高二数学上册各章节知识点总结
高二数学上学期知识点总结

高二数学上学期知识点总结一、函数与导数1. 函数的概念与性质- 函数的定义- 函数的表示方法:解析式、图象、表格- 函数的域与值域- 函数的奇偶性- 函数的单调性- 函数的周期性- 函数的对称性2. 基本初等函数- 幂函数、指数函数、对数函数- 三角函数:正弦、余弦、正切等- 反三角函数- 双曲函数3. 函数的运算- 函数的四则运算- 复合函数- 反函数- 分段函数4. 导数的概念与计算- 导数的定义- 导数的几何意义与物理意义- 求导法则:常数法则、幂法则、积法则、商法则- 高阶导数5. 函数的极值与最值问题- 极值的定义与判定- 利用导数求函数的最值- 函数的最大值与最小值的应用二、三角函数与三角恒等变换1. 三角函数的图像与性质- 三角函数的周期性- 三角函数的奇偶性- 三角函数的单调性- 三角函数的极值与最值2. 三角恒等变换- 基本三角恒等式- 角的和差公式- 二倍角公式- 半角公式- 和差化积与积化和差公式3. 解三角形- 正弦定理与余弦定理- 应用正弦定理与余弦定理解三角形问题三、数列与数学归纳法1. 数列的概念与分类- 数列的定义- 等差数列与等比数列- 数列的通项公式与求和公式2. 数列的极限- 极限的概念- 数列极限的性质- 极限的四则运算3. 数学归纳法- 数学归纳法的原理- 证明数列的通项公式- 证明与自然数相关的命题四、解析几何1. 平面直角坐标系- 坐标系的定义与性质- 点的坐标与距离公式- 直线的方程:点斜式、两点式、一般式2. 圆的方程- 圆的标准方程- 圆的一般方程- 圆与直线、圆与圆的位置关系3. 圆锥曲线- 椭圆的标准方程与性质- 双曲线的标准方程与性质- 抛物线的标准方程与性质4. 空间几何- 空间直角坐标系- 空间直线与平面的方程- 简单几何体的体积与表面积公式五、概率与统计1. 概率的基本概念- 随机事件与概率的定义- 条件概率与独立事件- 全概率公式与贝叶斯公式2. 随机变量与分布- 随机变量的定义- 离散型与连续型随机变量- 常见分布:二项分布、泊松分布、均匀分布、正态分布3. 统计量与统计图表- 常见的统计量:均值、中位数、众数、方差、标准差- 统计图表的绘制与解读:条形图、直方图、箱线图4. 参数估计与假设检验- 点估计与区间估计- 假设检验的基本步骤- 显著性水平与P值以上是高二数学上学期的主要知识点总结。
高二数学知识点全总结人教版上册

高二数学知识点全总结人教版上册数学是一门重要的学科,是培养学生逻辑思维和分析问题能力的关键,也是高考的一项重要考试科目。
高二是学习数学知识的关键时期,本文将对人教版高二上册的数学知识点进行全面总结,以帮助同学们更好地掌握和复习相关知识。
第一章:函数与导数在本章中,我们将学习函数的概念、性质和种类,以及导数的基本概念、计算方法和应用。
1.1 函数在高二数学中,函数是一个很重要的概念。
函数可以看作是自变量和因变量之间的联系。
函数的表示方式有多种,包括显式函数、隐式函数和参数方程等。
1.2 函数的性质函数的性质包括奇偶性、周期性、单调性等。
通过研究函数的性质,可以更好地理解和分析函数的特点和行为。
1.3 导数的概念导数是函数的重要性质之一。
导数表示函数在某一点上的变化率,也可以看作是函数曲线在该点处的切线斜率。
1.4 导数的计算方法计算导数有多种方法,包括用定义法求导、利用常用函数的导数性质求导和使用导数运算法则等。
1.5 导数的应用导数在实际生活中有广泛的应用,比如切线的应用、函数图像的分析和最优化问题等。
第二章:数列和数学归纳法数列是高二数学中的重要内容之一,它包括等差数列、等比数列和通项公式等。
2.1 等差数列等差数列是指数列中相邻两项之差都相等的数列,它可以通过通项公式来表示。
2.2 等比数列等比数列是指数列中相邻两项之比都相等的数列,它可以通过通项公式和前n项和公式来表示。
2.3 数学归纳法数学归纳法是一种证明数学命题的方法,在高二数学中具有重要的应用价值。
通过数学归纳法可以证明数列的一般性质和定理。
第三章:三角函数与解三角形三角函数是高中数学的重点内容之一,它包括三角函数的定义、基本性质、图像和周期等。
3.1 三角函数的定义三角函数包括正弦、余弦、正切、余切、正割和余割等六个函数,它们的定义是通过三角比定义的。
3.2 三角函数的图像和性质通过绘制三角函数的图像,可以更好地理解和掌握它们的性质,比如函数的周期、奇偶性和单调性等。
高二上数学知识点总结

高二上数学知识点总结一、函数与方程1、函数的定义、性质及表示(定义域、值域、定义域、值域的关系)函数是一种特殊的数量关系,函数的表示形式有多种,解析函数是最常用的表示形式,它由定义域和值域确定,定义域决定了它在哪些x值得上有意义,值域决定了它在哪些y值上有意义。
2、函数的图像函数的图像是由曲线给出的,主要有直线、圆、抛物线、双曲线、椭圆、指数函数等形状。
3、一元函数的极值函数y=f(x)在定义域内的极值分为极大值和极小值,取决于f(x)的增减性。
通常可以通过寻找极大值、极小值的判别式,来判断函数的极值情况。
4、方程的类型可以根据方程的阶数,将其分为一元方程、二元方程、立方方程、高阶方程等,根据两边式子数量的多少,将其分为不等式、等式;根据解的个数,又可以将其分为可解和不可解方程。
5、方程的求解常见的一元方程求解方法有开根号法、完全平方因式法、因式分解法、分段函数法、解析法、组合法等。
二、圆与椭圆1、圆的定义及性质圆是由直径向内部定位的平行于直径的弧线组成的平面图形,它具有特殊的几何性质,如圆心角等边三角形,圆周等分等。
2、圆的学习表示法圆可以用既知直径法和标准方程表示,既知直径法表示为用两个直径的中点和圆的半径表示,标准方程表示为用圆的圆心和半径表示。
3、椭圆椭圆是一种形状为椭圆的曲线,它具有自己特定的方程表示,一般情况下,椭圆的内切线是直径,外切线是椭圆的短轴,一般椭圆的最大值由长轴,最小值由短轴决定。
4、椭圆的中心坐标表示法椭圆可以用中心坐标表示,即把图形移动到椭圆的中心坐标,再把椭圆沿着y轴对称,再旋转一个特定的角度。
三、三角形三角形是一种由三条线段组成的平面图形,线段之间不会发生重叠,每条边都与另外边相连接。
三角形的内角和总是180度,每两个内角的和是360度的两倍,三角形的边长全部大于0,两边和必须大于第三边;三角形的以边中点为圆心的内切圆连接三角形的顶角,两个顶角之间的内接圆相同。
3、三角形内角度数三角形的内角可以有相等的三角形,等腰三角形,等边三角形,普通三角形,它们的内角的度数的和都是180度,而且相等三角形的内角全部是相等的,等腰三角形的两个角是相等的,等边三角形的三个角全部是一样的。
高二数学上册单元知识点

高二数学上册单元知识点本文将为您详细介绍高二数学上册的各个单元知识点,包括函数与方程、空间几何、数列与数学归纳法、三角函数和立体几何五个部分。
让我们逐一进行讨论。
一、函数与方程在这一单元中,我们将学习到各种类型的函数和方程。
其中包括一次函数、二次函数、指数函数、对数函数、三角函数等。
我们将学习它们的定义、性质及其在实际问题中的应用。
此外,我们还将学习如何求解一元一次方程、一元二次方程以及简单的不等式。
二、空间几何在这一单元中,我们将着重研究平面几何和立体几何。
我们将学习平面几何中的图形性质、相交定理和距离计算等内容。
在立体几何方面,我们将学习到各种立体图形的性质、体积和表面积的计算等。
三、数列与数学归纳法在这一单元中,我们将学习数列的概念及其性质。
我们将重点学习等差数列和等比数列的求和公式和通项公式推导。
此外,我们还将学习如何利用数学归纳法证明数学问题。
四、三角函数在这一单元中,我们将深入研究三角函数及其应用。
我们将学习正弦函数、余弦函数和正切函数等的定义、性质和图像变化规律。
同时,我们还将学习三角函数的复合、反函数和解三角方程等内容。
五、立体几何在这一单元中,我们将进一步研究立体几何。
我们将学习圆锥、圆柱、圆盘以及球等立体图形的性质和计算。
此外,我们还将学习空间几何中的向量概念和向量的运算,以及向量在实际问题中的应用。
通过学习以上五个单元,我们将全面掌握高二数学上册的知识点。
这些知识将帮助我们更好地理解数学概念,提高我们的数学分析和解决问题的能力。
希望本文的详细介绍能够帮助您更好地理解高二数学上册的单元知识点,并在学习中取得好成绩。
祝您学业进步!。
高二数学知识点总结(8篇)

高二数学知识点总结一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。
二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
三、数列(12课时,5个)2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。
四、三角函数(46课时,17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。
五、平面向量(12课时,8个)2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。
六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。
七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。
八、圆锥曲线(18课时,7个)1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。
高二数学知识点总结(精选15篇)

高二数学知识点总结(精选15篇)高二数学知识点总结1第一章:解三角形。
掌握正弦余弦公式及其变式和推论和三角面积公式即可。
第二章:数列。
考试必考。
等差等比数列的通项公式、前n 项和及一些性质。
这一章属于学起来很容易,但做题却不会做的类型。
考试题中,一般都是要求通项公式、前n项和,所以拿到题目之后要带有目的的去推导。
第三章:不等式。
这一章一般用线性规划的形式来考察。
这种题一般是和实际问题联系的,所以要会读题,从题中找不等式,画出线性规划图。
然后再根据实际问题的限制要求求最值。
选修中的简单逻辑用语、圆锥曲线和导数:逻辑用语只要弄懂充分条件和必要条件到底指的是前者还是后者,四种命题的真假性关系,逻辑连接词,及否命题和命题的否定的区别,考试一般会用选择题考这一知识点,难度不大;圆锥曲线一般作为考试的压轴题出现。
而且有多问,一般第一问较简单,是求曲线方程,只要记住圆锥曲线的表达式难度就不大。
后面两到三问难打一般会很大,而且较费时间。
所以不建议做。
这一章属于学的比较难,考试也比较难,但是考试要求不高的内容;导数,导数公式、运算法则、用导数求极值和最值的方法。
一般会考察用导数求最值,会用导数公式就难度不大。
高二数学知识点总结2一、集合、简易逻辑(14课时,8个)1、集合;2、子集;3、补集;4、交集;5、并集;6、逻辑连结词;7、四种命题;8、充要条件。
二、函数(30课时,12个)1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。
12、函数的应用举例。
三、数列(12课时,5个)1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。
四、三角函数(46课时,17个)1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。
高二上册数学知识点归纳大全

高二上册数学知识点归纳大全1. 函数与方程1.1 一次函数1.1.1 函数的定义与性质1.1.2 一次函数的图像与性质1.1.3 斜率与函数图像的关系1.2 二次函数1.2.1 函数的定义与性质1.2.2 二次函数的图像与性质1.2.3 利用一些特殊点确定二次函数的图像1.3 指数函数与对数函数1.3.1 函数的定义与性质1.3.2 指数函数与对数函数的图像与性质1.3.3 指数函数与对数函数的运算法则1.3.4 应用:经验增长模型、指数衰减模型等1.4 三角函数1.4.1 三角函数的定义与性质 1.4.2 三角函数的图像与性质 1.4.3 三角函数的运算法则 1.4.4 弧度与角度的互相转换2. 几何与向量2.1 图形的性质与判定2.1.1 三角形的性质与判定 2.1.2 四边形的性质与判定 2.1.3 圆的性质与判定2.2 平面向量2.2.1 向量的定义与性质2.2.2 向量的运算法则2.2.3 向量的共线与垂直判定 2.2.4 平面向量与几何应用3. 三角函数与解析几何3.1 三角函数的图像与性质3.1.1 正弦函数与余弦函数的图像与性质 3.1.2 正切函数与余切函数的图像与性质 3.2 三角函数的基本关系式3.2.1 和差化积公式3.2.2 二倍角公式3.2.3 半角公式3.2.4 诱导公式3.3 三角函数的方程与不等式3.3.1 解三角方程的基本方法3.3.2 三角不等式3.4 解析几何3.4.1 点、直线、平面的方程3.4.2 二次曲线的方程3.4.3 点与曲线的关系4. 概率与统计4.1 随机事件与概率4.1.1 随机事件的基本概念4.1.2 概率的定义与性质4.1.3 随机事件的运算法则4.2 条件概率与独立事件4.2.1 条件概率的定义与性质4.2.2 独立事件的定义与性质4.3 排列与组合4.3.1 排列与排列数4.3.2 组合与组合数4.4 统计与抽样4.4.1 统计的基本概念与性质4.4.2 数据的整理与分析4.4.3 抽样与样本调查以上是高二上册数学的知识点归纳大全,详细介绍了每个章节的内容和要点。
数学高二上册知识点归纳

数学高二上册知识点归纳数学高二上册知识点归纳一:总体和样本①在统计学中,把研究对象的全体叫做总体。
②把每个研究对象叫做个体。
③把总体中个体的总数叫做总体容量。
④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,研究,我们称它为样本.其中个体的个数称为样本容量。
简单随机抽样也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随。
机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础,高三。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
数学高二上册知识点归纳二:简单随机抽样常用的方法①抽签法②随机数表法③计算机模拟法④使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
抽签法①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查。
数学高二上册知识点归纳三:函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;数学高二上册知识点归纳四:立体几何初步(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
高二上学期数学知识点归纳总结大全

高二上学期数学知识点归纳总结大全1500字高二上学期数学知识点归纳总结大全一、函数与方程1.函数与方程的概念和性质2.一次函数及其图像、性质与应用3.二次函数及其图像、性质与应用4.含有两个未知数的方程与一次方程组5.高次函数及其特性与应用6.绝对值函数及其图像与性质7.二次函数的图像与性质8.组合函数及其性质与应用二、数列与数列的应用1.数列的概念与性质2.数列的通项公式与求和公式3.等差数列4.等比数列5.等差数列与等比数列的联系与应用6.递推数列三、几何1.平面几何基本概念和性质2.平面内直线和角的概念及其性质3.平行线、垂线与角4.平面内的等腰三角形、等边三角形、直角三角形和等腰直角三角形的性质5.圆的基本概念和性质6.圆内角、弧及弧度制7.扇形和扇形的面积8.圆锥曲线的基本概念和性质9.空间直线的位置关系与正交投影10.空间中的平面及其性质四、三角函数与三角方程1.角的概念与角度制2.三角函数的概念、性质与图像3.合角与二倍角公式4.诱导公式和旁选公式5.三角函数的图像与性质6.三角恒等变换与三角方程解题方法7.三角函数的应用五、平面解析几何1.平面直角坐标系2.平面解析几何的基本思想和基本定理3.平面直角坐标系中的直线方程4.平面直角坐标系中的圆方程5.曲线的方程六、统计与概率1.统计量的概念和计算方法2.频率分布、累计频率和频率直方图3.正态分布的概念和性质4.离散型随机变量的概念和性质5.随机事件、概率的概念和计算方法6.条件概率与事件间的独立性7.排列与组合的概念与计算方法8.概率统计中的应用问题以上是高二上学期数学知识点归纳总结的大致内容,包括了函数与方程、数列与数列的应用、几何、三角函数与三角方程、平面解析几何、统计与概率等知识点。
希望能对你的学习有所帮助!。
高二数学上学期知识点总结

高二数学上学期知识点总结一、不等式与不等式组1. 不等式的基本性质(1)等式两边同时加(减)一个数,不等号方向不变。
(2)等式两边同时乘(除)一个正数,不等号方向不变。
(3)等式两边同时乘(除)一个负数,不等号反向。
2. 不等式组的解法(1)图解法(2)代入法(3)消元法(4)代换法二、函数与方程1. 函数的概念(1)函数的定义(2)函数的自变量、因变量2. 基本初等函数(1)一次函数(2)二次函数(3)指数函数(4)对数函数(5)幂函数(6)分式函数(7)绝对值函数3. 函数的性质与特征(1)区间(2)单调性(3)奇偶性(4)周期性4. 方程与函数的关系(1)函数的零点(2)函数的方程及解法三、导数与微积分1. 导数的概念(1)导数的定义(2)导数的计算(3)导数的几何意义2. 导数的应用(1)函数的单调性与导数的关系(2)函数的极值与导数的关系(3)函数的凹凸性与导数的关系3. 基本初等函数的导数(1)常数函数的导数(2)幂函数的导数(3)指数函数的导数(4)对数函数的导数4. 微分与微分中值定理(1)微分的概念(2)微分的计算(3)微分中值定理(4)泰勒公式四、平面向量1. 平面向量的概念2. 平面向量的表示法(1)以坐标形式表示(2)以数量和方向表示(3)以线段表示3. 平面向量的运算(1)平面向量的加法(2)平面向量的数乘4. 平面向量的应用(1)平行四边形的性质(2)向量共线(3)向量的线性运算5. 空间向量(1)空间向量的概念(2)空间向量的表示(3)空间向量的运算五、空间几何1. 空间中的直线和平面(1)直线的方程(2)直线的位置关系(3)平面的方程(4)平面的位置关系2. 空间中的角与距离(1)空间中的角(2)点到直线的距离(3)点到平面的距离3. 空间中的立体图形(1)球(2)圆柱(3)锥体(4)棱柱4. 空间向量在立体图形中的应用(1)直线平行(2)直线垂直(3)平面平行(4)平面垂直六、三角函数1. 弧度制(1)弧长与圆心角(2)弧度与角度的关系2. 三角函数的概念(1)正弦函数(2)余弦函数(3)正切函数3. 三角函数的性质与图像(1)周期性和奇偶性(2)单调性(3)极值4. 三角函数的变换与性质(1)角度变换公式(2)辅助角公式(3)和差化积(4)倍角化积(5)和角化积5. 三角函数方程与三角函数不等式(1)三角函数方程的解法(2)三角函数不等式的解法七、概率统计1. 概率的概念(1)基本概率事件(2)概率的计算2. 条件概率(1)条件概率的概念(2)乘法公式3. 离散型随机变量与连续型随机变量(1)离散型随机变量的概念(2)连续型随机变量的概念4. 统计学的概念(1)总体与样本(2)均值、方差、标准差(3)正态分布八、空间解析几何1. 空间直角坐标系(1)空间直角坐标系的建立(2)点的坐标2. 空间中的直线和平面(1)空间直线的方程(2)平面的方程3. 直线与平面的位置关系(1)点到直线的距离(2)点到平面的距离4. 空间中的立体图形(1)球体的方程(2)锥体的方程5. 空间向量(1)空间向量的概念(2)空间向量的线性运算读者可将以上重难点知识内容进行整理归纳,增加相关例题、习题和试题,以帮助学生复习和巩固所学知识。
高二数学上册各章节知识点总结(大纲版)

高二数学复习知识点归纳总结不等式单元知识总结一、不等式的性质1 .两个实数a与b之间的大小关系(1)a—b>0二a>b;(2)a—b =0= a = b;(3)a—b v0= a v b.a> b I -⑺cv厂a—a> b> 0(8)c> d> 0a> b> 0(9)0v c v d "c> b —d(异向不等式可减)ac> bd(同向正数不等式可乘> # (异向正数不等式可除a(4)「> 1 二a>b; b 若a、b R,贝U (5)¥ = 1 = a = b;ba> b> 01 -(10)n N -a n>b n(正数不等式可乘方a> b> 01 -(1%N - n a>n b(正数不等式可开方)(6) —v 1 二a v b.b2 .不等式的性质(12)a > b > 0= - v-(正数不等式两边取倒数)ba3 .绝对值不等式的性质(1)a >b= b v a(对称性)(1)|a| > a;|a|= (a> 0), (a v 0).a> b I 一〉二a>c(传递性)b > c ⑵如果a > 0,那么|x| v a= 2 2x v a ——a v x v a;(3)a> b= a+ c> b+ c(加法单调性)|x| > a= x2> a2二x>a或x<—a.a> b —=ac> bcc> 0⑷(乘法单调性)a> b=ac< bc c v 0 ⑶ la • b| =|a| • |b| .⑷f| =也(b丰0). b |b|(5)a + b>c= a> c—b(移项法则)(5) |a| —|b| w|a ±b| w |a| + |b| .(6) |a 1 + a2+ ......... + a n| w |a 11 + |a 2| + ........ + |a n| .二、不等式的证明1.不等式证明的依据a> b —(6) -■ a+ c>b+ d(同向不等式可加)c> da、b同号=ab> 0; a、b异号=ab v 0(1)实数的性质:a—b> 0= a>b; a—b v 0二a v b; a—b=O二a = b ⑵不等式的性质(略)_ 2 2(3)重要不等式:① |a| >0; a >0; (a —b) >0(a、b€ R)②a2+ b2> 2ab(a、b € R,当且仅当a=b时取“=”号)a +b , ________③2》■- ab(a、b • R ,当且仅当a = b时取“二”号)2 •不等式的证明方法(1)比较法:要证明a> b(a v b),只要证明a —b>0(a —b v 0),这种证明不等式的方法叫做比较法. 用比较法证明不等式的步骤是:作差一一变形一一判断符号.f(x) 1 f(x) > 0⑷v 0与l g(x)v0 v g(x)与—g(x) > g(x)①与f(x)f(x)g(x)f(x) v0 或同解.g(x) > 0v f(x) v g(x)同解.> g(x)或f(x) v —(g(x)丰 0)(g(x) > 0)g(x)(其中g(x) > 0)同解;②与g(x) v 0同解.(2) 综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.(3) 分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.f(x) > [g(x)]2(7) ,f(x) > g(x)与f(x) > 0[g(x) > 0f(x) v[g(x)](8) 、.,f(x) v g(x)与f(x)亠0(9) 当a> 1 时,a f(x)> a g(x)与f(x)或f(x)>0同解.g(x) v 02同解.> g(x)同解,当0 v a v 1 时,a f(x)> a g(x)与f(x) v g(x)同解.三、解不等式1.解不等式问题的分类(1) 解一元一次不等式.(2) 解一元二次不等式.(3) 可以化为一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解无理不等式;④解指数不等式;⑤解对数不等式;⑥解带绝对值的不等式;⑦解不等式组.2 .解不等式时应特别注意下列几点:(1) 正确应用不等式的基本性质.(2) 正确应用幕函数、指数函数和对数函数的增、减性.(3) 注意代数式中未知数的取值范围.3 .不等式的同解性r, — f(x) > g(x)…(10)当a> 1时,bg a f(x)> ^a g(x)与f(x) > 0 同解.[f(x) v g(x)当0v a v1 时,log a f(x) >log a g(x)与f(x) > 0 同解.g(x) > 0直线和圆的方程单元知识总结(1)f(x) • g(x) > 0与f(x) > 0 g(x) > 0(2)f(x) • g(x)v 。
高二数学上册各章节知识点总结(大纲版)

高二数学上册各章节知识点总结(大纲版) 不等式单元知识总结一、不等式的性质1.两个实数a与b之间的大小关系:1) a-b>0 ⇔ a>b;2) a-b=0 ⇔ a=b;3) a-b<0 ⇔ a<b;4) a/b>1 ⇔ a>b (若a、b∈R+)5) a/b=1 ⇔ a=b (若a、b∈R+)6) a/b<1 ⇔ a<b (若a、b∈R+)2.不等式的性质:1) a>b ⇔ b<a (对称性)2) a>b ∧ b>c ⇒ a>c (传递性)3) a>b ⇔ a+c>b+c (加法单调性)4) a>b ∧ c<0 ⇒ ac<bc (乘法单调性)5) a+b>c ⇔ a>c-b (移项法则)6) a>b ∧ c>d ⇒ a+c>b+d (同向不等式可加)7) a>b ∧ cb-d (异向不等式可减)8) a>b ∧ c>d ⇒ ac>bd (同向正数不等式可乘)9) a>b ∧ cd (异向正数不等式可除)10) a>b ∧ n∈N ⇒ a^n>b^n (正数不等式可乘方)11) a>b ∧ n∈N ⇒ n√a>n√b (正数不等式可开方)12) a>b ⇒ 1/a<1/b (正数不等式两边取倒数)3.绝对值不等式的性质:1) |a|≥a;|a|=a (a≥0),|a|=-a (a<0)2) 若a>0,则 |x|a ⇔ x^2>a^2 ⇔ x>a 或 x<-a。
3) |a·b|=|a|·|b|4) |a/b|=|a|/|b| (b≠0)5) |a|-|b|≤|a±b|≤|a|+|b|6) |a1+a2+…+an|≤|a1|+|a2|+…+|an|二、不等式的证明1.不等式证明的依据:1) 实数的性质:a、b同号⇔ ab>0;a、b异号⇔ ab0 ⇔a>b;a-b<0 ⇔ a<b;a-b=0 ⇔ a=b2) 不等式的性质 (略)3) 重要不等式:①|a|≥a^2;②a^2+b^2≥2ab (a、b∈R,当且仅当a=b时取“=”号);③(a+b)/2≥√(ab) (a、b∈R+,当且仅当a=b时取“=”号)2.不等式的证明方法 (略)直线方程的基本形式有点斜式、斜截式、两点式、截距式、参数式和一般式。
高二数学各章知识点归纳总结

高二数学各章知识点归纳总结高二数学是学生在数学学科中的重要阶段,它涵盖了各种基础概念和重要知识点。
为了帮助同学们更好地理解和掌握这些知识点,下面将对高二数学各章的知识进行归纳总结。
一、函数与方程1. 函数的基本概念函数是一种特殊的关系,它将一个集合中的每一个元素映射到另一个集合中的唯一元素。
函数可以用公式、图像和表格等形式来表示。
2. 一次函数与二次函数一次函数的形式为y=ax+b,其中a为斜率,b为截距。
二次函数的形式为y=ax²+bx+c,其中a、b、c为常数。
3. 指数与对数函数指数函数的形式为y=a^x,其中a为底数,x为指数。
对数函数是指数函数的逆运算,形式为y=logₐx,其中a为底数,x为真数。
4. 三角函数正弦函数、余弦函数和正切函数是最常见的三角函数。
它们分别表示一个角的正弦值、余弦值和正切值。
5. 方程的求解线性方程、二次方程、指数方程、对数方程和三角方程等的求解方法需要根据具体情况选择合适的方法,并注意正确运用等式性质和变形法则。
二、数列与数学归纳法1. 数列的基本概念数列是按一定规律排列的一组数,其中每个数称为数列的项。
数列可以是等差数列、等比数列或其他特殊数列。
2. 等差数列与等差数列求和公式等差数列的通项公式为an=a₁+(n-1)d,其中a₁为首项,d为公差。
等差数列的前n项和公式为Sn=(2a₁+(n-1)d)n/2。
3. 等比数列与等比数列求和公式等比数列的通项公式为an=a₁q^(n-1),其中a₁为首项,q为公比。
等比数列的前n项和公式为Sn=a₁(1-q^n)/(1-q)。
4. 数学归纳法数学归纳法是一种证明方法,它分为基础步骤和归纳步骤。
基础步骤是验证当n=1时命题成立,归纳步骤是假设当n=k时命题成立,证明当n=k+1时命题也成立。
三、平面向量1. 向量的基本概念与表示向量是具有大小和方向的量,可以用有向线段来表示。
向量的表示方法有坐标表示、数量表达和单位向量表示等。
高二数学知识点总结

高二数学知识点总结高二数学知识点总结第一章直线与圆1. 点、直线、线段、射线的定义及表示方法;2. 平面直角坐标系的建立及其在几何中的应用;3. 直线的斜率及其性质;4. 直线的方程及其变形;5. 圆的定义及表示方法;6. 圆的方程及其变形;7. 直线与圆的位置关系及其性质。
第二章函数1. 函数的定义及表示方法;2. 基本初等函数的概念、性质及其图像;3. 复合函数及其性质;4. 线性函数及其性质;5. 一次函数及其图像、性质及应用;6. 二次函数及其图像、性质及应用;7. 反比例函数及其性质;8. 推广概念——函数的奇偶性、周期性、单调性等。
第三章三角函数1. 角度的定义及其表示方法;2. 弧度制的概念及其与角度的转换;3. 常用角的度数制和弧度制的相关计算;4. 正弦函数、余弦函数、正切函数、余切函数的定义及其性质;5. 锐角三角函数的特殊角值与常用公式;6. 三角函数的基本图像及其变形;7. 反三角函数及其性质。
第四章解析几何1. 点、直线、平面的向量表示及其性质;2. 直线斜截式、点斜式、两点式、一般式及其相互转换;3. 点、直线、平面间的距离公式及其应用;4. 平面上的向量运算、数量积、向量积的定义及其性质;5. 圆的向量表示及其性质;6. 二维向量与三维向量的互化。
第五章解方程与不等式1. 一元一次方程、一元二次方程及其根的判别及应用;2. 一元一次不等式、一元二次不等式的解法及其图像表示;3. 绝对值方程与不等式、分式方程与不等式的解法及其图像表示;4. 特殊函数方程与不等式的解法及其应用。
第六章三角恒等式1. 诱导公式及其证明;2. 和差化积公式及其反向应用;3. 二倍角公式、三倍角公式及其反向应用;4. 半角公式及其应用;5. 扇形、圆弧、弓形的面积与圆心角的关系。
第七章数列与数学归纳法1. 数列的概念及表示方法;2. 常见数列——等差数列、等比数列、斐波那契数列的性质及其应用;3. 递推数列的概念及其性质;4. 通项公式的求法及其应用;5. 数学归纳法的基本概念及其应用。
高二数学人教版上册知识点

高二数学人教版上册知识点(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高二数学人教版上册知识点本店铺为大家整理的,在日常过程学习中,相信大家一定都接触过知识点吧!知识点有时候特指教科书上或考试的知识。
数学高二上学期知识点总结

数学高二上学期知识点总结高二上学期数学知识点总结
一、函数与导数
1. 函数概念与表示方法
2. 函数的性质和运算
3. 导数的概念和定义
4. 导数的基本运算法则
5. 高阶导数和导数的应用
二、三角函数
1. 弧度制和角度制的转换
2. 基本三角函数的性质和图像
3. 三角函数的图像变换
4. 三角函数的复合与反函数
5. 三角函数的应用
三、数列与数学归纳法
1. 数列的概念和表示方法
2. 数列的性质和运算
3. 等差数列与等比数列
4. 数学归纳法的基本原理和应用
5. 数列的极限与无穷数列
四、平面向量与解析几何
1. 向量的概念和表示方法
2. 向量的性质和运算
3. 向量的数量积和向量积
4. 点、直线和平面的向量方程
5. 平面向量的应用
五、概率与统计
1. 随机事件与概率的概念
2. 事件的运算与概率的性质
3. 条件概率和独立性
4. 随机变量与概率分布
5. 统计与抽样调查
六、数学证明与推理
1. 数学证明的基本要素与方法
2. 直接证明与间接证明
3. 数学推理的基本规律与方法
4. 数学证明中常用的逻辑关系
5. 数学证明的应用示例
以上是高二上学期数学知识点的一个总结,希望对你有所帮助。
请根据自己的需要在各个知识点上进一步展开学习和总结。
祝你
学业有成!。
高二数学上学期知识点

高二数学上学期知识点 第一部分:三角恒等变换 1.两角和与差正弦、余弦、正切公式:=±)sin(βαβαβαsin cos cos sin ±=±)cos(βαβαβαsin sin cos cos =±)(βαtg βαβαtg tg tg tg ⋅± 1 注意正用、逆用、变形用.例如:tanA+tanB=tan<A+B><1-tanAtanB>2.二倍角公式:sin2α=ααcos sin 2⋅,cos2α=αα22sin cos -=1cos 22-α=α2sin 21-tan 2α=αα2tan 1tan 2-.3.升幂公式是:2cos 2cos 12αα=+2sin2cos 12αα=-.4.降幂公式是:22cos 1sin 2αα-=22cos 1cos 2αα+=.5.万能公式:sin α=2tan 12tan22αα+cos α=2tan 12tan 122αα+-tan α=2tan 12tan22αα-6.三角函数恒等变形的基本策略:〔1〕常值代换:特别是用"1〞的代换,如1=cos2θ+sin2θ〔2〕项的分拆与角的配凑.如分拆项:sin2x+2cos2x=<sin2x+cos2x>+cos2x=1+cos2x ;配凑角:α=〔α+β〕-β,β=2βα+-2βα-等.〔3〕降次与升次.2sin2cos 12αα=-,22cos 2sin sin 1⎪⎭⎫ ⎝⎛+=+ααα,sin α ,cos α可凑倍角公式;22cos 2sin sin 1⎪⎭⎫ ⎝⎛-=-ααα等.〔4〕化弦〔切〕法.将三角函数利用同角三角函数基本关系化成弦〔切〕.注意函数关系,尽量异名化同名、异角化同角.〔5〕引入辅助角.asin θ+bcos θ=22b a +sin<θ+ϕ>,ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=a b确定.7.注意点:三角函数式化简的目标:项数尽可能少,三角函数名称尽可能少,角尽可能小和少,次数尽可能低,分母尽可能不含三角式,尽可能不带根号,能求出值的求出值. 第二部分:解三角形1.边角关系的转化:〔ⅰ〕正弦定理:A a sin =B b sin =C csin =2R<R 为外接圆的半径>;注:〔1〕a=2RsinA;b=2RsinB;c=2RsinC;〔2〕a:b:c=sinA:sinB:sinC;<3>三角形面积公式S=12absinC=12bcsinA=12acsinB;〔ⅱ〕余弦定理:a 2=b 2+c 2-2bc A cos ,bc a c b A 2cos 222-+=2.应用:〔1〕判断三角形解的个数;〔2〕判断三角形的形状;<3>求三角形中的边或角;〔4〕求三角形面积S ;注:三角形中 ①a>b ⇔A>B ⇔sinA>sinB ;②内角和为180︒;③两边之和大于第三边;④在△ABC 中有-tanC B)+tan(A -cosC B)+cos(A sinC=B)+sin(A ==,2cos 2sinC B A =+,2sin 2cos CB A =+在解三角形中的应用.3.解斜三角形的常规思维方法是:〔1〕已知两角和一边〔如A 、B 、c 〕,由A+B+C = π求C,由正弦定理求a 、b .〔2〕已知两边和夹角〔如a 、b 、C 〕,应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后利用A+B+C= π,求另一角.〔3〕已知两边和其中一边的对角〔如a 、b 、A 〕,应用正弦定理求B,由A+B+C = π求C,再由正弦定理或余弦定理求c 边,要注意解可能有多种情况.〔4〕已知三边a 、b 、c,应用余弦定理求A 、B,再由A+B+C = π,求角C .〔5〕术语:坡度、仰角、俯角、方位角〔以特定基准方向为起点〔一般为北方〕,依顺时针方式旋转至指示方向所在位置,其间所夹的角度称之.方位角α的取值X 围是:0°≤α<360. 第三部分:数列 证明数列{}n a 是等差〔比〕数列〔1〕等差数列:①定义法:对于数列{}n a ,若da a nn =-+1<常数>,则数列{}n a 是等差数列. ②等差中项法:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列.注:后两种方法仅适用于选择、填空:③n a pn q =+〔形如一次函数〕④2n S An Bn=+〔常数项为0的二次〕〔2〕等比数列:①定义法:对于数列{}n a ,若)0(1≠=+q q a a n n ,则数列{}n a 是等比数列.②等比中项法:对于数列{}n a ,若212++=n n n a a a )0(≠n a ,则数列{}n a 是等比数列2.求数列通项公式na 方法 <1>公式法:等差数列中an=a1+<n-1>d 等比数列中an= a1qn-1; (0)q ≠<2>⎩⎨⎧≥-==→-)2(,)1(,11n S S n a a S n n n n 〔 注意 :验证a1是否包含在an 的公式中〕 〔3〕递推式为1n a +=n a +f<n> <采用累加法>;1n a +=n a ×f<n> <采用累积法>;例已知数列{}n a 满足11a =,n n a a n n ++=--111(2)n ≥,则n a =________〔答:1n a =〕〔4〕构造法;形如n n a pa q =+,1nn n a ka b -=+〔,k b p,q 为常数且p ≠q 〕的递推数列,可构造等比数列{}na x +,例 ①已知111,32n n a a a -==+,求na 〔答:1231n n a -=-〕; 〔5〕涉与递推公式的问题,常借助于"迭代法〞解决:an =〔an -an-1〕+<an-1-an-2>+……+〔a2-a1〕+a1 ; an =1122n 1n 1n n a a a a a a a ---⋅〔6〕倒数法形如11n n n a a ka b --=+的递推数列如①已知1111,31n n n a a a a --==+,求n a 〔答:132n a n =-〕;3.求数列前n 项和n S .常见方法:公式、分组、裂项相消、错位相减、倒序相加.关键找通项结构.〔1〕公式法:等差数列中Sn=dn n na 2)1(1-+=2)(1n a a n + ;等比数列中 当q=1,Sn=na1 当q≠1,Sn=q q a n --1)1(1=q q a a n --11〔注:讨论q 是否等于1〕. 〔2〕分组法求数列的和:如an=2n+3n ; 〔3〕错位相减法:nn n c b a ⋅=,{}{}成等比数列成等差数列,n n c b ,如an=<2n-1>2n ;〔注1q ≠〕〔4〕倒序相加法求和:如①在等差数列{}n a 中,前4项的和为40,最后4项的和为80,所有各项的和为720,则这个数列的项数n=______;<答:48>;②已知22()1x f x x =+,则111(1)(2)(3)(4)((()234f f f f f f f ++++++=___〔答:72〕〔5〕裂项法求和:)11(1))((1CAn B An B C C An B An a n +-+-=++=,如求和:1111122334(1)n n ++++⨯⨯⨯+=_________〔答: 1n n +〕〔6〕在求含绝对值的数列前n 项和nS 问题时,注意分类讨论与转化思想的应用,总结时写成分段数列.4.nS 的最值问题方法〔1〕在等差数列{}n a 中,有关Sn 的最值问题——从项的角度求解:①当01>a ,d<0时,满足⎩⎨⎧≤≥+001m m a a 的项数m 使得取最大值.②当01>a ,d>0时,满足⎩⎨⎧≥≤+001m m a a 的项数m 使得取最小值.〔2〕转化成二次函数配方求最值〔注:n 是正整数,若n 不是正整数,可观察其两侧的两个整数是否满足要求〕.如①等差数列{}n a 中,125a =,917S S =,问此数列前多少项和最大?并求此最大值.〔答:前13项和最大,最大值为169〕;②若{}n a 是等差数列,首项10,a >200320040a a +>,200320040a a ⋅<,则使前n 项和0n S >成立的最大正整数n 是___ 〔答:4006〕5.求数列{an}的最大、最小项的方法〔函数思想〕:①an+1-an=……⎪⎩⎪⎨⎧<=>000如an= -2n2+29n-3②⎪⎩⎪⎨⎧<=>=+1111 n n a a <an>0> ,如an=n n n 10)1(9+③ an=f<n> 研究函数f<n>的增减性 如an=1562+n n6.常用性质:〔1〕等差数列的性质:对于等差数列{}n a ①.dm n a a m n)(-+=〔n m ≤〕②.若q p m n +=+,则q p m n a a a a +=+.③.若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,kk S S 23-成等差数列.④.设数列{}n a 是等差数列,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和,则有如下性质:<i>奇数项da a a 2,,,531成等差数列,公差为⋯<ii>偶数项da a a 2,,,642成等差数列,公差为⋯⑤.若等差数列{}n a 的前12-n 项的和为12-n S ,等差数列{}n b 的前12-n 项的和为21n T -,则2121n n n n a S b T --=.〔应用于选择、填空,要会推导,正用、逆用〕 〔2〕等比数列性质:在等比数列{}n a 中①.mn m n q a a -=〔n m ≤〕;②.若m+n=p+q,则aman=apaq ;如〔1〕在等比数列{}n a 中,3847124,512a a a a +==-,公比q 是整数,则10a =___〔答:512〕;〔2〕各项均为正数的等比数列{}n a 中,若569a a ⋅=,则3132310log log log a a a +++=〔答:10〕.③.若数列{}n a 是等比数列且q≠-1,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等比数列.如:公比为-1时,4S 、8S -4S 、12S -8S、…不成等比数列7.常见结论:〔1〕三个数成等差的设法:a-d,a,a+d ;四个数成等差的设法:a-3d,a-d,,a+d,a+3d ;〔2〕三个数成等比的设法:a/q,a,aq ; 〔3〕若{an}、{bn}成等差,则{kan+tbn}成等差;〔4〕若{an}、{bn}成等比,则{kan}<k≠0>、⎭⎬⎫⎩⎨⎧n b 1、{anbn}、⎭⎬⎫⎩⎨⎧n n ba 成等比;〔5〕{an}成等差,则 <{}na c c>0>成等比. 〔6〕{bn}<bn>0>成等比,则{logcbn}<c>0且c ≠1>成等差.第四部分 不等式1.两个实数a 与b 之间的大小关系—作差法或作商法2.不等式的证明方法〔1〕比较法〔2〕综合法.〔3〕分析法注:一般地常用分析法探索证题途径,然后用综合法3. 解不等式〔1〕一元一次不等式)0(≠>a b ax 的解法①⎭⎬⎫⎩⎨⎧>>a b x x a ,0②⎭⎬⎫⎩⎨⎧<<a b x x a ,0〔2〕一元二次不等式)0(,02>>++a c bx ax 的解法〔三个二次关系〕 判别式ac b 42-=∆0>∆0=∆0<∆二次函数c bx ax y ++=2的图象一元二次方程 相异实根相等实根没有实根21x x <a b x x 221-==02=++c bx ax 的根02>++c bx ax 解集{}12x x x x x <>或⎭⎬⎫⎩⎨⎧-≠a b x x 2 R 02<++c bx ax 解集{}21x x x x <<φφ注:)(02≥>++c bx ax 解集为R,〔02>++c bx ax 对R x ∈恒成立〕 则〔Ⅰ〕⎪⎩⎪⎨⎧≤∆<∆>)0(00a 〔Ⅱ〕若二次函数系数含参数且未指明不为零时,需验证0=a若02<++c bx ax 解集为R 呢?如:关于x 的不等式04)2(2)2(2<--+-x a x a 对R x ∈恒成立,则a 的取值X 围.略解〔Ⅰ〕成立时,042<-=a 〔Ⅱ〕 ⎩⎨⎧<=∆<-002a 〔3〕绝对值不等式 如果a >0,那么|x|a x a a x a 22<<-<<;⇔⇔ 〔4〕分式不等式若系数含参数时,须判断或讨论系数00<=>,化负为正,写出解集.主要应用:1.解一元二次不等式;2.解分式不等式;3.解含参的一元二次不等式〔先因式分解,分类讨论,比较两根的大小〕;4恒成立问题〔注:①讨论二次项系数是否为0;②开口方向与判别式〕;5.已知12x y -≤-≤,3235x y ≤-≤,求45x y -的取值X 围;〔①换元法;②线性规划法〕.4.简单的线性规划问题应用:〔1〕会画可行域,求目标函数的最值与取得最值时的最优解〔注:可行域边界的虚实〕;〔2〕求可行域内整数点的个数;〔3〕求可行域的面积;〔4〕根据目标函数取得最值时最优解〔个数〕求参数的值〔参数可在线性约束条件中,也可在目标函数中〕;〔5〕实际问题中注意调整最优解〔反代法〕.原命题若p 则q 逆命题若q 则p互逆互否5.常用的基本不等式和重要的不等式〔1〕ab b a R b a 2,,22≥+∈则〔2〕+∈R b a ,,则ab b a 2≥+;注:几何平均数算术平均数,----+ab ba 2〔3〕),()2(222R b a b a b a ∈+≥+〔4〕),(22222+∈+≤+≤≤+R b a b a b a ab b a ab ;6.均值不等式的应用——求最值〔可能出现在实际应用题〕设,0x y >,则2x y xy +≥〔1〕若积P y x P xy 2(有最小值定值),则和+=〔2〕若和22()有最大值(定值),则积S xy S y x =+即:积定和最小,和定积最大. 注:运用均值定理求最值的三要素:"一正、二定、三相等〞技巧:①凑项,例122y x x =+-〔x>2〕②凑系数 ,例 当时,求的最大值;〔答:8〕③添负号,例12(2)2(2)y x x x =-+>-;④拆项,例 求2710(1)1x x y x x ++=>-+的最小值〔答:9 〕⑤构造法,例 求22()(0)1xf x x x =>+21x x =+的最大值〔答:1〕.⑥"1〞的灵活代换,若0,0x y >>且191x y +=,则x y +的最小值是________<答:16>〔3〕若用均值不等式求最值,等号取不到时,需用定义法先证明单调性,后根据单调性求最值,例 求2211y x x =++.第五部分 简易逻辑逻辑联结词,命题的形式:p 或q<记作"p ∨q 〞 >;p 且q<记作"p ∧q 〞 >;非p<记作"┑q 〞 > . 2、"或〞、 "且〞、 "非〞的真值判断〔1〕"非p 〞形式复合命题的真假与F 的真假相反;〔2〕"p 且q 〞形式复合命题当P 与q 同为真时为真,其他情况时为假;〔3〕"p 或q 〞形式复合命题当p 与q 同为假时为假,其他情况时为真.4常见结论的否定形式原结论 否定词 原结论 否定词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于不大于至少有n 个至多有〔1n -〕个小于不小于至多有n 个至少有〔1n +〕个对所有x ,成立存在某x ,不成立p 或q p ⌝且q ⌝ 对任何x ,不成立 存在某x ,成立p 且qp ⌝或q ⌝5、四种命题:原命题:若P 则q ; 逆命题:若q 则p ;否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p.6、四种命题之间的相互关系:一个命题的真假与其他三个命题的真假有如下关系:<原命题⇔逆否命题> ①、原命题为真,它的逆命题不一定为真.②、原命题为真,它的否命题不一定为真.③、原命题为真,它的逆否命题一定为真.7、如果已知p ⇒q 那么我们说,p 是q 的充分条件,q 是p 的必要条件. 若p ⇒q 且q ⇒p,则称p 是q 的充要条件,记为p ⇔q. 8.命题的否定只否定结论;否命题是条件和结论都否定.9、反证法:从命题结论的反面出发〔假设〕,引出<与已知、公理、定理…>矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法.第六部分 圆锥曲线定义、标准方程与性质 〔一〕椭圆 1.定义:若F1,F2是两定点,P 为动点,且21212F F a PF PF >=+ 〔a 为常数〕则P 点的轨迹是椭圆.注:〔1〕若2a 小于|1F 2F |,则这样的点不存在;〔2〕若2a 等于|1F 2F |,则动点的轨迹是线段1F 2F .<3>21F PF ∆中经常利用余弦定理、三角形面积公式将有关线段1PF 、2PF 、2c,有关角21PF F ∠结合起来,建立1PF +2PF 、1PF •2PF 等关系求出1PF 、2PF 的值.注意题目中椭圆的焦点在x 轴上还是在y 轴上.2.椭圆的标准方程:12222=+b y a x 〔a >b >0〕,12222=+b x a y 〔a >b >0〕<注:222a b c =+>.〔1〕.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果2x 项的分母大于2y 项的分母,则椭圆的焦点在x 轴上,反之,焦点在y 轴上.〔2〕.求椭圆的标准方程的方法:⑴ 定位——正确判断焦点的位置;⑵ 定量——设出标准方程后,运用待定系数法求解a 、b.3.椭圆的几何性质:线段1A 2A 、1B 2B 分别叫做椭圆的长轴和短轴.它们的长分别等于2a 和2b,a 和b 分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.离心率:椭圆的焦距与长轴长的比a ce =叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e <1.e 越接近于1时,椭圆越扁;反之,e 越接近于0时,椭圆就越接近于圆.4.点与椭圆的位置关系〔1〕点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. 〔2〕点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b ⇔+>〔二〕双曲线 1.定义:若F1,F2是两定点,21212F F a PF PF <=-〔a 为非零常数〕,则动点P 的轨迹是双曲线.注:〔1〕若2a=|1F 2F |,则动点的轨迹是两条射线;〔2〕若2a >|1F 2F |,则无轨迹.〔3〕若去掉绝对值号,动点M 的轨迹仅为双曲线的一个分支.2.双曲线的标准方程:12222=-b y a x 和12222=-b x a y 〔a >0,b >0〕注:〔1〕222c a b =+〔与椭圆比较〕〔2〕双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a不一定大于b,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.〔3〕求双曲线的标准方程,应注意两个问题:⑴ 定位——正确判断焦点的位置;⑵ 定量——设出标准方程后,运用待定系数法求解a,b.3.双曲线的简单几何性质双曲线12222=-b y a x 为例 实轴长为2a,虚轴长为2b,离心率a c e =>1,离心率e 越大,双曲线的开口越大.双曲线的方程与渐近线方程的关系〔1〕若双曲线方程为12222=-b y a x ⇒渐近线方程:⇒=-02222b y a x x a b y ±= 〔2〕若渐近线方程为x a by ±=⇒0=±b y a x ⇒双曲线可设为λ=-2222b y a x 〔0λ≠〕〔3〕若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222b y a x 〔0λ≠,若0>λ,焦点在x 轴上,若0<λ,焦点在y轴上〕.特别地当⇔=时b a 离心率2=e ⇔两渐近线互相垂直,分别为y=x ±,此时双曲线为等轴双曲线,可设为λ=-22y x 〔0λ≠〕.〔4〕方程221x y m n -=(0,0)m n ≠≠表示双曲线的充要条件是0mn >.〔5〕注意21F PF ∆中结合定义aPF PF 221=-与余弦定理21cos PF F ∠,将有关线段1PF 、2PF 、21F F 和角结合起来.〔三〕抛物线 1.定义:到定点F 与定直线l 的距离相等的点的轨迹是抛物线.定点F 叫抛物线的焦点,定直线l 叫抛物线的准线.注:〔1〕点F 在直线l 外,〔2〕点F 在直线l 上,其轨迹是过点F 且与l 垂直的直线,而不是抛物线.2.抛物线的标准方程有四种类型:px y 22=、px y 22-=、py x 22=、py x 22-=.注:〔1〕方程中的一次项变元决定对称轴和焦点位置;〔2〕一次项前面的正负号决定曲线的开口方向;3.抛物线的几何性质,以标准方程22y px =(0)p >为例:p :焦准距〔焦点到准线的距离〕;焦点: )0,2(p 准线: 2p x -=通径p AB 2= 焦半径:,2px CF += 过焦点弦长p x x p x p x CD ++=+++=212122 y1y2=-p2,x1x2=42p ;注:只适合求过焦点的弦长,对于其它的弦,只能用"弦长公式〞来求.4.直线与抛物线的关系:直线与抛物线方程联立之后得到一元二次方程:x 2+bx+c=0,当△≠0时,两者的位置关系的判定和椭圆、双曲线相同,用判别式法即可;但如果直线和抛物线只有一个公共点,除相切外,还有直线是抛物线的对称轴或是和对称轴平行,此时,不能仅考虑△=0. 注意:>抛物线px y 22=上的动点可设为P ),2(2y p y 或或)2,2(2pt pt P P px y y x 2),(2=其中5.求轨迹的常用方法:〔1〕直接法:直接通过建立x 、y 之间的关系,构成F<x,y>=0,是求轨迹的最基本的方法;〔2〕待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可;〔3〕代入法〔相关点法或转移法〕:若动点P<x,y>依赖于另一动点Q<x1,y1>的变化而变化,并且Q<x1,y1>又在某已知曲线上,则可先用x 、y 的代数式表示x1、y1,再将x1、y1带入已知曲线得要求的轨迹方程;〔4〕定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程; 〔5〕点差法,处理圆锥曲线弦中点问题常用代点相减法,主要用于求斜率.〔注意:验证判别式大于零.〕〔6〕参数法:当动点P 〔x,y 〕坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x 、y 均用一中间变量〔参数〕表示,得参数方程,再消去参数得普通方程.注:①轨迹方程与轨迹的区别,②限制X 围,③根据曲线方程研究曲线类型时注意椭圆与圆的区别,注意次数和符号,④.涉与圆锥曲线的问题勿忘用定义解题. 〔四〕解析几何中的基本公式1.两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-=特别地:x //AB 轴, 则=AB |x2-x1| . y //AB 轴, 则=AB |y2-y1| .2.平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++则:2221B A C C d +-=注意点:①x,y 对应项系数应相等,②方程化成一般式.3.点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:22B A CBy Ax d +++=4.直线与圆锥曲线相交的弦长公式:⎩⎨⎧=+=0)y ,x (F b kx y 消y :02=++c bx ax 〔务必注意0∆>,k 为直线的斜率.〕.若l 与曲线交于A ),(),,(2211y xB y x 则:2122))(1(x x k AB -+==或AB12||y y =-="设而不求〞的解题思想;〕特殊的直线方程: ①垂直于x 轴且截距为a 的直线方程是x=a,y 轴的方程是x=0.②垂直于y 轴且截距为b 的直线方程是y=b,x 轴的方程是y=0.注:判断直线与圆锥曲线的位置关系时,优先讨论二次项系数是否为零,然后再考虑判别式与韦达定理. 第七部分 能力要求能力主要指运算求解能力、数据处理能力、空间想象能力、抽象概括能力、推理论证能力,以与应用意识和创新意识. 1.运算求解能力:能够根据法则和公式进行正确运算、变形;能够根据问题的条件,寻找并设计合理、简捷的运算方法;能够根据要求对数据进行估计和近似计算.2.数据处理能力:能够收集、整理、分析数据,能抽取对研究问题有用的信息,并作出正确判断;能够根据所学知识对数据进行进一步的整理和分析,解决所给问题.3.空间想象能力:能够根据条件作出正确的图形,根据图形想象出直观形象;能够准确地理解和解释图形中的基本元素与其相互关系;能够对图形进行分解、组合;能够运用图形与图表等手段形象地揭示问题的本质和规律.4.抽象概括能力:能从具体、生动的实例中,发现研究对象的本质;能从给定的大量信息材料中,概括出一些结论,并能将其应用于解决问题或作出新的判断.5.推理论证能力:能够根据已知的事实和已获得的正确数学命题,论证某一数学命题的真实性.6.应用意识:能够综合运用所学知识对问题所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学思想和方法解决问题,并能用数学语言正确地表述和解释.7.创新意识:能够独立思考,灵活和综合地运用所学的数学知识、思想和方法,创造性地提出问题、分析问题和解决问题.。
高二的第一学期数学知识点

高二的第一学期数学知识点高二的第一学期数学内容较为广泛,包括了一系列重要的数学知识和技能。
下面将按照不同的章节和知识点进行介绍。
1. 函数与方程高二数学的第一个重点是函数与方程。
这部分内容主要包括函数的概念、性质及图像表示,以及一元一次方程、一元二次方程等各种类型的方程的解法和应用。
2. 三角函数与解三角形三角函数与解三角形是高二数学的第二个重点。
这部分内容主要包括三角函数的定义、性质和图像表示,以及求解各种类型的三角形的面积和角度等问题。
3. 平面向量平面向量是高二数学的第三个重点。
这部分内容主要包括向量的概念、性质和运算,以及向量在几何和物理问题中的应用。
4. 数列与数学归纳法数列与数学归纳法是高二数学的第四个重点。
这部分内容主要涉及数列的概念、性质和求解方法,以及利用数学归纳法证明各种数学命题。
5. 解析几何解析几何是高二数学的第五个重点。
这部分内容主要包括平面直角坐标系与直线、圆的方程,以及利用解析几何解决几何问题。
6. 概率与统计概率与统计是高二数学的第六个重点。
这部分内容主要包括事件与概率、随机变量及其分布、统计图与统计分析等内容,以及概率和统计在实际问题中的应用。
以上是高二第一学期数学的主要知识点,每个知识点都有其特定的概念、性质和解题方法。
在学习过程中,要注重理论与实际问题的结合,通过大量的练习来巩固所学知识。
此外,培养数学思维和解决问题的能力也是数学学习的重要目标。
通过系统学习和不断的实践,相信同学们能够掌握高二数学的知识点,为接下来的学习打下坚实的基础。
希望同学们能够在数学学习中保持积极的态度和良好的学习习惯,不断提高数学素养和解题能力。
加油!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式单元知识总结一、不等式的性质1.两个实数a 与b 之间的大小关系(1)a b 0a b (2)a b =0a =b (3)a b 0a b ->>;-;-<<.⇔⇔⇔⎧⎨⎪⎩⎪若、,则>>;;<<. a b R (4)a b 1a b (5)a b=1a =b (6)a b 1a b ∈⇔⇔⇔⎧⎨⎪⎪⎪⎩⎪⎪⎪+2.不等式的性质(1)a b b a()><对称性⇔(2)a b b c a c()>>>传递性⎫⎬⎭⇒(3)a b a c b c()>+>+加法单调性⇔a b c 0 ac bc >>>⎫⎬⎭⇒(4) (乘法单调性)a b c 0 ac bc ><<⎫⎬⎭⇒(5)a b c a c b()+>>-移项法则⇒(6)a b c d a c b d()>>+>+同向不等式可加⎫⎬⎭⇒(7)a b c d a c b d()><->-异向不等式可减⎫⎬⎭⇒(8)a b 0c d 0ac bd()>>>>>同向正数不等式可乘⎫⎬⎭⇒(9)a b 00c d b d ()>><<>异向正数不等式可除⎫⎬⎭⇒a c(10)a b 0n N a b ()n n >>>正数不等式可乘方∈⎫⎬⎭⇒(11)a b 0n N a ()n >>>正数不等式可开方∈⎫⎬⎭⇒b n(12)a b 01a ()>><正数不等式两边取倒数⇒1b 3.绝对值不等式的性质(1)|a|a |a|= a (a 0)a (a 0)≥;≥,-<.⎧⎨⎩(2)如果a >0,那么|x|a x a a x a 22<<-<<;⇔⇔|x|a x a x a x a 22>>>或<-.⇔⇔(3)|a ·b|=|a|·|b|.(4)|a b | (b 0)=≠.||||a b(5)|a|-|b|≤|a ±b|≤|a|+|b|.(6)|a 1+a 2+……+a n |≤|a 1|+|a 2|+……+|a n |.二、不等式的证明1.不等式证明的依据(1)a b ab 0a b ab 0a b 0a b a b 0a b a b =0a =b实数的性质:、同号>;、异号<->>;-<<;-⇔⇔⇔⇔⇔(2)不等式的性质(略)(3)重要不等式:①|a|≥0;a 2≥0;(a -b)2≥0(a 、b ∈R)②a 2+b 2≥2ab(a 、b ∈R ,当且仅当a=b 时取“=”号) ③≥、,当且仅当时取“”号a b +∈+2ab(a b R a =b =)2.不等式的证明方法(1)比较法:要证明a >b(a <b),只要证明a -b >0(a -b <0),这种证明不等式的方法叫做比较法.用比较法证明不等式的步骤是:作差——变形——判断符号.(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.三、解不等式1.解不等式问题的分类(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化为一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解无理不等式;④解指数不等式;⑤解对数不等式;⑥解带绝对值的不等式;⑦解不等式组.2.解不等式时应特别注意下列几点:(1)正确应用不等式的基本性质.(2)正确应用幂函数、指数函数和对数函数的增、减性.(3)注意代数式中未知数的取值范围.3.不等式的同解性(1)f(x)g(x)0f(x)0g(x)0f(x)0g(x)0·>与>>或<<同解.⎧⎨⎩⎧⎨⎩(2)f(x)g(x)0f(x)0g(x)0f(x)0g(x)0·<与><或<>同解.⎧⎨⎩⎧⎨⎩(3)f(x)g(x)0f(x)0g(x)0 f(x)0g(x)0(g(x)0)>与>>或<<同解.≠⎧⎨⎩⎧⎨⎩(4)f(x)g(x)0f(x)0g(x)0 f(x)0g(x)0(g(x)0)<与><或<>同解.≠⎧⎨⎩⎧⎨⎩(5)|f(x)|<g(x)与-g(x)<f(x)<g(x)同解.(g(x)>0)(6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.(7)f(x)g(x) f(x)[g(x)] f(x)0g(x)0f(x)0g(x)02>与>≥≥或≥<同解.⎧⎨⎪⎩⎪⎧⎨⎩(8)f(x)g(x)f(x)[g(x)]f(x)02<与<≥同解.⎧⎨⎩(9)当a >1时,a f(x)>a g(x)与f(x)>g(x)同解,当0<a <1时,a f(x)>a g(x)与f(x)<g(x)同解.(10)a 1log f(x)log g(x)f(x)g(x)f(x)0a a 当>时,>与>>同解.⎧⎨⎩当<<时,>与<>>同解.0a 1log f(x)log g(x)f(x)g(x) f(x)0g(x)0a a ⎧⎨⎪⎩⎪单元知识总结一、坐标法1.点和坐标建立了平面直角坐标系后,坐标平面上的点和一对有序实数(x ,y)建立了一一对应的关系.2.两点间的距离公式设两点的坐标为P 1(x 1,y 1),P 2(x 2,y 2),则两点间的距离|P P |=12()()x x y y 212212-+-特殊位置的两点间的距离,可用坐标差的绝对值表示:(1)当x 1=x 2时(两点在y 轴上或两点连线平行于y 轴),则|P 1P 2|=|y 2-y 1|(2)当y 1=y 2时(两点在x 轴上或两点连线平行于x 轴),则|P 1P 2|=|x 2-x 1|3.线段的定比分点(1)P P P P P PP P P PP P P P =P P P P 12121212112定义:设点把有向线段分成和两部分,那么有向线段和的数量的比,就是点分所成的比,通常用λ表示,即λ,点叫做分线段为定比λ的定比分点.P PP 2当点内分时,λ>;当点外分时,λ<.P P P 0P P P 01212(2)公式:分P 1(x 1,y 2)和P 2(x 2,y 2)连线所成的比为λ的分点坐标是x x x y y y =++=++⎧⎨⎪⎪⎩⎪⎪-1212111λλλλλ≠()特殊情况,当是的中点时,λ,得线段的中点坐标P P P =1P P 1212公式x x x y y y =+=+⎧⎨⎪⎪⎩⎪⎪121222二、直线1.直线的倾斜角和斜率(1)当直线和x 轴相交时,把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角,叫做这条直线的倾斜角.当直线和x 轴平行线重合时,规定直线的倾斜角为0.所以直线的倾斜角α∈[0,π).(2)倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,直线的斜率常用表示,即αα≠π.k k =tan ()2∴当k ≥0时,α=arctank .(锐角)当k <0时,α=π-arctank .(钝角)(3)斜率公式:经过两点P 1(x 1,y 1)、P 2(x 2,y 2)的直线的斜率为k =y (x x )212--y x x 121≠2.直线的方程(1)点斜式 已知直线过点(x 0,y 0),斜率为k ,则其方程为:y -y 0=k(x -x 0)(2)斜截式 已知直线在y 轴上的截距为b ,斜率为k ,则其方程为:y=kx +b(3)两点式 已知直线过两点(x 1,y 1)和(x 2,y 2),则其方程为:y y y y x x x ----121121=x (x x )12≠(4)截距式 已知直线在x ,y 轴上截距分别为a 、b ,则其方程为:x a y b +=1(5)参数式 已知直线过点P(x 0,y 0),它的一个方向向量是(a ,b),则其参数式方程为为参数,特别地,当方向向量为x x at y y bt =+=+⎧⎨⎩00(t )v(cos α,sin α)(α为倾斜角)时,则其参数式方程为x x t y y t =+=+⎧⎨⎩00cos sin αα为参数(t )这时,的几何意义是,→→t tv =p p |t|=|p p|=|p p|000(6)一般式 Ax +By +C=0 (A 、B 不同时为0).(7)特殊的直线方程①垂直于x 轴且截距为a 的直线方程是x=a ,y 轴的方程是x=0.②垂直于y 轴且截距为b 的直线方程是y=b ,x 轴的方程是y=0.3.两条直线的位置关系(1)平行:当直线l 1和l 2有斜截式方程时,k 1=k 2且b 1≠b 2.当和是一般式方程时,≠l l 12A A B B C C 121212=(2)重合:当l 1和l 2有斜截式方程时,k 1=k 2且b 1=b 2,当l 1和l 2是一般方程时,A A B B C C 121212==(3)相交:当l 1,l 2是斜截式方程时,k 1≠k 2当,是一般式方程时,≠l l 12A A B B 2212①斜交交点:的解到角:到的角θ≠夹角公式:和夹角θ≠A x B y C A x B y C k k k k k k k k k k k k 11122222112121221121200110110++=++=⎧⎨⎩=-++=-++⎧⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪l l l l 1tan ()tan ||()②垂直当和有叙截式方程时,-当和是一般式方程时,+l l l l 1212121212k k =1A A B B =0⎧⎨⎩4.点P(x 0,y 0)与直线l :Ax +By +C=0的位置关系: Ax By C =0P ()Ax By C 0P 0000++在直线上点的坐标满足直线方程++≠在直线外.⇔⇔l l点,到直线的距离为:P(x y )d =|Ax +By +C|0000l A B 22+ 5.两条平行直线l 1∶Ax +By +C 1=0,l 2∶Ax +By +C 2=0间的距离为:.d =|C C |12-+A B 226.直线系方程 具有某一共同属性的一类直线的集合称为直线系,它的方程的特点是除含坐标变量x ,y 以外,还含有特定的系数(也称参变量).确定一条直线需要两个独立的条件,在求直线方程的过程中往往先根据一个条件写出所求直线所在的直线系方程,然后再根据另一个条件来确定其中的参变量.(1)共点直线系方程:经过两直线l 1∶A 1x +B 1y +C 1=0,l 2∶A 2x +B 2y +C 2=0的交点的直线系方程为:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,其中λ是待定的系数.在这个方程中,无论λ取什么实数,都得不到A 2x +B 2y +C 2=0,因此它不表示l 2.当λ=0时,即得A 1x +B 1y +C 1=0,此时表示l 1.(2)平行直线系方程:直线y=kx +b 中当斜率k 一定而b 变动时,表示平行直线系方程.与直线Ax +By +C=0平行的直线系方程是Ax +By +λ=0(λ≠C),λ是参变量.(3)垂直直线系方程:与直线Ax +By +C=0(A ≠0,B ≠0)垂直的直线系方程是:Bx -Ay +λ=0.如果在求直线方程的问题中,有一个已知条件,另一个条件待定时,可选用直线系方程来求解.7.简单的线性规划(1)二元一次不等式Ax +By +C >0(或<0)表示直线Ax +By +C=0某一侧所有点组成的平面区域.二元一次不等式组所表示的平面区域是各个不等式所表示的平面点集的交集,即各个不等式所表示的平面区域的公共部分.(2)线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,称为线性规划问题,例如,z=ax +by ,其中x ,y 满足下列条件:A xB yC 0(0)A x B y C 0(0)A x B x C 0(0)111222n n n ++≥或≤++≥或≤……++≥或≤⎧⎨⎪⎪⎩⎪⎪(*)求z 的最大值和最小值,这就是线性规划问题,不等式组(*)是一组对变量x 、y 的线性约束条件,z=ax +by 叫做线性目标函数.满足线性约束条件的解(x ,y)叫做可行解,由所有可行解组成的集合叫做可行域,使线性目标函数取得最大值和最小值的可行解叫做最优解.三、曲线和方程1.定义在选定的直角坐标系下,如果某曲线C 上的点与一个二元方程f(x ,y)=0的实数解建立了如下关系:(1)曲线C 上的点的坐标都是方程f(x ,y)=0的解(一点不杂);(2)以方程f(x ,y)=0的解为坐标的点都是曲线C 上的点(一点不漏).这时称方程f(x ,y)=0为曲线C 的方程;曲线C 为方程f(x ,y)=0的曲线(图形). 设P={具有某种性质(或适合某种条件)的点},Q={(x ,y)|f(x ,y)=0},若设点M 的坐标为(x 0,y 0),则用集合的观点,上述定义中的两条可以表述为:(1)M P (x y )Q P Q (2)(x y )Q M P Q P 0000∈,∈,即;,∈∈,即.⇒⊆⇒⊆以上两条还可以转化为它们的等价命题(逆否命题):(1)(x y )Q M P (2)M P (x y )Q 0000,;,.∉⇒∉∉⇒∉显然,当且仅当且,即时,才能称方程,P Q Q P P =Q f(x y)=0⊆⊆ 为曲线C 的方程;曲线C 为方程f(x ,y)=0的曲线(图形).2.曲线方程的两个基本问题(1)由曲线(图形)求方程的步骤:①建系,设点:建立适当的坐标系,用变数对(x ,y)表示曲线上任意一点M 的坐标; ②立式:写出适合条件p 的点M 的集合p={M|p(M)};③代换:用坐标表示条件p(M),列出方程f(x ,y)=0;④化简:化方程f(x ,y)=0为最简形式;⑤证明:以方程的解为坐标的点都是曲线上的点.上述方法简称“五步法”,在步骤④中若化简过程是同解变形过程;或最简方程的解集与原始方程的解集相同,则步骤⑤可省略不写,因为此时所求得的最简方程就是所求曲线的方程.(2)由方程画曲线(图形)的步骤:①讨论曲线的对称性(关于x 轴、y 轴和原点);②求截距:方程组,的解是曲线与轴交点的坐标;f x y y ()==⎧⎨⎩00x方程组,的解是曲线与轴交点的坐标;f x y x ()==⎧⎨⎩00y ③讨论曲线的范围;④列表、描点、画线.3.交点求两曲线的交点,就是解这两条曲线方程组成的方程组.4.曲线系方程过两曲线f 1(x ,y)=0和f 2(x ,y)=0的交点的曲线系方程是f 1(x ,y)+λf 2(x ,y)=0(λ∈R).四、圆1.圆的定义平面内与定点距离等于定长的点的集合(轨迹)叫圆.2.圆的方程(1)标准方程(x -a)2+(y -b)2=r 2.(a ,b)为圆心,r 为半径. 特别地:当圆心为(0,0)时,方程为x 2+y 2=r 2(2)一般方程x 2+y 2+Dx +Ey +F=0配方()()x D y E D E F +++=+-22442222当+->时,方程表示以-,-为圆心,以为半径的圆;D E 4F 0()22D E D E F 2212422+-当+-时,方程表示点-,-D E 4F =0()22D E 22 当D 2+E 2-4F <0时,方程无实数解,无轨迹.(3)参数方程 以(a ,b)为圆心,以r 为半径的圆的参数方程为 x a r y b r =+=+⎧⎨⎩cos sin θθθ为参数()特别地,以(0,0)为圆心,以r 为半径的圆的参数方程为x r y r ==⎧⎨⎩cos sin θθθ为参数()3.点与圆的位置关系设点到圆心的距离为d ,圆的半径为r .(1)d r (2)d =r (3)d r 点在圆外>;点在圆上;点在圆内<.⇔⇔⇔4.直线与圆的位置关系设直线l :Ax +By +C=0和圆C :(x -a)2+(y -b)2=r 2,则d Aa Bb C A B=+++||22.(1)0d r (2)=0d =r (3)0d r 相交直线与圆的方程组成的方程组有两解,△>或<;相切直线与圆的方程组成的方程组有一组解,△或;相离直线与圆的方程组成的方程组无解,△<或>.⇔⇔⇔5.求圆的切线方法(1)已知圆x 2+y 2+Dx +Ey +F=0.①若已知切点(x 0,y 0)在圆上,则切线只有一条,其方程是x x y y D x x E y y F 0000220=+++++=()().当,在圆外时,++++表示(x y )x x y y D(x )E(y )F =0000000++x y22过两个切点的切点弦方程.②若已知切线过圆外一点(x 0,y 0),则设切线方程为y -y 0=k(x -x 0),再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③若已知切线斜率为k ,则设切线方程为y=kx +b ,再利用相切条件求b ,这时必有两条切线.(2)已知圆x 2+y 2=r 2.①若已知切点P 0(x 0,y 0)在圆上,则该圆过P 0点的切线方程为x 0x +y 0y=r 2.②已知圆的切线的斜率为,圆的切线方程为±.k y =kx r k 2+16.圆与圆的位置关系已知两圆圆心分别为O 1、O 2,半径分别为r 1、r 2,则(1)|O O |=r r (2)|O O |=|r r |(3)|r r ||O O |r r 12121212121212两圆外切+;两圆内切-;两圆相交-<<+.⇔⇔⇔单元知识总结一、圆锥曲线 1.椭圆(1)定义定义1:平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点).定义2:点M 与一个定点的距离和它到一条定直线的距离的比是常数=<<时,这个点的轨迹是椭圆.e (0e 1)ca(2)图形和标准方程图-的标准方程为:+=>>图-的标准方程为:+=>>811(a b 0)821(a b 0)x a y b x b y a 22222222(3)几何性质2.双曲线(1)定义定义1:平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线(这两个定点叫双曲线的焦点).定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e>1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点).(2)图形和标准方程图8-3的标准方程为:x ayb2222-=>,>1(a0b0)图8-4的标准方程为:y axb2222-=>,>1(a0b0)(3)几何性质3.抛物线(1)定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.(2)抛物线的标准方程,类型及几何性质,见下表:①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离.②p 的几何意义:焦点F 到准线l 的距离.③弦长公式:设直线为=+抛物线为=,=y kx b y 2px |AB|212+k|x x ||y y |2121-=-112+k焦点弦长公式:|AB|=p +x 1+x 24.圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e 表示,当0<e <1时,是椭圆,当e >1时,是双曲线,当e =1时,是抛物线. 二、利用平移化简二元二次方程 1.定义缺xy 项的二元二次方程Ax 2+Cy 2+Dx +Ey +F =0(A 、C 不同时为0)※,通过配方和平移,化为圆型或椭圆型或双曲线型或抛物线型方程的标准形式的过程,称为利用平移化简二元二次方程.A =C 是方程※为圆的方程的必要条件. A 与C 同号是方程※为椭圆的方程的必要条件. A 与C 异号是方程※为双曲线的方程的必要条件. A 与C 中仅有一个为0是方程※为抛物线方程的必要条件.2.对于缺xy 项的二元二次方程:Ax 2+Cy 2+Dx +Ey +F =0(A ,C 不同时为0)利用平移变换,可把圆锥曲线的一般方程化为标准方程,其方法有:①待定系数法;②配方法.椭圆:+=或+=()()()()x h a y k b x h b y k a ----2222222211中心O ′(h ,k)双曲线:-=或-=()()()()x h a y k b y k a x h b ----2222222211中心O ′(h ,k)抛物线:对称轴平行于x 轴的抛物线方程为 (y -k)2=2p(x -h)或(y -k)2=-2p(x -h), 顶点O ′(h ,k).对称轴平行于y 轴的抛物线方程为:(x -h)2=2p(y -k)或(x -h)2=-2p(y -k) 顶点O ′(h ,k).以上方程对应的曲线按向量a =(-h ,-k)平移,就可将其方程化为圆锥曲线的标准方程的形式.。