建立空间直角坐标系解立体几何题
立体几何解题建系策略(有答案)
![立体几何解题建系策略(有答案)](https://img.taocdn.com/s3/m/a52d8af3185f312b3169a45177232f60ddcce706.png)
立体几何解题建系策略(有答案)立体几何解题,许多情况下,不少学生是选择建立坐标系,有时图形方方正正的,建系当然容易,但如果图形不那么方正,如何建系呢,通常,有以下的建系策略: 1. 利用共顶点的互相垂直的三条棱构建直角坐标系 2. 利用线面垂直关系构建直角坐标系 3. 利用面面垂直关系构建直角坐标系4. 利用正棱锥的中心与高所在直线构建直角坐标系5. 利用图形中的对称关系建立坐标系例1.如图,四棱锥P ABCD -中,PA ABCD ⊥底面,2,4,3BCCD AC ACB ACD π===∠=∠=,F 为PC 的中点,AF PB ⊥.(1)求PA 的长; (2)求二面角B AF D --的正弦值.例 2.如图,四棱锥P ABCD -中,902,ABC BAD BC AD PAB ∠=∠==∆,与PAD ∆都是等边三角形.(I)证明:;PB CD ⊥ (II)求二面角A PD C --的大小.例3.如图,在直三棱柱111C B A ABC - 中,AB=4,AC=BC=3,D 为AB 的中点. (Ⅰ)求点C 到平面11ABB A 的距离;(Ⅱ)若11AB A C ⊥,求二面角11A CD C -- 的平面角的余弦值.例4.如图,在三棱柱ABC -A 1B 1C 1中,已知AB =AC =AA 1=5,BC =4,点A 1在底面ABC 的投影是线段BC 的中点O .(1)证明在侧棱AA 1上存在一点E ,使得OE ⊥平面BB 1C 1C ,并求出AE 的长; (2)求平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值.例5.平面图形ABB 1A 1C 1C 如图(1)所示,其中BB 1C 1C 是矩形,BC =2,BB 1=4,AB =AC =2,A 1B 1=A 1C 1= 5.现将该平面图形分别沿BC 和B 1C 1折叠,使△ABC 与△A 1B 1C 1所在平面都与平面BB 1C 1C 垂直,再分别连接A 1A ,A 1B ,A 1C ,得到如图(2)所示的空间图形.对此空间图形解答下列问题. (1)证明:AA 1⊥BC ; (2)求AA 1的长;(3)求二面角A -BC -A 1的余弦值.例6.如图,四棱锥S-ABCD 中,,AB CD BC CD ⊥,侧面SAB 是等边三角形,AB=BC=2,CD=SD=1. ⑴证明:SD ⊥面SAB ;⑵求AB 与平面SBC 所成角的正弦值.例7.如图,在多面体ABCDEF 中,四边形ABCD 是正方形,//EFAB ,EF FB ⊥,2AB EF =,90BFC ∠=︒,BF FC =,H 为BC 的中点. ⑴求证://FH 面EDB ;⑵求证: ACEDB ⊥面;⑶求二面角B-DE-C 的大小.例8.如图,BCD ∆与MCD ∆都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥面BCD ,AB=23.⑴求点A 到平面MBC 的距离;⑵求平面ACM 与平面BCD 所成二面角的正弦值.例9.在如图所示的几何体中,四边形ABCD 为平行四边形,90ACB ∠=︒,EA ⊥面ABCD ,//,EF AB //,FG BC //,2.EG AC AB EF =⑴若M 是线段AD 的中点,求证://ABFE GM 面; ⑵若AC=BC=2AG,求二面角A-BF-C 的大小.例10.如图,四棱锥P ABCD -中,底面ABCD 是菱形,PA ⊥面ABCD ,22,2,AC PA ==E 是PC 上的一点,2PE EC =.⑴证明:PC ⊥面BED ;⑵设二面角A-PB-C 为90︒,求PD 与平面PBC 所成角的大小.例11.如图,在三棱锥P ABC -中,90APB ∠=︒,60PAB ∠=︒,AB BC CA ==,面PAB ⊥面ABC .⑴求直线PC 与平面ABC 所成角的大小; ⑵求二面角B-AP-C 的大小.例12.如图,在四棱锥中,, 且6,PB BC BD ===222CD AB ==,120PAD ∠=︒.(1)求证:平面平面;(2)求直线与平面所成的角的正弦值.例13.如图,在三棱锥P −ABC 中,△ABC 是正三角形,面PAB ⊥面ABC ,∠PAB =30°,AB =PB =2,△ABC 和△PBC 的重心分别为D ,E .(1)证明:DE ∥面PAB ;(2)求AB 与面PDE 所成角的正弦值.例14.如图,AB 是圆的直经,PA 垂直圆所在的平面,C 是圆上的点, ⑴求证:平面PAC ⊥面PBC ;⑵若AB=2,AC=1,PA=1,求二面角C-PB-A 的余弦值.例15.已知两个正四棱锥P -ABCD 与Q -ABCD 的高都为2,AB =4. (1)证明:PQ ⊥平面ABCD ; (2)求异面直线AQ 与PB 所成的角; (3)求点P 到平面QAD 的距离.例16.如图,三棱锥P —ABC 的底面ABC 是等腰直角三角形,AB ⊥BC ,AB=BC=2,PA=PC=22,二面角P —B C —A 等于︒45.(Ⅰ)求证:AC ⊥PB ;(Ⅱ)求PA 与面PBC 所成角的大小.PED CBA例17.如图,三棱台DEF —ABC 中,面ADFC ⊥面ABC ,∠ACB =∠ACD =45°,DC =2BC .(I )证明:EF ⊥DB ;(II )求DF 与面DBC 所成角的正弦值.例18.如图,已知二面角βα--l 的大小为045,直角ABC ∆的两条直角边22=AB ,3=AC ,边AB在平面β内,且l AB ⊥,点C 在平面α内.将直角ABC ∆绕AC 边转动到ACP ∆,且AP 在平面β内,045=∠BAP .(Ⅰ)求证:⊥l 平面ABC ;(Ⅱ)求直线CP 与平面α所成角的正弦值.参考答案:例1 (2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,四棱锥P ABCD-中,PA ABCD ⊥底面,2,4,3BC CD AC ACB ACD π===∠=∠=,F 为PC 的中点,AF PB ⊥.(1)求PA 的长; (2)求二面角B AF D --的正弦值.【答案】解:(1)如图,联结BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB →,OC →,AP →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD cos π3=1,而AC =4,得AO =AC -OC =3.又OD =CD sin π3=3,故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0).因P A ⊥底面ABCD ,可设P (0,-3,z ),由F 为PC 边中点,得F ⎝⎛⎭⎫0,-1,z 2,又AF →=⎝⎛⎭⎫0,2,z 2,PB →=(3,3,-z ),因AF ⊥PB ,故AF →·PB →=0,即6-z 22=0,z =2 3(舍去-2 3),所以|P A →|=2 3.(2)由(1)知AD →=(-3,3,0),AB →=(3,3,0),AF →=(0,2,3).设平面F AD 的法向量为1=(x 1,y 1,z 1),平面F AB 的法向量为2=(x 2,y 2,z 2).由1·AD →=0,1·AF →=0,得⎩⎨⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取1=(3,3,-2). 由2·AB →=0,2·AF →=0,得⎩⎨⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取2=(3,-3,2). 从而向量1,2的夹角的余弦值为 cos 〈1,2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B -AF -D 的正弦值为3 78.例2(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))如图,四棱锥P ABCD-中,902,ABC BAD BC AD PAB ∠=∠==∆,与PAD ∆都是等边三角形. (I)证明:;PB CD ⊥ (II)求二面角A PD C --的大小.【答案】解:(1)取BC 的中点E ,联结DE ,则四边形ABED 为正方形. 过P 作PO ⊥平面ABCD ,垂足为O . 联结OA ,OB ,OD ,OE .由△P AB 和△P AD 都是等边三角形知P A =PB =PD ,所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点,所以OE ∥CD .因此PB ⊥CD .(2)解法一:由(1)知CD ⊥PB ,CD ⊥PO ,PB ∩PO =P , 故CD ⊥平面PBD .又PD ⊂平面PBD ,所以CD ⊥PD .取PD 的中点F ,PC 的中点G ,连FG . 则FG ∥CD ,FG ⊥PD .联结AF ,由△APD 为等边三角形可得AF ⊥PD . 所以∠AFG 为二面角A -PD -C 的平面角. 联结AG ,EG ,则EG ∥PB . 又PB ⊥AE ,所以EG ⊥AE .设AB =2,则AE =2 2,EG =12PB =1,故AG =AE 2+EG 2=3,在△AFG 中,FG =12CD =2,AF =3,AG =3.所以cos ∠AFG =FG 2+AF 2-AG 22·FG ·AF =-63.因此二面角A -PD -C 的大小为π-arccos63. 解法二:由(1)知,OE ,OB ,OP 两两垂直.以O 为坐标原点,OE →的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz .设|AB →|=2,则A (-2,0,0),D (0,-2,0), C (2 2,-2,0),P (0,0,2),PC →=(2 2,-2,-2),PD →=(0,-2,-2), AP →=(2,0,2),AD →=(2,-2,0). 设平面PCD 的法向量为1=(x ,y ,z ),则 1·PC →=(x ,y ,z )·(2 2,-2,-2)=0,1·PD →=(x ,y ,z )·(0,-2,-2)=0,可得2x -y -z =0,y +z =0.取y =-1,得x =0,z =1,故1=(0,-1,1). 设平面P AD 的法向量为2=(m ,p ,q ),则 2·AP →=(m ,p ,q )·(2,0,2)=0, 2·AD →=(m ,p ,q )·(2,-2,0)=0,可得m +q =0,m -p =0.取m =1,得p =1,q =-1,故2=(1,1,-1). 于是cos 〈,2〉=n 1·n 2|n 1||n 2|=-63.由于〈,2〉等于二面角A -PD -C 的平面角,所以二面角A -PD -C 的大小为π-arccos63. 例3(2012高考真题重庆理19)(本小题满分12分 如图,在直三棱柱111C B A ABC 中,AB=4,AC=BC=3,D 为AB 的中点(Ⅰ)求点C 到平面11ABB A 的距离;(Ⅱ)若11AB A C 求二面角 的平面角的余弦值.【答案】解:(1)由AC =BC ,D 为AB 的中点,得CD ⊥AB .又CD ⊥AA 1,故CD ⊥面A 1ABB 1,所以点C 到平面A 1ABB 1的距离为CD =BC 2-BD 2= 5.(2)解法一:如图,取D 1为A 1B 1的中点,连结DD 1,则DD 1∥AA 1∥CC 1.又由(1)知CD ⊥面A 1ABB 1,故CD ⊥A 1D ,CD ⊥DD 1,所以∠A 1DD 1为所求的二面角A 1-CD -C 1的平面角.因A 1D 为A 1C 在面A 1ABB 1上的射影,又已知AB 1⊥A 1C ,由三垂线定理的逆定理得AB 1⊥A 1D ,从而∠A 1AB 1、∠A 1DA 都与∠B 1AB 互余,因此∠A 1AB 1=∠A 1DA ,所以Rt △A 1AD ∽Rt △B 1A 1A .因此AA 1AD =A 1B 1AA 1,即AA 21=AD ·A 1B 1=8,得AA 1=2 2. 从而A 1D =AA 21+AD 2=2 3.所以,在Rt △A 1DD 1中, cos ∠A 1DD 1=DD 1A 1D =AA 1A 1D =63.解法二:如图,过D 作DD 1∥AA 1交A 1B 1于点D 1,在直三棱柱中,易知DB ,DC ,DD 1两两垂直.以D 为原点,射线DB ,DC ,DD 1分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系D -xyz .设直三棱柱的高为h ,则A (-2,0,0),A 1(-2,0,h ),B 1(2,0,h ),C (0,5,0),C 1(0,5,h ),从而AB 1→=(4,0,h ),A 1C →=(2,5,-h ).由AB 1→⊥A 1C →,有8-h 2=0,h =2 2. 故DA 1→=(-2,0,22),CC 1→=(0,0,22),DC →= (0,5,0).设平面A 1CD 的法向量为m =(x 1,y 1,z 1),则m ⊥DC →,m ⊥DA 1→,即 ⎩⎨⎧ 5y 1=0,-2x 1+22z 1=0, 取z 1=1,得m =(2,0,1),设平面C 1CD 的法向量为n =(x 2,y 2,z 2),则n ⊥DC →,n ⊥CC 1→,即 ⎩⎨⎧ 5y 2=0,22z 2=0,取x 2=1,得n =(1,0,0),所以cos 〈m ,n 〉=m·n |m ||n |=22+1·1=63. 所以二面角A 1-CD -C 1的平面角的余弦值为63. 例4(2012高考真题江西理20)(本题满分12分)如图1-5,在三棱柱ABC -A 1B 1C 1中,已知AB =AC =AA 1=5,BC =4,点A 1在底面ABC 的投影是线段BC 的中点O .(1)证明在侧棱AA 1上存在一点E ,使得OE ⊥平面BB 1C 1C ,并求出AE 的长;(2)求平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值.图1-5【答案】解:(1)证明:连接AO ,在△AOA 1中,作OE ⊥AA 1 于点E ,因为AA 1∥BB 1,所以OE ⊥BB 1.因为A 1O ⊥平面ABC ,所以A 1O ⊥BC .因为AB =AC ,OB =OC ,所以AO ⊥BC ,所以BC ⊥平面AA 1O .所以BC ⊥OE ,所以OE ⊥平面BB 1C 1C ,又AO =AB 2-BO 2=1,AA 1=5,得AE =AO 2AA 1=55.(2)如图,分别以OA ,OB ,OA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则A (1,0,0),B (0,2,0),C (0,-2,0),A 1(0,0,2),由AE →=15AA 1→得点E 的坐标是⎝ ⎛⎭⎪⎫45,0,25, 由(1)得平面BB 1C 1C 的法向量是OE →=⎝ ⎛⎭⎪⎫45,0,25,设平面A 1B 1C 的法向量=(x ,y ,z ), 由⎩⎪⎨⎪⎧ ·AB →=0,n ·A 1C →=0得⎩⎨⎧-x +2y =0,y +z =0, 令y =1,得x =2,z =-1,即=(2,1,-1),所以cos 〈OE →,〉=OE →·n |OE →|·|n |=3010. 即平面BB 1C 1C 与平面A 1B 1C 的夹角的余弦值是3010.例5(2012高考真题安徽理18)(本小题满分12分)平面图形ABB 1A 1C 1C 如图1-4(1)所示,其中BB 1C 1C 是矩形,BC =2,BB 1=4,AB =AC=2,A 1B 1=A 1C 1= 5.图1-4现将该平面图形分别沿BC 和B 1C 1折叠,使△ABC 与△A 1B 1C 1所在平面都与平面BB 1C 1C 垂直,再分别连接A 1A ,A 1B ,A 1C ,得到如图1-4(2)所示的空间图形.对此空间图形解答下列问题.(1)证明:AA 1⊥BC ;(2)求AA 1的长;(3)求二面角A -BC -A 1的余弦值.【答案】解:(向量法):(1)证明:取BC B 1C 1的中点分别为D 和D 1,连接A 1D 1,DD 1,AD .由BB 1C 1C 为矩形知,DD 1⊥B 1C 1,因为平面BB 1C 1C ⊥平面A 1B 1C 1,所以DD 1⊥平面A 1B 1C 1,又由A 1B 1=A 1C 1知,A 1D 1⊥B 1C 1.故以D 1为坐标原点,可建立如图所示的空间直角坐标系D 1-xyz . 由题设,可得A 1D 1=2,AD =1.由以上可知AD ⊥平面BB 1C 1C ,A 1D 1⊥平面BB 1C 1C ,于是AD ∥A 1D 1. 所以A (0,-1,4),B (1,0,4),A 1(0,2,0),C (-1,0,4),D (0,0,4).故AA 1→=(0,3,-4),BC →=(-2,0,0),AA 1→·BC →=0,因此AA 1→⊥BC →,即AA 1⊥BC . (2)因为AA 1→=(0,3,-4), 所以||AA 1→=5,即AA 1=5. (3)连接A 1D ,由BC ⊥AD ,BC ⊥AA 1,可知BC ⊥平面A 1AD ,BC ⊥A 1D ,所以∠ADA 1为二面角A -BC -A 1的平面角.因为DA →=(0,-1,0),DA 1→=(0,2,-4),所以 cos 〈DA →,DA 1→〉=-21×22+(-4)2=-55. 即二面角A -BC -A 1的余弦值为-55.(综合法)(1)证明:取BC ,B 1C 1的中点分别为D 和D 1,连接A 1D 1,DD 1,AD ,A 1D . 由条件可知,BC ⊥AD ,B 1C 1⊥A 1D 1,由上可得AD ⊥面BB 1C 1C ,A 1D 1⊥面BB 1C 1C . 因此AD ∥A 1D 1,即AD ,A 1D 1确定平面AD 1A 1D . 又因为DD 1∥BB 1,BB 1⊥BC ,所以DD 1⊥BC . 又考虑到AD ⊥BC ,所以BC ⊥平面AD 1A 1D , 故BC ⊥AA 1.(2)延长A 1D 1到G 点,使GD 1=AD ,连接AG . 因为AD 綊GD 1,所以AG 綊DD 1綊BB 1.由于BB 1⊥平面A 1B 1C 1,所以AG ⊥A 1G .由条件可知,A 1G =A 1D 1+D 1G =3,AG =4, 所以AA 1=5.(3)因为BC ⊥平面AD 1A 1D ,所以∠ADA 1为二面角A -BC -A 1的平面角. 在Rt △A 1DD 1中,DD 1=4,A 1D 1=2,解得sin ∠D 1DA 1=55,cos ∠ADA 1=cos ⎝ ⎛⎭⎪⎫π2+∠D 1DA 1=-55. 即二面角A -BC -A 1的余弦值为-55.向量法(建系困难)412、(杭州市学军中学2016届高三5月模拟考试)如图,在四棱锥中, , 且.(1)求证:平面平面;(2)求直线与平面所成的角的正弦值.答案412、解:证明:(1)为中点,, , 且四边形是矩形, ,又平面,且,在平面中,平面平面,又平面平面,平面平面.(2)以A 为原点,为轴,为轴,建立空间直角坐标角系,,则设平面的法向量,则,取,得, 设直线与平面所成的角为, , 直线与平面所成的角的正弦值为.14.(15分)如图,在三棱锥P−ABC中,△ABC是正三角形,面PAB⊥面ABC,∠PAB=30°,AB=PB=2,△ABC和△PBC的重心分别为D,E .(1)证明:DE∥面PAB;P(2)求AB与面PDE所成角的正弦值.例15.如图,AB是圆的直经,PA垂直圆所在的平面,C是圆上的点, ⑴求证:平面PAC 面PBC;⑵若AB=2,AC=1,PA=1,求二面角C-PB-A的余弦值.例15.已知两个正四棱锥P -ABCD 与Q -ABCD 的高都为2,AB =4. (1)证明:PQ ⊥平面ABCD ; (2)求异面直线AQ 与PB 所成的角; (3)求点P 到平面QAD 的距离.(2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线CA DB QP,,为x ,y ,z 轴建立空间直角坐标系(如图1),易得(2202)(0222)AQ PB =--=-,,,,,,1cos 3AQ PB AQ PB AQ PB<>==,. 所求异面直线所成的角是1arccos 3. (3)由(2)知,点(0220)(22220)(004)D AD PQ -=--=-,,,,,,,,.设n =(x ,y ,z )是平面QAD 的一个法向量,则00AQ AD ⎧=⎪⎨=⎪⎩,,n n 得200x z x y ⎧+=⎪⎨+=⎪⎩,,取x =1,得(112)--,,n =.点P 到平面QAD 的距离22PQ d ==n n.。
高三立体几何大题专题(用空间向量解决立体几何类问题)
![高三立体几何大题专题(用空间向量解决立体几何类问题)](https://img.taocdn.com/s3/m/525eaa005e0e7cd184254b35eefdc8d376ee1436.png)
1【知识梳理】一、空间向量的概念及相关运算1、空间向量基本定理、空间向量基本定理如果三个向量,,a b c r r r不共面,那么对空间任一向量p xa yb zc =++u r r r r,,a b c r r r称为基向量。
称为基向量。
2、空间直角坐标系的建立、空间直角坐标系的建立分别以互相垂直的三个基向量k j i ρρρ,,的方向为正方向建立三条数轴:x 轴,y 轴和z 轴。
则轴。
则a xi y j zk =++r r r r(x,y,z )称为空间直角坐标。
)称为空间直角坐标。
注:假如没有三条互相垂直的向量,需要添加辅助线构造,在题目中找出互相垂直的两个面,通过做垂线等方法来建立即可。
建立即可。
3、空间向量运算的坐标表示、空间向量运算的坐标表示(1)若()()111222,,,,,a x y z b x y z ==r r ,则:()121212,,a b x x y y z z ±=±±±r r()111,,a x y z λλλλ=r 121212a b x x y y z z ⋅=++r r 错误!未找到引用源。
121212//,,a b a b x x y y z z λλλλ⇔=⇔===r r r r222111a a a x y z =⋅=++r r r .a b ⋅r r =a rcos ,b a b 〈〉r r r .cos ,a b a b a b ⋅〈〉=r r r r r r121212222222111222cos ,x x y y z za b a b ab x y z x y z ++⋅〈〉==++⋅++r r r r r r (2)(2)设设()()111222,,,,,A x y z B x y z ==则()212121,,AB OB OA x x y y z z =-=---u u u r r r(3)()111,,x y z A ,()222,,x y z B =,则()()()222212121d x x y y z zAB =AB =-+-+-u u u r二、应用:平面的法向量的求法:1、建立恰当的直角坐标系、建立恰当的直角坐标系2、设平面法向量n =(x ,y ,z )3、在平面内找出两个不共线的向量,记为a =(a1,a2, a3) b =(b1,b2,b3)4、根据法向量的定义建立方程组①n*a =0 ②n*b =05、解方程组,取其中一组解即可。
(完整版)立体几何解答题的建系设点问题
![(完整版)立体几何解答题的建系设点问题](https://img.taocdn.com/s3/m/47cc0f04f121dd36a22d82a1.png)
立体几何解答题的建系设点问题一、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴1、轴的选取往往是比较容易的,依据的是线面垂直,即轴要与坐标平面z z 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即xOy 为轴与底面的交点z 2、轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考:,x y (1)尽可能的让底面上更多的点位于轴上,x y (2)找角:轴要相互垂直,所以要利用好底面中的垂直条件,x y (3)找对称关系:寻找底面上的点能否存在轴对称特点解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直底面两条线垂直),+这个过程不能省略。
3、与垂直相关的定理与结论:(1)线面垂直:① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直④ 直棱柱:侧棱与底面垂直(2)线线垂直(相交垂直):① 正方形,矩形,直角梯形② 等腰三角形底边上的中线与底边垂直(三线合一)③ 菱形的对角线相互垂直④ 勾股定理逆定理:若,则222AB AC BC +=AB AC ⊥(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类1、能够直接写出坐标的点(1) 坐标轴上的点,规律:在哪个轴上,那个位置就有坐标,其余均为0(2)底面上的点:坐标均为,即竖坐标,由于底面在作立体图时往往失真,所以要快速正确写出(),,0x y 0z =坐标,强烈建议在旁边作出底面的平面图进行参考2、空间中在底面投影为特殊位置的点:如果在底面的投影为,那么(即点与投影点的横纵坐标相同)()'11,,A x y z ()22,,0A x y 1212,x x y y == 由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。
高二数学立体几何试题答案及解析
![高二数学立体几何试题答案及解析](https://img.taocdn.com/s3/m/352e35d229ea81c758f5f61fb7360b4c2e3f2ae3.png)
高二数学立体几何试题答案及解析1.(本题满分10分)把边长为60cm的正方形铁皮的四角切去边长为xcm的相等的正方形,然后折成一个高度为xcm的无盖的长方体的盒子,问x取何值时,盒子的容积最大,最大容积是多少?【答案】16000【解析】设长方体高为xcm,则底面边长为(60-2x)cm.(0<x<30)…1分长方体容积(单位:),…3分…5分令解得x=10,x=30(不合题意合去)于是…7分在x=10时,V取得最大值为…10分2.已知三棱锥满足,则点在平面上的射影是三角形的心.【答案】外【解析】,设点在平面上的射影是.则,所以是外心.【考点】射影定理3.(本题满分16分,第(1)小题7分,第(2)小题9分)如图,在两块钢板上打孔,用钉帽呈半球形、钉身为圆柱形的铆钉(图1)穿在一起,在没有帽的一端锤打出一个帽,使得与钉帽的大小相等.铆合的两块钢板,成为某种钢结构的配件,其截面图如图2.(单位:mm,加工中不计损失).(1)若钉身长度是钉帽高度的2倍,求铆钉的表面积;(2)若每块钢板的厚度为mm,求钉身的长度(结果精确到mm).【答案】(1);(2)【解析】(1)观察铆钉的面积,钉身为圆柱形的侧面积,加半球的底面积加半球面的面积;(2)将钉身圆柱捶打成钢板厚的圆柱加一个半球形的帽,所以利用等体积建立方程,求的钉身的长度.试题解析:解:设钉身的高为,钉身的底面半径为,钉帽的底面半径为,由题意可知:圆柱的高圆柱的侧面积半球的表面积所以铆钉的表面积()(2)设钉身长度为,则由于,所以,解得答:钉身的表面积为,钉身的长度约为.【考点】1.组合体的表面积;2.组合体的体积;3.等体积.4.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100 cm3C.92cm3D.84cm3【答案】【解析】由三视图可知原几何体如图所示:故几何体的体积,答案选B.【考点】空间几何体的三视图与体积5.直三棱柱中,,,、分别为、的中点.(1)求证:;(2)求异面直线与所成角的余弦值.【答案】(1)见解析(2)【解析】(1)以为原点,以,,为,,轴建立空间直角坐标系.设,计算与的数量积即可得到(2)同理可计算,利用向量的夹角的余弦公式可得向量与的余弦值,亦即异面直线与所成角的余弦值试题解析:由题知平面,,以为原点,以,,为,,轴建立空间直角坐标系.设,,,,,,,,,,,所以;(2),设异面直线与所成角为,则有【考点】向量法解决空间几何中的直线与直线垂直和异面直线所成的角.6.下列说法正确的是()A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.平面和平面有不同在一条直线上的三个交点【答案】C【解析】A如果三点在一条直线上,则不能确定一个平面;B四边形可以为空间中的三棱锥;C梯形两平行边确定一个平面;D平面和平面相交所有的点都在交线上,所以三个点一点在同一条直线上,故选择C【考点】空间点、线、面7.一个几何体的三视图如图,则该几何体的体积为()A.B.C.D.【答案】D【解析】由三视图可知,该几何体是一个底面半径为1,高为1的圆锥的半个圆锥,故该几何体的体积为,故选D.【考点】空间几何体的三视图.8.在长方体中,,,,则与所成角的余弦值为.【答案】【解析】以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,,则与所成角的余弦值为【考点】空间向量求异面直线所成角9.正方体ABCD-A1B1C1D1中,O是上底面ABCD的中心,若正方体的棱长为,则三棱锥O-AB1D1的体积为_____________.【答案】【解析】【考点】棱锥体积10.设为不同的平面,为不同的直线,则的一个充分条件为().A.,,B.,,C.,,D.,,【答案】D【解析】一条直线垂直于两个互相垂直的平面的交线,则这条直线与这两个平面中的某一平面可能垂直也可能不垂直,所以选项A错误;同理,可说明B、C不正确;若,,,则∥,,所以。
空间坐标系与空间坐标系在立体几何中的应用有答案
![空间坐标系与空间坐标系在立体几何中的应用有答案](https://img.taocdn.com/s3/m/b5ec025a5bcfa1c7aa00b52acfc789eb172d9e99.png)
空间坐标系与空间坐标系在立体几何中的应用有答案TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-一.空间直角坐标系如图1,为了确定空间点的位置,我们建立空间直角坐标系:以正方体为载体,以O为原点,分别以射线OA,OC,OD′的方向为正方向,以线段OA,OC,OD′的长为单位长,建立三条数轴:x轴、y轴、z 轴,这时我们说建立了一个空间直角坐标系,其中点O叫做坐标原点,x轴、y 轴、z轴叫做坐标轴,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面、zOx平面、yOz平面,通常建立的坐标系为右手直角坐标系,即右手拇指指向x 轴的正方向,食指指向y轴的正方向,中指指向z轴的正方向.二.空间直角坐标系中的坐标空间一点M的坐标可用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M 在此空间直角坐标系中的坐标,记作M(x,y,z),其中x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标[例1] 在空间直角坐标系中,作出点M(6,-2,4).[例2] 长方体ABCD-A1B1C1D1中,|AB|=a,|BC|=b,|CC1|=c,将此长方体放到空间直角坐标系中的不同位置(如图3),分别写出长方体各顶点的坐标.变式1:棱长为2的正方体,将此正方体放到空间直角坐标系中的不同位置,分别写出几何体各顶点的坐标。
2.底面为边长为4的菱形,高为5的棱柱,将此几何体放到空间直角坐标系中的不同位置分别写出几何体各顶点的坐标。
3. 在棱长均为2a的正四棱锥P-ABCD中,建立恰当的空间直角坐标系,(1)写出正四棱锥P-ABCD各顶点坐标;(2)写出棱PB的中点M的坐标.解:连接AC,BD交于点O,连接PO,∵P-ABCD为正四棱锥,且棱长均为2a.∴四边形ABCD为正方形,且PO⊥平面ABCD.∴OA=2=PA2-OA2=2a2-2a2=2a.以O点为坐标原点,OA,OB,OP所在的直线分别为x轴、y轴、z轴,建立空间直角坐标系.(1)正四棱锥P-ABCD中各顶点坐标分别为A(2a,0,0),B(0,2a,0),C(-2 a,0,0),D(0,-2a,0),P(0,0,2a).(2)∵M为棱PB的中点,∴由中点坐标公式,得M(0+02,2a+02,0+2a2),即M(0,22a,22a).[例3] 在空间直角坐标系中,点P(-2,1,4).(1)求点P关于x轴的对称点的坐标;(2)求点P关于xOy平面的对称点的坐标;(3)求点P关于点M(2,-1,-4)的对称点的坐标.[解](1)由于点P关于x轴对称后,它在x轴的分量不变,在y轴、z轴的分量变为原来的相反数,所以对称点为P1(-2,-1,-4).(2)由于点P关于xOy平面对称后,它在x轴、y轴的分量不变,在z轴的分量变为原来的相反数,所以对称点为P2(-2,1,-4).(3)设对称点为P3(x,y,z),则点M为线段PP3的中点,由中点坐标公式,可得x =2×2-(-2)=6,y=2×(-1)-1=-3,z=2×(-4)-4=-12,所以P3(6,-3,-12).变式:1.写出点P(6,-2,-7)在xOy面,yOz面,xOz面上的投影的坐标以及点P 关于各坐标平面对称的点的坐标.解:设点P在xOy平面、yOz平面、xOz平面上的投影分别为点A,B,C,点P关于xOy平面、yOz平面、xOz平面的对称点分别为点A′,B′,C′,由PA⊥平面xOy,PB⊥平面yOz,PC⊥平面xOz及坐标平面的特征知,点A(6,-2,0),点B(0,-2,-7),点C(6,0,-7);根据点P关于各坐标平面对称点的特征知,点A′(6,-2,7),B′(-6,-2,-7),C′(6,2,-7).2.在棱长都为2的正三棱柱ABC-A1B1C1中,建立恰当的直角坐标系,并写出正三棱柱ABC-A1B1C1各顶点的坐标.[正解] 取BC ,B 1C 1的中点分别为O ,O 1,连线OA ,OO 1, 根据正三棱柱的几何性质,OA ,OB ,OO 1两两互相垂直,且 |OA |=32×2=3, 以OA ,OB ,OO 1所在的直线分别为x 轴、y 轴、z 轴建立直角坐标系,如图5所示,则正三棱柱ABC —A 1B 1C 1各顶点的坐标分别为A (3,0,0),B (0,1,0),C (0,-1,0),A 1(3,0,2),B 1(0,1,2),C 1(0,-1,2).三.空间向量在立体几何中的应用1. 直线的方向向量与平面的法向量(1) 直线l 上的向量e 以及与e 共线的向量叫做直线l 的方向向量.(2) 如果表示非零向量n 的有向线段所在直线垂直于平面α,那么称向量n 垂直于平面α,记作n ⊥α.此时把向量n 叫做平面α的法向量.2. 线面关系的判定直线l 1的方向向量为e 1=(a 1,b 1,c 1),直线l 2的方向向量为e 2=(a 2,b 2,c 2),平面α的法向量为n 1=(x 1,y 1,z 1),平面β的法向量为n 2=(x 2,y 2,z 2).(1) 如果l 1∥l 2,那么e 1∥e 2⇔e 2=λe 1⇔a 2=λa 1,b 2=λb 1,c 2=λc 1. (2) 如果l 1⊥l 2,那么e 1⊥e 2⇔e 1·e 2=0⇔a 1a 2+b 1b 2+c 1c 2=0. (3) 若l 1∥α,则e 1⊥n 1⇔e 1·n 1=0⇔a 1x 1+b 1y 1+c 1z 1=0.(4) 若l 1⊥α,则e 1∥n 1⇔e 1=k n 1⇔a 1=kx 1,b 1=ky 1,c 1=kz 1. (5) 若α∥β,则n 1∥n 2⇔n 1=k n 2⇔x 1=kx 2,y 1=ky 2,z 1=kz 2. (6) 若α⊥β,则n 1⊥n 2⇔n 1·n 2=0⇔x 1x 2+y 1y 2+z 1z 2=0. 3. 利用空间向量求空间角 (1) 两条异面直线所成的角①范围:两条异面直线所成的角θ的取值范围是⎝⎛⎦⎥⎤0,π2.②向量求法:设直线a 、b 的方向向量为a 、b ,其夹角为φ,则有cos θ=|cos φ|.(2) 直线与平面所成的角①范围:直线和平面所成的角θ的取值范围是⎣⎢⎡⎦⎥⎤0,π2. ②向量求法:设直线l 的方向向量为a ,平面的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为φ,则有sin θ=|cos φ|(3) 二面角①二面角的取值范围是[0,π]. ②二面角的向量求法:(ⅰ) 若AB 、CD 分别是二面角α-l-β的两个面内与棱l 垂直的异面直线,则二面角的大小就是向量AB 与CD 的夹角(如图①).(ⅱ) 设n 1、n 2分别是二面角α-l-β的两个面α、β的法向量,则向量n 1与n 2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).题型1 空间向量的基本运算[例1]已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4).设a =AB →,b =AC →.(1) 求a 和b 的夹角θ;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值. 解:∵A (-2,0,2),B(-1,1,2),C(-3,0,4),a =AB →,b =AC →, ∴a =(1,1,0),b =(-1,0,2).(1)∵cosθ=a·b |a ||b |=-1+0+02×5=-1010,∴a 和b 的夹角为arccos ⎝ ⎛⎭⎪⎫-1010. (2)∵k a +b =k(1,1,0)+(-1,0,2)=(k -1,k ,2),k a -2b =(k +2,k ,-4),且(k a +b )⊥(k a -2b ),∴(k -1,k ,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=2k 2+k -10=0,解得k =-52或2.题型2 空间中的平行与垂直例2 如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直, AB =2,AF =1,M 是线段EF 的中点.求证:(1) AM∥平面BDE ;(2) AM⊥平面BDF.证明:(1) 建立如图所示的空间直角坐标系,设AC∩BD=N ,连结NE.则N ⎝ ⎛⎭⎪⎫22,22,0,E(0,0,1),A(2,2,0),M ⎝ ⎛⎭⎪⎫22,22,1.∴ NE →=⎝ ⎛⎭⎪⎫-22,-22,1,AM →=⎝ ⎛⎭⎪⎫-22,-22,1.∴ NE →=AM →且NE 与AM 不共线.∴ NE∥AM.∵ NE 平面BDE ,AM 平面BDE ,∴ AM ∥平面BDE.(2) 由(1)知AM →=⎝ ⎛⎭⎪⎫-22,-22,1,∵ D(2,0,0),F(2,2,1),∴ DF→=(0,2,1),∴ AM →·DF →=0,∴ AM ⊥DF.同理AM⊥BF. 又DF∩BF=F ,∴ AM ⊥平面BDF. 题型3 空间的角的计算例3 (2013·苏锡常镇二模)如图,圆锥的高PO =4,底面半径OB =2,D 为PO 的中点,E 为母线PB 的中点,F 为底面圆周上一点,满足EF⊥DE.(1) 求异面直线EF 与BD 所成角的余弦值; (2) 求二面角F-OD-E 的正弦值.解:(1) 以O 为原点,底面上过O 点且垂直于OB 的直线为x 轴,OB 所在的线为y 轴,OP 所在的线为z 轴,建立空间直角坐标系,则B(0,2,0),P(0,0,4),D(0,0,2),E(0,1,2).设F(x 0,y 0,0)(x 0>0,y 0>0),且x 20+y 20=4,则EF →=(x 0,y 0-1,-2),DE →=(0,1,0),∵ EF ⊥DE ,即EF →⊥DE →,则EF →·DE →=y 0-1=0,故y 0=1.∴ F(3,1,0),EF →=(3,0,-2),BD →=(0,-2,2).设异面直线EF 与BD 所成角为α,则cos α=⎪⎪⎪⎪⎪⎪⎪⎪EF →·BD →|EF →||BD →|=47×22=147. (2) 设平面ODF 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1⊥OD →,n 1⊥OF →,即⎩⎨⎧z 1=0,3x 1+y 1=0.令x 1=1,得y 1=-3,平面ODF 的一个法向量为n 1=(1,-3,0).设平面DEF 的法向量为n 2=(x 2,y 2,z 2),同理可得平面DEF 的一个法向量为n 2=⎝⎛⎭⎪⎫1,0,32.设二面角F-OD-E 的平面角为β,则|cos β|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=17=77.∴ sin β=427. (翻折问题)例4. (2013广东韶关第二次调研)如图甲,在平面四边形ABCD 中,已知∠A=45°,∠C =90°,∠ADC =105°,AB =BD ,现将四边形ABCD 沿BD 折起,使平面ABD⊥平面BDC(如图乙),设点E 、F 分别为棱AC 、AD 的中点.(1) 求证: DC⊥平面ABC ; (2) 求BF 与平面ABC 所成角的正弦值; (3) 求二面角B -EF -A 的余弦值.解:(1) ∵ 平面ABD⊥平面BDC ,又∵ AB⊥BD,∴ AB ⊥平面BDC ,故AB⊥DC,又∵ ∠C=90°,∴ DC ⊥BC ,BC ABC 平面ABC ,DC 平面ABC ,故DC⊥平面ABC.(2) 如图,以B 为坐标原点,BD 所在的直线为x 轴建立空间直角坐标系如下图示,设CD =a ,则BD =AB =2a ,BC =3a ,AD =22a ,可得B(0,0,0),D(2a ,0,0),A(0,0,2a),C ⎝ ⎛⎭⎪⎫32a ,32a ,0,F(a ,0,a),∴ CD →=⎝ ⎛⎭⎪⎫12a ,-32a ,0,BF →=(a ,0,a).设BF 与平面ABC 所成的角为θ,由(1)知DC⊥平面ABC ,∴ cos ⎝ ⎛⎭⎪⎫π2-θ=CD →·BF →|CD →|·|BF →|=12a 2a ·2a =24,∴ sin θ=24.(3) 由(2)知 FE⊥平面ABC, 又∵ BE平面ABC ,AE平面ABC ,∴ FE⊥BE,FE⊥AE ,∴ ∠AEB 为二面角B -EF -A 的平面角 .在△AEB 中,AE =BE =12AC =12AB 2+BC 2=72a , ∴ cos ∠AEB =AE 2+BE 2-AB 22AE ·BE =-17,即所求二面角B -EF -A 的余弦为-17.课后巩固练习:1.(2013·江苏卷)如图所示,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1) 求异面直线A 1B 与C 1D 所成角的余弦值;(2) 求平面ADC 1与平面ABA 1所成二面角的正弦值.解:(1) 以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A 1(0,0,4),C 1(0,2,4),所以A 1B →=(2,0,-4),C 1D →=(1,-1,-4).因为cos 〈A 1B →,C 1D →〉=A 1B →·C 1D →|A 1B →||C 1D →|=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010.(2) 设平面ADC 1的法向量为n 1=(x ,y ,z),因为AD →=(1,1,0),AC 1→=(0,2,4),所以n 1·AD →=0,n 1·AC1→=0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面AA 1B 的一个法向量为n 2=(0,1,0), 设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=n 1·n 2|n 1||n 2|=29×1=23,得sin θ=53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53. 2. (2013·新课标全国卷Ⅱ)如图所示,直三棱柱ABCA 1B 1C 1中,D 、E 分别是AB 、BB 1的中点,AA 1=AC =CB =22AB.(1) 证明:BC 1∥平面A 1CD ;(2) 求二面角DA 1CE 的正弦值. (1) 证明:连结AC 1交A 1C 于点F ,则F 为AC 1中点. 又D 是AB 中点,连结DF ,则BC 1∥DF. 因为DF 平面A1CD ,BC 1平面A 1CD , 所以BC 1∥平面A 1CD.(2) 由AC =CB =22AB 得AC⊥BC. 以C 为坐标原点,CA →的方向为x 轴正方向,建立如图所示的空间直角坐标系Cxyz.设CA =2,则D(1,1,0),E(0,2,1),A 1(2,0,2),CD →=(1,1,0),CE →=(0,2,1),CA 1→=(2,0,2). 设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则⎩⎪⎨⎪⎧n ·CD →=0,n ·CA 1→=0,即⎩⎨⎧x 1+y 1=0,2x 1+2z 1=0.可取n =(1,-1,-1).同理,设m 为平面A 1CE 的法向量,则⎩⎪⎨⎪⎧m ·CE →=0,m ·CA 1→=0.可取m =(2,1,-2).从而cos 〈n ,m 〉=n·m |n||m|=33,故sin 〈n ,m 〉=63.即二面角D-A 1C-E 的正弦值为63. 3. (2013·重庆)如图所示,四棱锥PABCD 中,PA ⊥底面ABCD ,BC =CD =2,AC =4,∠ACB =∠ACD=π3,F 为PC 的中点,AF ⊥PB.(1) 求PA 的长;(2) 求二面角B-AF-D 的正弦值.解:(1) 如图,连结BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD,故AC⊥BD.以O 为坐标原点,OB →、OC →、AP →的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系Oxyz ,则OC =CDcos π3=1,而AC =4,得AO =AC -OC =3.又OD =CDsin π3=3,故A(0,-3,0),B(3,0,0),C(0,1,0),D(-3,0,0).因为PA⊥底面ABCD ,可设P(0,-3,z),由F 为PC 边中点,得F ⎝⎛⎭⎪⎫0,-1,z 2,又AF →=⎝⎛⎭⎪⎫0,2,z 2,PB →=(3,3,-z),因AF⊥PB,故AF →·PB →=0,即6-z 22=0,z =23(舍去-23),所以|PA→|=2 3.(2) 由(1)知AD →=(-3,3,0),AB →=(3,3,0),AF →=(0,2,3).设平面FAD 的法向量为n 1=(x 1,y 1,z 1),平面FAB 的法向量为n 2=(x 2,y 2,z 2).由n 1·AD →=0,n 1·AF →=0,得⎩⎪⎨⎪⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取n 1=(3,3,-2).由n 2·AB →=0,n 2·AF →=0, 得⎩⎪⎨⎪⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取n 2=(3,-3,2).从而向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B-AF-D 的正弦值为378.4. (2013·连云港调研)在三棱锥SABC 中,底面是边长为23的正三角形,点S 在底面ABC 上的射影O 恰是AC 的中点,侧棱SB 和底面成45°角.(1) 若D 为侧棱SB 上一点,当SDDB为何值时,CD ⊥AB ;(2) 求二面角S-BC-A 的余弦值大小.解:以O 点为原点,OB 为x 轴,OC 为y 轴,OS 为z 轴建立空间直角坐标系O-xyz.由题意知∠SBO=45°,SO =(0,0,0),C(0,3,0),A(0,-3,0),S(0,0,3),B(3,0,0).(1) 设BD →=λBS →(0≤λ≤1),则OD →=(1+λ)OB →+λOS →=(3(1+λ),0,3λ),所以CD →=(3(1-λ),-3,3λ). 因为AB →=(3,3,0),CD ⊥AB ,所以CD →·AB →=9(1-λ)-3=0,解得λ=23.故SD DB =12时, CD ⊥AB. (2) 平面ACB 的法向量为n 1=(0,0,1),设平面SBC 的法向量n 2=(x ,y ,z),则n 2·SB →=0,n 2·SC →=0,则⎩⎨⎧3x -3z =0,3y -3z =0,解得⎩⎨⎧x =z ,y =3z ,取n 2=(1,3,1),所以cos 〈n 1,n 2〉=3×0+1×0+1×112+12+(3)2·1=55. 又显然所求二面角的平面角为锐角,故所求二面角的余弦值的大小为55. 5. 在直四棱柱ABCD-A 1B 1C 1D 1中,AA 1=2,底面是边长为1的正方形,E 、F 分别是棱B 1B 、DA 的中点.(1) 求二面角D 1-AE-C 的大小; (2) 求证:直线BF∥平面AD 1E.(1) 解:以D 为坐标原点,DA 、DC 、DD 1分别为x 、y 、z 轴建立空间直角坐标系如图.则相应点的坐标分别为D 1(0,0,2),A(1,0,0),C(0,1,0),E(1,1,1),∴ED1→=(0,0,2)-(1,1,1)=(-1,-1,1),AE →=(1,1,1)-(1,0,0)=(0,1,1), AC →=(0,1,0)-(1,0,0)=(-1,1,0).设平面AED 1、平面AEC 的法向量分别为m =(a ,b ,1),n =(c ,d ,1).由⎩⎪⎨⎪⎧ED 1→·m =0,AE →·m =0⎩⎨⎧-a -b +1=0,b +1=0⎩⎨⎧a =2,b =-1,由⎩⎪⎨⎪⎧AC →·n =0,AE →·n =0⎩⎨⎧-c +d =0,d +1=0⎩⎨⎧c =-1,d =-1,∴m =(2,-1,1),n =(-1,-1,1),∴cos m ,n =m·n |m |·|n |=-2+1+16×3=0,∴二面角D 1AEC 的大小为90°.(2) 证明:取DD 1的中点G ,连结GB 、GF.∵E 、F 分别是棱BB 1、AD 的中点,∴GF ∥AD 1,BE ∥D 1G 且BE =D 1G ,∴四边形BED 1G 为平行四边形,∴D 1E ∥BG. 又D1E 、D 1A 平面AD 1E ,BG 、GF 平面AD 1E , ∴BG ∥平面AD 1E ,GF ∥平面AD 1E.∵GF 、GB 平面BGF ,∴平面BGF∥平面AD 1E. ∵BF 平面AD 1E ,∴直线BF∥平面AD 1E.(或者:建立空间直角坐标系,用空间向量来证明直线BF∥平面AD 1E ,亦可)6. (2013·苏州调研)三棱柱ABC -A 1B 1C 1在如图所示的空间直角坐标系中,已知AB =2,AC =4,A 1A =是BC 的中点.(1) 求直线DB 1与平面A 1C 1D 所成角的正弦值; (2) 求二面角B 1-A 1D-C 1的正弦值.解:(1) 由题意,A(0,0,0),B(2,0,0),C(0,4,0),D(1,2,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3).A 1D →=(1,2,-3),A 1C 1→=(0,4,0).设平面A 1C 1D 的一个法向量为n =(x ,y ,z).∵ n ·A 1D →=x +2y -3z =0,n ·A 1C 1→=4y =0.∴ x =3z ,y =0.令z =1,得x ==(3,0,1).设直线DB 1与平面A 1C 1D 所成角为θ,∵ DB 1→=(1,-2,3),∴ sin θ=|cos 〈DB 1→·n 〉|=3×1+0×(-2)+1×310×14=33535. (2) 设平面A 1B 1D 的一个法向量为m =(a ,b ,c). A 1B 1→=(2,0,0),∵ m ·A 1D →=a +2b -3c =0,m ·A 1B 1→=2a =0,∴ a =0,2b =3c.令c =2,得b ==(0,3,2).设二面角B 1A 1DC 1的大小为α,∴ |cos α|=cos|〈m ,n 〉|=|m·n||m|·|m|=|0×3+3×0+2×1|13×10=265,则sin α=3765=345565.∴ 二面角B 1A 1DC 1的正弦值为345565.7. (2013·南通二模)如图,在三棱柱ABCA 1B 1C 1中,A 1B ⊥平面ABC ,AB ⊥AC ,且AB =AC =A 1B =2.(1) 求棱AA 1与BC 所成的角的大小;(2) 在棱B 1C 1上确定一点P ,使二面角P -AB -A 1的平面角的余弦值为255.解:(1) 如图,以A 为原点建立空间直角坐标系,则C(2,0,0),B(0,2,0),A 1(0,2,2),B 1(0,4,2),AA 1→=(0,2,2),BC →=B 1C 1→=(2,-2,0).cos 〈AA 1→,BC →〉=AA 1→·BC →|AA 1→|·|BC →|=-48·8=-12,故AA 1与棱BC 所成的角是π3.(2) P 为棱B 1C 1中点,设B 1P →=λB 1C 1→=(2λ,-2λ,0),则P(2λ,4-2λ,2).设平面PAB 的法向量为n 1=(x ,y ,z),AP →=(2λ,4-2λ,2),则⎩⎪⎨⎪⎧n 1·AP →=0,n 1·AB →=0.⎩⎨⎧λx+2y -λy+z =0,2y =0.⎩⎨⎧z =-λx,y =0.故n 1=(1,0,-λ),而平面ABA1的法向量是n2=(1,0,0),则cos〈n1,n2〉=n1·n2|n1|·|n2|=11+λ2=255,解得λ=12,即P为棱B1C1中点,其坐标为P(1,3,2).近六年高考题1. 【2010高考北京理第16题】(14分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB,CE=EF=1.(1)求证:AF∥平面BDE;(2)求证:CF⊥平面BDE;(3)求二面角A-BE-D的大小.【答案】设AC与BD交与点G。
建立空间直角坐标系解立体几何题
![建立空间直角坐标系解立体几何题](https://img.taocdn.com/s3/m/ba463507effdc8d376eeaeaad1f34693daef10c4.png)
建立空间直角坐标系解立体几何题在学习立体几何过程中,建立空间直角坐标系可以帮助我们更好地理解和解决相关问题。
这篇文章将探讨如何建立空间直角坐标系,并以一个例题为例来说明该方法的应用。
建立空间直角坐标系的步骤如下:1.选取坐标原点一般情况下,我们可以选择立方体的一个顶点作为坐标原点。
选取坐标原点后,我们可以通过标定其他点与坐标原点的坐标值来建立坐标系。
2.确定坐标轴在空间中,我们可以有三个互相垂直的坐标轴,分别为x轴、y轴和z轴。
我们可以根据需要确定坐标轴的正方向,比如我们可以规定x轴正方向为从左往右,y轴正方向为从下往上,z轴正方向为从内往外。
3.标定坐标值在空间中,每一个点都可以用三个实数x、y、z来表示它在坐标系中的位置。
我们可以通过直接测量或者运用勾股定理等方法来确定每个点的坐标值。
一般情况下,我们可以将领角所在的平面作为xoy平面,将底面所在的平面作为xz平面,将右侧面所在的平面作为yz平面,这样有助于我们更方便地标定坐标值。
以一个例题来说明建立空间直角坐标系的应用:已知四面体ABCD的底面ABCD为边长为2的正方形,其上面一点P距离底面ABCD的距离为1,求点P到四面体的距离。
利用空间直角坐标系来解决该题可以大大简化计算过程。
我们可以将坐标系建在ABCD正方形所在的平面上,以AB为x轴,以AD为y轴,以垂直于该平面的方向为z轴。
在该坐标系中,我们可以标定A点坐标为(0, 0, 0),将B点的坐标作为x轴正方向单位向量(1, 0, 0),C点的坐标作为y轴正方向单位向量(0, 1, 0),D 点的坐标作为z轴正方向单位向量(0, 0, 1)。
通过该坐标系,我们可以算得点P的坐标为(1, 1, 1)。
接下来,我们可以利用向量点积公式计算点P到四面体的高:|AP·N|/|N| = |(1, 1, 1)·(1, 1, 0)|/√2 ≈ 1.22因此,点P到四面体的距离约为1.22。
高三立体几何习题(含问题详解)
![高三立体几何习题(含问题详解)](https://img.taocdn.com/s3/m/48767673cf84b9d528ea7aa2.png)
C BAC1B1A1高三立体几何习题一、填空题1.已知AB是球O的一条直径,点1O是AB上一点,若14OO=,平面α过点1O且垂直AB,截得圆1O,当圆1O的面积为9π时,则球O的表面积是.【答案】100p2.把一个大金属球表面涂漆,共需油漆2.4公斤.若把这个大金属球熔化制成64个大小都相同的小金属球,不计损耗,将这些小金属球表面都涂漆,需要用漆公斤.【答案】9.63.已知球的表面积为64π2cm,用一个平面截球,使截面圆的半径为2cm,则截面与球心的距离是cm【答案】234.一个圆锥与一个球体积相等且圆锥的底面半径是球半径的2倍,若圆锥的高为1,则球的表面积为.【答案】4p5.一个底面置于水平面上的圆锥,若主视图是边长为2的正三角形,则圆锥的侧面积为.【答案】4p6.如图所示:在直三棱柱111ABC A B C-中,AB BC⊥,1AB BC BB==,则平面11A B C与平面ABC所成的二面角的大小为.【答案】4π二、选择题1.如图,已知圆锥的底面半径为10r=,点Q为半圆弧AB的中点,点P为母线SA的中点.若PQ与SO所成角为4π,则此圆锥的全面积与体积分别为()A.100051006,3ππB.10005100(16),3ππ+C.100031003,3ππD.10003100(13),3ππ+【答案】B2.如图,取一个底面半径和高都为R的圆柱,从圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥,把所得的几何体与一个半径为R的半球放在同一水平面α上.用一平行于平面α的平面去截这两个几何体,截面分别为圆面和圆环面(图中阴影部分).设截面面积分别为S圆和S圆环,那么()A.S圆>S圆环 B.S圆<S圆环 C.S圆=S圆环 D.不确定PSAQOB3.如图所示,PAB ∆所在平面α和四边形ABCD 所在的平面β互相垂直,且AD α⊥,BC α⊥,4AD =,8BC =,6AB =,若tan 2tan 1ADP BCP ∠-∠=,则动点P 在平面α内的轨迹是( ) A.线段 B.椭圆的一部分 C.抛物线 D.双曲线的一部分 【答案】D4.在空间中,下列命题正确的是( )A .若两直线,a b 与直线l 所成的角相等,那么//a bB .空间不同的三点A 、B 、C 确定一个平面C. 如果直线//l 平面α且//l 平面β,那么//αβ D .若直线a 与平面M 没有公共点,则直线//a 平面M【答案】D5.如图,已知直线l ⊥平面α,垂足为O ,在ABC △中,2,2,22BC AC AB ===,点P 是边AC 上的动点.该三角形在空间按以下条件作自由移动:(1)A l ∈,(2)C α∈.则OP PB +的最大值为( )(A) 2. (B) 22. (C) 15+. (D) 10.【答案】C6.平面α上存在不同的三点到平面β的距离相等且不为零,则平面α与平面β的位置关系为( ))(A 平行 )(B 相交 )(C 平行或重合 )(D 平行或相交【答案】D7.a b c 、、表示直线,α表示平面,下列命题正确的是( )A .若//,//αa b a ,则//αbB . 若,α⊥⊥a b b ,则α⊥aC .若,⊥⊥a c b c ,则//a bD .若,αα⊥⊥a b ,则//a b 【答案】D8.下列命题中,正确的个数是【 】① 直线上有两个点到平面的距离相等,则这条直线和这个平面平行; ② a 、b 为异面直线,则过a 且与b 平行的平面有且仅有一个; ③ 直四棱柱是直平行六面体;④ 两相邻侧面所成角相等的棱锥是正棱锥.A 、0B 、1C 、2D 、3 【答案】B9.在四棱锥ABCD V -中,1B ,1D 分别为侧棱VB ,VD 的中点,则四面体11CD AB 的体积与四棱锥 ABCD V -的体积之比为( )A .6:1B .5:1C .4:1D .3:1βαP B A DC A Bl C αNPO【答案】C三、解答题1.(本题满分14分)本题共有2小题,第(1)小题满分6分,第(2)小题满分8分. 如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动. (1)证明:11D E A D ⊥;(2)AE 等于何值时,二面角1D EC D --的大小为4π.【答案】解:(1)在如图所示的空间直角坐标系中,11(1,0,1),(0,0,0),(0,0,1)A D D 设(1,,0)([0,2])E y y ∈ 则11(1,,1),(1,0,1)D E y DA =-=…所以110D E DA ⋅=……所以11D E A D ⊥……(2)方法一:设(,,)n u v w =为平面1D CE 的一个法向量由1100n CD n D E ⎧⋅=⎪⎨⋅=⎪⎩,得200v w u yv w -+=⎧⎨+-=⎩,所以(2)2u y v w v =-⎧⎨=⎩…因为二面角1D EC D --的大小为4π,所以2222(0,0,1)(,,)22cos ||42(2)5u v w u v wy π⋅===++-+ 又[0,2]y ∈,所以23y =-,即当23AE =-时二面角1D EC D --的大小为4π2.(本题满分14分)本题共有2小题,第(1)小题满分6分,第(2)小题满分8分. 如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动. (1)当E 为AB 的中点时,求四面体1E ACD -的体积; (2)证明:11D E A D ⊥.【答案】解:(1)1122ACE S AE BC ∆=⋅=… 因为1D D ACE ⊥平面,所以1111136E ACD D ACE ACE V V S D D --∆==⋅=… (2)正方形11ADD A 中,11A D AD ⊥……因为11AB ADD A ⊥平面,所以1AB A D ⊥…所以11A D AD E ⊥平面…所以11D E A D ⊥……D 1C 1A 1A E DB 1B C Ox yzD 1C 1A 1AEDB 1B C3.三棱柱111C B A ABC -中,它的体积是315,底面ABC ∆中,090=∠BAC ,3,4==AC AB ,1B 在底面的射影是D ,且D 为BC 的中点.(1)求侧棱1BB 与底面ABC 所成角的大小;(7分)(2)求异面直线D B 1与1CA 所成角的大小.(6分)【答案】解:(1)依题意,⊥D B 1面ABC ,BD B 1∠就是侧棱1BB 与底面ABC 所成的角θ 2分111111431532ABC A B C ABC V S B D B D -∆=⋅=⨯⨯⨯=4分1532B D =5分计算25=BD ,θθtan 25tan 1==BD D B , tan 3,3πθθ=∴= 7分 (2)取11C B 的中点E ,连E A EC 1,,则1ECA ∠(或其补角)为所求的异面直线的角的大小 9分 ⊥D B 1面ABC ,D B 1‖CE ,面ABC ‖面111C B A ⊥∴CE 面111C B A ,E A CE 1⊥∴ 11分33325tan 251===∠EC AE CE A 12分 所求异面直线D B 1与1CA 所成的角6π13分4.在如图所示的几何体中,四边形CDPQ 为矩形,四边形ABCD 为直角梯形,且90BAD ADC ∠=∠=,平面CDPQ ⊥平面ABCD ,112AB AD CD ===,2PD =.(1)若M 为PA 的中点,求证:AC //平面DMQ ;(2)求平面PAD 与平面PBC 所成的锐二面角的大小.【答案】解:(1)如图,设CP 与M 的交点为N ,连接MN .易知点N 是CP 的中点,又M 为PA 的中点,故//AC MN .…4分于是,由MN ∉平面DMQ ,得//AC 平面DMQ .……………6分 (2)如图,以点D 为原点,分别以DA DB DC 、、为x 轴,y 轴,z 轴,建立空间直角坐标系,则(0,0,0),(1,0,0),(1,1,0),(0,2,0),(0,0,2)D A B C P .易知1(0,1,0)n =为平面PAD 的一个法向量,设2(,,)n x y z =为平面PBC 的一个法向量.则220220n BC x y n PC y z ⎧=-+=⎪⎨=-=⎪⎩2x yz y =⎧⎪⇒⎨=⎪⎩,令1y =,得2(1,1,2)n =.…………………10分 设平面PAD 与平面PBC 所成的锐二面角为θ,则12121cos 2n n n n θ==,…………………12分 1A ABCQP D M(第20题图)D 1C 1B 1BCDA 1A故平面PAD 与平面PBC 所成的锐二面角的大小为3π.………………………………………14分5.(本题满分14分) 本题共2个小题,第1小题6分,第2小题8分. 在如图所示的直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为2的 菱形,且60,BAD ∠=︒1 4.AA =(1)求直四棱柱1111ABCD A B C D -的体积; (2)求异面直线11AD BA 与所成角的大小.【答案】解:(1)因菱形ABCD 的面积为2sin 6023,AB ⋅︒= ……2分故直四棱柱1111ABCD A B C D -的体积为:12348 3.ABCD S AA ⋅=⨯=底面……6分(2)连接111BC A C 、,易知11//BC AD ,故11A BC ∠等于异面直线11AD BA 与所成角. ……8分由已知,可得111125,23,A B BC AC === ……10分则在11A BC ∆中,由余弦定理,得 222111111117cos .210A B BC AC A BC A B BC +-∠==⋅ ……12分 故异面直线11AD BA 与所成角的大小为7cos .10arc……14分6.(本题满分12分)本题共2小题,第1小题满分6分,第2小题满分6分.在长方体1111ABCD A B C D -中,2AB BC ==,13AA =,过11,,A C B 三点的平面截去长方体的一个角后,得到如下所示的几何体111ABCD AC D -.(1)若11A C 的中点为1O ,求求异面直线1BO 与11A D 所成角的大小(用反三角函数值表示);(2)求点D 到平面11A BC 的距离d .【答案】解:(1)按如图所示建立空间直角坐标系.由题知,可得点D(0,0,0)、(2,2,0)B 、1(0,0,3)D 、1(2,0,3)A 、1(0,2,3)C . 由1O 是11A C 中点,可得1(1,1,3)O . 于是,111(1,1,3),(2,0,0)BO A D =--=-. 设异面直线1BO 与11A D 所成的角为θ,则111111211cos 11||||211BO A D BO A D θ⋅===.因此,异面直线1BO 与11A D 所成的角为11arccos 11. (2)设(,,)nx y z =是平面ABD 的法向量. ∴110,0.n BA n BC ⎧⋅=⎪⎨⋅=⎪⎩ 又11(0,2,3),(2,0,3)BA BC =-=-,∴230,230.y z x z -+=⎧⎨-+=⎩ 取2z =, ABCD1A 1C 1D可得3,3,2.x y z =⎧⎪=⎨⎪=⎩即平面11BA C 的一个法向量是(3,3,2)n =. ∴||n DB d n ⋅=62211=.7.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.在长方体1111ABCD A B C D -中,2AB BC ==,13AA =,过1A 、1C 、B 三点的平面截去长方体的 一个角后,得到如下所示的几何体111ABCD AC D -.(1)求几何体111ABCD AC D -的体积,并画出该几何体的左视图(AB 平行主视图投影所在的平面); (2)求异面直线1BC 与11A D 所成角的大小(结果用反三角函数值表示).【答案】解: 2AB BC ==,13AA =,11111=2232231032ABCD A D C V V V -∴=-⨯⨯-⨯⨯⨯⨯=长方体三棱锥.左视图如右图所示. (2)依据题意,有11,A D AD AD BC ,即11A D BC . ∴1C BC ∠就是异面直线1BC 与11A D 所成的角. 又1C C BC ⊥,∴113tan 2C C C BC BC ∠==.∴异面直线1BC 与11A D 所成的角是3tan 2arc . 8. (本题满分12分)本题共有2个小题,第1小题满分4分,第2小题满分8分.如图,在直三棱柱111C B A ABC -中,已知21===AB BC AA ,AB ⊥BC . (1)求四棱锥111A BCC B -错误!未指定书签。
押新高考第19题 立体几何(新高考)(解析版)
![押新高考第19题 立体几何(新高考)(解析版)](https://img.taocdn.com/s3/m/cf5c5a042bf90242a8956bec0975f46527d3a72d.png)
立体几何对于立体几何的解答题,在高考中常借助柱、锥体考查线面、平行与垂直,考查利用空间向量求二面角、线面角、线线角的大小,考查利用空间向量探索存在性问题及位置关系等,难度中等偏上.1.用向量法求异面直线所成的角 (1)建立空间直角坐标系; (2)求出两条直线的方向向量;(3)代入公式求解,一般地,异面直线AC ,BD 的夹角β的余弦值为||cos ||||AC BD AC BD β⋅=.2.用向量法求直线与平面所成的角(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角. 3.用向量法求二面角求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角. 4.平面,αβ所成的二面角为θ,则0πθ≤≤,如图①,AB ,C D 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=,〈〉AB CD .如图②③,12,n n 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=1212n n n n ,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).1.(2021·湖南·高考真题)如图,四棱锥中,底面ABCD 是矩形,平面ABCD ,E 为PD 的中点.(1)证明:平面ACE ;(2)设,,直线PB 与平面ABCD 所成的角为,求四棱锥的体积.【详解】 (1)连接交于点,连接. 在中,因为,所以,因为平面,平面,则平面.(2)因为平面ABCD ,所以就是直线PB 与平面ABCD 所成的角,所以,又,,所以,所以四棱锥的体积,所以四棱锥的体积为.2.(2021·天津·高考真题)如图,在棱长为2的正方体中,E为棱BC的中点,F为棱CD 的中点.(I)求证:平面;(II)求直线与平面所成角的正弦值.(III)求二面角的正弦值.【详解】(I)以为原点,分别为轴,建立如图空间直角坐标系,则,,,,,,,因为E为棱BC的中点,F为棱CD的中点,所以,,所以,,,设平面的一个法向量为,则,令,则,因为,所以,因为平面,所以平面;(II)由(1)得,,设直线与平面所成角为,则;(III)由正方体的特征可得,平面的一个法向量为,则,所以二面角的正弦值为.3.(2021·浙江·高考真题)如图,在四棱锥中,底面是平行四边形,,M,N分别为的中点,. (1)证明:;(2)求直线与平面所成角的正弦值.【详解】(1)在中,,,,由余弦定理可得,所以,.由题意且,平面,而平面,所以,又,所以.(2)由,,而与相交,所以平面,因为,所以,取中点,连接,则两两垂直,以点为坐标原点,如图所示,建立空间直角坐标系, 则,又为中点,所以.由(1)得平面,所以平面的一个法向量从而直线与平面所成角的正弦值为.4.(2021·北京·高考真题)如图:在正方体中,为中点,与平面交于点.(1)求证:为的中点;(2)点是棱上一点,且二面角的余弦值为,求的值.【详解】(1)如图所示,取的中点,连结,由于为正方体,为中点,故,从而四点共面,即平面CDE即平面,据此可得:直线交平面于点,当直线与平面相交时只有唯一的交点,故点与点重合,即点为中点.(2)以点为坐标原点,方向分别为轴,轴,轴正方向,建立空间直角坐标系,不妨设正方体的棱长为2,设,则:,从而:,设平面的法向量为:,则:,令可得:,设平面的法向量为:,则:,令可得:,从而:,则:,整理可得:,故(舍去).5.(2021·全国·高考真题)在四棱锥中,底面是正方形,若.(1)证明:平面平面;(2)求二面角的平面角的余弦值.【详解】(1)取的中点为,连接.因为,,则,而,故.在正方形中,因为,故,故,因为,故,故为直角三角形且,因为,故平面,因为平面,故平面平面.(2)在平面内,过作,交于,则,结合(1)中的平面,故可建如图所示的空间坐标系.则,故.设平面的法向量, 则即,取,则,故. 而平面的法向量为,故.二面角的平面角为锐角,故其余弦值为.1.(2022·河北秦皇岛·二模)如图,在四棱锥P ABCD -中,PA AB ⊥,PC CD ⊥,BC AD ∥,23πBAD ∠=, 2PA AB BC ===,4=AD .(1)证明:PA ⊥平面ABCD .(2)若M 为PD 的中点,求二面角M AC D --的大小. 【解析】 (1)证明:由题可知ABC 为等边三角形,所以2AC =,3π∠=CAD .在ACD △中,由余弦定理得2224224cos 233CD π=+-⨯⨯=,所以222AC CD AD +=,所以CD AC ⊥. 因为CD PC ⊥,且ACPC C =,所以CD ⊥平面PAC .因为PA ⊂平面PAC ,所以CD PA ⊥. 因为PA AB ⊥,且,AB CD 相交, 所以PA ⊥平面ABCD . (2)以A 为坐标原点,以AD ,AP 的方向分别为y ,z 轴的正方向,建立如图所示的空间直角坐标系A xyz -则()3,1,0C,()0,2,1M .设平面MAC 的法向量为(),,n x y z =,则30,20,n AC x y n AM y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩令1x =,得()1,3,23n =-. 取平面ACD 的一个法向量为()0,0,1m =, 则233cos ,142⋅<>===⨯m n m n m n. 由图可知二面角M AC D --为锐角,所以二面角M AC D --的大小为6π.2.(2022·湖南永州·三模)如图,在三棱柱111ABC A B C -中,112AB AA AC BC ====.(1)求证:11A B B C ⊥;(2)若2AC =,160ABB ∠=,点M 满足132AM MC =,求二面角11A A B M --的余弦值. 【解析】 (1)连接11,A B AB 交于点O ,连接OC ,四边形11ABB A 为菱形,11A B AB ∴⊥,O 为1A B 中点, 又1CA CB =,1A B OC ∴⊥, 1AB OC O =,1,AB CO ⊂平面1ACB ,1A B ∴⊥平面1ACB ,又1B C ⊂平面1ACB ,11A B B C ∴⊥. (2)160ABB ∠=,12AB AA ==,3OB ∴=,1OA =,在Rt OBC 中,222OC BC OB =-,1OC ∴=, 在OAC 中,有222OA OC AC +=,OC OA ∴⊥,又OA OB O =,,OA OB ⊂平面11ABB A ,OC ∴⊥平面11ABB A ,则以O 为坐标原点,,,OA OB OC 为,,x y z 轴可建立如图所示空间直角坐标系,则()1,0,0A ,()10,3,0A -,()11,0,0B -,()0,0,1C ,()11,3,1C --,()12,3,1AC ∴=--,设(),,M x y z ,则()1,,AM x y z =-,()11,3,1MC x y z =---,132AM MC =,()()()()3121323321x x y y z z ⎧-=--⎪⎪∴=-⎨⎪=-⎪⎩,解得:152325x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,1232,55M ⎛⎫∴ ⎪ ⎪⎝⎭,1133255A M ⎛⎫∴= ⎪ ⎪⎝⎭,()113,0A B =-,设平面11MA B 的法向量(),,n a b c =,1111332055530A M n a c A B n a b ⎧⋅=++=⎪∴⎨⎪⋅=-+=⎩,令1b =,解得:3a =3c =-(3,1,23n ∴=-;又OC ⊥平面11ABB A ,则平面11AA B 的一个法向量为()0,0,1m =,3cos ,2m n m n m n⋅∴<>==⋅,又二面角11A A B M --为锐二面角,∴二面角11A A B M --的余弦值为32. 3.(2022·江苏·南京市第一中学三模)在正三棱柱111ABC A B C -中,122AA AB ==.D 为1CC 中点,E 为1B D 上一点.(1)求四棱锥11A BB C C -的体积;(2)若1B E CE CD +=,求三棱锥1D AEC -的体积. 【解析】 (1)解:取BC 的中点为O ,因为三棱柱111ABC A B C -为正三棱柱,所以ABC 为正三角形,四边形11BB C C 为矩形,且1C C ⊥平面ABC , 所以1C C AO ⊥,AO BC ⊥,又1BC CC C =, 所以AO ⊥平面11BB C C ,即为四棱锥11A BB C C -的高, 又122AA AB ==,所以32AO =, 所以四棱锥11A BB C C -的体积11111133123323A BBC C BB C C V S AO -=⋅=⨯⨯⨯=;(2)解:因为1B E CE CD +=,即1B E CD CE ED =-=,所以E 为1B D 的中点,所以11111111111111133112223232224E ADC B ADC A B C D D AEC B C DV V V V SAO ----====⨯⨯=⨯⨯⨯⨯⨯=. 4.(2022·广东汕头·二模)如图所示,C 为半圆锥顶点,O 为圆锥底面圆心,BD 为底面直径,A 为弧BD 中点.BCD △是边长为2的等边三角形,弦AD 上点E 使得二面角E BC D --的大小为30°,且AE t AD =.(1)求t 的值;(2)对于平面ACD 内的动点P 总有OP //平面BEC ,请指出P 的轨迹,并说明该轨迹上任意点P 都使得OP //平面BEC 的理由. 【解析】 (1)易知OC ⊥面ABD ,OA BD ⊥,以,,OD OA OC 所在直线为,,x y z 轴建立如图的空间直角坐标系,则(0,1,0),(1,0,0),(1,0,0),3)A B D C -,(1,0,3),(1,1,0),(1,1,0)BC AD BA ==-=,()1,1,0(1,1,0)(1,1,0)BE BA AE BA t AD t t t =+=+=+-=+-,易知面BCD 的一个法向量为(0,1,0)OA =,设面BCE 的法向量为(,,)n x y z =,则30(1)(1)0n BC x z n BE t x t y ⎧⋅=+=⎪⎨⋅=++-=⎪⎩,令1x =,则13(1,,)13t n t +=--, 可得222131cos30213113t OA n t OA nt t +⋅-===⋅⎛⎫+⎛⎫++- ⎪ ⎪-⎝⎭⎝⎭,解得13t =或3,又点E 在弦AD 上,故13t =. (2)P 的轨迹为过AD 靠近D 的三等分点及CD 中点的直线,证明如下: 取AD 靠近D 的三等分点即DE 中点M ,CD 中点N ,连接,,MN OM ON , 由O 为BD 中点,易知ON BC ∥,又ON ⊄面BEC ,BC ⊂面BEC , 所以ON //平面BEC ,又MN EC ∥,MN ⊄面BEC ,CE ⊂面BEC ,所以MN //平面BEC , 又ON MN N ⋂=,所以面OMN //平面BEC ,即O 和MN 所在直线上任意一点连线都平行于平面BEC , 又MN ⊂面ACD ,故P 的轨迹即为MN 所在直线, 即过AD 靠近D 的三等分点及CD 中点的直线.5.(2022·福建·模拟预测)如图,在四棱锥P ABCD -中,四边形ABCD 是菱形,60BAD BPD ∠=∠=︒,2PB PD ==.(1)证明:平面PAC ⊥平面ABCD ;(2)若二面角P BD A --的余弦值为13,求二面角B PA D --的正弦值.【解析】 (1) 设ACBD O =,连接PO ,在菱形ABCD 中,O 为BD 中点,且BD AC ⊥, 因为PB PD =,所以BD PO ⊥, 又因为POAC O =,且PO ,AC ⊂平面PAC ,所以BD ⊥平面PAC ,因为BD ⊂平面ABCD ,所以平面PAC ⊥平面ABCD ; (2)作OM ⊥平面ABCD ,以{},,OA OB OM 为x ,y ,z 轴,建立空间直角坐标系,易知2PB PD BD AB AD =====,则3OA OP ==,1OB =, 因为OA BD ⊥,OP BD ⊥,所以POA ∠为二面角P BD A --的平面角,所以1cos 3POA ∠=,则326,0,33P ⎛⎫ ⎪ ⎪⎝⎭,()3,0,0A ,()0,1,0B ,()0,1,0D -,所以()3,1,0AD =--,()3,1,0AB =-,2326,0,33AP ⎛⎫=- ⎪ ⎪⎝⎭, 设平面PAB 的法向量为()111,,m x y z =,由00m AB m AP ⎧⋅=⎨⋅=⎩,得1111302326033x y x z ⎧-+=⎪⎨-+=⎪⎩ 取11z =,则12x =,16y =,所以()2,6,1m =,设平面PAD 的法向量为()222,,n x y z =,由00n AD n AP ⎧⋅=⎨⋅=⎩,得2222302326033x y x z ⎧--=⎪⎨-+=⎪⎩ 取21z =,则22x =,26y =-,所以()2,6,1n =-,设二面角B PA D --为θ,则2611cos 3261261m n m nθ⋅-+===++⋅++⋅,又[]0,πθ∈,则222sin 1cos 3θθ=-=.(限时:30分钟)1.如图(1),平面四边形ABDC 中,90ABC D ∠=∠=︒,2AB BC ==,1CD =,将ABC 沿BC 边折起如图(2),使________,点M ,N 分别为AC ,AD 中点.在题目横线上选择下述其中一个条件,然后解答此题.①7AD =.②AC 为四面体ABDC 外接球的直径.③平面ABC ⊥平面BCD .(1)判断直线MN 与平面ABD 的位置关系,并说明理由; (2)求二面角A MN B --的正弦值.【详解】(1)若选①:7AD =在Rt BCD 中,2BC =,1CD =,3BD =,2AB =, 可得222AB BD AD +=,所以AB BD ⊥, 又由AB BC ⊥,且BCBD B =,,BC BD ⊂平面CBD ,所以AB ⊥平面CBD ,又因为CD ⊂平面CBD ,所以AB CD ⊥,又由CD BD ⊥,且BD CD D ⋂=,,BD CD ⊂平面ABD ,所以CD ⊥平面ABD , 又因为M ,N 分别为AC ,AD 中点,可得//MN CD ,所以MN ⊥平面ABD . 若选②:AC 为四面体ABDC 外接球的直径,则90ADC ∠=︒,可得CD AD ⊥, 又由CD BD ⊥,且ADBD D =,,AD BD ⊂平面ABD ,所以CD ⊥平面ABD ,因为M ,N 分别为AC ,AD 中点,可得//MN CD ,所以MN ⊥平面ABD . 若选③:平面ABC ⊥平面BCD ,平面ABC 平面BCD BC =,因为AB BC ⊥,且AB平面ABC ,所以AB ⊥平面CBD ,又因为CD ⊂平面CBD ,所以AB CD ⊥,又由CD BD ⊥,且BD CD D ⋂=,,BD CD ⊂平面ABD ,所以CD ⊥平面ABD , 因为M ,N 分别为AC ,AD 中点,可得//MN CD ,所以MN ⊥平面ABD . (2)以D 为原点,射线OB 为y 轴建立如图直角坐标系,则()3,2A ,()3,0B ,()1,0,0C -,13,,122M ⎛⎫- ⎪ ⎪⎝⎭,30,2N ⎛⎫⎪ ⎪⎝⎭可得1,0,02MN ⎛⎫= ⎪⎝⎭,30,1AN ⎛⎫=- ⎪ ⎪⎝⎭,30,BN ⎛⎫= ⎪ ⎪⎝⎭ 设平面AMN 的法向量为()111,,m x y z =,则111102302m MN x m AN y z ⎧⋅==⎪⎪⎨⎪⋅=--=⎪⎩,取13y =1130,2x z ==-,所以30,3,2m ⎛⎫=- ⎪⎝⎭设平面BMN 的法向量为()222,,n x y z =,则222102302n MN x n BN y z ⎧⋅==⎪⎪⎨⎪⋅=-+=⎪⎩, 取23y =,可得30,3,2n ⎛⎫= ⎪⎝⎭,所以9314cos ,9734m n m n m n -⋅===⋅+,故二面角A MN B --的正弦值437.2.如图,在三棱锥A BCD -中,ABC 是边长为3的等边三角形,CD CB =,CD ⊥平面ABC ,点M 、N 分别为AC 、CD 的中点,点P 为线段BD 上一点,且//BM 平面APN .(1)求证:BM AN ⊥;(2)求平面APN 与平面ABC 所成角的正弦值. 【详解】(1)证明:因为CD ⊥面ABC ,BM ⊂面ABC ,所以CD BM ⊥.又∵正ABC 中,AM MC BM AC =⇒⊥,∴BM CDBM AC BM CD AC C ⊥⎫⎪⊥⇒⊥⎬⎪⋂=⎭面ACD , ∴BM AN ⊥.(2)解:连接MD 交AN 于G 点,连接PG ,因为//BM平面APN ,所以//BM PG ,由重心性质知P 为靠近B 点的三等分点.∴()0,0,0C ,3330,,22A ⎛⎫ ⎪ ⎪⎝⎭,()0,3,0B ,()1,2,0P ,3,0,02N ⎛⎫⎪⎝⎭, 设面APN 的法向量为(),,n x y z =,0AP n ⋅=,0AN n ⋅=,∴13302233330222x y z x y z ⎧+-=⎪⎪⎨⎪--=⎪⎩,令4x =,则1,3y z == ∴()4,1,3n =,平面ABC 的法向量为()1,0,0u =,425cos ,51613u v ==++, ∴平面APN 与平面ABC 所成角的正弦值为55.3.如图(1),平面四边形ABDC 中,90ABC D ∠=∠=︒,2AB BC ==,1CD =,将ABC 沿BC 边折起如图(2),使________,点M ,N 分别为AC ,AD 中点.在题目横线上选择下述其中一个条件,然后解答此题.①7AD =.②AC 为四面体ABDC 外接球的直径.③平面ABC ⊥平面BCD .(1)判断直线MN 与平面ABD 的位置关系,并说明理由;(2)求三棱锥A MNB -的体积.【详解】(1)若选①:7AD =Rt BCD 中,2BC =,1CD =,可得3BD =,又由2AB =,所以222AB BD AD +=,所以AB BD ⊥,因为AB BC ⊥,且BC BD B =,,BC BC ⊂平面CBD ,所以AB ⊥平面CBD ,又因为CD ⊂平面CBD ,所以AB CD ⊥,又由CD BD ⊥,AB BD B =且,AB BD ⊂平面ABD ,所以CD ⊥平面ABD ,又因为M ,N 分别为AC ,AD 中点,所以//MN CD ,所以MN ⊥平面ABD .若选②:AC 为四面体ABDC 外接球的直径,则90ADC ∠=︒,CD AD ⊥,因为CD BD ⊥,可证得CD ⊥平面ABD ,又M ,N 分别为AC ,AD 中点,//MN CD ,所以MN ⊥平面ABD .若选③:平面ABC ⊥平面BCD ,平面ABC平面BCD BC =, 因为AB BC ⊥,且AB 平面ABC ,所以AB ⊥平面CBD ,又由CD ⊂平面CBD ,所以AB CD ⊥,因为CD BD ⊥,AB BD B =且,AB BD ⊂平面ABD ,所以CD ⊥平面ABD ,又因为M ,N 分别为AC ,AD 中点,//MN CD ,所以MN ⊥平面ABD .(2)由(1)知MN ⊥平面ABD ,其中ABD △为直角三角形, 可得3122ANB ADB S S ==△△,1122MN CD ==, 故三棱锥A MNB -的体积为131332A MNB M ABN V V --===.4.如图,在四棱锥P ABCD -中,//AB CD ,AB ⊥平面PAD ,24PA AD DC AB ====,27PD =,M 是PC 的中点.(1)证明:平面ABM ⊥平面PCD ;(2)求三棱锥M PAB -的体积.【详解】(1)取PD 中点N ,连接MN ,AN ,因为PA AD =,所以AN PD ⊥,由AB ⊥平面PAD ,PD ⊂平面PAD ,所以AB PD ⊥,又由AN AB A =,且,AN AB ⊂平面ABN ,所以PD ⊥平面ABN ,因为MN 是PCD ∆中位线,所以////AB CD MN ,四边形ABMN 是平行四边形,于是PD ⊥平而ABM ,PD ⊂平面PCD ,所以平面ABM ⊥平面PCD .(2)由(1)可得//MN AB ,且AB平面PAB ,所以//MN 平面PAB , 所以AB M P N PAB B NAP V V V ---==,因为AB ⊥平面PAD ,可得13B NAP NAP V S AB -∆=⨯, 又由4AP =,7=PN ,AN PD ⊥, 所以2473AN -=,137732NAP S ∆== 所以137273B NAP V -==5.如图,三棱柱111ABC A B C -中,13AA AB ==,2BC =,E ,P 分别是11B C 和1CC 的中点,点F 在棱11A B 上,且12B F =.(1)证明:1//A P 平面EFC ;(2)若1AA ⊥底面ABC ,AB BC ⊥,求二面角P CF E --的余弦值.【详解】(1)证明:如图,连接1PB 交CE 于点D ,连接DF ,EP ,1CB .因为E ,P 分别是11B C 和1CC 的中点, 故11//2EP CB ,故112PD DB =. 又12B F =,113A B =,故1112A F FB =,故1//FD A P . 又FD ⊂平面EFC ,所以1//A P 平面EFC . (2)由题意知AB ,BC ,1BB 两两垂直,以B 为坐标原点,以1BB 的方向为z 轴正方向,分别以BA ,BC 为x 轴和y 轴的正方向,建立如图所示空间直角坐标系B xyz -.则()0,2,0C ,()10,0,3B ,()2,0,3F ,()0,1,3E ,30,2,2P ⎛⎫ ⎪⎝⎭. 设()111,,n x y z =为平面EFC 的法向量, 则00n EF n EC ⎧⋅=⎨⋅=⎩,即11112030x y y z -=⎧⎨-=⎩,可取3,3,12n ⎛⎫= ⎪⎝⎭. 设()222,,m x y z =为平面PFC 的法向量,则00m PF m PC ⎧⋅=⎨⋅=⎩,即222232202302x y z z ⎧-+=⎪⎪⎨⎪=⎪⎩,可取()1,1,0m =.所以233922cos ,14391112n m n m n m +⋅===⎛⎫++⨯+ ⎪⎝⎭. 由题意知二面角P CF E --为锐角, 所以二面角P CF E --的余弦值为214.。
第28练 空间向量解决立体几何问题的两大策略——“选基底”与“建系”
![第28练 空间向量解决立体几何问题的两大策略——“选基底”与“建系”](https://img.taocdn.com/s3/m/022157d3f61fb7360a4c6509.png)
第28练 空间向量解决立体几何问题的两大策略——“选基底”与“建系”[题型分析·高考展望] 向量作为一个工具,其用途是非常广泛的,可以解决现高中阶段立体几何中的大部分问题,不管是证明位置关系还是求解问题.而向量中最主要的两个手段就是选基底与建立空间直角坐标系.在高考中,用向量解决立体几何解答题,几乎成了必然的选择.体验高考1.(2018·北京)如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5. (1)求证:PD ⊥平面P AB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.(1)证明 ∵平面P AD ⊥平面ABCD , 平面P AD ∩平面ABCD =AD . 又AB ⊥AD ,AB ⊂平面ABCD . ∴AB ⊥平面P AD .∵PD ⊂平面P AD .∴AB ⊥PD . 又P A ⊥PD ,P A ∩AB =A . ∴PD ⊥平面P AB .(2)解 取AD 中点O ,连接CO ,PO .∵P A =PD ,∴PO ⊥AD . 又∵PO ⊂平面P AD , 平面P AD ⊥平面ABCD , ∴PO ⊥平面ABCD ,∵CO ⊂平面ABCD ,∴PO ⊥CO , ∵AC =CD ,∴CO ⊥AD .以O 为原点建立如图所示空间直角坐标系.易知P (0,0,1),A (0,1,0),B (1,1,0),C (2,0,0),D (0,-1,0).则PB →=(1,1,-1),PD →=(0,-1,-1),PC →=(2,0,-1). CD →=(-2,-1,0).设n =(x 0,y 0,1)为平面PCD 的一个法向量. 由⎩⎪⎨⎪⎧ n ·PD →=0,n ·PC →=0得⎩⎪⎨⎪⎧-y 0-1=0,2x 0-1=0,解得⎩⎪⎨⎪⎧y 0=-1,x 0=12.即n =⎝⎛⎭⎫12,-1,1. 设PB 与平面PCD 的夹角为θ. 则sin θ=|cos 〈n ,PB →〉|=⎪⎪⎪⎪⎪⎪n ·PB →|n ||PB →|=⎪⎪⎪⎪⎪⎪12-1-114+1+1×3=33. ∴直线PB 与平面PCD 所成角的正弦值为33.(3)解 设M 是棱P A 上一点, 则存在λ∈[0,1]使得AM →=λAP →,因此点M (0,1-λ,λ),BM →=(-1,-λ,λ), ∵BM ⊄平面PCD ,∴要使BM ∥平面PCD 当且仅当BM →·n =0,即(-1,-λ,λ)·⎝⎛⎭⎫12,-1,1=0,解得λ=14, ∴在棱P A 上存在点M 使得BM ∥平面PCD , 此时AM AP =14.2.(2018·天津)如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB =BE =2. (1)求证:EG ∥平面ADF ; (2)求二面角O —EF —C 的正弦值;(3)设H 为线段AF 上的点,且AH =23HF ,求直线BH 和平面CEF 所成角的正弦值.解 依题意,OF ⊥平面ABCD ,如图,以O 为原点,分别以AD →,BA →,OF →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,依题意可得O (0,0,0),A (-1,1,0),B (-1,-1,0),C (1,-1,0),D (1,1,0),E (-1,-1,2),F (0,0,2),G (-1,0,0).(1)证明 依题意,AD →=(2,0,0),AF →=(1,-1,2). 设n 1=(x 1,y 1,z 1)为平面ADF 的法向量, 则⎩⎪⎨⎪⎧n 1·AD →=0,n 1·AF →=0, 即⎩⎪⎨⎪⎧2x 1=0,x 1-y 1+2z 1=0,不妨取z 1=1,可得n 1=(0,2,1), 又EG →=(0,1,-2),可得EG →·n 1=0,又因为直线EG ⊄平面ADF ,所以EG ∥平面ADF .(2)解 易证OA →=(-1,1,0)为平面OEF 的一个法向量,依题意,EF →=(1,1,0),CF →=(-1,1,2),设n 2=(x 2,y 2,z 2)为平面CEF 的法向量, 则⎩⎪⎨⎪⎧n 2·EF →=0,n 2·CF →=0,即⎩⎪⎨⎪⎧x 2+y 2=0,-x 2+y 2+2z 2=0,不妨取 x 2=1, 可得n 2=(1,-1,1).因此有cos 〈OA →,n 2〉=OA →·n 2|OA →||n 2|=-63,于是sin 〈OA →,n 2〉=33.所以二面角O —EF —C 的正弦值为33. (3)解 由AH =23HF ,得AH =25AF .因为AF →=(1,-1,2), 所以AH →=25AF →=⎝⎛⎭⎫25,-25,45, 进而有H ⎝⎛⎭⎫-35,35,45, 从而BH →=⎝⎛⎭⎫25,85,45.因此cos 〈BH →,n 2〉=BH →·n 2|BH →||n 2|=-721.所以直线BH 和平面CEF 所成角的正弦值为721. 3.(2018·课标全国乙)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E -BC -A 的余弦值.(1)证明 由已知可得AF ⊥DF ,AF ⊥FE ,所以AF ⊥平面EFDC ,又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .(2)解 过D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系Gxyz .由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°,则DF =2,DG =3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知,得AB ∥EF ,所以AB ∥平面EFDC ,又平面ABCD ∩平面EFDC =CD ,故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°,从而可得C (-2,0,3). 所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0).设n =(x ,y ,z )是平面BCE 的法向量,则⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎪⎨⎪⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4),则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.高考必会题型题型一 选好基底解决立体几何问题例1 如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M 、N 分别是AB 、CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ; (2)求MN 的长;(3)求异面直线AN 与CM 夹角的余弦值. (1)证明 设AB →=p ,AC →=q ,AD →=r . 由题意可知:|p |=|q |=|r |=a , 且p 、q 、r 三向量两两夹角均为60°.∵MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2·cos 60°+a 2·cos 60°-a 2)=0. ∴MN ⊥AB ,同理可证MN ⊥CD . (2)解 由(1)可知MN →=12(q +r -p ),∴|MN →|2=MN →2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -p ·q -r ·p )]=14[a 2+a 2+a 2+2(a 22-a 22-a 22)] =14·2a 2=a 22. ∴|MN →|=22a ,∴MN 的长为22a .(3)解 设向量 AN →与MC →的夹角为θ. ∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r )·(q -12p )=12(q 2-12q ·p +r ·q -12r ·p ) =12(a 2-12a 2·cos 60°+a 2·cos 60°-12a 2·cos 60°) =12(a 2-a 24+a 22-a 24)=a 22. 又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →|·|MC →|·cos θ =32a ·32a ·cos θ=a 22. ∴cos θ=23,∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 夹角的余弦值为23.点评 对于不易建立直角坐标系的题目,选择好“基底”也可使问题顺利解决.“基底”就是一个坐标系,选择时,作为基底的向量一般为已知向量,且能进行运算,还需能将其他向量线性表示.变式训练1 如图,在四棱锥P -GBCD 中,PG ⊥平面GBCD ,GD ∥BC ,GD =34BC ,且BG ⊥GC ,GB =GC =2,E 是BC 的中点,PG =4.(1)求异面直线GE 与PC 所成角的余弦值;(2)若F 点是棱PC 上一点,且DF →·GC →=0,PF →=kCF →,求k 的值. 解 (1)如图所示,以G 点为原点建立空间直角坐标系Gxyz ,则B (2,0,0),C (0,2,0),D (-32,32,0),P (0,0,4),故E (1,1,0),GE →=(1,1,0),PC →=(0,2,-4), cos 〈GE →,PC →〉=GE →·PC →|GE →||PC →|=22·20=1010,故异面直线GE 与PC 所成角的余弦值为1010. (2)设F (0,y ,z ),则DF →=GF →-GD →=(0,y ,z )-(-32,32,0)=(32,y -32,z ),GC →=(0,2,0).∵DF →·GC →=0,∴(32,y -32,z )·(0,2,0)=2(y -32)=0,∴y =32.在平面PGC 内过F 点作FM ⊥GC ,M 为垂足,则GM =32,MC =12,∴PF FC =GMMC=3,∴k =-3. 题型二 建立空间直角坐标系解决立体几何问题例2 (2018·山东)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ; (2)已知EF =FB =12AC =23,AB =BC ,求二面角F -BC -A 的余弦值.(1)证明 设FC 中点为I ,连接GI ,HI .在△CEF 中,因为点G 是CE 的中点,所以GI ∥EF . 又EF ∥OB ,所以GI ∥OB .在△CFB 中,因为H 是FB 的中点,所以HI ∥BC ,又HI ∩GI =I , 所以平面GHI ∥平面ABC .因为GH ⊂平面GHI ,所以GH ∥平面ABC .(2)连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O 的直径,所以BO ⊥AC . 以O 为坐标原点,建立如图所示的空间直角坐标系Oxyz .由题意得B (0,23,0),C (-23,0,0).过点F 作FM ⊥OB 于点M , 所以FM =FB 2-BM 2=3,可得F (0,3,3).故BC →=(-23,-23,0),BF →=(0,-3,3). 设m =(x ,y ,z )是平面BCF 的一个法向量. 由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0,可得⎩⎪⎨⎪⎧-23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝⎛⎭⎫-1,1,33,因为平面ABC 的一个法向量n =(0,0,1), 所以cos 〈m ,n 〉=m ·n |m ||n |=77.所以二面角F -BC -A 的余弦值为77. 点评 (1)建立空间直角坐标系前应先观察题目中的垂直关系,最好借助已知的垂直关系建系.(2)利用题目中的数量关系,确定定点的坐标,动点的坐标可利用共线关系(AP →=λa ),设出动点坐标.(3)要掌握利用法向量求线面角、二面角、点到面的距离的公式法.变式训练2 在边长是2的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为AB ,A 1C 的中点,应用空间向量方法求解下列问题.(1)求EF 的长;(2)证明:EF ∥平面AA 1D 1D ; (3)证明:EF ⊥平面A 1CD . (1)解 如图建立空间直角坐标系,则A 1=(2,0,2),A =(2,0,0),B =(2,2,0),C =(0,2,0), D 1=(0,0,2),E =(2,1,0),F =(1,1,1), ∴EF →=(-1,0,1),EF = 2.(2)证明 ∵AD 1→=(-2,0,2),∴AD 1∥EF ,而EF ⊄平面AA 1D 1D ,∴EF ∥平面AA 1D 1D .(3)证明 ∵EF →·CD →=0,EF →·A 1D →=0, ∴EF ⊥CD ,EF ⊥A 1D , 又CD ∩A 1D =D , ∴EF ⊥平面A 1CD .高考题型精练1.如图,在正方体ABCD -A 1B 1C 1D 1中,若BD 1→=xAD →+yAB →+zAA 1→,则x +y +z 的值为( )A.3B.1C.-1D.-3 答案 B解析 ∵BD 1→=AD →-AB →+AA 1→, ∴x =1,y =-1,z =1,∴x +y +z =1.2.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则下列向量中与B 1M →相等的向量是( )A.-12a +12b +cB.12a +12b +c C.12a -12b +c D.-12a -12b +c答案 A解析 由题意知,B 1M →=B 1A 1→+A 1A →+AM →=B 1A 1→+A 1A →+12AC →=-a +c +12(a +b )=-12a +12b +c ,故选A.3.在四棱锥P -ABCD 中,AB →=(4,-2,3),AD →=(-4,1,0),AP →=(-6,2,-8),则这个四棱锥的高h 等于( ) A.1 B.2 C.13 D.26 答案 B解析 设平面ABCD 的一个法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ⊥AB →n ⊥AD→⇒⎩⎪⎨⎪⎧4x -2y +3z =0,-4x +y =0.令y =4,则n =(1,4,43),则cos 〈n ,AP →〉=n ·AP →|n ||AP →|=-6+8-323133×226=-2626,∵h |AP →|=|cos 〈n ·AP →〉|, ∴h =2626×226=2,故选B. 4.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =22,则下列结论中错误的是( )A.AC ⊥BEB.EF ∥平面ABCDC.三棱锥A -BEF 的体积为定值D.异面直线AE ,BF 所成的角为定值 答案 D解析 ∵AC ⊥平面BB 1D 1D , 又BE ⊂平面BB 1D 1D , ∴AC ⊥BE ,故A 正确. ∵B 1D 1∥平面ABCD ,又E ,F 在直线D 1B 1上运动, ∴EF ∥平面ABCD ,故B 正确.C 中,由于点B 到直线B 1D 1的距离不变,故△BEF 的面积为定值,又点A 到平面BEF 的距离为22, 故V A -BEF 为定值,故C 正确.建立空间直角坐标系,如图所示,可得A (1,1,0),B (0,1,0).①当点E 在D 1处,点F 为D 1B 1的中点时,E (1,0,1), F (12,12,1),∴AE →=(0,-1,1),BF →=(12,-12,1), ∴AE →·BF →=32.又|AE →|=2,|BF →|=62,∴cos 〈AE →,BF →〉=AE →·BF →|AE →||BF →|=322·62=32.∴此时异面直线AE 与BF 成30°角. ②当点E 为D 1B 1的中点,F 在B 1处时, E (12,12,1),F (0,1,1), ∴AE →=(-12,-12,1),BF →=(0,0,1),∴AE →·BF →=1,|AE →|=(-12)2+(-12)2+12=62, ∴cos 〈AE →,BF →〉=AE →·BF →|AE →||BF →|=162·1=63≠32,故D 错误.故选D.5.若a =(2x ,1,3),b =(1,-2y ,9),如果a 与b 为共线向量,则( )A.x =1,y =1B.x =12,y =-12C.x =-16,y =32D.x =16,y =-32答案 D解析 因为a 与b 为共线向量, 所以存在实数λ使得a =λb , 所以⎩⎪⎨⎪⎧2x =λ,1=-2λy ,3=9λ,解得x =16,y =-32.6.已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别是OA ,CB 的中点,点G 在线段MN 上,且使MG =2GN ,则用向量OA →,OB →,OC →表示向量OG →是()A.OG →=16OA →+13OB →+13OC →B.OG →=16OA →+13OB →+23OC →C.OG →=OA →+23OB →+23OC →D.OG →=12OA →+23OB →+23OC →答案 A解析 ∵MG =2GN ,M ,N 分别是边OA ,CB 的中点, ∴OG →=OM →+MG →=OM →+23MN →=OM →+23(MO →+OC →+CN →)=13OM →+23OC →+13(OB →-OC →) =16OA →+13OB →+13OC →. 故选A.7.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ=________. 答案657解析 a ,b ,c 三向量共面,则存在实数x ,y , 使c =x a +y b ,所以⎩⎪⎨⎪⎧2x -y =7,-x +4y =5,3x -2y =λ,解得⎩⎪⎨⎪⎧x =337,y =177,λ=657.8.如图所示,PD 垂直于正方形ABCD 所在的平面,AB =2,E 为PB 的中点,cos 〈DP →,AE →〉=33,若以DA ,DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则点E 的坐标为________.答案 (1,1,1) 解析 设PD =a (a >0),则A (2,0,0),B (2,2,0),P (0,0,a ),E (1,1,a2),∴DP →=(0,0,a ),AE →=(-1,1,a 2),∵cos 〈DP →,AE →〉=33,∴a 22=a 2+a 24×33,∴a =2,∴E 的坐标为(1,1,1).9.如图,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是________.答案 平行解析 ∵正方体棱长为a ,A 1M =AN =2a 3, ∴MB →=23A 1B →,CN →=23CA →,∴MN →=MB →+BC →+CN →=23A 1B →+BC →+23CA → =23(A 1B 1→+B 1B →)+BC →+23(CD →+DA →) =23B 1B →+13B 1C 1→. 又∵CD →是平面B 1BCC 1的一个法向量, ∴MN →·CD →=(23B 1B →+13B 1C 1→)·CD →=0,∴MN →⊥CD →,又∵MN ⊄平面BB 1C 1C , ∴MN ∥平面BB 1C 1C .10.已知棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E 是BC 的中点,F 为A 1B 1的中点.(1)求证:DE ⊥C 1F ;(2)求异面直线A 1C 与C 1F 所成角的余弦值.(1)证明 以D 为原点,以DA ,DC ,DD 1为x ,y ,z 的正半轴建立空间直角坐标系,则D (0,0,0),E (a 2,a ,0),C 1(0,a ,a ),F (a ,a2,a ),所以DE →=(a 2,a ,0),C 1F →=(a ,-a 2,0),DE →·C 1F →=0,所以DE ⊥C 1F .(2)解 A 1(a ,0,a ),C (0,a ,0),A 1C →=(-a ,a ,-a ), C 1F →=(a ,-a 2,0),cos 〈A 1C →,C 1F →〉=A 1C →·C 1F →|A 1C →||C 1F →|=-32a 23a ×52a=-155,所以异面直线A 1C 与C 1F 所成角的余弦值是155. 11.如图,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,AB ⊥AD ,AB ∥CD ,AB =2AD =2CD =2,E 是PB 的中点.(1)求证:平面EAC ⊥平面PBC ; (2)若二面角P -AC -E 的余弦值为63,求直线P A 与平面EAC 所成角的正弦值. (1)证明 ∵PC ⊥平面ABCD ,AC ⊂平面ABCD , ∴AC ⊥PC .∵AB =2,AD =CD =1, ∴AC =BC =2,∴AC 2+BC 2=AB 2, ∴AC ⊥BC ,又BC ∩PC =C ,∴AC ⊥平面PBC .∵AC ⊂平面EAC ,∴平面EAC ⊥平面PBC .(2)解 如图,以点C 为原点,DA →,CD →,CP →分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,则C (0,0,0),A (1,1,0),B (1,-1,0), 设P (0,0,a )(a >0),则E (12,-12,a 2),CA →=(1,1,0),CP →=(0,0,a ),CE →=(12,-12,a 2).取m =(1,-1,0),则m ·CA →=m ·CP →=0,m 为平面P AC 的法向量, 设n =(x ,y ,z )为平面EAC 的法向量, 则n ·CA →=n ·CE →=0,即⎩⎪⎨⎪⎧x +y =0,x -y +az =0.取x =a ,y =-a ,z =-2,则n =(a ,-a ,-2), 依题意,|cos 〈m ,n 〉|=n ·m |n ||m |=aa 2+2=63, 则a =2,于是n =(2,-2,-2),P A →=(1,1,-2). 设直线P A 与平面EAC 所成角为θ, 则sin θ=|cos 〈P A →,n 〉|=P A →·n |P A →||n |=23,即直线P A 与平面EAC 所成角的正弦值为23. 12.直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为菱形,且∠BAD =60°,A 1A =AB ,E 为BB 1延长线上的一点,D 1E ⊥平面D 1AC .设AB =2. (1)求二面角E -AC -D 1的大小;(2)在D 1E 上是否存在一点P ,使A 1P ∥平面EAC ?若存在,求D 1P ∶PE 的值;若不存在,说明理由.解 (1)设AC 与BD 交于点O ,如图所示建立空间直角坐标系Oxyz ,则A =(3,0,0),B (0,1,0),C (-3,0,0),D (0,-1,0), D 1(0,-1,2),设E (0,1,2+h ),则D 1E →=(0,2,h ),CA →=(23,0,0),D 1A →=(3,1,-2), ∵D 1E ⊥平面D 1AC , ∴D 1E ⊥AC ,D 1E ⊥D 1A ,∴2-2h =0,∴h =1,即E (0,1,3). ∵D 1E →=(0,2,1),AE →=(-3,1,3), 设平面EAC 的法向量为m =(x ,y ,z ), 则由⎩⎪⎨⎪⎧m ⊥CA →,m ⊥AE →,得⎩⎪⎨⎪⎧x =0,-3x +y +3z =0.令z =-1,∴平面EAC 的一个法向量为m =(0,3,-1), 又平面D 1AC 的法向量为D 1E →=(0,2,1), ∴cos 〈m ,D 1E →〉=m ·D 1E →|m |·|D 1E →|=22,∴二面角E -AC -D 1大小为45°.(2)设D 1P →=λPE →=λ(D 1E →-D 1P →), 得D 1P →=λ1+λD 1E →=(0,2λ1+λ,λ1+λ),∴A 1P →=A 1D 1→+D 1P →=(-3,-1,0)+(0,2λ1+λ,λ1+λ)=(-3,λ-11+λ,λ1+λ), ∵A 1P ∥平面EAC ,∴A 1P →⊥m , ∴-3×0+3×λ-11+λ+(-1)×λ1+λ=0,∴λ=32.∴存在点P 使A 1P ∥平面EAC , 此时D 1P ∶PE =3∶2.。
巧建系,妙解立体几何题
![巧建系,妙解立体几何题](https://img.taocdn.com/s3/m/676e96f477a20029bd64783e0912a21615797f44.png)
解题宝典立体几何问题侧重于考查同学们的空间想象能力和逻辑推理能力.在解答立体几何问题时,我们一般只有借助立体几何图形来进行分析,才能快速明确题目中点、线、面的位置关系,找到解题的突破口.建系法是解答立体几何问题的一种重要方法,而运用建系法解答立体几何问题的关键是建立合适的空间直角坐标系,通过空间直角坐标运算求得问题的答案.那么如何选取坐标轴和原点,建立合适的直角坐标系呢?主要有以下两种方法.一、根据几何体的性质和特点建系我们知道,空间直角坐标系中的三个坐标轴相互垂直,并相交于一点.因此,在解答立体几何问题时,可以根据简单几何体的特点和性质,尤其是长方体、直棱柱、直棱锥、圆柱的性质和特点来寻找垂直关系.当图形中出现三条直线两两互相垂直且交于一点时,可以将这三条直线看作坐标轴,将该交点视为坐标原点来建系.例1.(2019年全国卷Ⅱ理科·第17题)如图1,长方体ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.若AE =A 1E ,求二面角B -EC -C 1的正弦值.图1图2分析:本题主要考查了二面角的求法.我们根据长方体的特点和性质可知长方体的所有侧棱都与底面垂直,且底面上由顶点出发的两条棱相互垂直,于是可将底面的其中一个顶点视为原点,以由顶点出发的三条棱为x 、y 、z 轴建立空间直角坐标系.然后根据题目给出的条件,找出相关点的坐标,求出两个平面、BEC 、ECC 1的法向量,再根据公式求出两个平面法向量的夹角余弦值,便可得出夹角的正弦值.解:以点D 为坐标原点,DA 的方向为x 轴的正方向,建立如图2所示的空间直角坐标系D -xyz .设正方形ABCD 的边长为1,||AA 1=2a ,则||A 1E =||AE =a ,所以||EB 1=||EB =a 2+1,因为ABCD -A 1B 1C 1D 1为长方体,所以B 1C 1⊥平面ABB 1A 1,且BE 在平面ABB 1A 1内,因此C 1B 1⊥BE .由题知BE ⊥EC 1,所以BE ⊥平面EB 1C 1.且EB 1在平面EB 1C 1内,则BE ⊥EB 1.在RtΔB 1EB 中,EB 12+EB 2=B 1B 2,即a 2+1+a 2+1=4a 2,所以a =1,所以B (1,1,0),C (0,1,0),E (1,0,1),C 1(0,1,2),所以 CE =(1,-1,1), CB =(1,0,0), CC 1=(0,0,2)设平面BCE 的法向量为n 1=(x 1,y 1,z 1),则ìíî n 1·CE =x 1-y 1+z 1=0, n 1·CB =x 1=0,,解得{x 1=0,z 1=y 1,取 n 1=(0,1,1),设平面CEC 1的法向量为 n 2=(x 2,y 2,z 2),则ìíî n 2·CE =x 2-y 2+z 2=0, n 2·CC 1=2z 2=0,解得{z 2=0,y 2=x 2,取 n 2=(1,1,0),所以cos n 1, n 2=n 1·n 2|| n 1·|| n 2=12.于是sin n 1, n 2=,故二面角B -EC -C 1的正弦值为.例2.如图3,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB 、BB 1的中点,AA 1=AC =CB .求二傅灵欣廖小莲44解题宝典面角D -A 1C -E 的正弦值.图3图4分析:该几何体为直三棱柱,我们可以根据直三棱柱图形的特点和性质来建立空间直角坐标系.直棱柱的侧棱垂直于底面,只要根据题目的条件在直三棱柱的底面找到两条互相垂直且与侧棱有交点的直线,这样三条直线两两便会互相垂直,为建立空间直角坐标系创造了条件.求出相关点的坐标以及二面角所包含的两个平面的法向量,再根据公式便可求出二面角的余弦值,求得夹角的正弦值.解:由AC =CB =得ΔACB 是以∠C 为直角的等腰直角三角形,又因为是直三棱柱ABC -A 1B 1C 1,所以棱CC 1⊥底面ACB .故以点C 为原点、CA 的方向为x 轴,建立如图4所示的空间直角坐标系.设AB =2,则AA 1=AC =CB =AA 1=2,则A (2,0,0),B (0,2,0),D 0),A 1(2,0,2),C (0,0,0),又因为AA 1=BB 1=2,所以E(0,2,于是 CA 1=(2,0,2), CD =0),CE =(0,2,,设平面DA 1C 的法向量为n 1=(x 1,y 1,z 1),则ìíîïï n 1·CA 121+2=0,CD · n 1=2121=0,解得{x 1+z 1=0,x 1+y 1=0,取n 1=(1,-1,-1),设平面A 1CE 的法向量为n 2=(x 2,y 2,z 2),则ìíîïï n 2·AC 1=2x 222=0, CE · n 2=2y 222=0,解得ìíîïïx 2+z 2=0,y 2+12z 2=0,取n 2=(2,1,-2),所以cos n 1, n 2=n 1·n 2|| n 1·||n 2=,则sin n 1, n 2=故二面角D -A 1C -E 的正弦值为.在用建系法解答与长方体、直棱锥有关的立体几何问题时,可以根据长方体、直棱锥本身的性质和特点来建系,若无法根据几何体的性质和特点建系,可以根据题意创造条件来建系.二、利用线面垂直关系建立直角坐标系在建系时,z 轴往往是比较容易选取的,而坐标原点即为z 轴与底面的交点,那么我们只需要确定与z 轴垂直的坐标平面xOy ,且使x 轴、y 轴相互垂直即可.可以根据线面垂直关系来寻找与z 轴垂直的平面.首先要充分利用好底面中的垂直条件,然后根据线面垂直的判断定理得到相应的z 轴以及与z 轴垂直的平面,这样便可建立符合要求的空间直角坐标系.例3(2020年全国Ⅰ卷,第20题)如图5,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l上的点,求PB 与平面QCD 所成角的正弦值的最大值.图5分析:我们可以先根据线面垂直的关系,即PD ⊥底面ABCD 来建立空间直角坐标系.而四棱锥P -ABCD 的底面为正方形,所以正方形的四条邻边相互垂直,于是可以以D 为坐标原点、DA 的方向为x 轴的正方向建立空间直角坐标系.求出相关点的坐标,设45方法集锦。
2024届新高考数学大题精选30题--立体几何含答案
![2024届新高考数学大题精选30题--立体几何含答案](https://img.taocdn.com/s3/m/5bf702436ad97f192279168884868762cbaebb06.png)
大题立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,M是BC的中点,N是AB1的中点,P是B1C1的中点.(1)证明:MN⎳平面A1CP;(2)求点P到直线MN 的距离.2(2024·安徽合肥·二模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,M是侧棱PC的中点,侧面PAD为正三角形,侧面PAD⊥底面ABCD.(1)求三棱锥M-ABC的体积;(2)求AM与平面PBC所成角的正弦值.2024届新高考数学大题精选30题--立体几何3(2023·福建福州·模拟预测)如图,在三棱柱ABC-A1B1C1中,平面AA1C1C⊥平面ABC,AB= AC=BC=AA1=2,A1B=6.(1)设D为AC中点,证明:AC⊥平面A1DB;(2)求平面A1AB1与平面ACC1A1夹角的余弦值.4(2024·山西晋中·三模)如图,在六面体ABCDE中,BC=BD=6,EC⊥ED,且EC=ED= 2,AB平行于平面CDE,AE平行于平面BCD,AE⊥CD.(1)证明:平面ABE⊥平面CDE;(2)若点A到直线CD的距离为22,F为棱AE的中点,求平面BDF与平面BCD夹角的余弦值.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC-A1B1C1中,A1在平面ABC内的射影O在棱AC的中点处,P为棱A1B1(包含端点)上的动点.(1)求点P到平面ABC1的距离;(2)若AP⊥平面α,求直线BC1与平面α所成角的正弦值的取值范围.6(2024·重庆·模拟预测)在如图所示的四棱锥P-ABCD中,已知AB∥CD,∠BAD=90°,CD= 2AB,△PAB是正三角形,点M在侧棱PB上且使得PD⎳平面AMC.(1)证明:PM=2BM;(2)若侧面PAB⊥底面ABCD,CM与底面ABCD所成角的正切值为311,求二面角P-AC-B的余弦值.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.8(2024·重庆·模拟预测)如图,ACDE为菱形,AC=BC=2,∠ACB=120°,平面ACDE⊥平面ABC,点F在AB上,且AF=2FB,M,N分别在直线CD,AB上.(1)求证:CF⊥平面ACDE;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC=60°,MN为直线CD,AB的公垂线,求ANAF的值;(3)记直线BE与平面ABC所成角为α,若tanα>217,求平面BCD与平面CFD所成角余弦值的范围.9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.13(2024·广东广州·一模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,∠DCB=∠PCB=π4,点M,N分别为DP和AB的中点.(1)求证:MN⎳平面PBC;(2)求证:平面PBC⊥平面ABCD;(3)求CM与平面PAD所成角的正弦值.14(2024·广东梅州·二模)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD 为直角梯形,△PAD为等边三角形,AD⎳BC,AD⊥AB,AD=AB=2BC=2.(1)求证:AD⊥PC;(2)点N在棱PC上运动,求△ADN面积的最小值;(3)点M为PB的中点,在棱PC上找一点Q,使得AM⎳平面BDQ,求PQQC的值.15(2024·广东广州·模拟预测)如图所示,圆台O1O2的轴截面A1ACC1为等腰梯形,AC=2AA1= 2A1C1=4,B为底面圆周上异于A,C的点,且AB=BC,P是线段BC的中点.(1)求证:C1P⎳平面A1AB.(2)求平面A1AB与平面C1CB夹角的余弦值.16(2024·广东深圳·二模)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C⊥底面ABC,且AB= AC,A1B=A1C.(1)证明:AA1⊥平面ABC;(2)若AA1=BC=2,∠BAC=90°,求平面A1BC与平面A1BC1夹角的余弦值.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED ,求二面角P -EF -B 的正弦值.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC .(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.20(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.21(2024·山东济南·二模)如图,在四棱锥P-ABCD中,四边形ABCD为直角梯形,AB∥CD,∠DAB=∠PCB=60°,CD=1,AB=3,PC=23,平面PCB⊥平面ABCD,F为线段BC的中点,E为线段PF上一点.(1)证明:PF⊥AD;(2)当EF为何值时,直线BE与平面PAD夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD中,AB=2BC=4,∠ABC=60°,E为CD 的中点,将△ADE沿AE折起,连结BD,CD,且BD=4,如图2.(1)求证:图2中的平面ADE⊥平面ABCE;(2)在图2中,若点F在棱BD上,直线AF与平面ABCE所成的角的正弦值为3010,求点F到平面DEC 的距离.23(2024·福建·模拟预测)如图,在三棱锥P-ABC中,PA⊥PB,AB⊥BC,AB=3,BC=6,已知二面角P-AB-C的大小为θ,∠PAB=θ.(1)求点P到平面ABC的距离;(2)当三棱锥P-ABC的体积取得最大值时,求:(Ⅰ)二面角P-AB-C的余弦值;(Ⅱ)直线PC与平面PAB所成角.24(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°, BC=2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.25(2024·浙江嘉兴·二模)在如图所示的几何体中,四边形ABCD为平行四边形,PA⊥平面ABCD,PA∥QD,BC=2AB=2PA=2,∠ABC=60°.(1)证明:平面PCD⊥平面PAC;(2)若PQ=22,求平面PCQ与平面DCQ夹角的余弦值.26(2024·浙江绍兴·二模)如图,在三棱锥P-ABC中,AB=4,AC=2,∠CAB=60°,BC⊥AP.(1)证明:平面ACP⊥平面ABC;(2)若PA=2,PB=4,求二面角P-AB-C的平面角的正切值.27(2024·河北沧州·一模)如图,在正三棱锥A -BCD 中,BC =CD =BD =4,点P 满足AP=λAC ,λ∈(0,1),过点P 作平面α分别与棱AB ,BD ,CD 交于Q ,S ,T 三点,且AD ⎳α,BC ⎳α.(1)证明:∀λ∈(0,1),四边形PQST 总是矩形;(2)若AC =4,求四棱锥C -PQST 体积的最大值.28(2024·湖北·二模)如图1.在菱形ABCD 中,∠ABC =120°,AB =4,AE =λAD ,AF =λAB(0<λ<1),沿EF 将△AEF 向上折起得到棱锥P -BCDEP .如图2所示,设二面角P -EF -B 的平面角为θ.(1)当λ为何值时,三棱锥P -BCD 和四棱锥P -BDEF 的体积之比为95(2)当θ为何值时,∀λ∈0,1 ,平面PEF 与平面PFB 的夹角φ的余弦值为5529(2024·湖北·模拟预测)空间中有一个平面α和两条直线m ,n ,其中m ,n 与α的交点分别为A ,B ,AB =1,设直线m 与n 之间的夹角为π3,(1)如图1,若直线m ,n 交于点C ,求点C 到平面α距离的最大值;(2)如图2,若直线m ,n 互为异面直线,直线m 上一点P 和直线n 上一点Q 满足PQ ⎳α,PQ ⊥n 且PQ ⊥m ,(i )求直线m ,n 与平面α的夹角之和;(ii )设PQ =d 0<d <1 ,求点P 到平面α距离的最大值关于d 的函数f d .30(2024·浙江绍兴·模拟预测)如图所示,四棱台ABCD -A 1B 1C 1D 1,底面ABCD 为一个菱形,且∠BAD =120°. 底面与顶面的对角线交点分别为O ,O 1. AB =2A 1B 1=2,BB 1=DD 1=392,AA 1与底面夹角余弦值为3737.(1)证明:OO 1⊥平面ABCD ;(2)现将顶面绕OO 1旋转θ角,旋转方向为自上而下看的逆时针方向. 此时使得底面与DC 1的夹角正弦值为64343,此时求θ的值(θ<90°);(3)求旋转后AA 1与BB 1的夹角余弦值.大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125 ,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM=0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m=sin α,-cos α,-sin α设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM=0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n=sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解.(2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD=(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n=(x 1,y 1,z 1),则n ⋅AE=-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB>|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD-AA 1∴D 1P =D 1A +AP =1-λ AB +12λ-12AD+λ-1 AA 1∴D 1P ⋅AC =1-λ AB +12λ-12AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1=81-λ +812λ-12+4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P=0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n=0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m=0AC 1 ⋅m=0 ,即-2x +22y =0-322x +322y +hz =0,令x =22h ,则m=22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43.将h =2代入,可得平面AMC 1的法向量m=42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m=x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1=2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m=1,3,-2 ,又因为平面ABE 的法向量为n=0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22,A (-2,2,0),CM =-2,22,22,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD=2x =0n ⋅DP=-2y +2z =0,令y =1,得n=(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQQC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG=12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MKCQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD=12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG=12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF=2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC=415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 122= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,。
空间立体几何建立直角坐标系
![空间立体几何建立直角坐标系](https://img.taocdn.com/s3/m/faa93606195f312b3069a583.png)
空间立体几何建立直角坐标系1.[2015·浙江]如图,在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点。
(1)证明:A1D⊥平面A1BC;(2)求二面角A1-BD-B1的平面角的余弦值。
解析:(1)证明:设E为BC的中点,连接A1E,AE,DE,由题意得A1E ⊥平面ABC,所以A1E⊥AE。
因为AB=AC,所以AE⊥BC。
故AE⊥平面A1BC。
由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B,从而DE∥A1A 且DE=A1A,所以A1AED为平行四边形。
故A1D∥AE。
又因为AE⊥平面A1BC,所以A1D⊥平面A1BC。
(2)方法一:作A1F⊥BD且A1F∩BD=F,连接B1F。
由AE=EB=2,∠A1EA=∠A1EB=90°,得A1B=A1A=4。
由A1D=B1D,A1B=B1B,得△A1DB与△B1DB全等。
由A1F⊥BD,得B1F⊥BD,因此∠A1FB1为二面角A1-BD-B1的平面角。
由A 1D =2,A 1B =4,∠DA 1B =90°,得 BD =32,A 1F =B 1F =43,由余弦定理得cos ∠A 1FB 1=-18。
方法二:以CB 的中点E 为原点,分别以射线EA ,EB 为x ,y 轴的正半轴,建立空间直角坐标系E -xyz ,如图所示。
由题意知各点坐标如下:A 1(0,0,14),B (0,2,0),D (-2,0,14),B 1(-2, 2,14)。
因此A 1B →=(0,2,-14),BD →=(-2,-2,14),DB 1→=(0,2,0)。
设平面A 1BD 的法向量为m =(x 1,y 1,z 1),平面B 1BD 的法向量为n =(x 2,y 2,z 2)。
由⎩⎨⎧ m ·A 1B →=0,m ·BD →=0,即⎩⎪⎨⎪⎧ 2y 1-14z 1=0,-2x 1-2y 1+14z 1=0,可取m =(0,7,1)。
高中数学立体几何建系设点专题
![高中数学立体几何建系设点专题](https://img.taocdn.com/s3/m/404eb3243c1ec5da50e270b2.png)
2009-2010学年高三立几建系设点专题引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算。
一、建立空间直角坐标系的三条途径途径一、利用图形中的对称关系建立坐标系:图形中虽没有明显交于一点的三条直线,但有一定对称关系(如正三棱柱、正四棱柱等),利用自身对称性可建立空间直角坐标系.例1(湖南卷理科第18题)已知两个正四棱锥P -ABCD 与Q -ABCD 的高都为2,AB =4.(1)证明:PQ ⊥平面ABCD ;(2)求异面直线AQ 与PB 所成的角;(3)求点P 到平面QAD 的距离.简解:(1)略;(2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线为x ,y ,z 轴建立空间直角坐标系(如图1),易得CA DB QP 、、,.所求异面直线(02)(02)AQ PB =--=-u u u r u u u r 1cos 3AQ PB AQ PB AQ PB <>==u u u r u u u r u u u r u u u r g u u u r u u u r 、所成的角是.1arccos3(3)由(2)知,点.(00)(0)(004)D AD PQ -=--=-u u u r u u u r设n =(x ,y ,z )是平面QAD 的一个法向量,则得取x =1,得00AQ AD ⎧=⎪⎨=⎪⎩u u u r g u u u rg 、、nn 00z x y +=+=⎪⎩、、.点P 到平面QAD 的距离(11--、、n =PQ d ==u u u r g nn途径二、利用面面垂直的性质建立坐标系:图形中有两个互相垂直的平面,可以利用面面垂直的性质定理,作出互相垂直且交于一点的三条直线,建立坐标系.例2 (全国卷Ⅱ理科第19题)在直三棱柱中,AB =BC ,D 、E 分别为111ABC A B C -的中点.11BB AC 、(1)证明:ED 为异面直线与的公垂线;1BB 1AC (2)设,求二面角的大小.1AA AC ==11A AD C --解:(1)如图2,建立直角坐标系,其中原点O 为O xyz -AC 的中点,设则,,(00)A a 、、1(00)(02)B b B b c 、、、、、则,即.11(00)(002)0ED b BB c ED BB ===u u u r u u u r u u u r u u u r g 、、、、、、1ED BB ⊥同理. 因此ED 为异面直线与的公垂线.1ED AC ⊥1BB 1AC (2)不妨令,则,1a b c ===1(110)(110)(002)BC AB AA =--=-=u u u r u u u r u u u r 、、、、、、、、.即BC ⊥AB ,BC ⊥,又∵,∴BC ⊥面100BC AB BC AA ==u u u r u u u r u u u r u u u rg g 、1AA 1AB AA A =I .1A AD 又,,(101)(101)(010)0EC AE ED EC AE =--=-==u u u r u u u r u u u r u u u r u u u rg 、、、、、、、、、0EC ED =u u u r u u u r g 即EC ⊥AE ,EC ⊥ED ,又∵AE ∩ED =E ,∴EC ⊥面.∴1C AD ,即得和的夹角为.所以,二面角1cos 2EC BC EC BC EC BC <>==u u u r u u u ru u u r u u u r g u u u r u u u r 、EC u u u r BC u u u r 60o 为.11A AD C --60o 练2:如图,平面PAC ⊥平面ABC ,ABC∆是以AC 为斜边的等腰直角三角形,,,E F O 分别为PA ,PB ,AC 的中点,16AC =,10PA PC ==.(I )设G 是OC 的中点,证明://FG 平面BOE ;(II )证明:在ABO ∆内存在一点M ,使FM ⊥平面BOE ,并求点M 到OA ,OB 的距离.途径三、利用图形中现成的垂直关系建立坐标系:当图形中有明显互相垂直且交于一点的三条直线,可以利用这三条直线直接建系.例3.如图,在四棱锥中,底面四边长为1的菱形,,O ABCD -ABCD 4ABC π∠=, ,为的中点。
高二新学案立体几何如何建系找坐标
![高二新学案立体几何如何建系找坐标](https://img.taocdn.com/s3/m/14f5a03c31126edb6e1a100e.png)
B 1C 1BCDAD 1A 1EFEADBCP空间立体,寻求建系的方法,学会找坐标 一、标准化的正方体,长方体,四棱锥问题1.正方体ABCD-A 1B 1C 1D 1,建立适当的坐标系,并表示图中所有点的坐标。
解;以A 为坐标原点.以AB ,AD ,AA 1所在直线为x,y,z 轴,建立如图空间直角坐标系,设正方体棱长为1,则ABCD是直角梯形,90=∠=∠BAD ABC ,2.如图,四边形ABCD SA 平面⊥,1===BC AB SA ,21=AD ,SC 中点是P ,建立适当的坐标系,表示图中所有点的坐标。
解;以A 为坐标原点.以AD ,AB ,AS 所在直线为x,y,z 轴,建立如图空间直角坐标系,则3.在五面体ABCDEF 中,FA ⊥平面ABCD ,AD ∥BC ∥FE ,AB ⊥AD ,M 为EC 的中点,AF=AB=BC=FE= 21AD=1,建立适当的坐标系,表示图中所有点的坐标。
解;以A 为坐标原点.以AB ,AD ,AF 所在直线为x,y,z 轴,建立如图空间直角坐标系,则4:如图,四棱锥P ABCD-中,底面ABCD为矩形,PA ⊥底面ABCD,6,3PA AB AD ===,点E 为棱PB 的中点。
建立适当的坐标系,表示图中所有点的坐标。
解;以A 为坐标原点.以AB ,AD ,AP 所在直线为x,y,z 轴,建立如图空间直角坐标系,则5..如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB//CD,∠DAB=90°,PA=AD=DC=1,AB=2,M 为PB 的中点. 建立适当的坐标系,表示图中所有点的坐标。
解;以A 为坐标原点.以AD ,AB ,AP 所在直线为x,y,z 轴,建立如图空间直角坐标系,则6.多面体EDABC 中,AD ⊥平面ABC , AC ⊥BC,,AD=21CE=1,AC=1.BC=2,M 为BE 中点.,建立适当的坐标系,表示图中所有点的坐标。
(整理)直角坐标系解决立体几何问题
![(整理)直角坐标系解决立体几何问题](https://img.taocdn.com/s3/m/88eb56f74028915f814dc202.png)
在立体几何中引入向量之前,求角与距离是一个难点,在新课标中,从向量的角度来研究空间的点、线、面的关系,我们只要通过两个向量的数量积运算、运用向量的模、平面的法向量就可以解决常见的角与距离的问题。
而且,运用向量来解题思路简单、步骤清楚,对学生来说轻松了很多。
重点:用空间向量数量积及夹角公式求异面直线所成角。
难点:建立恰当的空间直角坐标系关键:几何问题转换为代数问题及正确写出空间向量的坐标。
Ⅰ、空间直角坐标系的建立空间向量的数量积公式(两种形式)、夹角公式和空间向量的数量积的几何性质。
(用媒体分步显示下列内容) 1. 向量的数量积公式(包括向量的夹角公式):若与的夹角为θ(0≤θ≤π),且={x 1,y 1,z 1},={x 2,y 2,z 2},则 ⑴ a ·b =|a ||b |cos θ 或 a ·b = x 1x 2+y 1y 2+z 1z 2 ⑵若与非零向量 cos θ=222222212121212121x z z y y x x zy x z y ++⋅++++2. 向量的数量积的几何性质:⑴两个非零向量与垂直的充要条件是·=0⑵两个非零向量a 与b 平行的充要条件是a ·b =±|a ||b | 利用空间向量知识求异面直线所成角的一般步骤: (1)根据图形建立合理的空间直角坐标系; (2)确定关键点的坐标; (3)求空间向量的夹角; (4)得出异面直线的所成角。
D 1xy o. Mxyo. M平面直角坐标系空间直角坐标系z用向量解决角的问题 ①两条异面直线a 、b 间夹角在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ,则cos |cos ,|AB CD θ=<>=。
注意,由于两向量的夹角范围为[]︒︒180,0,而异面直线所成角的范围为()︒<<︒900α,若两向量夹角α为钝角,转化到异面直线夹角时为180°α-例1:在长方体ABCD-A 1B 1C 1D 1中,AB=BC=4,AA 1=6, 求异面直线DA 1与AC 1的所成角;分析:在此题的解答中,设计如下问题贯穿整个过程以期共同解高。
立体几何(向量法)—建系讲义
![立体几何(向量法)—建系讲义](https://img.taocdn.com/s3/m/d2b8e896551810a6f4248636.png)
立体几何(向量法)—建系引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算。
一、利用共顶点的互相垂直的三条线构建直角坐标系例1(2012高考真题重庆理19)(本小题满分12分如图,在直三棱柱111C B A ABC中,AB=4,AC=BC=3,D 为AB 的中点(Ⅰ)求点C 到平面11ABB A 的距离; (Ⅱ)若11AB A C 求二面角的平面角的余弦值.【答案】解:(1)由AC =BC ,D 为AB 的中点,得CD ⊥AB .又CD ⊥AA 1,故CD ⊥面A 1ABB 1,所以点C 到平面A 1ABB 1的距离为CD =BC 2-BD 2=5.(2)解法一:如图,取D 1为A 1B 1的中点,连结DD 1,则DD 1∥AA 1∥CC 1.又由(1)知CD ⊥面A 1ABB 1,故CD ⊥A 1D ,CD ⊥DD 1,所以∠A 1DD 1为所求的二面角A 1-CD -C 1的平面角.因A 1D 为A 1C 在面A 1ABB 1上的射影,又已知AB 1⊥A 1C ,由三垂线定理的逆定理得AB 1⊥A 1D ,从而∠A 1AB 1、∠A 1DA 都与∠B 1AB 互余,因此∠A 1AB 1=∠A 1DA ,所以Rt △A 1AD ∽Rt △B 1A 1A.因此AA 1AD =A 1B 1AA 1,即AA 21=AD ·A 1B 1=8,得AA 1=22.从而A 1D =AA 21+AD 2=23.所以,在Rt △A 1DD 1中,cos ∠A 1DD 1=DD 1A 1D =AA 1A 1D =63.解法二:如图,过D 作DD 1∥AA 1交A 1B 1于点D 1,在直三棱柱中,易知DB ,DC ,DD 1两两垂直.以D 为原点,射线DB ,DC ,DD 1分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系D -xyz .设直三棱柱的高为h ,则A(-2,0,0),A 1(-2,0,h),B 1(2,0,h),C(0,5,0),C 1(0,5,h),从而AB 1→=(4,0,h),A 1C →=(2,5,-h).由AB 1→⊥A 1C →,有8-h 2=0,h =2 2.故DA 1→=(-2,0,22),CC 1→=(0,0,22),DC →=(0,5,0).设平面A 1CD 的法向量为m =(x 1,y 1,z 1),则m ⊥DC →,m ⊥DA 1→,即5y 1=0,-2x 1+22z 1=0,取z 1=1,得m =(2,0,1),设平面C 1CD 的法向量为n =(x 2,y 2,z 2),则n ⊥DC →,n ⊥CC 1→,即5y 2=0,22z 2=0,取x 2=1,得n =(1,0,0),所以cos 〈m ,n 〉=m ·n|m||n|=22+1·1=63.所以二面角A 1-CD -C 1的平面角的余弦值为63.二、利用线面垂直关系构建直角坐标系例 2.如图所示,AF 、DE 分别是圆O 、圆1O 的直径,AD 与两圆所在的平面均垂直,8AD .BC 是圆O 的直径,6ABAC,//OE AD .(I)求二面角B AD F 的大小;(II)求直线BD 与EF 所成的角的余弦值.19.解:(Ⅰ)∵AD 与两圆所在的平面均垂直,∴AD ⊥AB, AD ⊥AF,故∠BAD 是二面角B —AD —F 的平面角,。
立体几何—建系讲义
![立体几何—建系讲义](https://img.taocdn.com/s3/m/28ef6e385acfa1c7aa00cced.png)
立体几何(向量法)—建系引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算。
一、利用共顶点的互相垂直的三条线构建直角坐标系例1(2012高考真题重庆理19)(本小题满分12分 如图,在直三棱柱111C B A ABC - 中,AB=4,AC=BC=3,D 为AB 的中点(Ⅰ)求点C 到平面11ABB A 的距离;(Ⅱ)若11AB A C ⊥求二面角 的平面角的余弦值.【答案】解:(1)由AC =BC ,D 为AB 的中点,得CD ⊥AB .又CD ⊥AA 1,故CD ⊥面A 1ABB 1,所以点C 到平面A 1ABB 1的距离为CD =BC 2-BD 2= 5.(2)解法一:如图,取D 1为A 1B 1的中点,连结DD 1,则DD 1∥AA 1∥CC 1.又由(1)知CD ⊥面A 1ABB 1,故CD ⊥A 1D ,CD ⊥DD 1,所以∠A 1DD 1为所求的二面角A 1-CD -C 1的平面角.因A 1D 为A 1C 在面A 1ABB 1上的射影,又已知AB 1⊥A 1C ,由三垂线定理的逆定理得AB 1⊥A 1D ,从而∠A 1AB 1、∠A 1DA 都与∠B 1AB 互余,因此∠A 1AB 1=∠A 1DA ,所以Rt △A 1AD ∽Rt △B 1A 1A .因此AA 1AD =A 1B 1AA 1,即AA 21=AD ·A 1B 1=8,得AA 1=2 2.从而A 1D =AA 21+AD 2=2 3.所以,在Rt △A 1DD 1中, cos ∠A 1DD 1=DD 1A 1D =AA 1A 1D =63.解法二:如图,过D 作DD 1∥AA 1交A 1B 1于点D 1,在直三棱柱中,易知DB ,DC ,DD 1两两垂直.以D 为原点,射线DB ,DC ,DD 1分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系D -xyz .设直三棱柱的高为h ,则A (-2,0,0),A 1(-2,0,h ),B 1(2,0,h ),C (0,5,0),C 1(0,5,h ),从而AB 1→=(4,0,h ),A 1C →=(2,5,-h ).由AB 1→⊥A 1C →,有8-h 2=0,h =2 2. 故DA 1→=(-2,0,22),CC 1→=(0,0,22),DC →= (0,5,0).设平面A 1CD 的法向量为m =(x 1,y 1,z 1),则m ⊥DC →,m ⊥DA 1→,即 ⎩⎨⎧5y 1=0,-2x 1+22z 1=0,取z 1=1,得m =(2,0,1),设平面C 1CD 的法向量为n =(x 2,y 2,z 2),则n ⊥DC →,n ⊥CC 1→,即⎩⎨⎧5y 2=0,22z 2=0, 取x 2=1,得n =(1,0,0),所以 cos 〈m ,n 〉=m·n |m ||n |=22+1·1=63. 所以二面角A 1-CD -C 1的平面角的余弦值为63.二、利用线面垂直关系构建直角坐标系例 2.如图所示,AF 、DE 分别是圆O 、圆1O 的直径,AD 与两圆所在的平面均垂直,8AD =.BC 是圆O 的直径,6AB AC ==,//OE AD .(I)求二面角B AD F --的大小; (II)求直线BD 与EF 所成的角的余弦值. 19.解:(Ⅰ)∵AD 与两圆所在的平面均垂直,∴AD⊥AB, AD⊥AF,故∠BAD 是二面角B —AD —F 的平面角, 依题意可知,ABCD 是正方形,所以∠BAD=450. 即二面角B —AD —F 的大小为450;(Ⅱ)以O 为原点,BC 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,23-,0),B (23,0,0),D (0,23-,8),E (0,0,8),F (0,23,0)所以,)8,23,0(),8,23,23(-=--=FE BD10828210064180||||,cos =⨯++=•>=<FE BD FE BD EF BD 设异面直线BD 与EF 所成角为α,则1082|,cos |cos =><=EF BD α直线BD 与EF 所成的角为余弦值为8210.三、利用图形中的对称关系建立坐标系例3(2013年重庆数学(理))如图,四棱锥P ABCD -中,PA ABCD ⊥底面,2,4,3BC CD AC ACB ACD π===∠=∠=,F 为PC 的中点,AF PB ⊥.(1)求PA 的长; (2)求二面角B AF D --的正弦值.【答案】解:(1)如图,联结BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB →,OC →,AP →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD cos π3=1,而AC =4,得AO =AC -OC =3.又OD =CD sinπ3=3,故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0).因P A ⊥底面ABCD ,可设P (0,-3,z ),由F 为PC 边中点,得F ⎝⎛⎭⎫0,-1,z 2,又AF →=⎝⎛⎭⎫0,2,z 2,PB →=(3,3,-z ),因AF ⊥PB ,故AF →·PB →=0,即6-z 22=0,z =23(舍去-23),所以|P A →|=2 3.(2)由(1)知AD →=(-3,3,0),AB →=(3,3,0),AF →=(0,2,3).设平面F AD 的法向量为1=(x 1,y 1,z 1),平面F AB 的法向量为2=(x 2,y 2,z 2).由1·AD →=0,1·AF →=0,得⎩⎨⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取1=(3,3,-2). 由2·AB →=0,2·AF →=0,得⎩⎨⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取2=(3,-3,2). 从而向量1,2的夹角的余弦值为 cos 〈1,2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B -AF -D 的正弦值为378.四、利用正棱锥的中心与高所在直线,投影构建直角坐标系 例4-1(2013大纲版数学(理))如图,四棱锥P ABCD -中,902,ABC BAD BC AD PAB ∠=∠==∆,与PAD ∆都是等边三角形.(I)证明:;PB CD ⊥ (II)求二面角A PD C --的余弦值.【答案】解:(1)取BC 的中点E ,联结DE ,则四边形ABED 为正方形. 过P 作PO ⊥平面ABCD ,垂足为O . 联结OA ,OB ,OD ,OE .由△P AB 和△P AD 都是等边三角形知P A =PB =PD ,所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点,所以OE ∥CD .因此PB ⊥CD .(2)解法一:由(1)知CD ⊥PB ,CD ⊥PO ,PB ∩PO =P , 故CD ⊥平面PBD .又PD ⊂平面PBD ,所以CD ⊥PD .取PD 的中点F ,PC 的中点G ,连FG . 则FG ∥CD ,FG ⊥PD .联结AF ,由△APD 为等边三角形可得AF ⊥PD . 所以∠AFG 为二面角A -PD -C 的平面角. 联结AG ,EG ,则EG ∥PB . 又PB ⊥AE ,所以EG ⊥AE .设AB =2,则AE =22,EG =12PB =1,故AG =AE 2+EG 2=3,在△AFG 中,FG =12CD =2,AF =3,AG =3.所以cos ∠AFG =FG 2+AF 2-AG 22·FG ·AF =-63.解法二:由(1)知,OE ,OB ,OP 两两垂直.以O 为坐标原点,OE →的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz .设|AB →|=2,则A (-2,0,0),D (0,-2,0), C (22,-2,0),P (0,0,2),PC →=(22,-2,-2),PD →=(0,-2,-2), AP →=(2,0,2),AD →=(2,-2,0). 设平面PCD 的法向量为1=(x ,y ,z ),则 1·PC →=(x ,y ,z )·(22,-2,-2)=0,1·PD →=(x ,y ,z )·(0,-2,-2)=0,可得2x -y -z =0,y +z =0.取y =-1,得x =0,z =1,故1=(0,-1,1). 设平面P AD 的法向量为2=(m ,p ,q ),则 2·AP →=(m ,p ,q )·(2,0,2)=0, 2·AD →=(m ,p ,q )·(2,-2,0)=0,可得m +q =0,m -p =0.取m =1,得p =1,q =-1,故2=(1,1,-1). 于是cos 〈,2〉=n 1·n 2|n 1||n 2|=-63. 例4-2如图1-5,在三棱柱ABC -A 1B 1C 1中,已知AB =AC =AA 1=5,BC =4,点A 1在底面ABC 的投影是线段BC 的中点O .(1)证明在侧棱AA 1上存在一点E ,使得OE ⊥平面BB 1C 1C ,并求出AE 的长; (2)求平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值.图1-5【答案】解:(1)证明:连接AO ,在△AOA 1中,作OE ⊥AA 1 于点E ,因为AA 1∥BB 1,所以OE ⊥BB 1.因为A 1O ⊥平面ABC ,所以A 1O ⊥BC . 因为AB =AC ,OB =OC ,所以AO ⊥BC , 所以BC ⊥平面AA 1O . 所以BC ⊥OE ,所以OE ⊥平面BB 1C 1C ,又AO =AB 2-BO 2=1,AA 1=5, 得AE =AO 2AA 1=55.(2)如图,分别以OA ,OB ,OA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则A (1,0,0),B (0,2,0),C (0,-2,0),A 1(0,0,2),由AE →=15AA 1→得点E 的坐标是⎝ ⎛⎭⎪⎫45,0,25, 由(1)得平面BB 1C 1C 的法向量是OE→=⎝ ⎛⎭⎪⎫45,0,25,设平面A 1B 1C 的法向量=(x ,y ,z ),由⎩⎪⎨⎪⎧·AB →=0,n ·A 1C →=0得⎩⎨⎧-x +2y =0,y +z =0,令y =1,得x =2,z =-1,即=(2,1,-1),所以 cos 〈OE →,〉=OE →·n |OE →|·|n |=3010.即平面BB 1C 1C 与平面A 1B 1C 的夹角的余弦值是3010三、利用面面垂直关系构建直角坐标系 例5(2012高考真题安徽理18)(本小题满分12分)平面图形ABB 1A 1C 1C 如图1-4(1)所示,其中BB 1C 1C 是矩形,BC =2,BB 1=4,AB=AC=2,A1B1=A1C1= 5.图1-4现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A1A,A1B,A1C,得到如图1-4(2)所示的空间图形.对此空间图形解答下列问题.(1)证明:AA1⊥BC;(2)求AA1的长;(3)求二面角A-BC-A1的余弦值.【答案】解:(向量法):(1)证明:取BCB1C1的中点分别为D和D1,连接A1D1,DD1,AD.由BB1C1C为矩形知,DD1⊥B1C1,因为平面BB1C1C⊥平面A1B1C1,所以DD1⊥平面A1B1C1,又由A1B1=A1C1知,A1D1⊥B1C1.故以D1为坐标原点,可建立如图所示的空间直角坐标系D1-xyz.由题设,可得A1D1=2,AD=1.由以上可知AD⊥平面BB1C1C,A1D1⊥平面BB1C1C,于是AD∥A1D1.所以A (0,-1,4),B (1,0,4),A 1(0,2,0),C (-1,0,4),D (0,0,4). 故AA 1→=(0,3,-4),BC →=(-2,0,0),AA 1→·BC →=0, 因此AA 1→⊥BC →,即AA 1⊥BC . (2)因为AA 1→=(0,3,-4), 所以||AA 1→=5,即AA 1=5. (3)连接A 1D ,由BC ⊥AD ,BC ⊥AA 1,可知BC ⊥平面A 1AD ,BC ⊥A 1D ,所以∠ADA 1为二面角A -BC -A 1的平面角.因为DA →=(0,-1,0),DA 1→=(0,2,-4),所以 cos 〈DA →,DA 1→〉=-21×22+(-4)2=-55. 即二面角A -BC -A 1的余弦值为-55.(综合法)(1)证明:取BC ,B 1C 1的中点分别为D 和D 1,连接A 1D 1,DD 1,AD ,A 1D .由条件可知,BC ⊥AD ,B 1C 1⊥A 1D 1, 由上可得AD ⊥面BB 1C 1C ,A 1D 1⊥面BB 1C 1C . 因此AD ∥A 1D 1,即AD ,A 1D 1确定平面AD 1A 1D . 又因为DD 1∥BB 1,BB 1⊥BC ,所以DD 1⊥BC . 又考虑到AD ⊥BC ,所以BC ⊥平面AD 1A 1D , 故BC ⊥AA 1.(2)延长A 1D 1到G 点,使GD 1=AD ,连接AG . 因为AD 綊GD 1,所以AG 綊DD 1綊BB 1. 由于BB 1⊥平面A 1B 1C 1,所以AG ⊥A 1G .由条件可知,A 1G =A 1D 1+D 1G =3,AG =4, 所以AA 1=5.(3)因为BC ⊥平面AD 1A 1D ,所以∠ADA 1为二面角A -BC -A 1的平面角. 在Rt △A 1DD 1中,DD 1=4,A 1D 1=2,解得 sin ∠D 1DA 1=55,cos ∠ADA 1=cos ⎝ ⎛⎭⎪⎫π2+∠D 1DA 1=-55.即二面角A -BC -A 1的余弦值为-55.。
建坐标系解立体几何含解析
![建坐标系解立体几何含解析](https://img.taocdn.com/s3/m/83118266777f5acfa1c7aa00b52acfc789eb9f61.png)
立体几何——建坐标系1.如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形. AB=BC=2,CD=SD=1.Ⅰ证明:SD⊥平面SAB;Ⅱ求AB与平面SBC所成的角的大小.2.如图,在四面体ABOC中, OC⊥OA, OC⊥OB, ∠AOB=120°,且OA=OB=OC=1.Ⅰ设P为AC的中点, Q在AB上且AB=3AQ. 证明:PQ⊥OA;Ⅱ求二面角O-AC-B的平面角的余弦值.3.如图, 在正三棱柱ABC-A1B1C1中, AB=4,AA1=7,点D是BC的中点,点E在AC上,且DE⊥A1E.Ⅰ证明:平面A1DE⊥平面ACC1A1;Ⅱ求直线AD和平面A1DE所成角的正弦值.4.如图, 在直三棱柱ABC-A1B1C1中, AB=1, AC=AA1=3,∠ABC=60°.Ⅰ证明:AB⊥A1C;Ⅱ求二面角A-A1C-B的大小.5.四棱锥A-BCDE中, 底面BCDE为矩形, 侧面ABC⊥底面BCDE, BC=2, CD=2, AB=AC.Ⅰ证明:AD⊥CE;Ⅱ设侧面ABC为等边三角形, 求二面角C-AD-E的大小.6.如图, 正三棱柱ABC-A1B1C1的所有棱长都为2, D为CC1中点.Ⅰ求证:AB 1⊥平面A 1BD; Ⅱ求二面角A-A 1D-B 的大小.7.如图, 在三棱锥V-ABC 中, VC ⊥底面ABC, AC ⊥BC, D 是AB 的中点, 且AC=BC=a ,∠VDC=θ)(20πθ<<.Ⅰ求证:平面VAB ⊥平面VCD;Ⅱ试确定θ的值, 使得直线BC 与平面VAB 所成的角为6π. 8.如图, △BCD 与△MCD 都是边长为2的正三角形, 平面MCD ⊥平面BCD, AB ⊥平面BCD, AB=2.Ⅰ求直线AM 与平面BCD 所成角的大小; Ⅱ求平面ACM 与平面BCD 所成二面角的正弦值.9.如图, 在四棱锥P-ABCD 中, PD ⊥平面ABCD, PD=DC=BC=1, AB=2, AB ∥DC, ∠BCD=90°.Ⅰ求证:PC ⊥BC;Ⅱ求点A 到平面PBC 的距离.10.如图, 直三棱柱ABC-A 1B 1C 1中, AC=BC, AA 1=AB, D 为BB 1的中点, E 为AB 1上的一点, AE=3EB 1.Ⅰ证明:DE 为异面直线AB 1与CD 的公垂线;Ⅱ设异面直线AB 1与CD 的夹角为45°, 求二面角A 1-AC 1-B 1的大小.11.如图, 四棱锥S-ABCD 中, 底面ABCD 为矩形, SD ⊥底面ABCD, AD=2, DC=SD=2. 点M 在侧棱SC 上, ∠ABM=60°.Ⅰ证明:M 是侧棱SC 的中点;Ⅱ求二面角S-AM-B 的大小.12.如图, 直三棱柱ABC-A 1B 1C 1中, AB ⊥AC, D 、E 分别为AA 1、B 1C 的中点, DE ⊥平面BCC 1.Ⅰ证明:AB=AC;Ⅱ设二面角A-BD-C 为60°, 求B 1C 与平面BCD 所成的角的大小.13.如图, 四棱锥P-ABCD 的底面是正方形, PD ⊥底面ABCD,点E 在棱PB 上. Ⅰ求证:平面AEC ⊥平面PDB;Ⅱ当PD=2AB 且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.14. 如图, 在四棱锥P-ABCD 中, 底面ABCD 是矩形, PA ⊥平面ABCD, PA=AD=4, AB=2.以BD 的中点O 为球心、BD 为直径的球面交PD 于点M.Ⅰ求证:平面ABM ⊥平面PCD; Ⅱ求直线PC 与平面ABM 所成的角; Ⅲ求点O 到平面ABM 的距离.15.如图, 四棱锥S-ABCD 的底面是正方形, SD ⊥平面ABCD, SD=2a, AD=a 2, 点E 是SD 上的点, 且DE=a λ0<λ≤2.Ⅰ求证:对任意的λ∈0, 2,都有AC ⊥BE;Ⅱ设二面角C-AE-D 的大小为θ, 直线BE 与平面ABCD 所成的角为ϕ. 若1tan tan =•ϕθ, 求λ的值.16.如图, 在五面体ABCDEF 中, AB ∥DC, ∠BAD=2π, CD=AD=2. 四边形ABFE 为平行四边形, FA ⊥平面ABCD, FC=3, ED=7. 求:Ⅰ直线AB 到平面EFCD 的距离;Ⅱ二面角F-AD-E的平面角的正切值.17.如图, 设动点P在棱长为1的正方体ABCD-A1B1C1D1的对角线BD1上, 记λ=BDPD11.当∠APC为钝角时, 求λ的取值范围.答案与解析1.解法一:Ⅰ取AB中点E, 连结DE, 则四边形BCDE为矩形, DE=CB=2. 连结SE, 则SE⊥AB, SE=. 又SD=1, 故ED2=SE2+SD2, 所以∠DSE为直角. 3分由AB⊥DE, AB⊥SE, DE∩SE=E, 得AB⊥平面SDE, 所以AB⊥SD, SD与两条相交直线AB、SE都垂直, 所以SD⊥平面SAB. 6分Ⅱ由AB⊥平面SDE知, 平面ABCD⊥平面SDE. 作SF⊥DE, 垂足为F, 则SF⊥平面ABCD, SF==. 作FG⊥BC, 垂足为G, 则FG=DC=1. 连结SG, 则SG⊥BC. 又BC⊥FG, SG∩FG=G, 故BC⊥平面SFG, 平面SBC⊥平面SFG. 9分作FH⊥SG, H为垂足, 则FH⊥平面SBC. FH==, 即F到平面SBC的距离为. 由于ED∥BC, 所以ED∥平面SBC, E到平面SBC的距离d也为.设AB与平面SBC所成的角为α, 则sin α==, α=arcsin. 12分解法二:以C为坐标原点, 射线CD为x轴正半轴, 建立如图所示的空间直角坐标系C-xyz.设D1, 0, 0, 则A2, 2, 0、B0, 2, 0.又设Sx, y, z, 则x>0, y>0, z>0.Ⅰ=x-2, y-2, z, =x, y-2, z, =x-1, y, z,由||=||得=, 故x=1. 由||=1得y2+z2=1, 又由||=2得x2+y-22+z2=4, 即y2+z2-4y+1=0, 故y=, z=. 3分于是S, =,==·=0, ·=0. 故DS⊥AS, DS⊥BS, 又AS∩BS=S, 所以SD⊥平面SAB. 6分Ⅱ设平面SBC的法向量a=m, n, p,则a⊥, a⊥, a·=0, a·=0. 又==0, 2, 0, 故9分取p=2得a=-, 0, 2. 又=-2, 0, 0, cos<, a>==. 故AB与平面SBC所成的角为arcsin. 12分2.解法一:Ⅰ在平面OAB内作ON⊥OA交AB于N, 连结CN. 在△AOB中, ∵∠AOB=120°且OA=OB, ∴∠OAB=∠OBA=30°. 在Rt△AON中, ∵∠OAN=30°, ∴ON=AN. 在△ONB中, ∵∠NOB=120°-90°=30°=∠OBN, ∴NB=ON=AN. 又AB=3AQ, ∴Q为AN的中点. 在△CAN中, ∵P, Q分别为AC, AN的中点, ∴PQ∥CN. 由OA⊥OC, OA⊥ON知:OA⊥平面CON. 又NC平面CON, ∴OA⊥CN. 由PQ∥CN, 知OA⊥PQ.Ⅱ连结PN, PO.由OC⊥OA, OC⊥OB知:OC⊥平面OAB. 又ON平面OAB, ∴OC⊥ON. 又由ON⊥OA知:ON⊥平面AOC. ∴OP是NP在平面AOC内的射影. 在等腰Rt△COA中, P为AC的中点, ∴AC⊥OP. 根据三垂线定理,知:AC⊥NP. ∴∠OPN为二面角O-AC-B的平面角. 在等腰Rt△COA中, OC=OA=1, ∴OP=. 在Rt△AON 中, ON=OAtan 30°=, ∴在Rt△PON中, PN==, ∴cos∠OPN===.解法二:Ⅰ取O为坐标原点, 以OA, OC所在的直线为x轴, z轴, 建立空间直角坐标系O-xyz如图所示.则A1, 0, 0, C0, 0, 1, B. ∵P为AC的中点, ∴P. ∵=, 又由已知, 可得==. 又=+=. ∴=-=, ∴·=·1, 0, 0=0. 故⊥.Ⅱ记平面ABC的法向量n=n1, n2, n3, 则由n⊥, n⊥, 且=1, 0, -1,得故可取n=1, , 1. 又平面OAC的法向量为e=0, 1, 0. ∴cos<n,e>==. 二面角O-AC-B的平面角是锐角, 记为θ, 则cos θ=.3.Ⅰ如图所示, 由正三棱柱ABC-A1B1C1的性质知AA1⊥平面ABC.又DE平面ABC, 所以DE⊥AA1. 而DE⊥A1E, AA1∩A1E=A1, 所以DE⊥平面ACC1A1.又DE平面A1DE, 故平面A1DE⊥平面ACC1A1. Ⅱ解法一:过点A作AF垂直A1E于点F, 连结DF. 由Ⅰ知, 平面A1DE⊥平面ACC1A1, 所以AF⊥平面A1DE. 故∠ADF是直线AD和平面A1DE 所成的角.因为DE⊥平面ACC1A1, 所以DE⊥AC. 而△ABC是边长为4的正三角形, 于是AD=2,AE=4-CE=4-CD=3. 又因为AA1=, 所以A1E===4, AF==,sin∠ADF==. 即直线AD和平面A1DE所成角的正弦值为.解法二:如图所示, 设O是AC的中点, 以O为原点建立空间直角坐标系, 则相关各点的坐标分别是A2, 0, 0, A12, 0, ,D-1, , 0, E-1, 0, 0.易知=-3, , -, =0, -, 0, =-3, , 0. 设n=x, y, z是平面A1DE的一个法向量, 则解得x=-z, y=0. 故可取n=, 0, -3.于是cos<n, >===-.由此即知, 直线AD和平面A1DE所成角的正弦值为.4.解法一:Ⅰ证明:∵三棱柱ABC-A1B1C1为直三棱柱, ∴AB⊥AA1. 在△ABC中, AB=1, AC=, ∠ABC=60°, 由正弦定理得∠ACB=30°, ∴∠BAC=90°, 即AB⊥AC.∴AB⊥平面ACC1A1, 又A1C平面ACC1A1, ∴AB⊥A1C. Ⅱ如图, 作AD⊥A1C交A1C于D点, 连结BD, 由三垂线定理知BD⊥A1C, ∴∠ADB为二面角A-A1C-B的平面角. 在Rt△AA1C中,AD===,在Rt△BAD中, tan∠ADB==, ∴∠ADB=arctan, 即二面角A-A1C-B的大小为arctan.解法二:Ⅰ证明:∵三棱柱ABC-A1B1C1为直三棱柱,∴AA1⊥AB, AA1⊥AC. 在△ABC中, AB=1, AC=, ∠ABC=60°. 由正弦定理得∠ACB=30°, ∴∠BAC=90°, 即AB⊥AC. 如图, 建立空间直角坐标系, 则A0, 0, 0, B1, 0, 0, C0,, 0, A10, 0, , ∴=1, 0, 0, =0, , -. ∵·=1×0+0×+0×-=0, ∴AB⊥A1C.Ⅱ如图, 可取m==1, 0, 0为平面AA1C的法向量,设平面A1BC的法向量为n=l, m, n, 则·n=0, ·n=0, 又=-1, , 0, ∴∴l=m, n=m. 不妨取m=1, 则n=, 1, 1.cos<m, n>===,∴二面角A-A1C-B的大小为arccos.5.解法一:Ⅰ作AO⊥BC, 垂足为O, 连结OD, 由题设知, AO⊥底面BCDE, 且O为BC中点. 由==知, Rt△OCD∽Rt△CDE, 从而∠ODC=∠CED, 于是CE⊥OD. 由三垂线定理知, AD⊥CE.Ⅱ作CG⊥AD, 垂足为G, 连结GE. 由Ⅰ知, CE⊥AD. 又CE∩CG=C, 故AD⊥平面CGE, AD⊥GE, 所以∠CGE是二面角C-AD-E的平面角. GE===, CE=,cos∠CGE===-. 所以二面角C-AD-E为arccos.解法二:Ⅰ作AO⊥BC, 垂足为O. 由题设知AO⊥底面BCDE, 且O为BC的中点. 以O为坐标原点, 射线OC为x轴正向, 建立如图所示的直角坐标系O-xyz. 设A0, 0, t. 由已知条件有C1, 0, 0, D1, , 0, E-1, , 0, =-2, , 0, =1, , -t. 所以·=0, 知AD⊥CE.Ⅱ△ABC为等边三角形, 因此A0, 0, .作CG⊥AD, 垂足为G, 连结CE. 在Rt△ACD中,求得|AG|=|AD|. 故G, ==, 又=1, , -, ·=0, ·=0. 所以与的夹角等于二面角C-AD-E的平面角. 由cos<>==-知二面角C-AD-E为arccos.6.解法一:Ⅰ取BC中点O, 连结AO. ∵△ABC为正三角形, ∴AO⊥BC. ∵正三棱柱ABC-A1B1C1中, 平面ABC⊥平面BCC1B1, ∴AO⊥平面BCC1B1.连结B1O, 在正方形BB1C1C中, O、D分别为BC、CC1的中点, ∴B1O⊥BD, ∴AB1⊥BD. 在正方形ABB1A1中, AB1⊥A1B, ∴AB1⊥平面A1BD.Ⅱ设AB1与A1B交于点G, 在平面A1BD中, 作GF⊥A1D于F, 连结AF, 由Ⅰ得AB1⊥平面A1BD, ∴AF⊥A1D. ∴∠AFG为二面角A-A1D-B的平面角. 在△AA1D中, 由等面积法可求得AF=, 又∵AG=AB1=, ∴sin∠AFG===, 所以二面角A-A1D-B的大小为arcsin.解法二:Ⅰ取BC中点O, 连结AO. ∵△ABC为正三角形, ∴AO⊥BC. ∵在正三棱柱ABC-A1B1C1中, 平面ABC⊥平面BCC1B1, ∴AO⊥平面BCC1B1. 取B1C1中点O1, 以O为原点, 的方向为x、y、z 轴的正方向建立空间直角坐标系, 则B1, 0, 0, D-1, 1, 0, A10, 2, , A0, 0, , B11, 2, 0, ∴=1, 2, -, =-2, 1, 0, =-1, 2, . ∵·=-2+2+0=0, ·=-1+4-3=0, ∴⊥⊥, ∴AB1⊥平面A1BD.Ⅱ设平面A1AD的法向量为n=x, y, z. =-1, 1, -, =0, 2, 0.∵n⊥, n⊥, ∴∴∴令z=1得n=-, 0, 1为平面A1AD的一个法向量. 由Ⅰ知AB1⊥平面A1BD, ∴为平面A1BD的法向量. cos<n,>===-. ∴二面角A-A1D-B的大小为arccos.7.解法一:Ⅰ∵AC=BC=a, ∴△ACB是等腰三角形, 又D是AB的中点, ∴CD⊥AB, 又VC⊥底面ABC,∴VC ⊥AB, 于是AB⊥平面VCD, 又AB平面VAB, ∴平面VAB⊥平面VCD.Ⅱ过点C在平面VCD内作CH⊥VD于H, 则由Ⅰ知CH⊥平面VAB. 连结BH, 于是∠CBH就是直线BC与平面VAB所成的角. 依题意∠CBH=, 所以在Rt△CHD中, CH=asin θ;在Rt△BHC中, CH=asin=, ∴sin θ=, ∵0<θ<, ∴θ=. 故当θ=时, 直线BC与平面VAB所成的角为.解法二:Ⅰ以CA、CB、CV所在的直线分别为x轴、y轴、z轴, 建立如图所示的空间直角坐标系, 则C0, 0, 0, Aa, 0, 0, B0, a, 0, D, V. 于是,===-a, a, 0. 从而·=-a, a, 0·=-a2+a2+0=0, 即AB ⊥CD. 同理·=-a, a, 0·=-a2+a2+0=0, 即AB⊥VD.又CD∩VD=D, ∴ AB⊥平面VCD, 又AB平面VAB, ∴平面VAB⊥平面VCD.Ⅱ设平面VAB的一个法向量为n=x, y, z,则由得可取n=1, 1, cot θ, 又=0, -a, 0, 于是sin===sin θ, 即sin θ=, ∵ 0<θ<, ∴θ=. 故当θ=时, 直线BC与平面VAB所成的角为.解法三:Ⅰ以点D为原点, 以DC、DB所在的直线分别为x轴、y轴, 建立如图所示的空间直角坐标系, 则D0, 0, 0,A,B,C,V, 于是===0,a,0,从而·=0 a,0·=0, 即AB⊥DC. 同理·=0, a, 0·=0, 即AB⊥DV. 又DC∩DV=D, ∴ AB⊥平面VCD.又AB平面VAB, ∴平面VAB⊥平面VCD.Ⅱ设平面VAB的一个法向量为n=x, y, z, 则由得取n=tan θ, 0, 1, 又=, 于是sin===sin θ,即sin θ=. ∵ 0<θ<, ∴θ=. 故当θ=时, 直线BC与平面VAB所成的角为.8. 解法一:Ⅰ取CD中点O, 连OB, OM, 则OB⊥CD, OM⊥CD.又平面MCD⊥平面BCD, 则MO⊥平面BCD, 所以MO∥AB, A、B、O、M共面.延长AM、BO相交于E, 则∠AEB就是AM与平面BCD所成的角. OB=MO=, MO∥AB, 则==, EO=OB=, 所以EB=2=AB, 故∠AEB=45°.∴直线AM与平面BCD所成角的大小为45°.ⅡCE是平面ACM与平面BCD的交线. 由Ⅰ知, O是BE的中点, 则BCED是菱形. 作BF⊥EC于F, 连AF, 则AF⊥EC, ∠AFB就是二面角A-EC-B的平面角, 设为θ. 因为∠BCE=120°, 所以∠BCF=60°.BF=BC·sin 60°=, tan θ==2, sin θ=. 所以, 所求二面角的正弦值是.解法二:取CD中点O, 连OB, OM, 则OB⊥CD, OM⊥CD, 又平面MCD⊥平面BCD, 则MO⊥平面BCD.以O为原点, 直线OC、BO、OM为x轴、y轴、z轴, 建立空间直角坐标系如图. OB=OM=, 则各点坐标分别为O0, 0, 0, C1, 0, 0, M0, 0, , B0, -, 0, A0, -, 2, Ⅰ设直线AM与平面BCD所成的角为α. 因=0, , -, 平面BCD的法向量为n=0, 0, 1. 则有sin α=cos<, n>===, 所以α=45°.∴直线AM与平面BCD所成角的大小为45°.Ⅱ=-1, 0, , =-1, -, 2.设平面ACM的法向量为n1=x, y, z, 由得解得x=z, y=z, 取n1=, 1, 1. 平面BCD的法向量为n=0, 0, 1. 则cos<n1, n>==. 设所求二面角为θ, 则sin θ==. 所以, 所求二面角的正弦值是.9.解法一:Ⅰ因为PD⊥平面ABCD, BC平面ABCD,所以PD⊥BC. 由∠BCD=90°, 得BC⊥DC. 又PD∩DC=D, PD平面PCD, DC平面PCD, 所以BC⊥平面PCD. 因为PC平面PCD, 所以PC⊥BC.Ⅱ连结AC. 设点A到平面PBC的距离为h. 因为AB∥DC, ∠BCD=90°, 所以∠ABC=90°. 从而由AB=2, BC=1, 得△ABC的面积S△ABC=1. 由PD⊥平面ABCD及PD=1, 得三棱锥P-ABC的体积V=S△ABC·PD=. 因为PD⊥平面ABCD, DC平面ABCD, 所以PD⊥DC. 又PD=DC=1, 所以PC==. 由PC⊥BC, BC=1, 得△PBC的面积S△PBC=. 由V=S△PBC h=··h=, 得h=. 因此, 点A到平面PBC的距离为.解法二:建立如图所示空间直角坐标系D-xyz, 则P0, 0, 1, C0, 1, 0, B1, 1, 0.Ⅰ=0, 1, -1, =-1, 0, 0. ∵·=0×-1+1×0+-1×0=0, ∴PC⊥BC.Ⅱ设平面PBC的法向量n=x, y, z, 则有即令y=1得n=0, 1, 1. 又因为A1, -1, 0, =0, 2, 0, 所以点A到平面PBC的距离d===.解法三:Ⅱ取AB中点E, 连DE, 则DE∥BC, DE∥面PBC, 则A点到面PBC的距离等于E点到面PBC距离的2倍, 即等于点到面PBC距离的2倍. 过D作DH⊥PC, 则DH⊥面PBC. 在Rt△PCD中, DH=, ∴A到面PBC的距离为.10.解法一:Ⅰ连结A1B, 记A1B与AB1的交点为F.因为面AA1B1B为正方形, 故A1B⊥AB1, 且AF=FB1. 又AE=3EB1, 所以FE=EB1. 又D为BB1的中点, 故DE ∥BF, DE⊥AB1. 作CG⊥AB, G为垂足, 由AC=BC知, G为AB中点.又由底面ABC⊥面AA1B1B, 得CG⊥面AA1B1B. 连结DG, 则DG∥AB1, 故DE⊥DG, 由三垂线定理, 得DE ⊥CD. 所以DE为异面直线AB1与CD的公垂线.Ⅱ因为DG∥AB1, 故∠CDG为异面直线AB1与CD的夹角, ∠CDG=45°. 设AB=2, 则AB1=2, DG=, CG=, AC=. 作B1H⊥A1C1, H为垂足. 因为底面A1B1C1⊥面AA1C1C, 故B1H⊥面AA1C1C, 又作HK⊥AC1, K为垂足, 连结B1K, 由三垂线定理, 得B1K⊥AC1, 因此∠B1KH为二面角A1-AC1-B1的平面角.B1H==, HC1==, AC1==, HK==,tan∠B1KH==, 所以二面角A1-AC1-B1的大小为arctan.解法二:Ⅰ以B为坐标原点, 射线BA为x轴正半轴, 建立如图所示的空间直角坐标系B-xyz.设AB=2, 则A2, 0, 0, B10, 2, 0, D0, 1, 0, E,又设C1, 0, c, 则==2, -2, 0, =1, -1, c. 于是·=0, ·=0,故DE⊥B1A, DE⊥DC, 所以DE为异面直线AB1与CD的公垂线.Ⅱ因为<>等于异面直线AB1与CD的夹角,故·=||·||cos 45°, 即2××=4, 解得c=, 故=-1, 0, . 又==0, 2, 0, 所以=+=-1, 2, . 设平面AA1C1的法向量为m=x, y, z, 则m·=0, m·=0, 即-x+2y+z=0且2y=0. 令x=, 则z=1, y=0, 故m=, 0, 1. 设平面AB1C1的法向量为n=p, q, r, 则n·=0, n·=0, 即-p+2q+r=0, 2p-2q=0. 令p=, 则q=, r=-1, 故n=, -1.所以cos<m, n>==. 由于<m, n>等于二面角A1-AC1-B1的平面角, 所以二面角A1-AC1-B1的大小为arccos.11. 2009全国Ⅰ, 19, 12分如图, 四棱锥S-ABCD中, 底面ABCD为矩形, SD⊥底面ABCD, AD=, DC=SD=2. 点M在侧棱SC上, ∠ABM=60°.11.解法一:Ⅰ作ME∥CD交SD于点E, 则ME∥AB, ME⊥平面SAD.连结AE, 则四边形ABME为直角梯形.作MF⊥AB, 垂足为F, 则AFME为矩形. 设ME=x, 则SE=x,AE==, MF=AE=, FB=2-x. 由MF=FB·tan 60°, 得=2-x,解得x=1. 即ME=1, 从而ME= DC, 所以M为侧棱SC的中点.ⅡMB==2, 又∠ABM=60°, AB=2, 所以△ABM为等边三角形.又由Ⅰ知M为SC中点, SM=, SA=, AM=2, 故SA2=SM2+AM2, ∠SMA=90°. 取AM中点G, 连结BG, 取SA中点H, 连结GH, 则BG⊥AM, GH⊥AM, 由此知∠BGH为二面角S-AM-B的平面角. 连结BH. 在△BGH中, BG=AM=, GH=SM=, BH==, 所以cos∠BGH==-.二面角S-AM-B的大小为arccos.解法二:以D为坐标原点, 射线DA为x轴正半轴, 建立如图所示的直角坐标系D-xyz.设A, 0, 0, 则B, 2, 0, C0, 2, 0, S0, 0, 2.Ⅰ设=λλ>0, 则M, =. 又=0, 2, 0, <>=60°, 故·=||·||cos 60°, 即=, 解得λ=1, 即=. 所以M为侧棱SC的中点.Ⅱ由M0, 1, 1, A, 0, 0, 得AM的中点G. 又==0, -1, 1, =-, 1, 1.·=0, ·=0, 所以⊥⊥. 所以<>等于二面角S-AM-B的平面角. 因为cos<>==-. 所以二面角S-AM-B的大小为arccos.12.解法一:Ⅰ取BC中点F, 连结EF, 则EF B1B, 从而EFDA.连结AF, 则ADEF为平行四边形, 从而AF∥DE. 2分又DE⊥平面BCC1, 故AF⊥平面BCC1,从而AF⊥BC, 即AF为BC的垂直平分线, 所以AB=AC. 5分Ⅱ作AG⊥BD, 垂足为G, 连结CG. 由三垂线定理知CG⊥BD, 故∠AGC为二面角A-BD-C的平面角. 由题设知, ∠AGC=60°. 设AC=2, 则AG=. 又AB=2, BC=2, 故AF=. 由AB·AD=AG·BD得2AD=·, 解得AD=, 故AD=AF. 又AD⊥AF, 所以四边形ADEF为正方形. 8分因为BC⊥AF, BC⊥AD, AF∩AD=A, 故BC⊥平面DEF, 因此平面BCD⊥平面DEF. 连结AE、DF, 设AE∩DF=H, 则EH⊥DF, EH⊥平面BCD. 连结CH, 则∠ECH为B1C与平面BCD所成的角. 因ADEF为正方形, AD=, 故EH=1, 又EC=B1C=2, 所以sin∠ECH==, 所以∠ECH=30°, 即B1C与平面BCD所成的角为30°. 12分解法二:Ⅰ以A为坐标原点, 射线AB为x轴的正半轴, 建立如图所示的直角坐标系A-xyz. 设B1, 0, 0,C0, b, 0, D0, 0, c, 则B11, 0, 2c, E. 2分于是==-1, b, 0. 由DE⊥平面BCC1知DE⊥BC, ·=0, 求得b=1, 所以AB=AC. 5分Ⅱ设平面BCD的法向量=x, y, z, 则·=0, ·=0. 又=-1, 1, 0, =-1, 0, c, 故8分令x=1, 则y=1, z==. 又平面ABD的法向量=0, 1, 0. 由二面角A-BD-C 为60°知, <>=60°, 故·=||·||·cos 60°, 求得c=. 于是=1, 1, , =1, -1, , cos<>==, <>=60°. 所以B1C与平面BCD所成的角为30°. 12分13.解法一:Ⅰ∵四边形ABCD是正方形, ∴AC⊥BD. ∵PD⊥底面ABCD, ∴PD⊥AC.∴AC⊥平面PDB. ∴平面AEC⊥平面PDB.Ⅱ设AC∩BD=O, 连结OE. 由Ⅰ知AC⊥平面PDB于O. ∴∠AEO为AE与平面PDB所成的角. ∵O, E分别为DB, PB的中点, ∴OE∥PD, OE=PD. 又∵PD⊥底面ABCD, ∴OE⊥底面ABCD, OE⊥AO. 在Rt△AOE中, OE=PD=AB=AO, ∴∠AEO=45°, 即AE与平面PDB所成的角为45°.解法二:如图, 以D为原点建立空间直角坐标系D-xyz.设AB=a, PD=h, 则Aa, 0, 0, Ba, a, 0, C0, a, 0, D0, 0, 0, P0, 0, h.Ⅰ∵=-a, a, 0, =0, 0, h, =a, a, 0, ∴·=0, ·=0. ∴AC⊥DP, AC⊥BD. ∴AC ⊥平面PDB. ∴平面AEC⊥平面PDB. Ⅱ当PD=AB且E为PB的中点时, P0, 0, a, E. 设AC∩BD=O, 则O, 连结OE. 由Ⅰ知AC⊥平面PDB于O. ∴∠AEO为AE与平面PDB所成的角. ∵==, ∴cos∠AEO==. ∴∠AEO=45°, 即AE与平面PDB所成的角为45°.14.解法一:Ⅰ证明:依题设, M在以BD为直径的球面上, 则BM⊥PD. 因为PA⊥平面ABCD, 则PA⊥AB. 又AB⊥AD, 所以AB⊥平面PAD, 则AB⊥PD, 因此有PD⊥平面ABM, 所以平面ABM⊥平面PCD. Ⅱ设平面ABM与PC交于点N, 因为AB∥CD, 所以AB∥平面PCD, 则AB∥MN∥CD, 由Ⅰ知, PD⊥平面ABM, 则MN是PN在平面ABM上的射影, 所以∠PNM就是PC与平面ABM所成的角, 且∠PNM∠PCD, tan∠PNM=tan∠PCD==2, 所求角为arctan 2.Ⅲ因为O是BD的中点, 则O点到平面ABM的距离等于D点到平面ABM距离的一半, 由Ⅰ知, PD⊥平面ABM于M, 则|DM|就是D点到平面ABM的距离. 因为在Rt△PAD中, PA=AD=4, PD⊥AM, 所以M为PD中点, DM=2, 则O点到平面ABM的距离等于.解法二:Ⅰ同解法一;Ⅱ如图所示,建立空间直角坐标系,则A0,0,0,P0,0,4,B2,0,0,C2,4,0,D0,4,0, M0,2,2,设平面ABM的一个法向量n=x, y, z, 由n⊥, n⊥可得令z=-1, 则y=1, 即n=0, 1, -1. 设所求角为α, 则sin α==, 所求角的大小为arcsin.Ⅲ设所求距离为h, 由O1, 2, 0, =1, 2, 0, 得h==.15.1如图,连接BE、BD,由底面ABCD是正方形可得AC⊥BD;SD⊥平面ABCD,16.∴BD是BE在平面ABCD上的射影,∴AC⊥BE;17.2如图,由SD⊥平面ABCD知,∠DBE=,18.∵SD⊥平面ABCD,CD平面ABCD,∴SD⊥CD;19.又底面ABCD是正方形,∴CD⊥AD,而SD∩AD=D,CD⊥平面SAD20.连接AE、CE,过点D在平面SAD内作DE⊥AE于F,连接CF,则CF⊥AE,故∠CDF是二面角C-AE-D的平面角,即∠CDF=θ;在Rt△BDE中,∵BD=2a,DE=21.∴在Rt△ADE中,∵∴从而,在中,,由,得,由,解得,即为所求;16.解法一:Ⅰ因为AB∥DC, DC平面EFCD, 所以直线AB到平面EFCD的距离等于点A到平面EFCD的距离. 如图1, 过点A作AG⊥FD于G. 因∠BAD=, AB∥DC, 故CD⊥AD;又FA⊥平面ABCD, 由三垂线定理知CD⊥FD, 故CD⊥平面FAD, 知CD⊥AG.图1故AG为所求的直线AB到平面EFCD的距离. 在Rt△FDC中, FD===. 由FA⊥平面ABCD, 得FA⊥AD, 从而在Rt△FAD中, FA===1, 所以, AG===.Ⅱ由已知FA⊥平面ABCD, 得FA⊥AD, 又由∠BAD=, 知AD⊥AB, 故AD⊥平面ABFE, 从而AD⊥FE. 所以, ∠FAE为二面角F-AD-E的平面角, 记为θ. 在Rt△EAD中, AE===. 由四边形ABFE为平行四边形, 得FE∥BA, 从而∠EFA=, 在Rt△EFA中, EF===. 故tan θ==.解法二:图2Ⅰ如图2, 以A点为坐标原点, 的方向为x, y, z的正方向建立空间直角坐标系, 则A0, 0, 0, C2, 2, 0, D0, 2, 0. 设F0, 0, z0z0>0, 可得=2, 2, -z0, 由||=3, 即=3, 解得z0=1, 即F0, 0, 1. 因为AB∥DC, DC平面EFCD, 所以直线AB到平面EFCD的距离等于点A到平面EFCD 的距离. 设A点在平面EFCD上的射影点为Gx1, y1, z1, 则=x1, y1, z1, 因·=0且·=0,而=0, -2, 1, =-2, 0, 0, 此即①解得G点的横坐标x1=0, 知G点在yOz面上, 故G点在FD上. 又∥=-x1, -y1, -z1+1, 故有=-z1+1, ②联立①、②, 解得G, 因||为AB到平面EFCD的距离, 而=, 所以||=.Ⅱ因四边形ABFE为平行四边形, 则可设Ex0, 0, 1x0<0, =-x0, 2, -1, 由||=, 即=, 解得x0=-, 即E-, 0, 1, 故=-, 0, 1. 由=0, 2, 0, =0, 0, 1, 因·=0, ·=0, 故∠FAE为二面角F-AD-E的平面角. 又=, 0, 0, ||=, ||=1, 所以tan∠FAE==.17.由题设可知, 以、、为单位正交基底, 建立如图所示的空间直角坐标系D-xyz, 则有A1, 0, 0, B1, 1, 0, C0, 1, 0, D10, 0, 1. 由=1, 1, -1得=λ=λ, λ,-λ, 所以=+=-λ, -λ, λ+1, 0, -1=1-λ, -λ, λ-1, =+=-λ, -λ, λ+0, 1, -1=-λ, 1-λ, λ-1. 显然∠APC不是平角, 所以∠APC为钝角等价于cos∠APC=cos<>=<0, 这等价于·<0, 即1-λ-λ+-λ1-λ+λ-12=λ-13λ-1<0, 得<λ<1. 因此, λ的取值范围为.18.解法一:Ⅰ因为AC=BC, M是AB的中点, 所以CM⊥AB. 又因为EA⊥平面ABC, 所以CM⊥EM.Ⅱ连结MD, 设AE=a, 则BD=BC=AC=2a. 在直角梯形EABD中. AB=2a, M是AB的中点,所以DE=3a, EM=a, MD=a, 因此DM⊥EM, 因为CM⊥平面EMD, 所以CM⊥DM, 因此DM⊥平面EMC, 故∠DEM是直线DE和平面EMC所成的角. 在Rt△EMD中. MD=a, EM=a, tan∠DEM==.解法二:如图, 以点C为坐标原点, 以CA, CB分别为x轴和y轴, 过点C作与平面ABC垂直的直线为z轴, 建立直角坐标系C-xyz, 设EA=a, 则A2a, 0, 0, B0, 2a, 0, E2a, 0, a,D0, 2a, 2a, Ma, a, 0.Ⅰ因为=-a, a, -a, =a, a, 0, 所以·=0, 故EM⊥CM.Ⅱ设向量n=1, y0, z0与平面EMC垂直, 则n⊥, n⊥. 即n·=0, n·=0. 因为=-a, a, -a, =a, a, 0, 所以y0=-1, z0=-2. 即n=1, -1, -2. 因为=2a, -2a, -a, cos<n, >==, DE与平面EMC所成的角θ是n与夹角的余角, 所以tan θ=.19.1 以A为坐标原点, 建立如图所示的空间直角坐标系A-xyz, 则A0,0, 0, B2,0, 0, C0,2, 0, D1,1, 0, A10,0, 4, C10,2, 4, 所以=2,0, -4, =1, -1, -4.因为cos< , > ===,所以异面直线A1B与C1D所成角的余弦值为(2)设平面ADC1的法向量为n1=x, y, z, 因为=1,1,0, =0,2,4,所以n1·=0, n1·=0, 即x+y=0且y+2z=0,取z=1,得x=2, y=-2, 所以n1=2, -2,1 是平面ADC1的一个法向量. 取平面AA1B的一个法向量为n2=0,1,0,设平面ADC1与平面ABA1所成二面角的大小为θ.由|cos θ|===, 得sin θ=.因此,平面ADC1与平面ABA1所成二面角的正弦值为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设平面EFG的法向量为 =(x,y,z),则 ⊥ , ⊥ ,
得 ,
令z=1,得x= ,y= ,
即 =( , ,1),
在 方向上的射影的长度为
d= = = =
例3.(2000年二省一市高考题) 在直三棱柱ABC- A1B1C1中CA=CB=1,
例4.(2001年二省一市高考题)如图,以底面边长为2a的正四棱锥V-ABCD底面中心O为坐标原点建立空间直角坐标系O-xyz,其中Ox∥BC,Oy∥AB,E为VC的中点,高OV为h。
(1)求cos ; (2)记面BCV为α,面DVC为β,若∠BED是二面角α-VC-β的平面角,求∠BED 。
解:(1)由题意B(a,a,0),
(3)取MN的中点P,连结AP﹑BP,因为AM=AN,BM=BN,
所以AP⊥MN,BP⊥MN,∠APB即为二面角α的平面角。
MN的长最小时M( ,0, ),N( , ,0)
由中点坐标公式P( , , ),又A(1,0,0),B(0,0,0)
∴ =( ,- ,- ), =(- ,- ,- )
∴ cos∠APB= = =-
∴ 面MNA与面MNB所成二面角α的大小为π-arccos
例2.(1991年全国高考题)如图,已知ABCD是边长为4的正方形,E﹑F分别是AB﹑AD的中点,GC⊥面ABCD,且GC=2,求点B到平面EFG的距离。
解:建立如图所示的空间直角坐标系C-xyz,
由题意 C(0,0,0),G(0,0,2),E(2,4,0),F(4,2,0),B(0,4,0)
(2)求 AC1与侧面AB B1A1所成的角。
解:(1)如图,以点A为坐标原点,以AB所在直线为y轴,以AA1所在直线为z轴,以经过原点且与ABB1A1垂直的直线为x轴,建立如图所示的空间直角坐标系。
由已知得:A(0,0,0),B(0,a,0),A1(0,0, a),C1(- , , a)
(2)取A1B1的中点M,于是有M(0, , a),连AM﹑MC1有
三﹑利用面面垂直的性质建系。
有些图形没有互相垂直且相交于一点的三条直线,但是有两个互相垂直的平面,我们可以利用面面垂直的性质定理,作出互相垂直且相交于一点的三条直线,建立空间直角坐标系。
例5.(2000年全国高考题)如图,正三棱柱ABC- A1B1C1的底面边长为a,侧棱长为 a 。
(1)建立适当的坐标系,并写出A﹑B﹑A1﹑C1的坐标;
一﹑直接建系。
当图形中有互相垂直且相交于一点的三条直线时,可以利用这三条直线直接建系。
例1.(2002年全国高考题)如图,正方形ABCD﹑ABEF的边长都是1,而且平面ABCD﹑ABEF互相垂直。点M在AC上移动,点N在BF上移动,若CM=BN=a( )。 (1)求MN的长; (2)当a为何值时,MN的长最小;
例6.(2002年上海高考题)如图,三棱柱OAB-O1A1B1,平面OBB1O1⊥平面OAB,∠O1OB=600,∠AOB=900,且OB=OO1=2,OA= 。
(3)当MN最小时,求面MNA与面MNB所成二面角α的大小。
解:(1)以B为坐标原点,分别以BA﹑BE﹑BC为x﹑y﹑z轴建立如图所示的空间直角坐标系B-xyz,由CM=BN=a,M( ,0, ),N( , ,0)
∴ =(0, , )
∴ =
= ( )
(2)由(1) =
所以,当a= 时, = ,
即M﹑N分别移动到AC﹑BF的中点时,MN的长最小,最小值为 。
(1) =(1,-1,1), 故 = ;
(2) =(0,1,2), =(1,-1,2)
∴cos =
= =
(3) =(-1, 1,-2),
=( , ,0)
∴ =-1× +1× +(-2)×0=0
∴ A1B⊥C1M
二﹑利用图形中的对称关系建系。
有些图形虽然没有互相垂直且相交于一点的三条直线,但是图形中有一定的对称关系(如:正三棱锥﹑正四棱锥﹑正六棱锥等),我们可以利用图形的对称性建立空间直角坐标系来解题。
D(-a,-a,0),E(- , , )
∴ =(- ,- , ),
=( , , )
cos =
=
=
(2)∵ V(0,0,h),C(-a,a,ቤተ መጻሕፍቲ ባይዱ)
∴ =(-a,a,-h)
又 ∠BED是二面角α-VC-β的平面角
∴ ⊥ , ⊥
即 · = - - =a2- =0,a2=
代入 cos = =-
即∠BED=π-arccos
∠BCA=900,棱A A1=2,M﹑N分别是A1B1﹑A1A的中点。
(1)求 的长; (2) 求cos ;(3)求证:A1B⊥C1M
解:建立如图所示的空间直角坐标系C-xyz,则C(0,0,0),B(0,1,0), N(1,0,1),A1(1,0,2),B1(0,1,2),C1(0,0,2),M( , ,2)
4、求两异面直线AB与CD的夹角:
5、求二面角的平面角 : ,( , 为二面角的两个面的法向量)
6、求二面角的平面角 : ,(射影面积法)
7、求法向量:①找;②求:设 为平面 内的任意两个向量, 为 的法向量,
则由方程组 ,可求得法向量 .
高中新教材9(B)引入了空间向量坐标运算这一内容,使得空间立体几何的平行﹑垂直﹑角﹑距离等问题避免了传统方法中进行大量繁琐的定性分析,只需建立空间直角坐标系进行定量分析,使问题得到了大大的简化。而用向量坐标运算的关键是建立一个适当的空间直角坐标系。
=(- ,0,0),且 =(0,a,0), =(0,0, a)
由于 · =0, · =0,故MC1⊥平面AB B1A1。
∴A C1与AM所成的角就是AC1与侧面AB B1A1所成的角。
∵ =(- , , a), =(0, , a),
∴ · =0+ +2a2= ,
= = a,
= =
∴cos = =
∴ 与 所成的角,即AC1与侧面AB B1A1所成的角为30o。
建立空间直角坐标系解立体几何题
建立空间直角坐标系,解立体几何高考题
立体几何重点、热点:
求线段的长度、求点到平面的距离、求直线与平面所成的夹角、求两异面直线的夹角、求二面角、证明平行关系和垂直关系等.
常用公式:
1、求线段的长度:
2、求P点到平面 的距离: ,(N为垂足,M为斜足, 为平面 的法向量)
3、求直线l与平面 所成的角: ,( , , 为 的法向量)