正弦定理(1)教学设计
《正弦定理》优秀教案
《正弦定理》教学设计一、教学目标分析1、知识与技能:通过对锐角三角形中边与角的关系的探索,发现正弦定理;掌握正弦定理的内容及其证明方法;能利用正弦定理解三角形以及利用正弦定理解决简单的实际问题。
2、过程与方法:让学生从实际问题出发,结合以前学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理,使学生体会完全归纳法在定理证明中的应用;让学生在应用定理解决问题的过程中更深入的理解定理及其作用。
3、情感态度与价值观:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,发现并证明正弦定理。
从发现与证明的过程中体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲。
培养学生处理解三角形问题的运算能力和探索数学规律的推理能力,并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。
二、教学重点、难点分析重点:通过对锐角三角形边与角关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。
难点:①正弦定理的发现与证明过程;②已知两边以及其中一边的对角解三角形时解的个数的判断。
三、教法与学法分析本节课是教材第一章《解三角形》的第一节,所需主要基础知识有直角三角形的边角关系,三角函数相关知识。
在教法上,根据教材的内容和编排的特点,为更有效的突出重点,突破难点,教学中采用探究式课堂教学模式,首先从学生熟悉的锐角三角形情形入手,设计恰当的问题情境,将新知识与学生已有的知识建立起密切的联系,通过学生自己的亲身体验,使学生经历正弦定理的发现过程,激发学生的求知欲,调动学生主动参与的积极性,引导学生尝试运用新知识解决新问题,即在教学过程中,让学生的思维由问题开始,通过猜想的得出、猜想的探究、定理的推导等环节逐步得到深化。
教学过程中鼓励学生合作交流、动手实践,通过对定理的推导、解读、应用,引导学生主动思考、总结、归纳解答过程中的内在规律,形成一般结论。
《正弦定理》教学设计
《正弦定理》教学设计一、教材分析正弦定理是高中新教材人教A版必修⑤第一章1.1.1的内容,是使学生在已有知识的基础上,通过对三角形边角关系的研究,发现并掌握三角形中的边与角之间的数量关系。
通过创设问题情景,从而引导学生产生探索愿望,激发学生学习的兴趣,并指出解决问题的关键在于研究三角形中的边、角关系。
在教学过程中,要引导学生自主探究三角形的边角关系,先由特殊情况发现结论,再对一般三角形进行推导证明,并引导学生分析正弦定理可以解决两类关于解三角形的问题:(1)已知两角和一边,解三角形;(2)已知两边和其中一边的对角,解三角形。
二、学情分析本节授课对象是高一学生,是在学生学习了必修④基本初等函数Ⅱ和三角恒等变换的基础上,由实际问题出发探索研究三角形边角关系,得出正弦定理。
高一学生对生产生活问题比较感兴趣,由实际问题出发可以激起学生的学习兴趣,使学生产生探索研究的愿望。
根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点。
三、教学目标:1.知识与技能:通过创设问题情境,引导学生发现正弦定理,并推证正弦定理。
会初步运用正弦定理与三角形的内角和定理解斜三角形的两类问题。
2.过程与方法:引导学生从已有的知识出发,共同探究在任意三角形中,边与其对角正弦的比值之间的关系,培养学生通过观察,猜想,由特殊到一般归纳得出结论的能力和化未知为已知的解决问题的能力。
3.情感、态度与价值观:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。
四、教学重点与难点:重点:正弦定理的探索和证明及其基本应用。
难点:①正弦定理的证明;②了解已知两边和其中一边的对角解三角形时,解的情况不唯一。
五、学法与教法学法:引导学生首先从直角三角形中揭示边角关系:sin sin sin abcA B C==,接着就一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖,培养学生“会观察”、 “会类比”、“会分析”、“会论证”的能力。
正弦定理数学教案优秀5篇
正弦定理数学教案优秀5篇《正弦定理》教案篇一《正弦定理》教案一、教学内容分析本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。
本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。
因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。
二、学情分析对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。
根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。
三、设计思想:培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。
如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。
”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。
本节“正弦定理”的教学,将遵循这个原则而进行设计。
四、教学目标:1、在创设的问题情境中,让学生从已有的几何知识和处理几何图形的常用方法出发,探索和证明正弦定理,体验坐标法将几何问题转化为代数问题的优越性,感受数学论证的严谨性。
《正弦定理》教案(含答案)
《正弦定理》教案(含答案)章节一:正弦定理的引入教学目标:1. 让学生理解正弦定理的概念和意义。
2. 让学生掌握正弦定理的数学表达式。
3. 让学生了解正弦定理的应用场景。
教学内容:1. 引入正弦定理的背景和意义。
2. 介绍正弦定理的数学表达式:a/sinA = b/sinB = c/sinC。
3. 解释正弦定理的证明过程。
教学活动:1. 通过实际例子引入正弦定理的概念。
2. 引导学生推导正弦定理的数学表达式。
3. 让学生进行小组讨论,探索正弦定理的应用场景。
练习题:1. 解释正弦定理的概念。
2. 给出一个三角形,让学生计算其各边的比例。
章节二:正弦定理的应用教学目标:1. 让学生掌握正弦定理在三角形中的应用。
2. 让学生能够解决实际问题中涉及的三角形问题。
教学内容:1. 介绍正弦定理在三角形中的应用方法。
2. 讲解正弦定理在实际问题中的应用示例。
教学活动:1. 通过示例讲解正弦定理在三角形中的应用方法。
2. 让学生进行小组讨论,探讨正弦定理在实际问题中的应用。
练习题:1. 使用正弦定理计算一个三角形的面积。
2. 给出一个实际问题,让学生应用正弦定理解决问题。
章节三:正弦定理的证明教学目标:1. 让学生理解正弦定理的证明过程。
2. 让学生掌握正弦定理的证明方法。
教学内容:1. 介绍正弦定理的证明过程。
2. 解释正弦定理的证明方法。
教学活动:1. 通过几何图形的分析,引导学生推导正弦定理的证明过程。
2. 让学生进行小组讨论,理解正弦定理的证明方法。
练习题:1. 解释正弦定理的证明过程。
2. 给出一个三角形,让学生使用正弦定理进行证明。
章节四:正弦定理在实际问题中的应用教学目标:1. 让学生掌握正弦定理在实际问题中的应用。
2. 让学生能够解决实际问题中涉及的三角形问题。
教学内容:1. 介绍正弦定理在实际问题中的应用方法。
2. 讲解正弦定理在实际问题中的应用示例。
教学活动:1. 通过示例讲解正弦定理在实际问题中的应用方法。
正弦定理教学设计最新5篇
正弦定理教学设计最新5篇正弦定理教学设计篇一《正弦定理》教学设计茂名市实验中学张卫兵一、教学目标分析1、知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理解决一些简单的三角形度量问题。
2、过程与方法:让学生从实际问题出发,结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;让学生在应用定理解决问题的过程中更深入地理解定理及其作用。
3、情感、态度与价值观:通过正弦定理的发现与证明过程体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。
二、教学重点、难点分析重点:通过对任意三角形边长和角度关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。
难点:正弦定理的发现并证明过程以及已知两边以及其中一边的对角解三角形时解的个数的判断。
三、教学基本流程1、创设问题情境,引出问题:在三角形中,已知两角以及一边,如何求出另外一边;2、结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;3、分析正弦定理的特征及利用正弦定理可解的三角形的类型;4、应用正弦定理解三角形。
四、教学情境设计五、教学研究1、新课标倡导积极主动、勇于探索的学习方式,使学生在自主探究的过程中提高数学思维能力。
本设计从生活中的实际问题出发创设了一系列数学问题情境来引导学生质疑、思考,让学生在“疑问”、“好奇”、“解难”中探究学习,激发了学生的学习兴趣,调动了学生自主学习的积极性,从而有效地培养学生了的数学创新思维。
2、新课标强调数学教学要注重“过程”,要使学生学习数学的过程成为在教师的引导下进行“再创造”过程。
本设计展示了一个先从特殊的直角三角形中正弦的定义出发探索A的正弦与B的正弦的关系从而发现正弦定理,再将一般的三角形与直角三角形联系起来(在一般的三角形中构造直角三角形)进而在一般的三角形发现正弦定理的过程,使学生不但体会到探索新知的方法而且体验到了发现的乐趣,起到了良好的教学效果。
高中数学正弦定理教案一等奖
高中数学正弦定理教案一等奖1、高中数学正弦定理教案一等奖(一)教材分析(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。
(2)重点、难点。
重点:正余弦定理的'证明和应用难点:利用向量知识证明定理(二)教学目标(1)知识目标:①要学生掌握正余弦定理的推导过程和内容;②能够运用正余弦定理解三角形;③了解向量知识的应用。
(2)能力目标:提高学生分析问题、解决问题的能力。
(3)情感目标:使学生领悟到数学来源于实践而又作用于实践,培养学生的学习数学的兴趣。
(三)教学过程教师的主要作用是调控课堂,适时引导,引导学生自主发现,自主探究。
使学生的综合能力得到提高。
教学过程分如下几个环节:教学过程课堂引入1、定理推导2、证明定理3、总结定理4、归纳小结5、反馈练习6、课堂总结、布置作业具体教学过程如下:(1)课堂引入:正余弦定理广泛应用于生产生活的各个领域,如航海,测量天体运行,那正余弦定理解决实际问题的一般步骤是什么呢?(2)定理的推导。
首先提出问题:RtΔABC中可建立哪些边角关系?目的:首先从学生熟悉的直角三角形中引导学生自己发现定理内容,猜想,再完成一般性的证明,具体环节如下:①引导学生从SinA、SinB的表达式中发现联系。
②继续引导学生观察特点,有A边A角,B边B角;③接着引导:能用C边C角表示吗?④而后鼓励猜想:在直角三角形中成立了,对任意三角形成立吗?发现问题比解决问题更重要,我便是让学生体验了发现的过程,从学生熟悉的知识内容入手,观察发现,然后产生猜想,进而完成一般性证明。
这个过程采用了不断创设问题,启发诱导的教学方法,引导学生自主发现和探究。
第二步证明定理:①用向量方法证明定理:学生不易想到,设计如下:问题:如何出现三角函数做数量积欲转化到正弦利用诱导公式做直角难点突破实践:师生共同完成锐角三角形中定理证明独立:学生独立完成在钝角三角形中的证明总结定理:师生共同对定理进行总结,再认识。
正弦定理
正弦定理(第一课时)教学设计一、教学内容分析本节课内容选自《普通高中课程标准实验教科书·数学必修5》(人教A版)第一章1.1.1正弦定理。
本章“解三角形”内容既是必修4中三角函数与向量内容的延续,又包含求解三角形的重要数量关系,蕴含较强的理论性和应用性。
解三角形作为几何度量问题,突出了几何的作用和数量化的思想,为学生进一步学习数学奠定基础。
本节课作为本单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对一般三角形边角关系的量化探究,发现并初步掌握正弦定理,解决简单的两类解三角形问题,并为后续余弦定理等相关内容作知识和方法上的准备。
教学过程中,可发挥学生的主动性,通过试验猜测、探究发现、合情推理与演绎证明的过程,提高学生的思维能力和推理水平。
二、学生学情分析对刚刚升入高中不久的学生来说,虽已具备一定的平面几何、解直角三角形、三角函数及向量等知识,也具有一定观察、分析、解决问题的能力,但对知识间的联系与综合有一定难度,思维灵活性受到制约;尤其是本课中涉及到推理证明的复杂性、多样性和从特殊到一般的思维方式等,对学生学习会形成较大障碍。
因此,教学中教师应适时引导,降低各环节之间的联系难度,多带动前后知识间的联想,引领学生直接参与分析问题、解决问题并体验获得成果的喜悦。
若能注意与生活实际相结合,注重知识的发生、发展过程,就更能激发学生学习兴趣和参与探索的积极性。
三、教学任务分析1、通过对特殊三角形边角数量关系的试验结论归纳,猜测出正弦定理;2、尝试从各种途径证明正弦定理;3、初步应用正弦定理求解三角形(两种基本情形);4、自行归纳表述本课收获;四、教法分析依据本节课内容的特点,学生的认识规律,本节知识遵循以教师为主导,以学生为主体的指导思想,采用与学生共同探索的教学方法,命题教学的发生型模式,以问题实际为参照对象,激发学生学习数学的好奇心和求知欲,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化,并且运用例题和习题来强化内容的掌握,突破重难点。
高中数学《正弦定理》教案4篇
高中数学《正弦定理》教案4篇高中数学《正弦定理》教案1教材地位与作用:本节学问是必修五第一章《解三角形》的第一节内容,与学校学习的三角形的边和角的基本关系有亲密的联系与判定三角形的全等也有亲密联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。
因此,正弦定理的学问特别重要。
学情分析:作为高一同学,同学们已经把握了基本的三角函数,特殊是在一些特别三角形中,而同学们在解决任意三角形的边与角问题,就比较困难。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探究及证明,已知两边和其中一边的对角解三角形时推断解的个数。
(依据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标)教学目标分析:学问目标:理解并把握正弦定理的证明,运用正弦定理解三角形。
力量目标:探究正弦定理的证明过程,用归纳法得出结论。
情感目标:通过推导得出正弦定理,让同学感受数学公式的干净对称美和数学的实际应用价值。
教法学法分析:教法:采纳探究式课堂教学模式,在老师的启发引导下,以同学自主和合作沟通为前提,以“正弦定理的发觉”为基本探究内容,以生活实际为参照对象,让同学的思维由问题开头,到猜测的得出,猜测的探究,定理的推导,并逐步得到深化。
学法:指导同学把握“观看——猜测——证明——应用”这一思维方法,实行个人、小组、集体等多种解难释疑的尝试活动,将自己所学学问应用于对任意三角形性质的探究。
让同学在问题情景中学习,观看,类比,思索,探究,动手尝试相结合,增添同学由特别到一般的数学思维力量,锲而不舍的求学精神。
教学过程(一)创设情境,布疑激趣“爱好是最好的老师”,假如一节课有个好的开头,那就意味着胜利了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠a=47°,∠b=53°,ab 长为1m,想修好这个零件,但他不知道ac和bc的长度是多少好去截料,你能帮师傅这个忙吗?”激发同学关心别人的热忱和学习的爱好,从而进入今日的学习课题。
正弦定理(第一课时)教学设计
《正弦定理》(第一课时)教学设计点明课题本节课是普通高中课程标准实验教科书必修5第一章《解三角形》中的1.1《正弦定理和余弦定理》中的1.1.1《正弦定理》的内容,该节包括正弦定理的发现、证明和应用,我把这节内容分为2课时,现在我要说的是《正弦定理》的第一课时,主要包括正弦定理的发现、证明和简单的应用。
下面我从三个方面来说说对这节课的分析和设计:1.教材地位分析2.学生现实分析一、教学背景分析3.教学目标分析1.教学重点、难点分析二、教学展开分析2.教学策略与学法指导3.教学媒体选择4.教学过程实施三、教学结果分析一、教学背景分析1.教材地位分析《正弦定理》是普通高中课程标准实验教科书必修5中第一章《解三角形》的学习内容,比较系统地研究了解三角形这个课题。
《正弦定理》紧跟必修4(包括三角函数与平面向量)之后,可以启发学生联想所学知识,运用平面向量的数量积连同三角形、三角函数的其他知识作为工具,推导出正弦定理。
正弦定理是求解任意三角形的基础,又是学生了解向量的工具性和知识间的相互联系的的开端,对进一步学习任意三角形的求解、体会事物是相互联系的辨证思想均起着举足轻重的作用。
通过本节课学习,培养学生“用数学”的意识和自主、合作、探究能力。
2.学生现实分析(1)学生在初中已学过有关直角三角形的一些知识:2b2c2①勾股定理:②三角函数式,如:a(2)学生在初中已学过有关任意三角形的一些知识:sinAaccosAbc①C②大边对大角,小边对小角AB③两边之和大于第三边,两边之差小于第三边(3)学生在高中已学过必修4(包括三角函数与平面向量)(4)学生已具备初步的数学建模能力,会从简单的实际问题中抽象出数学模型3.教学目标分析知识目标:(1)正弦定理的发现(2)证明正弦定理的几何法和向量法(3)正弦定理的简单应用能力目标:(1)培养学生观察、分析问题、应用所学知识解决实际问题的能力(2)通过向量把三角形的边长和三角函数建立起关系,在解决问题的过程中培养学生的联想能力、综合应用知识的能力情感目标:(1)设置情景,培养学生的独立探究意识,激发学生学习兴趣(2)鼓励学生探索规律、发现规律、解决实际问题(3)通过共同剖析、探讨问题,推进师生合作意识,加强相互评价与自我反思二、教学展开分析1.教学重点与难点分析教学重点是发现正弦定理、用几何法和向量法证明正弦定理。
正弦定理教案
正弦定理教案正弦定理教案「篇一」教学目标:1.让学生从已有的几何知识出发,通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类基本问题。
2.通过对实际问题的探索,培养学生观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。
3.通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。
4.培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
教学重点与难点教学重点:正弦定理的发现与证明;正弦定理的简单应用。
教学难点:正弦定理的猜想提出过程。
教学准备:制作多媒体,学生准备计算器,直尺,量角器。
教学过程:(一)结合实例,激发动机师生活动:师:每天我们都在科技楼里学习,对科技楼熟悉吗?生:当然熟悉。
师:那大家知道科技楼有多高吗?学生不知道。
激起学生兴趣!师:给大家一个皮尺和测角仪,你能测出楼的高度吗?学生思考片刻,教师引导。
生1:在楼的旁边取一个观测点C,再用一个标杆,利用三角形相似。
师:方法可行吗?生2:B点位置在楼内不确定,故BC长度无法测量,一次测量不行。
师:你有什么想法?生2:可以再取一个观测点D。
师:多次测量取得数据,为了能与上次数据联系,我们应把D点取在什么位置?生2:向前或向后师:好,模型如图(2):我们设正弦定理教学设计,正弦定理教学设计 ,CD=10,那么我们能计算出AB吗?生3:由正弦定理教学设计求出AB。
师:很好,我们可否换个角度,在正弦定理教学设计中,能求出AD,也就求出了AB。
关于正弦定理数学教案5篇
关于正弦定理数学教案5篇关于正弦定理数学教案5篇本节内容是正弦定理教学的第一节课,其主要任务是引入并证明正弦定理.做好正弦定理的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识。
下面给大家分享正弦定理数学教案,欢迎阅读!正弦定理数学教案【篇1】一、教材分析《正弦定理》是人教版教材必修五第一章《解三角形》的第一节内容,也是三角形理论中的一个重要内容,与初中学习的三角形的边和角的基本关系有密切的联系。
在此之前,学生已经学习过了正弦函数和余弦函数,知识储备已足够。
它是后续课程中解三角形的理论依据,也是解决实际生活中许多测量问题的工具。
因此熟练掌握正弦定理能为接下来学习解三角形打下坚实基础,并能在实际应用中灵活变通。
二、教学目标根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。
能力目标:探索正弦定理的证明过程,用归纳法得出结论,并能掌握多种证明方法。
情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。
三、教学重难点教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
四、教法分析依据本节课内容的特点,学生的认识规律,本节知识遵循以教师为主导,以学生为主体的指导思想,采用与学生共同探索的教学方法,命题教学的发生型模式,以问题实际为参照对象,激发学生学习数学的好奇心和求知欲,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化,并且运用例题和习题来强化内容的掌握,突破重难点。
即指导学生掌握“观察——猜想——证明——应用”这一思维方法。
学生采用自主式、合作式、探讨式的学习方法,这样能使学生积极参与数学学习活动,培养学生的合作意识和探究精神。
五、教学过程本节知识教学采用发生型模式:1、问题情境有一个旅游景点,为了吸引更多的游客,想在风景区两座相邻的山之间搭建一条观光索道。
数学正弦定理优秀教案及教学设计
数学正弦定理优秀教案及教学设计人教版数学正弦定理优秀教案及教学设计导语:什么是正弦定理?关于正弦定理的教案设计要怎么写?以下是品才网小编整理的人教版数学正弦定理优秀教案及教学设计,欢迎阅读参考!人教版数学正弦定理优秀教案及教学设计【教学目的】1理解并掌握正弦定理,能运用正弦定理解斜三角形,解决实际问题,正弦定理在高考中的应用,熟悉高考题型。
2. 引导学习探索知识,学以致用,培养观察、归纳、猜想、探究的思维方法与能力。
通过对实际问题的探索,培养学生对数学的观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和数学交流能力,提升数形结合与转化思想。
【教学重点】理解掌握正弦定理,运用正弦定理解三角形,解决实际应用问题【教学难点】正弦定理的熟练运用,提升正弦定理的综合运用能力,解决实际生活中的有关问题。
【教学方法】启发引导、观察发现、精讲多练,双主体互动,多媒体辅助教学【教学过程】一. 引入:1.三角形中有几个要素?2.三角形可分为直角三角形和斜三角形;3.三角形中的边角关系:A+B+C=π; A>B则a>b; a+b>c;4.直角三角形中A+B=90°;勾股定理 ;5.斜三角形ABC中的边角关系如何表示? 三角形中的大边对大角,正弦定理表示了边角关系的准确量化提问:正弦定理的内容?公式默写。
二.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即[理解定理](1)正弦定理适合于任何三角形;(2)正弦定理说明同一三角形中,边与其对角的正弦比值相等;即边与其对角的正弦成正比;(3) 等价于,,每个等式可视为一个方程:知三求一正弦定理的基本作用为:正弦定理可以解决三角形中两类问题:①已知三角形的两角和任意一边,求另一角和其他边;,如 ;②已知三角形的任意两边与其中一边的对角,求另一边的对角,进而可求其他的边和角,如一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。
正弦定理教学设计
1.1正弦定理(教学设计)教学目标1.知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
2. 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
教学重、难点重点:正弦定理的探索和证明及其基本应用。
难点:已知两边和其中一边的对角解三角形时判断解的个数。
学法与教学用具学法:引导学生首先从直角三角形中揭示边角关系:sin sin sin abcABC==,接着就一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。
教学过程:一、创设情景、新课引入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? C B二、新课讲解: (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c ==, A 则sin sin sin a b c c A B C=== b c 从而在直角三角形ABC 中,sin sin sin a b cA B C==C a B (图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=,C 同理可得sin sin cbC B =, b a从而sin sin abAB=sin cC=A c B(图1.1-3) 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
正弦定理教学设计1
正弦定理教学设计1一、教学目标1.理解正弦定理的含义及其在求解三角形中的应用;2.掌握正弦定理的公式及其使用方法;3.运用正弦定理解决实际问题。
二、教学内容正弦定理的概念、公式及应用。
三、教学重点五、教学方法1.板书法:重点板书正弦定理的公式及其应用场景。
3.讨论法:讨论学生的思考方式和解题方法,加深学生对正弦定理的理解。
六、教学过程1.引入通过数学实验引出概念:学生拿一个弹簧的两端,分别向上和向下拉,可以看到弹簧中间的形状是一个三角形,然后向学生提问:怎样才能测出这个三角形的三个角度?2.概念的阐述(1)公式的引入:向学生提供一个与实验中的三角形相似的三角形,让学生尝试寻找两个已知量来求解第三个未知量。
引导学生发现,已知两条边和夹角,可通过余弦定理求解第三条边。
(2)应用的引入:与同学们共同探讨一下,如果只知道三角形的三条边长,怎样求解三个角度?黑板上列出题目:已知三角形的三条边分别为a、b、c,求出三个角的正弦值。
3.练习让同学们分小组,自行完成包含正弦定理的三角形求解问题,然后进行交流汇总,展示解答过程和方法。
4.方法总结教师对学生的解答情况进行总结,指出正弦定理的公式及使用方法,分析示例,总结根据已知量对未知量进行求解的思路,向学生呈现正弦定理的整个解题思路。
5.应用练习组织同学们自行解答一个有实际意义的问题,例如:在电线杆上拉电线,杆子高14m,杆顶与地面成30度角,电线顶部到杆顶的距离为15米,求出电线顶部离地面的距离。
七、教学效果的评价根据学生的完成情况和表现进行评价,考核学生是否掌握正弦定理的公式和应用方法,并能独立运用所学知识解决实际问题。
《正弦定理》教案(含答案)
《正弦定理》教案(含答案)第一章:正弦定理的引入1.1 实物的直观引入利用直角三角形和平行四边形模型,引导学生直观感受正弦定理的概念。
让学生通过观察和实验,发现正弦定理在几何图形中的普遍性。
1.2 数学定义与公式给出正弦定理的数学表达式:a/sinA = b/sinB = c/sinC,其中a, b, c分别为三角形的边长,A, B, C分别为对应的角度。
解释正弦定理的内涵,让学生理解各个参数之间的关系。
1.3 例题讲解选择具有代表性的例题,讲解正弦定理的应用方法。
引导学生通过正弦定理解决问题,培养学生的解题能力。
第二章:正弦定理的应用2.1 三角形内角和定理的推导利用正弦定理推导三角形内角和定理:A + B + C = 180°。
解释推导过程,让学生理解正弦定理与三角形内角和定理之间的关系。
2.2 三角形形状的判断利用正弦定理判断三角形的形状(直角三角形、锐角三角形、钝角三角形)。
引导学生通过正弦定理判断给定三角形的形状。
2.3 实际问题应用选择与生活实际相关的问题,引导学生利用正弦定理解决问题。
培养学生的实际问题解决能力,提高学生对正弦定理的应用意识。
第三章:正弦定理在测量中的运用3.1 角度测量讲解利用正弦定理进行角度测量的方法。
引导学生通过正弦定理进行角度测量,提高学生的实际操作能力。
3.2 距离测量讲解利用正弦定理进行距离测量的方法。
引导学生通过正弦定理进行距离测量,提高学生的实际操作能力。
3.3 实际测量案例提供实际测量案例,让学生利用正弦定理进行测量。
培养学生的实际测量能力,提高学生对正弦定理在测量中应用的理解。
第四章:正弦定理在三角函数中的应用4.1 三角函数的定义与关系讲解正弦定理与三角函数之间的关系。
引导学生理解正弦定理在三角函数中的应用。
4.2 三角函数图像的绘制利用正弦定理绘制三角函数图像。
培养学生的图像绘制能力,提高学生对正弦定理在三角函数中应用的理解。
4.3 三角函数问题的解决利用正弦定理解决三角函数问题。
正弦定理的教学设计方案
1. 知识与技能:理解正弦定理的概念,掌握正弦定理的推导过程,能够运用正弦定理解决实际问题。
2. 过程与方法:通过观察、分析、归纳等数学思维方法,培养学生的逻辑推理能力和空间想象能力。
3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生严谨、求实的科学态度。
二、教学重点与难点1. 教学重点:正弦定理的概念、推导过程及运用。
2. 教学难点:正弦定理的推导过程及运用。
三、教学过程1. 导入新课(1)复习三角函数的定义,引导学生回顾三角函数的基本性质。
(2)通过实际问题,引出正弦定理的概念。
2. 新课讲授(1)正弦定理的概念:在任意三角形中,各边的长度与其对应角的正弦值之比相等。
(2)正弦定理的推导过程:① 画一个等腰三角形,设顶角为A,底角为B、C,边长分别为a、b、c。
② 在等腰三角形中,作高AE,使得AE⊥BC。
③ 由勾股定理,得到AE=√(a^2-b^2)。
④ 在直角三角形ABE中,根据正弦定义,得到sinB=AE/a。
⑤ 在直角三角形ACE中,根据正弦定义,得到sinC=AE/c。
⑥ 由①②③④⑤可得,sinB/a=sinC/c。
(3)正弦定理的应用:① 求解三角形中的未知边长或角度。
② 解决实际问题,如测量、建筑设计等。
3. 课堂练习(1)完成教材中的例题,巩固正弦定理的应用。
(2)布置课后作业,让学生独立完成。
4. 课堂小结(1)回顾正弦定理的概念、推导过程及运用。
(2)总结本节课的收获。
5. 课后作业(1)完成教材中的课后习题。
(2)查阅资料,了解正弦定理在实际生活中的应用。
四、教学评价1. 课堂表现:观察学生在课堂上的参与度、思考能力及解决问题的能力。
2. 作业完成情况:检查学生的作业完成情况,了解学生对正弦定理的掌握程度。
3. 实践应用:鼓励学生在生活中运用正弦定理解决实际问题,提高学生的综合素质。
1正弦定理教案
1正弦定理教案一、教学目标:1.了解正弦定理的定义和公式。
2.能够应用正弦定理解决实际问题。
3.培养学生的实际计算能力和问题解决能力。
二、教学重点与难点:1.掌握正弦定理的公式和应用。
2.提高学生的逻辑思维能力和解决问题的能力。
三、教学过程:1.导入新知识(5分钟):通过提问引导学生回顾并复习三角形的基本知识,如三角形的分类、已知条件等。
然后,告诉学生本节课将学习正弦定理。
2.正文阐述(15分钟):首先,给出三角形ABC,其中∠C为直角。
告诉学生我们要研究三角形的边的关系。
然后,教师从线段AB入手,将其延长到点C的反方向,得到一条为c的边。
再将线段AC延长到点B的反方向,得到一条为a的边。
接着,延长线段BC到点A的反方向,得到一条为b的边。
接下来,教师进一步告诉学生三角形中的角度和边的关系。
根据有关角度和边的定义,角A对应的边是b,角B对应的边是a,角C对应的边是c。
即a、b、c是三角形ABC的三条边,∠A、∠B、∠C是与边a、b、c对应的三个角。
最后,教师公布正弦定理的公式:a/sinA=b/sinB=c/sinC。
3.理论概述(10分钟):教师结合示意图对正弦定理的公式进行逐步解释:(1)对于三角形ABC中的任意一个角A,其对边的长度与对角的正弦值有一个固定的比例关系。
(2)根据正弦定理的公式,对于三条边a、b、c,其对应的角分别为A、B、C,则a/sinA=b/sinB=c/sinC,其中等号两边的值相等。
(3)根据公式的结构,可以得到两个重要推论:sinA/a=sinB/b=sinC/c。
其中,sinA/a等于常量k,k为已知值。
4.教案实例(15分钟):通过实例分析,引导学生灵活运用正弦定理解决实际问题。
案例:已知三角形ABC,∠ABC=30°,∠ACB=60°,边AC=4,边BC=6,求边AB的长度。
解析:根据正弦定理的公式a/sinA=b/sinB=c/sinC,我们可以得到a/sin30°=6/sin60°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦定理(1) 教学设计【教材】人教A版高中数学必修5第一章第一节【课时安排】第1课时【教学对象】高一(下)学生【教材分析】正弦定理揭示了三角形的边与角的数量关系,是计算斜三角形边长或角度的重要工具之一。
达到定理的言语连锁水平并进行简单应用并不难,但为了让学生掌握定理探索的一般思路和定理的本质,本节课的教学定位是:既教定理的理解运用,又教定理发现的探索思路;既强调学习该定理涉及的数学思想方法,又渗透定理体现的数学美。
【学情分析】★认知基础:①已学过“大边对大角,小边对小角”的定性描述,具有寻找定量结论的心理期望;②已学过锐角三角函数及解直角三角形,利于接受由特殊到一般的过渡;③任意角的三角函数、三角函数的诱导公式为定理的证明和应用打下了基础;★认知障碍:①猜想的证明;②定理证明思路的切入点。
【教学目标】★知识与技能①了解正弦定理的应用背景,探索与证明正弦定理;②理解正弦定理的“结构不变性”和表达这一不变性的“字母可变性”。
③了解解三角形的概念,初步学会“正用”正弦定理解决三角形中“已知两角一边求其他”和“已知两边及其中一边对角求其他”的问题。
★过程与方法①经历观察发现、猜想并证明正弦定理的过程,领悟定理发现的探索思路,学习由特殊到一般的思维方式;②通过尝试定理的证明,领悟分类讨论和化归的数学思想。
★情感态度价值观①感受正弦定理的统一美、对称美、简洁美;②体会正弦定理的科学价值和应用价值,形成崇尚数学的精神。
【教学重点】正弦定理的发现、证明及理解【教学难点】正弦定理的发现与证明【教学关键】探索时由特殊延伸到一般寻找三角形的边角数量关系;证明时将一般情形化归为已得证的特殊情形考虑。
【教学方法】以问题驱动法为主【教学手段】板书、计算机、PPT 、几何画板 【教学流程】【教学过程设计】(一)背景引入,设置障碍(1)趣味引入:问题1:月亮离地球有多远?由2015年12月初的“嫦娥四号将实现世界首次月球背面软着陆”的新闻,以及嫦娥奔月、“嫦娥一号”等探月的图片吸引学生注意力,提出问题1,激发好奇心;并引出法国天文学家拉朗德和其学生拉卡伊在17世纪中下旬首次计算出了地月距离的背景:选取了几乎位于同一子午线的柏林和好望角A 、B 和月球上的一地点C ,当时的技术手段只能测出AB 两地间的直线距离和∠A 、∠B 的大小,但他们使用了一个十分便捷的运算工具,就分别把地球上这两个地点到月球的距离求出来了。
揭示本节课的任务就是要挖掘出这个“便捷的工具”。
设计意图:选取“计算地月距离”的天文学应用背景引入,不仅因为当时两位天文学家正是利用正弦定理代入数据求解的,体现了数学和其他科学的密切联系;而且能激发学生学习新知以便解决这个看似困难的问题的内部动机和兴趣,让学生初步感知新知所蕴含的强大应用价值和科学价值,还可引出探索三角形边角关系的环节。
但由于本课时定理的应用不是重点,具体数据较复杂,故暂不提供数据,只在环节三让学生们自行理清求解思路。
(2)抽象问题:已知三角形中的两个角(∠A 、∠B )和一条边(AB 的长),求另外两条边(AC 、背景引入 设置障碍 设计意图:将学生置于天文学应用背景中,由“大边对大角,小边对小角”的定性结论已无法满足量化需求来创设障碍,激发学生主动学习新知的动力,亦反映了生活问题—数学问题—数学形式化的发展轨迹。
新知探究 猜想证明 应用定理 反馈巩固 设计意图:通过解决开头实际背景中的地月距离问题,利于学生初步体会定理的应用价值和科学价值,亦符合学生期望;再根据桑代克的练习律与效果律设计练习,初步尝试定理的简单应用,达到巩固新知的目的。
设计意图:小结意在让学生理清定理探索的一般思路及探索过程涉及到的思维方式、数学思想方法,并上升到理解定理本质的层次;作业意在让学生巩固提高,拓宽思维和知识面,了解正弦定理更完整的结论。
课堂小结 布置作业 设计意图:从特殊入手,通过引导学生对“过去的经验”进行联系整合发现直角三角形中的正弦公式,从而搭建思维阶梯,使学生能顺阶而上,逐步击破。
BC 的长)。
(3)创设障碍:已学过的“大边对大角,小边对小角”的三角形边角关系已经无法满足具体量化需求,故引导学生由定性结论过渡到寻找定量结论,提出任务一:寻找三角形中的边角数量关系。
(二)新知探究,猜想证明(1)特殊入手:让学生回忆旧知中能描述直角三角形中边角数量关系的定义或性质。
◆ 问题2:直角三角形中存在什么边角数量关系?【学情预设】生1:直角三角形中30°所对的直角边等于斜边的一半。
生2:三角函数。
(2)找直角三角形的边角数量关系:出示Rt △ABC ,由学生上个问题的回答引导其发现Rt △ABC 中有c b A c a A ==cos ,sin 等边角数量关系,转而先研究三角形中与正弦有关的边角数量关系。
【学情预设】生:sin ,cos ,tan ,sin ,cos ,tan a b a b a b A A A B B B c c b c c a====== (3)找直角三角形中边角数量关系的特点:引导学生得出sin C =1,寻找能够沟通sin ,a A c = sin ,sin 1b B C c==的中间量、共同的量,进而表示出c ,并将角C 统一进来,发现在Rt △ABC 中,有a c sin sin sin b A B C==这一美妙的边角数量关系;带领学生共同感受所得关系的简洁、对称、统一之美。
设计意图:以学生已有的知识经验为基础,引导学生建立新旧知识间的内在联系,便于学生完成对新知识的迁移。
而带领学生感受数学美是一项潜移默化的长期任务,应借此培养他们主动感受和挖掘更多数学美的习惯,并鼓励学生发散思维、从而引入下一环节。
(4)推广结论,实验探索:◆ 问题3:一般三角形中是否存在类似的美妙关系?将研究对象由特殊延伸到一般、由直角三角形推广至一般三角形,引导学生通过观察几何画板所展示的任意构造的形状大小不一的锐角或钝角三角形所对应的每组比值的特点。
发现特点:在许多锐角或钝角三角形中三个比值都相等,似乎都存在着一致的边角数量关系:a c sin sin sinb A B C==,即各边边长与所对角的正弦之比相等。
设计意图:由三角形有成千上万来初步凸现分类讨论的必要性;并利用几何画板展示素材的直观性、任意性、可测性等优点,通过直观的“形变神不变”和分情况演示证实关系可能在一般三角形中成立,从而加强学生的猜想。
(5)提出猜想:在任意△ABC 中,a c sin sin sinb A B C==是成立的。
◆ 问题4:你能否根据演示结果大胆地作出合情的猜想? (6)寻找证明思路:要确认结论是否成立单靠猜想还不够,应该证明。
◆ 问题5:如何证明?如何将锐角和钝角三角形跟直角三角形联系起来?引导学生结合前面的思路进行探讨:一开始从特殊的直角三角形入手,很容易地表示出了三角形的边与对应角的正弦的数量关系,并证明了等式在直角三角形中成立,要是锐角和钝角三角形能跟直角三角形扯上关系,问题应该就简单一点。
进而启发学生转化归结为考虑直角三角形的边角数量关系。
渗透化归的数学思想。
【学情预设】作高。
(提示:通过作高将锐角和钝角三角形转化为考虑直角三角形,参考直角三角形的证明思路)设计意图:学生能否准确地判断出需要“作高”,是衡量其能否将一般情形转化为前面已得证的特殊情形的关键,亦可让学生亲自理解这一证明思路的切入点。
(7)分组探究,证明猜想:1、2组尝试锐角三角形的证明,3、4组尝试钝角三角形的证明,带着提供的思考问题和提示,共同探讨并证明锐角和钝角三角形的情况。
渗透分类讨论的思想。
PPT 出示探究任务和思考问题:作高后如何将高与三角形的边和角联系起来?需要作多少条高便可证明出结论?(教师巡视,必要时给予启发指导,寻找能够证明出来的同学,请两位同学分别代表小组分享证明思路,由学生展示证明情况,由教师详细板演,强调思路的关键点)【学情预设】生1:①在锐角△ABC 中,过A 做BC 边上的高AD ,则在Rt △ADC中,有b AD C =sin (C b AD sin =),在Rt △ADB 中,有cAD B =sin (B c AD sin =),联系两式消去AD 易得Cc B b sin sin =(教师强调是在直角三角形中,体现由一般转化为特殊)②过C 做AB 边上的高CE ,同理可证B b A a sin sin =(或过B 作AC 边上的高BF 。
在Rt △BFC 中a BF C =sin ;在Rt △BFA 中c BF A =sin ,两式联立变形得Cc A a sin sin =) 生2:在钝角△ABC 中,过A 作BC 边上的高AD,得到两个直角三角形,有c AD B =sin ,b AD C =sin ,两式联立变形得C c B b sin sin =;过B 作AC 边上的高BE ,在Rt △AEB 中,;A c BE A sin )sin(==-π在Rt △BEC 中,a BE C =sin ;两式联立变形得Cc A a sin sin =。
(或过C 作AB 边上的高CF 。
在Rt △BFC 中a CF B =sin ;在Rt △AFC 中,A b CF A sin )sin(==-π,两式联立变形得Bb A a sin sin =) 设计意图:选用等高法,是由于本节课是从直角三角形入手的,只要通过作高就可以把锐角或钝角三角形和直角三角形联系起来,因此,对于猜想的证明,该法应该是学生从认知规律上比较容易尝试成功的方法,符合学生的认知水平发展。
分组让学生分别尝试证明锐角、钝角三角形的情况,可提高学生课堂的参与度,确保学生的主体地位。
由于此方法与教科书所涉及的方法大同小异,是面向全体学生的证明过程,且为了让学生更好地体会数学证明的逻辑演绎过程,采用学生表述、教师板演,以更好地让大多数学生理解掌握。
(8)得到定理:说明定理揭示了三角形中所蕴含的十分巧妙的边角数量关系,让学生再次共同感受定理的数学美:如此独特的美妙关系,也只有我们数学语言能如此简练地描述出来。
(三)应用定理,反馈巩固(1)了解应用:◆ 问题6:正弦定理能解决哪些数学问题?举两个简单例子启发学生发现“知三求一”的特点,结合三角形内角和定理,便可初步得出定理的应用范围:(1)已知三角形两个角和一条边,求其它边和角;(2)已知三角形两条边和其中一边的对角,求其它边和角。
(2)实际应用:◆ 问题7:你能用正弦定理得到地月距离的求解思路了吗?回顾引入环节的地月距离问题,教师与学生共同探讨解题思路,寻找隐含条件,在定理表达式中标记出已知条件和隐含条件,直观体现“知三求一”:由三角形内角和定理可求角C ;由正弦定理可表示出AC 、BC 。