子处于能量为εl的概率是()①leZPlβε-11=②leZP llβεω-1=③leNPlβε-1=④leZPlβεα--11=18、T=0k时电子的动量P F称为费米动量,它是T=0K时电子的()①平均动量②最大动量③最小动量④总动量19、光子气体处于平衡态时,分布在能量为εs的量子态s的平均光子数为()①11-+seβεα ②11-KTeωη ③11++seβεα ④11+KTe ωη20、由N 个单原子分子构成的理想气体,系统的一个微观状态在Γ空间占据的相体积是( )①N h 3 ②N h 6 ③3h ④6h21、服从玻耳兹曼分布的系统的一个粒子处于能量为εs 的量子态S 的概率是( )①se N P s βεα--=1 ②se P s βεα--=③s e N P s βε-=1④se P s βε-= 22、在T =0K 时,由于泡利不相容原理限制,金属中自由电子从能量ε=0状态起依次填充之μ(0)为止,μ(0)称为费米能量,它是0K 时电子的( )①最小能量 ②最大能量 ③平均能量 ④内能23、平衡态下,温度为T 时,分布在能量为εs 的量子态s 的平均电子数是( )①11-=-KT us e f ε ②11+=KT s e f ε③11+=-KTu s e f ④11+=--KTu s e f ε 24、描述N 个自由度为1的一维线性谐振子运动状态的μ空间是( ) ①1维空间 ②2维空间 ③N 维空间 ④2N 维空间25、玻色分布和费米分布都过渡到玻耳兹曼分布的条件(非简并性条件)是( )①1>αe ②1<αe ③1>>αe ④1<<+αe26、由N 个自由度为1的一维线性谐振子构成的系统,谐振子的一个运动状态在μ空间占据的相体积是( )①h ②h 2 ③h N ④h 2N27、由N 个自由度为1的一维线性谐振子构成的系统,其系统的一个微观状态在Γ空间占据的相体积是( )①h ②h 2 ③h N ④h 2N28、由两个粒子构成的费米系统,单粒子状态数为3个,则系统的微观状态数为( )①3个 ②6个 ③9个 ④12个29、由两个玻色子构成的系统,粒子的个体量子态有3个,则玻色系统的微观状态数为( )①3个 ②6个 ③9个 ④12个 30、微正则分布的量子表达式可写为( )①Ω=es ρ ②Ω-=es ρ ③Ω=s ρ ④Ω=1s ρ 二、判断题1、无摩擦的准静态过程有一个重要的性质,即外界在准静态过程中对系统的作用力,可以用描写系统平衡状态的参量表达出来。
( )2、在P-V 图上,绝热线比等温线陡些,是因为r=1>V PC C 。
( )3、理想气体放热并对外作功而压强增加的过程是不可能的。
( )4、功变热的过程是不可逆过程,这说明热要全部变为功是不可能的。
( )5、绝热过程方程对准静态过程和非准表态过程都适用。
( )6、在等温等容过程中,若系统只有体积变化功,则系统的自由能永不增加。
( )7、多元复相系的总焓等于各相的焓之和。
( )8、当孤立系统达到平衡态时,其熵必定达到极大值。
( )9、固相、液相、气相之间发生一级相变时,有相变潜热产生,有比容突变。
10、膜平衡时,两相的压强必定相等。
( )11、粒子和波动二象性的一个重要结果是微观粒子不可能同时具有确定的动量和坐标。
( ) 12、构成玻耳兹曼系统的粒子是可分辨的全同近独立粒子。
( ) 13、具有完全相同属性的同类粒子是近独立粒子。
( )14、玻色系统的粒子是不可分辨的,且每一个体量子态最多能容纳一个粒子。
()15、定域系统的粒子可以分辨,且遵从玻耳兹曼分布。
()16、热量是热现象中特有的宏观量,它没有相应的微观量。
()17、玻尔兹曼关系S=KlnΩ只适用于平衡态。
()18、T=0k时,金属中电子气体将产生巨大的简并压,它是泡利不相容原理及电子气的高密度所致。
()三、填空题1、孤立系统的熵增加原理可用公式表示为()。
2、一孤立的单元两相系,若用指标α、β表示两相,则系统平衡时,其相变平衡条件可表示为()。
3、吉布斯相律可表示为f=k+z-Ф,则对于二元系来说,最多有()相平衡。
4、热力学系统由初始状态过渡到平衡态所需的时间称为()。
5、热力学第二定律告诉我们,自然界中与现象有关的实际过程都是()。
6、热力学第二定律的普遍数学表达式为()。
7、克拉珀珑方程vTLdTdP∆=中,L的意义表示1mol物质在温度不变时由α相转变到β相时所吸收的()。
8、在一般情况下,整个多元复相系不存在总的焓,仅当各相的()相同时,总的焓才有意义。
9、如果某一热力学系统与外界有物质和能量的交换,则该系统称为()。
10、热力学基本微分方程dU=( )。
11、单元系开系的热力学微分方程dU=( )。
12、单相化学反应的化学平衡条件可表示为()。
13、在s、v不变的情形下,平衡态的()最小。