三年级数学奥赛起跑线第1讲 数图形
三年级奥数1-数数图形
第1讲 数数图形个数一、知识要点同学们,你想学会数图形的方法吗?要想不重复也不遗漏地数出线段、角、三角形、长方形……那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果。
要正确数出图形的个数,关键是要从基本图形入手。
首先要弄清图形中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和。
二、精讲精练【例题1】数出下图中有多少条线段?【思路导航】方法一:我们可以采用以线段左端点分类数的方法。
以A 点为左端点的线段有:AB 、AC 、AD 3条;以B 点为左端点的线段有:BC 、BD 2条;以C 点为左端点的线段有:CD 1条。
所以,图中共有线段3+2+1=6(条)。
方法二:把图中线段 AB 、BC 、CD 看做基本线段来数,那么,由1条基本线段构成的线段有:AB 、BC 、CD 3条;由2条基本线段构成的线段有:AC 、BD 2条;由3条基本线段构成的线段有:AD 1条。
所以,图中一共有3+2+1=6(条)线段。
练习1:(1)数出下图中有多少条线段? (2)数出下图中有几个长方形?【例题2】数出图中有几个角?【思路导航】数角的个数可以采用与数线段相同的方法来数。
方法一:以OA 为一边的角有:∠AOB 、∠AOC 、∠AOD 3个;以OB 为一边的角还有:∠BOC 、∠BOD 2个;以OC 为一边的角还有:∠COD 1个。
所以,图中共有角3+2+1=6(个)。
方法二:把图中∠AOB 、∠BOC 、∠COD 看做基本角来数,那么,由1个基本角构成的角有:∠AOB 、∠BOC 、∠COD 3个;由2个基本角构成的角有: ∠AOC 、∠BOD 2个;由3个基本角构成的角有:∠AOD 1个。
所以,图中一共有3+2+1=6(个)角。
练习2:数出图中有几个角?(1) (2)【例题3】数出右图中共有多少个三角形? 【思路导航】方法一:我们可以采用按边分类数的方法。
以PA 为边的三角形有:△PAB 、△PAC 、△PAD 、3个;以PB 为边的三角形还有:△PBC 、△PBD 2个;以PC 为边的三角形还有:△PCD 1个。
三年级奥数第01讲数数图形(教师版)
三年级奥数第01讲数数图形(教师版)x认识了解线段、角、三角形、长方形等基本图形;学会数基本图形的个数;掌握数图形的规律。
一、学会数图形同学们,你想学会数图形的方法吗?要想不重复也不遗漏地数出线段、角、三角形、长方形……那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果。
要正确数出图形的个数,关键是要从基本图形入手。
首先要弄清图形中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和。
当我们识了线段、角、三角形、长方形等基本图形后,这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。
要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。
二、解题策略要准确、迅速地计数图形必须注意以下几点:1.弄清被数图形的特征和变化规律。
2.要按一定的顺序数,做到不重复,不遗漏。
考点一:基本图形例1、数出下图中有多少条线段?【解析】方法一:我们可以采用以线段左端点分类数的方法。
以A点为左端点的线段有:AB、AC、AD 3条;以B点为左端点的线段有:BC、BD 2条;以C点为左端点的线段有:CD 1条。
所以,图中共有线段3+2+1=6(条)。
方法二:把图中线段AB、BC、CD看做基本线段来数,那么,由1条基本线段构成的线段有:AB、BC、CD 3条;由2条基本线段构成的线段有:AC、BD 2条;由3条基本线段构成的线段有:AD 1条。
所以,图中一共有3+2+1=6(条)线段。
例2、数出图中有几个角?【解析】数角的个数可以采用与数线段相同的方法来数。
方法一:以OA为一边的角有:∠AOB、∠AOC、∠AOD 3个;以OB为一边的角还有:∠BOC、∠BOD 2个;以OC为一边的角还有:∠COD 1个。
所以,图中共有角3+2+1=6(个)。
方法二:把图中∠AOB、∠BOC、∠COD看做基本角来数,那么,由1个基本角构成的角有:∠AOB、∠BOC、∠COD 3个;由2个基本角构成的角有: ∠AOC、∠BOD 2个;由3个基本角构成的角有:∠AOD 1个。
奥数起跑线三年级分册的导学材料1
奥数起跑线三年级分册的导学材料(1)第一讲 数图形【简析】要想不重复也不遗漏地数出线段、角、三角形……那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果。
要正确数出图形的个数,关键是要从基本图形入手。
首先要弄清图形中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和。
其中数线段是最基本的,数三角形和数长方形都可以借助线段的对应来解答(如例2).【例题1】数出下面图中有多少条线段?D C B A【思路点拨】我们可以采用以线段左端点分数数的方法。
以A 点为左端点的线段有:AB 、AC 、AD 共3条;以B 点为左端点的线段有:BC 、BD 共2条;以C 点为左端点的线段有:CD 共1条。
所以,图中共有线段3+2+1=6条。
我们还可以这样想:把图中线段AB 、BC 、CD 看作基本线段来数,那么: 由1条基本线段构成的线段:AB 、BC 、CD 共3条;由2条基本线段构成的线段:AC 、BD 共2条;由3条基本线段构成的线段:AD 只1条。
所以,图中共有3+2+1=6条线段。
【例题2 】数出下图中有多少个长方形。
D B C A【思路点拨】数图形中有多少个长方形和数三角形的方法一样,长方形是由长宽两对线段围成,线段CD 上有3+2+1=6条线段,其中每一条与AC 中一条线段对应,分别作为长方形的长和宽,这里共有6×1=6个长方形;而AC 上共2+1=3条线段也就有6×3=18个长方形。
它的计算公式为:长方形的总数=长边线段的总数×宽边线段的总数【例题3】 有10个小朋友,每2个人照一张合影,一共要照多少张照片?【思路点拨】这道题可以用数线段的方法来解答。
根据题意,画出线段图,每一个点代表一个小朋友:1098743从图上可以看出,第1个小朋友要与其余9个小朋友合影,要照9张照片;第2个小朋友还要与其余8个小朋友合影,再照8张照片……以此类推,第9个小朋友只要再与1个小朋友合影,再照1张照片。
一起学奥数--数线段、数图形(三年级)ppt课件
动动手: p.79’ 随堂3
备注:数出来的线段是没有方向的,而车票从A站到B站,和从B站到A站是不一样 的,是有方向的
.
8
数线段案例
例3、如图,一条长为4的线段被等分为4份,端点及分点为(从左到右) A、B、C、D、E。这些点分别形成多少条长为1、2、3或4的线段?
.
6
数线段案例
例1、数出下图中共有多少条线段?(p.78’ 例1、2)
备注:引导小朋友来讲
动动手: p.78’ 随堂1;p.79’ 随堂2
.
7
数线段案例
例2、从A地到B地的列车,共经过10个车站(包括A、B在内),应当 准备多少种车票?
【分析】1)先看下车票样子,关注站名 2)有多少线段,即需要有多少个票价,
2)长方形的个数=长上的线段数×宽上的线段数
动动手: p.85 随堂2
.
14
例5、数一数下图中正方形的个数。
【分析】1)先按照普通的方法,找一定的规律数一数图中的正方形数量。自左 至右,自上至下,按1至多个基本单元组成正方形数数。9+4+1=14
2)大正方形的边上分别有3条线段,在分基本单元数正方形数量时,用心 去发现规律:9=3×3;4=2×2;1=1×1
备注:n×n个相同的正方形小格组成的大正方形的正方形数量为: n×n+(n-1)×(n-1)+……+1×1
动动手: p.86随堂3
.
15
例6、下图(1)中共有多少个三角形?下图(2)中有多少个正方形?
图(1)
图(2)
【分析】图(1)与(2)都是规则图形,针对该类图形,关键是找到分类的方 法。图(1)可以以最小三角形边长为基本单位,逐步增大边长,可以得到不同 分类的三角形数量。边长为1、2、3与4的三角形分别为16+7+3+1=27个。
3年级奥数 第1讲 数数图形
长方形总个数=10×3=#43;2+1=10,宽边线段:3+2+1=6
长方形总个数=10×6=60(个)
2.数出下图中有几个正方形?
有序的进行枚举,你发现了什么规律吗?
2.数出下图中有几个正方形?
有序的进行枚举,你发现了什么规律吗?
【答案】: 1个□组成:3×3=9(个) 4个□组成:2×2=4(个) 9个□组成:1×1=1(个) 一共有9+4+1=14(个)正方形
“数线段”的思路可以解答的 问题:两两组合的问题,比如 照照片,打电话,比赛场数 等……
注意:两个元素之间
不需要排序
1.三年级有6个班,如果每两个班要进行一次 拔河比赛,那么一共要组织多少场比赛?
2.有红、黄、蓝、白四个气球,如果选择其 中的两个气球扎成一束,那么共有多少种不 同的扎法?
★3.有1,2,3,4,5,6六个数字,这些数 字能组成多少个个位上的数字与十位上的数 字不同的两位数?
数一数,下图中有几条线段?
【思路导航】 方法二:把图中线段 AB、BC、CD、DE看做基本线段来数。(积木法)
数一数,下图中有几条线段?
【答案】:图中一共有10条线段。
线段的数法: 1.连线法 2.积木法 由n条基本线段组成的大线段, 线段总数为:1+2+3+…+n 注意:需满足例题样式哦
数出下图中有多少条线段? (1)
5.数正方形的方法: n×n个正方形组成的正方形总个数:1×1+2×2+3×3…+n×n
1.基本思路:有序+分类 2.基本题型:
①数线段、角、三角形 ②数正方形 3.常用方法: ①枚举法
要正确数出图形的个数, 关键是要从基本图形入手。 首先要弄清图形中包含的基 本图形是什么,有多少个; 其次再数出由基本图形组成 的新的图形;最后求出它们 的和。
小学三年级奥数第一课时数数图形
思文教育小学三年级数学
奥数篇一:数数图形(含答案)
1、例题:数一数,下面图中有几条线段?(10条)
A B C D E
解题思路:
试一试
下面图中有几条线段
A B C D
列式:
A B C D E F
列式:
2、数出下图有几个角?
A
B
O
C
D
数出下图有几个角
A
O B
C
数出下图中有几个
3、数出下图中有几个三角形
A
B C D E
数出下图中共有多少个三角形?
A A
E F
B C D B C D E F
4、数出下图中有中有多少个长方形
A B
C D
数出下图中有多少个长方形
5、有10个小朋友,每2个人照一张合影,一共要照多少张照片?
三年级有六个班,每两个班要拔河比赛一次,一共要组织多少场比赛?有1、2、3、4、5、6这六个数字,能组成多少个不同的两位数?
答案:1、10条6条15条
2、6个3个18个
3、6个6个10个
4、18个30个
5、45张15场30个。
小学三年级举一反三奥数数图形线段
肄
小学三年级奥数
剖
何
蕊
第一讲 数图形 (一)
脐 筹
隋
弃
敝
帛
抚
蒜
数一数
赐
茹
针
酷
殖
仲
炊
净
莉
退
第一组
第二
蛆
凌
数一数
绩
蓑
收
燕
迭
担
洱
披
一共有多少个 ?
嘉
瞪
5+4+3+2+1=15(个)
鹅
线段
昧
籽
什么是线段?线段有什么特点呢?
赢
畦
峦
1、线段是直的;
砂
骂
2、线段有两个端点;
肄
痞
3、线段可以量出长度。
栏
欺
多
著
线段AC 线段BD
朔
线段AD 线段CD
庄
法
AB
CD
栋
娇
昂
例题1、数出下面图中有多少条线段?
频
叉
AB
CD
户 弗
余
要想准确数出线段的个数,我们
赃
应该按一定的顺序数,按什么顺
僚
序呢?
囚
腮
摄
功
AB
CD
晦
法一:
琵
思路导航:我们可以采用以线段左端点分数数的方法。
孤
以A点为左端点的线段有: AB、AC、AD共3条;
范
今日所学:数线段
却
今日作业:
龄
蛔
数出下面线段的个数:
裴
阵
(1) A B C D E
永
肛
三年级奥数数图形
第1讲数图形
【知识要点】
线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。
角:具有公共端点的两条射线组成的图形叫做角。
这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
三角形:三角形是由同一平面内不在同一直线上的三条线段“首尾”顺次连接所组成的封闭图形。
长方形:四个角都是直角的四边形叫作矩形,又称长方形。
【经典例题】
【例1】数出下图中有多少条线段?
【练习1】数出下图中有多少条线段?
【例2】数出下图中有几个角?
【练习2】数出下图中有几个角?
【例3】数出下图中有几个三角形?
【练习3】数出下图中有几个三角形?
【例4】数出下图中有几个长方形?
【练习4】数出下图中有几个长方形?
【例5】有五名同学,每两名同学要握一次手,一共要握几次手?
【练习5】银海学校三年级有9个班,每两个班要比赛拔河一次,这样一共要拔河几次?
【例6】从广州到北京的某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同车的车票?这些车票中有多少种不同的票价?
【练习6】从上海到武汉的航运线途中,有9个停靠码头,航运公司要为这段航运线准备多少种不同的船票?
【课堂练习】
1、数出下图中有多少条线段?
2、数出下图中有多少个角
3、数出下图各有多少个三角形?
4、下图中各有多少个长方形?
5、有1,2,3,4,5,6,7,8等8个数字各用一次,能组成多少个不同的两位数?
6、从上海至青岛的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?。
小学三年级奥数专题一:数图形
小学三年级奥数专题一:数图形
专题简析:先确定起始点或起始边,数出图形的数量,再依次以后一个点(或边)数出图形的数量。
最后求出它们的和。
例1、数出下面图中有多少条线段?
思路:以A点为左端点的线段有:AB、AC、AD共3条;以B点为左端点的线段有:BC、BD共2条;以C点为左端点的线段有:CD共1条。
所以图中共有线段3+2+1=6条。
试一试1:数出下图中有( )条线段。
例2、数出下图中有几个角?
思路:以AO为一边的角有:∠AOB、∠AOC、∠AOD三个;以BO为一边的角有:∠BOC、∠BOD两个;以CO为一边的角有:∠COD一个。
所以图中共有3+2+1=6个角。
试一试2:数出下图中有()个角。
例3 数出下面图中共有多少个三角形。
思路:数三角形的个数与数线段、数角的方法相同:以AB为边的三角形有:△ABC、△ABD、△ABE三个;以AC为边的三角形有:△ACD、△ACE二个;以AD为边的三角形有:△ADE一个。
所以图中共有三角形3+2+1=6个。
试一试3:数出下面图中共有()个三角形。
三年级奥数第01讲-数数图形(学)(2)
学科教师辅导讲义知识梳理一、学会数图形同学们,你想学会数图形的方法吗?要想不重复也不遗漏地数出线段、角、三角形、长方形……那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果。
要正确数出图形的个数,关键是要从基本图形入手。
首先要弄清图形中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和。
当我们识了线段、角、三角形、长方形等基本图形后,这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。
要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。
二、解题策略要准确、迅速地计数图形必须注意以下几点:1.弄清被数图形的特征和变化规律。
2.要按一定的顺序数,做到不重复,不遗漏。
典例分析考点一:基本图形例1、数出下图中有多少条线段?例2、数出图中有几个角?例3、数出右图中共有多少个三角形?考点二:较复杂的问题例1、数出下图中有多少个长方形?例2、下图中共有多少个三角形?例3、有5个同学,每两个人握手一次,一共要握手多少次?例4、从广州到北京的某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同车的车票?这些车票中有多少种不同的票价?P(Practice-Oriented)——实战演练实战演练➢课堂狙击1、数出下图中有多少条线段?2、数出图中有几个角?3、数出图中共有多少个三角形?4、数出下图中有多少个长方形?5、银海学校三年级有9个班,每两个班要比赛拔河一次,这样一共要拔河几次?6、从上海到武汉的航运线途中,有9个停靠码头,航运公司要为这段航运线准备多少种不同的船票?➢课后反击1、数出下图中有几个长方形?2、数出图中有几个角?3、数出图中共有多少个三角形?4、数出下图中有多少个正方形?5、数出下图中有多少个长方形?6、有1,2,3,4,5,6,7,8等8个数字各用一次,能组成多少个不同的两位数?7、从上海至青岛的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?直击赛场1、下边三个图中都有一些三角形,在图A中,有个;在图B中,有__ _个;在图C中,有______个。
三奥 数数图形第一课时
3+2+1=6(条)
数一数,下图中有几条线段。
解法二:每条线段都有两个端点,每相邻两个端点间的线段 为1条基本线段。图中的基本线段有:AB、BC、CD这3条;由2 条基本线段组成的线段有AC、BD这2条;由3条基本线段组成的 线段有AD1条。所以图中共有线段: 3+2+1=6(条)
从 A点到D点,一共有几个端点? 从A点到D点,一共包含几条线段?
自我挑战
3.数 出下图中有几个三角形。
分析:我们有条理地来数。由一个三角形组 成的三角形有8个,由两个三角形组成的有8 个,由4个三角形组成的大三角形有2个。共 有三角形: 8+8+2=18(个)
要完成课外作业,加油!
2、底边BE中包含几条线段?
3、你又发现了什么?
B
C
D
E
4、图中BE边上的每一条线段与顶点A 构成一个三角形,也就是说,BE边上 有几条线段,就构成了几个三角形,因为BE 上有4个点,共有3+2+1=6条线段,所以图 中有6个三角形。 5、要数出图中三角形的个数,只需数出 BE中包含几条线段就可以了。BE中含有线 段:3+2+1=6条,所以图中共有三角形: 3+2+1=6(个)
第7三角形有( )个顶点。 2.数一数,下图中有几条线段。
A B C
A
3.数出右图中有几个三角形。
B C D
王牌例题1
数一数,下图中有几条线段。
【思路导航】解法一:以A为左端点的线段有: AB,AC,AD3条;以B为 左端点的线段有:BC、BD2条;以C为左端点的线段有:CD1条;所以 图中共有线段:
举一反三2
数一数,下图中共有几条线段。 (1)
G A B E F C D H
(2)