高等数学第二章导数知识总结

合集下载

高等数学 第二章 极限和导数2-9导数的概念

高等数学 第二章 极限和导数2-9导数的概念

例1 已知f ( 3) 2, 求
(1)
f ( 3 h) f ( 3) lim h0 2h
1 f [ 3 ( h)] f ( 3) 解 原式 lim ( ) 2 ( h) h 0
h x
1 f ( 3 x ) f ( 3 ) ( ) lim 2 x 0 x
2°导数的其它形式
f ( x0 x ) f ( x0 ) x x 0 x h lim f ( x0 h) f ( x0 ) h h 0 x x0 x f ( x ) f ( x0 ) lim . x x0 x x0
f ( x0 ) lim
3°在一点的导数是因变量 在点 x0处的变化率,
它反映了因变量随自变量的变化 而变化的 快慢程度.
运动质点的位置函数 s f (t ) 在 t0时刻的瞬时速度
f ( t 0 )
曲线 C : y f ( x ) 在 M 点处的 切线斜率
f ( x0 )
此外在经济学中, 边际成本率, 边际劳动生产率 和边际税率等,从数学角度看就是导数.
证 设
从而 故
在点 x 0处可导, 即
y f ( x0 ) , 其中 x
x 0
函数 f ( x )在点 x0连续 .
x 1, 例9 讨论 f ( x ) x 1,

x 0
x0 x0
在 x 0处的可导性.
y
O x
f (0 ) lim ( x 1) 1 f (0 ) lim ( x 1) 1
h 0

定理成立.
例2 讨论函数 f ( x ) x 在点x 0处的可导性.

高数第二章导数与微分知识点与习题

高数第二章导数与微分知识点与习题

高数第二章导数与微分知识点总结第一节 导数1.基本概念 (1)定义0000000000()()()()()|(|)'()lim lim lim x x x x x x x f x x f x f x f x dy df x yf x dx dx x x x x ==∆→∆→→+∆--∆====∆∆-或注:可导必连续,连续不一定可导.注:分段函数分界点处的导数一定要用导数的定义求. (2)左、右导数0'000000()()()()()lim lim x x x f x x f x f x f x f x x x x ---∆→→+∆--==∆-. 0'00000()()()()()lim lim x x x f x x f x f x f x f x x x x +++∆→→+∆--==∆-. 0'()f x 存在''00()()f x f x -+⇔=.(3)导数的几何应用曲线()y f x =在点00(,())x f x 处的切线方程:000()'()()y f x f x x x -=-.法线方程:0001()()'()y f x x x f x -=--. 2.基本公式(1)'0C = (2)'1()a a x ax -=(3)()'ln xxa a a =(特例()'xxe e =)(4)1(log )'(0,1)ln a x a a x a=>≠ (5)(sin )'cos x x = (6)(cos )'sin x x =-(7)2(tan )'sec x x = (8)2(cot )'csc x x =- (9)(sec )'sec tan x x x = (10)(csc )'csc cot x x x =-(11)2(arcsin )'1x x=- (12)2(arccos )'1x x=-(13)21(arctan )'1x x =+ (14)21(arccot )'1x x =-+ (152222[ln()]'x x a x a++=+3.函数的求导法则 (1)四则运算的求导法则()'''u v u v ±=± ()'''uv u v uv =+ 2''()'u u v uv v v-= (2)复合函数求导法则--链式法则设(),()y f u u x ϕ==,则(())y f x ϕ=的导数为:[(())]''(())'()f x f x x ϕϕϕ=.例5 求函数21sin xy e=的导数.(3)反函数的求导法则设()y f x =的反函数为()x g y =,两者均可导,且'()0f x ≠,则11'()'()'(())g y f x f g y ==. (4)隐函数求导设函数()y f x =由方程(,)0F x y =所确定,求'y 的方法有两种:直接求导法和公式法'''x yF y F =-.(5)对数求导法:适用于若干因子连乘及幂指函数 4.高阶导数二阶以上的导数为高阶导数.常用的高阶求导公式: (1)()()ln (0)x n x n a a a a => 特别地,(n)()x x e e =(2) ()(sin )sin()2n n kx k kx n π=+(3)()(cos )cos()2n n kx k kx n π=+(4)()1(1)![ln(1)](1)(1)n n nn x x --+=-+ (5)()()(1)(2)(1)k n k n x k k k k n x -=---+(6)莱布尼茨公式:()()()()nn k n k k n k uv C u v -==∑,其中(0)(0),u u v v == 第二节 微分1.定义背景:函数的增量()()y f x x f x ∆=+∆-.定义:如果函数的增量y ∆可表示为()y A x o x ∆=∆+∆,其中A 是与x ∆无关的常数,则称函数()y f x =在点0x 可微,并且称A x ∆为x ∆的微分,记作dy ,则dy A x =∆.注:,y dy x dx ∆≠∆= 2.可导与可微的关系一元函数()f x 在点0x 可微,微分为dy A x =∆⇔函数()f x 在0x 可导,且0'()A f x =. 3.微分的几何意义 4.微分的计算(1)基本微分公式'()dy f x dx =. (2)微分运算法则 ②四则运算法则()d u v du dv ±=± duv vdu udv =+ 2()u vdu udvd v v-= ②一阶微分形式不变若u 为自变量,(),'()'()y f u dy f u u f u du ==∆=;若u 为中间变量,()y f u =,()u x ϕ=,'()'()'()dy f u x dx f u du ϕ==.练习题1、求下列函数的导数。

高等数学 第二章 极限和导数2-1导数的概念

高等数学 第二章 极限和导数2-1导数的概念

2. 曲线的切线问题 曲线 点处的切线 在 M 点处的切线 割线 M N 的极限位置 M T (当 当 时) 割线 M N 的斜率 f ( x ) − f ( x0 ) ta n ϕ = x − x0 切线 MT 的斜率
= lim ta n ϕ = lim
ϕ→ α
x → x0
f ( x ) − f ( x0 ) x − x0
(1)
存在, 存在 则称函数 f ( x ) 在点 x0 处可导 并称此极限 可导, 处的导数 导数, 值为 y = f (x)在点 x0 处的导数,记作 在
f ( x0 + ∆ x ) − f ( x0 ) ∆x
f ′ ( x 0 ) = lim
∆ x→ 0
也可记作: 也可记作
y′
x = x0
;
处的导数为无穷大 此时,导数不存在; 在点 x0 处的导数为无穷大 . 此时,导数不存在; 2°在 一 点 的 导 数 是 因 变 量在 点 x 处 的 变 化 率 , ° 0
它 反 映 了 因 变 量 随 自 变 量 的 变 化而 变 化 的 快 慢 程 度.
时刻的瞬时速度 运动质点的位置函数 运动质点的位置函数 s = f ( t ) 在 t 0 时刻的瞬时速度
LLL
二、导数的概念 内 1. 定义 定义2.1 设函数 y = f (x) 在 x0 的某邻域 U(x0)内
有定义. 有定义

x0 + ∆x ∈ U ( x0 )
∆ y = f ( x0 + ∆ x ) − f ( x0 ) ∆y lim = lim f ( x 0 + ∆ x ) − f ( x 0 ) ∆ x → 0 ∆ x ∆x→ 0 ∆x
dy d f (x) ; d x x = x0 d x x = x0

大一上学期《高等数学》知识整理-第二章 导数与微分

大一上学期《高等数学》知识整理-第二章 导数与微分

大一上学期《高等数学》知识整理-第二章导数与微分第二章导数与微分1.导数的定义。

对于一个在x0的某个邻域内有定义的函数,当自变量x在x0处取得增量Δx时,相应地函数y取得增量Δy=f(x0+Δx)-f(x0),如果当Δx→x0时Δy/Δx的极限存在,则称函数y=f(x)在x0点可导,并称这个极限为函数y=f(x)在x0处的导数。

通俗地讲,就是描述某个函数在某点增长或下降的瞬时速度,这个“速度”的单位为y每x,即每变化一个单位的x,y变化多少。

与物理学中定义米/秒是一个性质的。

把函数f(x)的导数看做是关于x的函数,即得到函数f(x)的导函数f'(x),简称导数。

(以上的“x0”中的“0”都是x 的下标,下同。

)导数也可以用微分的形式记作dy/dx,这个后面会提及。

2.在导数的定义中,如果Δx从左边趋向x0或从右边趋向x0,那么对应的导数被称为左导数和右导数。

只有f(x)在x0处的左导数和右导数相等,才能称f(x)在x0处可导。

举个例子,绝对值函数y=|x|,其在x=0处的左导数是-1(即x每增大1,y减小1),右导数是1,两者不相等,所以该函数在x=0处不可导。

如图所示。

绝对值函数y=|x|的导数是符号函数y=sgn(x),但是不包含x=0(单独的符号函数y=sgn(x),当x=0时,y=0)。

3.用定义法可以求初等函数的导数,本质上就是求极限。

比如说求y=x²在x=a处的导数,即就是求Δx→0时((a+Δx)²-a²)/Δx的极限。

求得结果为2a了解即可,还不如求导公式来得快。

下图为求该极限的过程,也就是用定义求y=x²的导数的过程。

4.函数的可导性与连续性的关系。

我们有定理:如果函数y=f(x)在点x0处可导,则f(x)在x0处必连续。

但反过来就不一定了。

归纳为一句话:连续不一定可导,可导一定连续。

y=|x|就是一个例子。

该函数在定义域内处处连续但是在x=0时不可导(因为左右极限不一样)。

大学导数知识点总结

大学导数知识点总结

大学导数知识点总结一、导数的概念导数是微积分中一个非常重要的概念,它是某一函数在某一点上的变化率。

在几何意义上,导数表示了曲线在某一点的切线斜率;在物理学中,导数表示了物体在某一时刻的速度和加速度。

因此,导数在数学、物理、经济等领域中都有着非常广泛的应用。

设y=f(x),x为自变量,y为因变量。

如果函数f(x)在点x=a处的导数存在,则称函数f(x)在点x=a处可导,记作f'(a)。

导数f'(a)就是函数f(x)在点x=a处的瞬间变化率,也就是函数的斜率。

导数的计算是微积分中的一个重要内容,它可以通过极限的方法来求得。

二、导数的计算方法求导数的过程即为求函数的瞬间变化率的过程,常用的方法有以下几种:1. 函数的基本求导公式:包括多项式函数、指数函数、对数函数、三角函数等求导公式。

这些基本求导公式是求导的起点,通过它们可以得到更复杂函数的导数。

2. 导数的四则运算:如果函数f(x)和g(x)都在点x=a处可导,那么f(x)与g(x)的和、差、积、商函数在点x=a处的导数可分别表示为(f+g)'(a)、(f-g)'(a)、(fg)'(a)、(f/g)'(a)。

3. 复合函数求导:对于复合函数f(g(x)),可以利用链式法则求导,即先对最外层函数求导,再乘以内层函数的导数。

4. 隐函数求导:对于以x和y为自变量的方程,如果y不能表示为x的函数形式,则称y是x的隐函数。

对隐函数求导需要利用隐函数求导的公式。

5. 参数方程求导:对参数方程x=x(t)和y=y(t)所确定的轨迹求切线斜率时,需要计算dy/dx=y'(t)/x'(t)。

6. 反函数求导:如果函数y=f(x)在一段区间内是单调、连续、可导的,并且f'(x)≠0,则其反函数在对应区间内也是可导的,且有f^(-1)'(y)=1/f'(x),即反函数的导数等于原函数导数的倒数。

高等数学第二章导数与微分

高等数学第二章导数与微分

x0
x
瞬时变化率
点导数是因变x0量 处在 的点 变化 ,它率 反映因 了变量随自变量 而的 变变 化化 的快 慢程.度
根据导数定义求导,可分为如下三个步骤:
( 1 ) 求y 增 f( x 量 x ) f( x );
曲线 y = f (x)在点x0处的切线斜率
tan lim y
x0 x
lim
x0
f (x0
x) x
f (x0)
f x0
左右导数
设函数 y = f (x)在点x0的某一个邻域内有定义.
假设极限l i m x 0

y x
存在,那么称 y = f (x)在点 x0 左可 导,
且称此极限值为函数 y = f (x) 在点 x0 的左导数,
解:由导数的几何意义, 得切线斜率为
k
y
x1 2
1 x
x 1 2
1 x2
x1 2
4.
切线方程为 y24x12, 即 4 xy 4 0 .
法线方程为
y
2
1 4
x
12,
即 2 x 8 y 1 5 0 .
2.1.4 函数的可导性与连续性的关系
〔1〕假设 f (x)在 x0点可导,那么它在 x0点必连续.
记作 f(x0 ). 同样可定义右导数: f(x0 ).
f (x)在x0可导的充要条件是: f (x)在 x0 既左可导
又右可导,且 f (x0)f (x0). 即 f(x0)存在 f (x 0 )f (x 0 )存 在 .
导函数的概念
假设函数 y = f (x)在开区间I内每一点都可导,那么称
f (x)在I 内可导. 此时对xI, 有导数 f ( x ) 与之

高等数学第二章 导数

高等数学第二章  导数

M旋转而
趋向极限
位置MT,
直线MT
就称为曲
线在点M
o
处的切线.
NNN T
N
M
x
所以导数的几何意义为:
f (x0 )表示曲线 y f (x)在点M (x0, f (x0 ))处的切线的斜率tan .
y
y f (x)
T
M
o
x0
x
在(x0, f (x0 ))处的
f '(x0 ) 0 切线:y=y0 法线:x=x0
(3) (u1u2 un ) u1u2 un u1u2 un u1u2 un
例 已知函数 y x sin x ln 2 ,求 y
解 y ( x sin x ln 2) ( x) (sin x) (ln 2) 1 cosx 2x
例 已知函数 y ( x 4 2 x 2 10) ln x ,求y
tan y y0
x x0
f (x0 x) f (x0 )
o
x
y f (x)
N
CM
x0
yT
x
x x0 x x
当 N 沿 曲线 C M , x 0 所以
切线MT的斜率为
k
tan
lim x0
f (x0
x) x
f (x0 )
f (x0 )
导数的几何意义
切线:割线的极限
割线
y
MN绕点
解 y (x4 2x2 10)ln x (x4 2x2 10) 1 x
[(x4 ) (2x2 ) (10)]ln x (x4 2x2 10) 1 x
函数 y f (x)在点 x0处关于x的导数, 记为y xx0 , f (x0 ),

高数第二章 知识点总结

高数第二章 知识点总结
| a1 + 2a2 + ⋅⋅⋅ + nan |≤ 1
往年考题:
(13-14) 已知 f ( x ) = (5 − cos x )
2 x −3
,则 f ′(0 ) = _______________。
(13-14) 已知 y = ln x + 1 + x 2 ,则 dy = _______________ 。
(10-11)
⎧ e ax , x≤0 ⎪ 设 f (x ) = ⎨ ,试求常数 a 、 b ,使 f ( x ) 处处可导. 2 ⎪ ⎩b(1 − x ) , x > 0 ⎧ e ax , x≤0 ⎪ 设 f (x) = ⎨ ,试求常数 a 、 b ,使 f ( x ) 处处可导 2 ⎪ ⎩b(1 − x ) , x > 0
dy
x =1
.
(09-10) 设 f ( x) 可导, y = f ( e tan x ) ,则 dy = ___________________. (08-09) 设 f ( x) 可导, y = f (arctan x 2 ) ,则 dy =

4. 隐函数、反函数求导
知识点及题型:
1. 隐函数求导数 (1) 区分自变量和因变量 (2) 方程两端同时对 x 求导,得关于 y′ 的方程 (3) 由上述方程解出 y′ (结果中可以含 y ) 2. 对数求导法 (1) 形如 y = f ( x) g ( x ) 的幂指函数 (2) 若干个因子乘积、商、开方、方幂 3. 反函数求导数
6
(1)
(2) (3)
(ax )( n) = a x ⋅ lnn a (a > 0)
(sin kx)( n) = k n sin(kx + n ⋅ ) 2 (cos kx)( n) = k n cos(kx + n ⋅ ) 2

导数知识点总结大全

导数知识点总结大全

导数知识点总结大全一、基本概念1.1 导数的定义对于函数y = f(x),在点x处的导数表示为f'(x),它定义为函数在该点的变化率。

导数可以用极限的概念来定义:\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\]其中,h表示自变量x的小变化量,当h趋近于0时,这个极限就表示了函数在点x处的导数。

导数也可以表示为函数的微分形式,即dy = f'(x)dx。

1.2 导数的几何意义导数有着重要的几何意义,它表示了函数在某一点上的切线斜率。

对于函数y = f(x),在点(x, f(x))处的切线的斜率恰好等于函数在该点的导数f'(x)。

这意味着导数可以描述函数在某一点的变化速率和方向。

1.3 导数的物理意义在物理学中,导数也有着重要的物理意义。

对于物理量s关于时间t的函数s(t),它的导数s'(t)表示了速度的变化率,即s'(t) = ds/dt。

类似地,速度关于时间的函数v(t)的导数v'(t)表示了加速度的变化率,即v'(t) = dv/dt。

因此,导数在描述物理过程中的变化率和速度方面也有着重要的应用。

1.4 导数的符号表示导数的符号表示通常有几种形式,常见的包括f'(x)、dy/dx、y'等。

它们都表示对函数y =f(x)的自变量x求导所得到的结果,即函数在某一点上的变化率或者斜率。

二、导数的性质2.1 导数存在性对于一个函数f(x),它在某一点上的导数可能存在也可能不存在。

如果函数在某一点上导数存在,那么称该函数在该点上可导。

对于大多数常见的函数,它们在定义域内是可导的,例如多项式函数、三角函数、指数函数等。

但也存在一些特殊的函数,在某些点上导数可能不存在,例如绝对值函数在原点处的导数就不存在。

2.2 导数的连续性如果一个函数在某一点上导数存在,并且它在该点上是连续的,那么称该函数在该点上是可微的。

高等数学 第二章 极限和导数2-4无穷小与无穷大

高等数学 第二章 极限和导数2-4无穷小与无穷大

x 2 − 5 x + 4 12 − 5 ⋅ 1 + 4 = lim =0 2 ⋅1 − 3 2x − 3 x→1
由无穷大与无穷小的关系
函数 反例: 反例: 但当 因为 但 从几何上也很容易得此结论 时, 不是无穷大 !
1 函数 是 当 x → ∞ 时 的无穷小 的无穷小; x
函数
1 是 当 x → − ∞ 时 的无穷小 的无穷小. 1− x
(4) 以零为极限的数列{ x n }, 称为当 n → ∞ 时 称为当 的无穷小 . 1 2 , n 都是 n n 3
→ ∞ 时的无穷小 .
注 1°除 0 以外任何很小的常数都不是无穷小 ! ° 以外任何很小的常数 很小的常数都 2°不能笼统地说某函数是无穷小, °不能笼统地说某函数是无穷小, 而应当说函数 而应当说函数 自变量趋向某个值时的无穷小 的无穷小. 是自变量趋向某个值时的无穷小 例如,说 “函数 x − 1 是无穷小”是不对的 ; 是无穷小” 例如, 函数 函数 x − 1 当 x → 1 时为无穷小 为无穷小. 而应当说 ,
∀ M > 0, ∃δ > 0, 使 得
当 0 < x − x0 < δ 时 ,
总有 f (x) > M .
总 有f (x) > M 或f (x) < − M
例2 证明 证 ∀ M > 0, 要使 只要
1 故取 δ = , M 则当 0 < x − 1 < δ 时, 有
1 > M x−1 1 即 lim = ∞. x→1 x − 1
若在定义中将 ①式改为 f ( x ) > M ( f ( x ) < − M ) , 则记作 lim
x → x0 ( x→ ∞ )

高等数学 第二章 极限和导数2-12高阶导数

高等数学 第二章 极限和导数2-12高阶导数

(2) 若函数 y = f (x) 的导数 y′ = f ′(x) 在区间 b) 在区间(a, 上可导, 上可导 则称 记作 或 的导数为 f (x)的二阶导 函)数 , 二阶导(函 数 d2 y d dy ( ) = 即 y′′ = ( y′)′ 或 2 d x dx dx
类似地 , 二阶导数的导数称为三阶导数 , 依次类推 , n −1阶导数的导数称为 n 阶导数 , 分别记作
三、高阶导数的运算法则
设函数 及 都有 n 阶导数 , 则 (C为常数 为常数) 为常数
n(n −1) 2! n(n −1)L n − k + 1) ( +L+ k!
(u(0) = u, (0) = v) v
—— 莱布尼茨 莱布尼茨(Leibniz) 公式
(uv)′ = u′v + uv′
(uv)′′= (u′v + uv′)′ = u′′v +2 u′v′+ uv′′
(n) n)
= sin( x + n⋅ π );
2
n) (cos x)(n) = cos( x + n⋅ π ) 2
(a )
x (n)
= a ln a;
x n
4. 利用莱布尼兹公式 5. 求由参数方程确定的函数的高阶导数时 从 求由参数方程确定的函数的高阶导数时, 低到高每次都用参数方程求导公式. 低到高每次都用参数方程求导公式
1 (n) n! ( ) = 其中a为常数 其中 为常数) n+1 (其中 为常数 a− x (a − x)
3. 利用已知高阶导数法 常用高阶导数公式: 常用高阶导数公式:
(e x )(n) = ex (1) (ax )(n) = ax ⋅ lnn a (a > 0) π (n) n (2) (sin kx) = k sin(kx + n⋅ ) 2 π (n) n (3) (cos kx) = k cos(kx + n⋅ ) 2 (4) ( xα )(n) = α(α −1)L α − n+1)xα−n (

高数第二章小结

高数第二章小结

1
f ( x)
u
f (x)
即 f ( x) f ( x)(ln | f ( x) |)
隐函数的导数
定义:由方程G(x,y)=0所确定的函数 y y(x)称为隐函数.
y f ( x) 形式称为显函数.
G(x, y) 0
y f ( x) 隐函数的显化
问题:隐函数不易显化或不能显化如何求导?
隐函数求导法则:
f ( x0 )
lim
x0
f ( x0
x) x
f ( x0 ) .
f ( x0 )
lim
h0
f ( x0
h) h
f ( x0 ) .
若 lim x x0
f ( x) f ( x0 ) x x0
A,

A为
f
(
x)在
x0
的左导数,记作
f
'
(
x0
)。
若 lim x x0
f
(x) x
f ( x0 ) x0
复合函数求导:链式法则。
隐函数和参数方程求导:复合函数求导法, 利用微分 形式的不变性
幂指函数求导:对数求导法
一、主要内容
原函数
不定积分
分部 积分法
积分法
直接 积分法
基 本

第一换元法 第二换元法
几种特殊类型 函数的积分
分 表
不定积分
对于定义在区间I上的函数f(x)若对 x I ,
有 F( x) f ( x) 则称 F( x) 是 f ( x) 在 区间I 上的一个原函数
n
[ f ( x)g( x)](n) Cnk f (k) ( x)g(nk) ( x) k0

大一高等数学第二章第二节导数运算法则

大一高等数学第二章第二节导数运算法则

例3 求 y tan x 的导数 . 解
sin x y (tan x ) ( ) cos x
(sin x ) cos x sin x(cos x ) cos 2 x
1 cos 2 x sin2 x sec2 x cos 2 x cos 2 x

同理可得
一、和、差、积、商的求导法则
定理 如果函数u( x ), v ( x )在点 x处可导, 则它 们的和、差、积、商 分母不为零)在点 x处也 ( 可导, 并且
(1) [u( x ) v ( x )] u( x ) v ( x ); ( 2) [u( x ) v ( x )] u( x )v ( x ) u( x )v ( x ); u( x ) u( x )v ( x ) u( x )v ( x ) ( 3) [ ] (v ( x ) 0). 2 v( x ) v ( x)
利用上述公式及法则初等函数求导问题可完全解 决. 注意:初等函数的导数仍为初等函数.
例14 求函数 y
x x x 的导数.
( x x x )
解 y
1 2 x x x
1 (1 ( x x )) 2 x x 2 x x x
1 1 (1 (1 )) 2 x 2 x x 2 x x x 1
(arcsin x )
1
1 x2 1 (arctan x ) 1 x2
(arccos x )
1
1 x2 1 ( arccot x ) 1 x2
2.函数的和、差、积、商的求导法则 设 u u( x ), v v ( x )可导,则 (1)( u v ) u v , (2)(cu) cu ( C 是常数)

高等数学 第二章 第四节 隐函数的导数 由参数方程所确定的函数的导数

高等数学 第二章 第四节  隐函数的导数  由参数方程所确定的函数的导数

例4
设 x 4 − xy + y 4 = 1, 求y ′在点 (0,1)处的值 .
解 方程两边对 x求导得
4 x 3 − y − xy ′ + 4 y 3 y ′ = 0
代入 x = 0, y = 1得
0 − 1 − 0 + 4 y′ = 0
y′
x=0 y =1
1 = ; 4
二、对数求导法
( x + 1)3 x − 1 , 观察函数 y = 2 x ( x + 4) e
课堂练习
1. 设x − 2 x y + 5 xy − 5 y + 1 = 0确定 函数y = y( x ),求 y′ (1,1)
3 2 2
2. 设 y =
x + 2( 3 − x ) ,求 y ′ 5 ( x + 1)
4
x = e t cos t dy 3. 设 ,求 t dx y = e sin t
2
600
dV dh 上式两边对 t求导得 dt = 8000 3h ⋅ dt dV Q = 28800米 3 / 小时, ∴当h = 20米时, 米时 dt dh 水面上升之速率 ≈ 0.104米 / 小时 dt
五、小结
隐函数求导法则: 直接对方程两边求导; 隐函数求导法则: 直接对方程两边求导 对数求导法: 对方程两边取对数,按隐函数的求 对数求导法: 对方程两边取对数 按隐函数的求 导法则求导; 导法则求导 参数方程求导: 实质上是利用复合函数求导法则; 参数方程求导: 实质上是利用复合函数求导法则;
解 (1) 在 t 0时刻的运动方向即
y
v0
vy
v vx
轨迹在 t 0时刻的切线方向 , 可由切线的斜率来反映 .

高等数学2知识点总结(优秀3篇)

高等数学2知识点总结(优秀3篇)

高等数学2知识点总结(优秀3篇)高等数学2知识点总结篇一高考数学解答题部分主要考查七大主干知识:第一,函数与导数。

主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用。

这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用。

这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式。

主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。

是高考的重点和难点。

第五,概率和统计。

这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。

第七,解析几何。

是高考的难点,运算量大,一般含参数。

高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。

针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。

以不变应万变。

对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。

对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。

考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。

训练的内容必须根据考纲的要求精心选题,始终紧扣基础知识,多进行解题的回顾、总结,概括提炼基本思想、基本方法,形成对通性通法的认识,真正做到解一题,会一类。

在临近高考的'数学复习中,考生们更应该从三个层面上整体把握,同步推进。

1.知识层面也就是对每个章节、每个知识点的再认识、再记忆、再应用。

完整版)高中数学导数知识点归纳总结

完整版)高中数学导数知识点归纳总结

完整版)高中数学导数知识点归纳总结导数的定义:对于函数y=f(x),在点x处的导数f'(x)定义为:f'(x)=\lim_{\Delta x\to 0}\frac{\Delta y}{\Deltax}=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}其中,$\Delta x$表示自变量的增量,$\Delta y$表示函数值的增量。

函数的连续性和可导性的关系:如果函数y=f(x)在点x处可导,则它在该点处必然连续。

但是,反过来并不成立,即函数在某点处连续并不一定可导。

导数的几何意义:函数y=f(x)在点x处的导数f'(x)表示曲线在该点处的切线的斜率。

因此,切线方程为:y-y_0=f'(x_0)(x-x_0)其中,$y_0=f(x_0)$表示曲线在点$(x_0,y_0)$处的纵坐标。

导数的四则运算法则:对于任意可导函数f(x)和g(x),有以下四则运算法则:1.$(f+g)'(x)=f'(x)+g'(x)$2.$(f-g)'(x)=f'(x)-g'(x)$3.$(fg)'(x)=f'(x)g(x)+f(x)g'(x)$4.$\left(\frac{f}{g}\right)'(x)=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}$其中,除法的分母$g(x)$不能为0.导数的应用:导数可以用来求函数的单调性、极值和最值。

函数单调递增的条件是导数大于0,函数单调递减的条件是导数小于0.函数在极值点处的导数为0,但反之不一定成立。

函数的最值可以通过求导数来确定。

注①:若点x是可导函数f(x)的极值点,则f'(x)=0.但反过来不一定成立。

对于可导函数,其一点x是极值点的必要条件是若函数在该点可导,则导数值为零。

高等数学 第2章 第一节 导数的概念

高等数学 第2章 第一节 导数的概念

曲线y f ( x)在点x0 , f ( x0 )处的切线方程为:
y f ( x0 ) f '( x0 )( x x0 )
当f ' ( x0 ) 0时,在该点处的法线方 程为:
y
f (x0 )
f
'(
1 x0
)
(
x
x0
)
8
四.可导与连续的关系
f ( x)在x0点可导 f ( x)在x0点连续。 f ( x)在x0点可导 f ( x)在x0点连续。
解 当 x 1 时, 1 n 1 x 3n n 2 , f ( x) lim n 1 x 3n 1, n
当 x 1 时, f ( x) limn 1 x 3n limn 2 1,
n
n
当 x 1 时, x 3 n x 3n n 1 x 3n n 2 x 3n n 2 x 3 ,
ex ex.
12
例5 求函数 y ln x 的导数
解: x (0,)
当x 0时, Ln(1+x)~x
(ln x)' lim ln(x x) ln x
x 0
x
ln(1 lim
x ) x
lim
x x
1
x0
x
x0 x x
即 : 对x 0, (ln x)' 1 x
例6 设 f x x sin x, 求 f 0.
f (x0 x)
y f ( x0 x) f ( x0 );
(2)比值
y f ( x0 x) f ( x0 )
x
x
f (x0)
P0

O
x0
•P
P1

P2•
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学第二章知识总结
在这一章里需要掌握的是求一阶导数的多种方法和求高阶导数的计算公式。

微分和导数的关系
求导数与求微分方法相同,只不过在求微分时要在后面加上dx.
函数在某点处的导数就是函数在该点处的变化率. 导数有很多种表现形式.
一.
(1)单侧导数即左右导数.
函数可导的充要条件是:左右导数存在且相等. (2)可导与连续的关系:可导必然连续,连续不一定
可导.
注:函数的导数就是函数在某点处因变量与自变量比值的极限.
◆求导数的方法有:
(1)利用导数的定义.(简单一点就是△y/△x的极
限)
(2)利用导数的几何意义解决几何及物理,化学的
实际问题.
(3)利用初等函数的求导公式.(在书P59)
(4)利用反函数求导法.(反函数的导数就是原函数
导数的倒数.)
(5)利用复合函数求导法.(由外到内,逐层求导)
(6)利用隐函数求导法
(7)利用参数方程确定函数的求导法.
(8)利用分段函数求导法.
(9)利用函数连续,可导的定义,研究讨论函数的连
续性与可导性.
二.高阶导数
高阶导数可细分为:一阶导数,二阶导数,三阶导数……N阶导数等等.(一阶导数的导数是二阶导数) 应该掌握的是高阶导数的运算.
方法有两种:(1)直接法.(2)间接法.
间接法适用于阶数较高的运算.其规律性较强.
常用的高阶导数公式在书P63上.注意查看.
■计算uv相乘形式的高阶导数时,首先要判断u,v从一阶到n阶的结果,再运用莱布尼兹公式求出结果。

三.隐函数和由参数方程确定的函数的导数什么是隐函数?
如果变量x,y的函数关系可以用一个二元方程表示,且对在给定范围内的每一个x,通过方程有确定的y与之对应,即Y是X的函数,这种函数就叫做隐函数
F(x,y)=0
从二元方程中解出y的值,就是隐函数的显化.
有些隐函数不易显化,甚至不能显化.
隐函数的求导方法:(例题在书P66 例40,41)(1)把y看做是复合函数的中间变量,把y看作y(x)
即可。

再在方程两边分别对X求导.
(2)从求导后的方程中求出y’.
(3)在隐函数的求导结果中允许含有y,但是求某一
以知点的导数时不仅要代X的值,还要代Y的值. 对数求导法:先两边取对数,再关于X求导.例题在书P68,例44(遇到指数形式的函数时就采用此类方法)
对参数方程确定的函数求导方法很简单,就是用y’/x’.
四.函数的微分.
可微就可导,可导就可微.
求函数的微分就是对函数求导,主要就是在所求结果后面加上dx.
微分的几何意义是某点处的切线纵坐标的增量.
常用的微分公式在书P76.
五.微分的应用.
1.微分在近似计算,误差估计中的应用.在书P80 P81.。

相关文档
最新文档