资源分配类动态规划

合集下载

动态规划资源分配问题

动态规划资源分配问题

S1
7
X1
12
3
4
P1(x1)
44
5
8
F2+ p1 21 19
17 18
f1(s1)
21
X1*
1
• 当k=2时;
f2(s2) = max [p2(x2)+ f3(s3) ]
1< x2 < s2 3< s2< 6 计算结果:
S2 X2 p2(x2) F3+ p2 f2(s2) X2*
34 1 12 3 35 10 12 12 10 12 1 1或2
f(k* sk ) max{ fk (sk , xk )}
xk 1,2,3...,sk
4
xi sk
ik
xi大于等于1且为整数
将递推关系写出即是
f
* k
(
sk
)
xk
max
1, 2 ,..., sk
{Pk
(
xk
)
f
* k 1
(
sk
xk )}
f(5* s5)=0
k 1,2,3
当k=4时;
f4(s4) = max [p4(x4)]
S3 X3 p3(x3) F3+ p3 f3(s3) X3*
23 1 12 5 56 7 98 79 11
4 123 568 12 10 10 12 1
5 1 2 34 5 6 88 13 13 12 10 13 1或2
• 当k=1时;
f1(s1) = max [p1(x1)+ f2(s2) ]
1< x1< s1 s1=7 计算结果:
5 123 35 6 15 14 13 15 1

动态规划

动态规划
f1(A)=MIN r(A,B1)+ f2(B1) r(A,B2)+ f2(B2)
=MIN(3+12,4+10)=14
最短路线: A—— B2 ——C2——D2——E2——F 最优解: d1*(A)= B2,最短用时14
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
最优解: d2*(B1)= C1
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
4
3
D1
A
B
C
D
E
F
如果S2=B2,则下一步能取C2或C3,故
f2(B2)=MIN r(B2,C2)+ f3(C2)
r(B2,C3)+ f3(C3) =MIN(2+8,1+11)=10
最短路线: B2 ——C2——D2——E2——F
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
4
3
D1
A
B
C
D
E
F
如果S4=D3,则下一步只能取E2,故

2019年最新-动态规划资源分配问题-精选文档

2019年最新-动态规划资源分配问题-精选文档

课程 1 学分 复习天数
234
1
4 35 2
2
54 5 6
3
4
4
5 68 7
8 7 88
解:这个问题要求作出4个相应关联的决策,即应分配多 少天给每门考试科目。因此,即使这里没有固定的次序, 这四门考试科目可以看成动态规划模型中的四个阶段。 阶段:k=1,2,3,4。考试科目 决策变量:x(k k=1,2,3,4)是分配到阶段(考试科目) k的天数; 状态变量:sk是仍待分配的天数(即前面阶段未分配完的天数)

P(ixBiblioteka )表示分配ix 天给考试科目
i 的效果量,我们的目标
是挑选
x

1
x

2
x

3
x
,使
4
max [ P1 ( x1 ) P2 ( x 2 ) P3 ( x 3 ) P4 ( x 4 )]
s.t x 1 x 2 x 3 x 4 7
x

1
x

2
x

3
x
4

1且为整数
目标可改写成
8 4
• 当k=3时;
f3(s3) = max [p3(x3)+ f4(s4) ]
1< x3 < s3 2< sk< 5 计算结果:
S3 X3 p3(x3) F3+ p3 f3(s3) X3*
23 1 12 5 56 7 98 79 11
4 123 568 12 10 10 12 1
5 1 2 34 5 6 88 13 13 12 10 13 1或2
动态规划——资源分配问题

动态规划法求解资源分配问题

动态规划法求解资源分配问题
int main() { int i, j,k; int n = 3; int m = 4; //输入数据 cout<<"请输入 3 行 4 列"<<":"<<endl; for (i = 1; i <= n; i++) for (j = 1; j <= m; j++) scanf("%d",&p[i][j]); //打印数据 cout<<"利润表:(行为项目列为资源)"<<endl; cout<<" "; for (j = 1; j <= m; ++j) cout<<setw(4)<<j;//打印框架 m 列 cout<<endl; for (i = 1; i <= n; ++i) { cout<setw(4)<<i;//打印框架 n 行 for (j = 1; j <= m; ++j) cout<<setw(4)<<p[i][j];//打印输入的数据
cout<<endl; }
//主要代码 for (j = 1; j <= m; j++) for (i = 1; i <= n; i++) for (k = 0; k <= i; k++) if (d[i][j] < d[k][j - 1] + p[i - k][j]) { d[i][j] = d[k][j - 1] + p[i - k][j]; e[i][j] = k; }

4种常见的动态规划模型

4种常见的动态规划模型

例谈四种常见的动态规划模型动态规划是解决多阶段决策最优化问题的一种思想方法,本文主要结合一些例题,把一些常见的动态规划模型,进行归纳总结。

(一)、背包模型可用动态规划解决的背包问题,主要有01背包和完全背包。

对于背包的类型,这边就做个简单的描述:n个物品要放到一个背包里,背包有个总容量m,每个物品都有一个体积w[i]和价值v[i],问如何装这些物品,使得背包里放的物品价值最大。

这类型的题目,状态表示为:f[j]表示背包容量不超过j时能够装的最大价值,则状态转移方程为:f[j]:=max{f[j-w[i]]+v[i]},边界:f[0]:=0;简单的程序框架为:beginreadln(m,n);for i:=1to n do readln(w[i],v[i]);f[0]:=0;for i:=1to m dofor j:=1to n dobeginif i>=w[j]then t:=f[i-w[j]]+v[j];if t>f[i]then f[i]:=t;end;writeln(f[m]);end.这类型的题目应用挺广的(noip1996提高组第4题,noip2001普及组装箱问题,noip2005普及组采药等),下面一个例子,也是背包模型的简单转化。

货币系统(money)【问题描述】母牛们不但创建了他们自己的政府而且选择了建立了自己的货币系统。

他们对货币的数值感到好奇。

传统地,一个货币系统是由1,5,10,20或25,50,100的单位面值组成的。

母牛想知道用货币系统中的货币来构造一个确定的面值,有多少种不同的方法。

使用一个货币系统{1,2,5,10,..}产生18单位面值的一些可能的方法是:18×1,9×2,8×2+2×1,3×5+2+1等等其它。

写一个程序来计算有多少种方法用给定的货币系统来构造一个确定的面值。

【输入格式】货币系统中货币的种类数目是v(1≤v≤25);要构造的面值是n(1≤n≤10,000);第1行:二个整数,v和n;第2..v+1行:可用的货币v个整数(每行一个)。

动态规划状态转移方程

动态规划状态转移方程

1.资源问题1-----机器分配问题F[I,j]:=max(f[i-1,k]+w[i,j-k])2.资源问题2------01背包问题F[I,j]:=max(f[i-1,j-v[i]]+w[i],f[i-1,j]);3.线性动态规划1-----朴素最长非降子序列F[i]:=max{f[j]+1}4.剖分问题1-----石子合并F[i,j]:=min(f[i,k]+f[k+1,j]+sum[i,j]);5.剖分问题2-----多边形剖分F[I,j]:=min(f[i,k]+f[k,j]+a[k]*a[j]*a[i]);6.剖分问题3------乘积最大f[i,j]:=max(f[k,j-1]*mult[k,i]);7.资源问题3-----系统可靠性(完全背包)F[i,j]:=max{f[i-1,j-c[i]*k]*P[I,x]}8.贪心的动态规划1-----快餐问题F[i,j,k]:=max{f[i-1,j',k']+(T[i]-(j-j')*p1-(k-k')*p2) div p3}9.贪心的动态规划2-----过河f[i]=min{{f(i-k)} (not stone[i]){f(i-k)}+1} (stone[i]); +贪心压缩状态10.剖分问题4-----多边形-讨论的动态规划F[i,j]:=max{正正 f[I,k]*f[k+1,j];负负 g[I,k]*f[k+1,j];正负 g[I,k]*f[k+1,j];负正 f[I,k]*g[k+1,j];} g为min11.树型动态规划1-----加分二叉树 (从两侧到根结点模型)F[I,j]:=max{f[I,k-1]*f[k+1,j]+c[k]}12.树型动态规划2-----选课 (多叉树转二叉树,自顶向下模型)F[I,j]表示以i为根节点选j门功课得到的最大学分f[i,j]:=max{f[t[i].l,k]+f[t[i].r,j-k-1]+c[i]}13.计数问题1-----砝码称重f[f[0]+1]=f[j]+k*w[j];(1<=i<=n; 1<=j<=f[0]; 1<=k<=a[i];)14.递推天地1------核电站问题f[-1]:=1; f[0]:=1;f[i]:=2*f[i-1]-f[i-1-m]15.递推天地2------数的划分f[i,j]:=f[i-j,j]+f[i-1,j-1];16.最大子矩阵1-----一最大01子矩阵f[i,j]:=min(f[i-1,j],v[i,j-1],v[i-1,j-1])+1;ans:=maxvalue(f);17.判定性问题1-----能否被4整除g[1,0]:=true; g[1,1]:=false; g[1,2]:=false; g[1,3]:=false; g[i,j]:=g[i-1,k] and ((k+a[i,p]) mod 4 = j)18.判定性问题2-----能否被k整除f[I,j±n[i] mod k]:=f[i-1,j]; -k<=j<=k; 1<=i<=n20.线型动态规划2-----方块消除游戏f[i,i-1,0]:=0f[i,j,k]:=max{f[i,j-1,0]+sqr(len(j)+k),f[i,p,k+len[j]]+f[p+1,j-1,0]}ans:=f[1,m,0]21.线型动态规划3-----最长公共子串,LCS问题f[i,j]={0(i=0)&(j=0);f[i-1,j-1]+1(i>0,j>0,x[i]=y[j]);max{f[i,j-1]+f[i-1,j]}} (i>0,j>0,x[i]<>y[j]);22.最大子矩阵2-----最大带权01子矩阵O(n^2*m)枚举行的起始,压缩进数列,求最大字段和,遇0则清零23. 资源问题4-----装箱问题(判定性01背包)f[j]:=(f[j] or f[j-v[i]]);24.数字三角形1-----朴素の数字三角形f[i,j]:=max(f[i+1,j]+a[I,j],f[i+1,j+1]+a[i,j]);25.数字三角形2-----晴天小猪历险记之Hill同一阶段上暴力动态规划if[i,j]:=min(f[i,j-1],f[I,j+1],f[i-1,j],f[i-1,j-1])+a[i,j]26.双向动态规划1数字三角形3-----小胖办证f[i,j]:=max(f[i-1,j]+a[i,j],f[i,j-1]+a[i,j],f[i,j+1]+a[i,j])27. 数字三角形4-----过河卒//边界初始化f[i,j]:=f[i-1,j]+f[i,j-1];28.数字三角形5-----朴素的打砖块f[i,j,k]:=max(f[i-1,j-k,p]+sum[i,k],f[i,j,k]);29.数字三角形6-----优化的打砖块f[I,j,k]:=max{g[i-1,j-k,k-1]+sum[I,k]}30.线性动态规划3-----打鼹鼠’f[i]:=f[j]+1;(abs(x[i]-x[j])+abs(y[i]-y[j])<=t[i]-t[j])31.树形动态规划3-----贪吃的九头龙⎭⎬⎫⎩⎨⎧======⎭⎬⎫⎩⎨⎧+-++--+=0))2()0(&)0(())1(&)1((1],[]][,[*]0,[],',[]0,',[]][,[*]1,[],1',[]1,',[min ],,[m and j i or j i j i d i p i w k d k j j r f j l f i p i w k d k j j r f j l f k j i f32.状态压缩动态规划1-----炮兵阵地Max(f[Q*(r+1)+k],g[j]+num[k])If (map[i] and plan[k]=0) and((plan[P] or plan[q]) and plan[k]=0)33.递推天地3-----情书抄写员f[i]:=f[i-1]+k*f[i-2]34.递推天地4-----错位排列f[i]:=(i-1)(f[i-2]+f[i-1]);f[n]:=n*f[n-1]+(-1)^(n-2);35.递推天地5-----直线分平面最大区域数f[n]:=f[n-1]+n:=n*(n+1) div 2 + 1;36.递推天地6-----折线分平面最大区域数f[n]:=(n-1)(2*n-1)+2*n;37.递推天地7-----封闭曲线分平面最大区域数f[n]:=f[n-1]+2*(n-1):=sqr(n)-n+2;38递推天地8-----凸多边形分三角形方法数f[n]:=C(2*n-2,n-1) div n;对于k 边形f[k]:=C(2*k-4,k-2) div (k-1); //(k>=3)39递推天地9-----Catalan 数列一般形式1,1,2,5,14,42,132f[n]:=C(2k,k) div (k+1);40递推天地10-----彩灯布置排列组合中的环形染色问题f[n]:=f[n-1]*(m-2)+f[n-2]*(m-1); (f[1]:=m; f[2]:=m(m-1);41线性动态规划4-----找数线性扫描sum:=f[i]+g[j];(if sum=Aim then getout; if sum<Aim then inc(i) else inc(j);)42线性动态规划5-----隐形的翅膀min:=min{abs(w[i]/w[j]-gold)};if w[i]/w[j]<gold then inc(i) else inc(j);43剖分问题5-----最大奖励f[i]:=max(f[i],f[j]+(sum[j]-sum[i])*i-t44最短路1-----Floydf[i,j]:=max(f[i,j],f[i,k]+f[k,j]);ans[q[i,j,k]]:=ans[q[i,j,k]]+s[i,q[i,j,k]]*s[q[i,j,k],j]/s[i,j];45 剖分问题6-----小H 的小屋F[l,m,n]:=f[l-x,m-1,n-k]+S(x,k);46 计数问题2-----陨石的秘密(排列组合中的计数问题)Ans[l1,l2,l3,D]:=f[l1+1,l2,l3,D+1]-f[l1+1,l2,l3,D];F[l1,l2,l3,D]:=Sigma(f[o,p,q,d-1]*f[l1-o,l2-p,l3-q,d]);47 线性动态规划------合唱队形两次F[i]:=max{f[j]+1}+枚举中央结点48 资源问题------明明的预算方案:加花的动态规划f[i,j]:=max(f[i,j],f[l,j-v[i]-v[fb[i]]-v[fa[i]]]+v[i]*p[i]+v[fb[i]]*p[fb[i]]+v[fa[i]]*p[fa[i]]);49 资源问题-----化工场装箱员[,[1,],[1,]][,,]:min [,[1,],[1,]]1[10,[1,10],[1,10]f n i getA n n i j getB n n i f n i j f n j i getA n n j getB n n j f n i j i getA n n i j j getB n n i j ++++++⎧⎫⎪⎪=+++++++⎨⎬⎪⎪+--+++--+++--⎩⎭-----聚会的快乐f[i,2]:=max(f[i,0],f[i,1]);f[i,1]:=sigma(f[t[i]^.son,0]);f[i,0]:=sigma(f[t[i]^.son,3]);51树形动态规划-----皇宫看守f[i,2]:=max(f[i,0],f[i,1]);f[i,1]:=sigma(f[t[i]^.son,0]);f[i,0]:=sigma(f[t[i]^.son,3]);52递推天地-----盒子与球f[i,1]:=1;f[i,j]:=j*(f[i-1,j-1]+f[i-1,j]);53双重动态规划-----有限的基因序列f[i]:=min{f[j]+1}g[c,i,j]:=(g[a,i,j] and g[b,i,j]) or (g[c,i,j])54最大子矩阵问题-----居住空间f[i,j,k]:=min(min(min(f[i-1,j,k],f[i,j-1,k]),min(f[i,j,k-1],f[i-1,j-1,k])),min(min(f[i-1,j,k-1],f[i,j-1,k-1]),f[i-1,j-1,k-1]))+1;55线性动态规划------日程安排f[i]:=max{f[j]}+P[I]; (e[j]<s[i])56递推天地------组合数C[I,j]:=C[i-1,j]+C[I-1,j-1]C[I,0]:=157树形动态规划-----有向树k中值问题F[I,r,k]:=max{max{f[l[i],I,j]+f[r[i],I,k-j-1]},f[f[l[i],r,j]+f[r[i],r,k-j]+w[I,r]]}58树形动态规划-----CTSC 2001选课F[I,j]:=w[i](if i∈P)+f[l[i],k]+f[r[i],m-k](0≤k≤m)(if l[i]<>0)-----多重历史f[i,j]:=sigma{f[i-k,j-1]}(if checked)60背包问题(+-1背包问题+回溯)-----CEOI1998 Substractf[i,j]:=f[i-1,j-a[i]] or f[i-1,j+a[i]]61线性动态规划(字符串)-----NOI 2000 古城之谜f[i,1,1]:=min{f[i+length(s),2,1],f[i+length(s),1,1]+1}f[i,1,2]:=min{f[i+length(s),1,2]+words[s],f[i+length(s),1,2]+words[s]}62线性动态规划-----最少单词个数f[i,j]:=max{f[I,j],f[u-1,j-1]+l}63线型动态规划-----APIO2007 数据备份状态压缩+剪掉每个阶段j前j*2个状态和j*2+200后的状态贪心动态规划f[i]:=min(g[i-2]+s[i],f[i-1]);64树形动态规划-----APIO2007 风铃f[i]:=f[l]+f[r]+{1 (if c[l]<c[r])}g[i]:=1(d[l]<>d[r]) 0(d[l]=d[r])g[l]=g[r]=1 then Halt;65地图动态规划-----NOI 2005 adv19910F[t,i,j]:=max{f[t-1,i-dx[d[[t]],j-dy[d[k]]]+1],f[t-1,i,j];66地图动态规划-----优化的NOI 2005 adv19910F[k,i,j]:=max{f[k-1,i,p]+1} j-b[k]<=p<=j;67目标动态规划-----CEOI98 subtraF[I,j]:=f[I-1,j+a[i]] or f[i-1,j-a[i]]68目标动态规划----- Vijos 1037搭建双塔问题F[value,delta]:=g[value+a[i],delta+a[i]] or g[value,delta-a[i]]69树形动态规划-----有线电视网f[i,p]:=max(f[i,p],f[i,p-q]+f[j,q]-map[i,j])leaves[i]>=p>=l, 1<=q<=p;70地图动态规划-----vijos某题F[I,j]:=min(f[i-1,j-1],f[I,j-1],f[i-1,j]);71最大子矩阵问题-----最大字段和问题f[i]:=max(f[i-1]+b[i],b[i]); f[1]:=b[1]72最大子矩阵问题-----最大子立方体问题枚举一组边i的起始,压缩进矩阵 B[I,j]+=a[x,I,j]枚举另外一组边的其实,做最大子矩阵73括号序列-----线型动态规划f[I,j]:=min(f[I,j],f[i+1,j-1](s[i]s[j]=”()”or(”[]”)),f[I+1,j+1]+1 (s[j]=”(”or”[” ] , f[I,j-1]+1(s[j]=”)”or”]” )74棋盘切割-----线型动态规划f[k,x1,y1,x2,y2]=min{min{f[k-1,x1,y1,a,y2]+s[a+1,y1,x2,y2],f[k-1,a+1,y1,x2,y2]+s[x1,y1,a,y2]min{}}75概率动态规划-----聪聪和可可(NOI2005)x:=p[p[i,j],j]f[I,j]:=(f[x,b[j,k]]+f[x,j])/(l[j]+1)+1f[I,i]=0f[x,j]=176概率动态规划-----血缘关系F[A, B]=(f[A0, B]+P[A1, B])/2f[I,i]=1f[I,j]=0(I,j无相同基因)77线性动态规划-----决斗F[I,j]=(f[I,j] and f[k,j]) and (e[I,k] or e[j,k]),i<k<j78线性动态规划-----舞蹈家F[x,y,k]=min(f[a[k],y,k+1]+w[x,a[k]],f[x,a[k],k+1]+w[y,a[k]])79线性动态规划-----积木游戏F[I,a,b,k]=max(f[I,a+1,b,k],f[i+1,a+1,a+1,k’],f[I,a+1,a+1,k’])80树形动态规划(双次记录)-----NOI2003 逃学的小孩朴素的话枚举节点i和离其最远的两个节点 j,k O(n^2)每个节点记录最大的两个值,并记录这最大值分别是从哪个相邻节点传过来的。

动态规划在资源配置中的应用研究

动态规划在资源配置中的应用研究

动态规划在资源配置中的应用研究在当今复杂多变的社会和经济环境中,资源的有效配置成为了各个领域追求高效发展的关键。

而动态规划作为一种强大的数学优化方法,在资源配置问题中发挥着至关重要的作用。

动态规划的核心思想在于将一个复杂的问题分解为一系列相互关联的子问题,并通过对这些子问题的求解来逐步得出原问题的最优解。

这种方法的优势在于它能够充分考虑到问题的动态性和阶段性,从而更加贴合实际情况。

资源配置问题通常涉及到多个因素的权衡和决策。

例如,在企业生产中,需要决定如何分配有限的人力、物力和财力资源,以实现最大的产出和利润;在项目管理中,要合理安排任务的顺序和资源的投入,确保项目按时完成且成本最低;在交通运输领域,需要优化车辆的调度和路线规划,以提高运输效率和降低运营成本。

以生产企业为例,假设一家工厂有多种产品可以生产,每种产品的生产需要消耗不同数量的原材料、工时和设备使用时间,同时每种产品在市场上的售价也不同。

为了实现利润最大化,企业需要决定每种产品的生产数量。

这就是一个典型的资源配置问题。

如果使用传统的方法来解决这个问题,可能会面临计算复杂、难以考虑所有可能情况等困难。

而动态规划则为我们提供了一种有效的解决方案。

首先,我们可以将生产计划划分为多个阶段,每个阶段对应一个决策点,即决定是否生产某种产品以及生产多少。

然后,我们定义状态变量,例如在某个阶段剩余的原材料、工时和设备可用时间等。

接着,通过建立递推关系式,计算在每个阶段不同决策下的收益,并选择最优的决策。

动态规划在资源配置中的应用具有以下几个显著的优点:一是能够处理大规模的问题。

随着问题规模的增大,传统方法的计算量往往呈指数级增长,而动态规划通过巧妙的分解和递推,可以有效地降低计算复杂度。

二是能够考虑到问题的动态变化。

在实际的资源配置中,各种因素可能会随着时间而发生变化,例如原材料价格的波动、市场需求的变化等。

动态规划可以根据这些变化及时调整策略,保证资源配置的最优性。

动态规划方案解决资源分配问题的策略

动态规划方案解决资源分配问题的策略

动态规划方案解决资源分配问题的策略在幼儿教育事业中,资源分配问题是一项至关重要的任务。

如何合理、高效地分配教育资源,以满足幼儿的需求和发展,成为幼儿工作者们关注的焦点。

针对这一问题,我们引入动态规划这一优化算法,提出一套解决方案,以期为我国幼儿教育事业的发展提供有力支持。

一、背景及问题阐述随着我国经济社会的快速发展,幼儿教育事业逐渐受到广泛关注。

然而,在资源分配方面,幼儿教育仍面临诸多问题。

一方面,资源分配不均,城乡、地区之间差距较大,部分幼儿无法享受到优质的教育资源;另一方面,资源利用效率低下,导致教育成本上升,加剧了教育资源供需矛盾。

为解决这一问题,我们需要对教育资源进行合理分配,提高资源利用效率。

动态规划作为一种优化算法,具有实现全局最优、求解效率高等特点,适用于解决资源分配问题。

本文将以幼儿教育资源分配为背景,探讨动态规划在解决资源分配问题方面的应用。

二、动态规划基本原理动态规划(DynamicProgramming,DP)是一种求解最优化问题的方法,它将复杂问题分解为多个子问题,并通过求解子问题来实现全局最优。

动态规划的核心思想是“记住已经解决过的子问题的最优解”,从而避免重复计算。

1.确定状态:将问题分解为若干个子问题,并用状态变量表示这些子问题。

2.建立状态转移方程:找出子问题之间的关系,建立状态转移方程,表示当前状态如何通过前一个状态得到。

3.确定边界条件:设定初始状态和边界条件,为递推过程提供基础。

4.计算最优解:根据状态转移方程,从初始状态开始递推,得到问题的最优解。

5.构造最优解:根据最优解的递推过程,构造出问题的最优解。

三、动态规划解决资源分配问题的策略1.状态定义我们将资源分配问题分为两个状态:当前状态和子状态。

当前状态表示在某一时间点或某一阶段,已分配的资源总量;子状态表示在分配过程中,某一特定资源类型的分配情况。

2.状态转移方程状态转移方程是动态规划的核心,它描述了当前状态如何由子状态得到。

动态规划在资源分配中的应用

动态规划在资源分配中的应用
维普资讯
第 2 第 6期 2卷
Vo. 2 N . 12 o 6
荆 门职业技术 学院学报
Ju a fJn me e h ia l g o r l ig n T c nc l n o Co e e
20 07年 6月
Jn 20 u .0 7
2 动 态 规 划 的数 学模 型 及 求解 步 骤
动态 规划的 学模 数 型是:
பைடு நூலகம்
Ot p @ (k , R X, )
X : ( , )
J s .
∈ U ( ) k∈
j }= 1, … , 2, 忍
() 1
[ 收稿 日期 ]2 0 06—1 3 2—1 [ 作者简 介]王小华( 9 1 , , 16 一) 女 四川三 台人 , 罗定职业技术学 院讲 师。研究方 向: 高等代数 、 高等 数学 。E—m i a l
4 )根 据状 态变 量 之 间的递 推关 系 , 出状 态 转移方 程 写 6 )建立 动态 规划 基本 方程 : = ( , ( ) ; ) 5 建 立 指标 函数 : ) 一般 用 r( , )描写 阶段 效应 , ) 示 k一1 A( 表 2阶段 的最优 策 略函数 ;
合这 种 要求 的一 种决 策方 法。
1 动 态 规 划 的最 优 性 原 理
动态规划在经济管理、 军事、 工程技术等方面都有广泛 的应用。“ 最优化原理” 是动态规划的核心, 所有动态规划 问题 的递推关系都是根据这个原理建立起来的。 最优性原理 :整个过程的最优策略具有这样 的性质 : “ 即无论过程过去 的状态和决策 如何 , 对前面 的决策所形成 的状态而言 , 余下的诸决策必须构成最优策略。 简而言之 , ” 最优性原理的含义就是 : 最优 策略 的任何一部分子策略也必须是最优的。

管理运筹学07动态规划

管理运筹学07动态规划
生产计划、库存管理、路径规划 等。
连续时间动态规划
定义
连续时间动态规划是指时间连续变化,状态 和决策也连续变化,状态转移和决策可以发 生在任意时刻。
解决思路
通过将时间连续化,将连续的时间动态问题转化为 离散的时间动态问题,然后应用动态规划的方法进 行求解。
应用场景
控制系统优化、金融衍生品定价、物流优化 等。
状态转移
指从一个状态转移到另一个状态的过程,是动态规划的基本要素 之一。
状态转移方程
描述了状态转移的数学表达式,是动态规划算法的核心。
最优化原理
最优化原理
在多阶段决策问题中,如果每个阶段 都按照最优策略进行选择,则整个问 题的最优解一定是最优的。
最优子结构
如果一个问题的最优解可以由其子问 题的最优解推导出来,则称该问题具 有最优子结构。
解决方案
采用启发式搜索策略, 如模拟退火、遗传算法 等,来引导算法跳出局 部最优解。
案例
在旅行商问题中,采用 模拟退火算法结合动态 规划,在局部搜索和全 局搜索之间取得平衡, 得到全局最优解。
06 动态规划案例研究
案例一:生产与存储问题的动态规划解决方案
总结词
该案例研究探讨了如何利用动态规划解决生 产与存储问题,通过合理安排生产和存储策 略,降低总成本。
管理运筹学07动态规划
contents
目录
• 动态规划概述 • 动态规划的基本概念 • 动态规划的应用 • 动态规划的扩展 • 动态规划的挑战与解决方案 • 动态规划案例研究
01 动态规划概述
定义与特点
定义
动态规划是一种通过将原问题分解为 相互重叠的子问题,并存储子问题的 解以避免重复计算的方法,从而有效 地解决最优化问题的方法。

动态规划方法在资源分配问题中的应用探索

动态规划方法在资源分配问题中的应用探索

动态规划方法在资源分配问题中的应用探索资源分配是管理学和经济学领域中一个重要的课题。

任何一个组织,无论是企业、政府机构还是非营利组织,都需要合理地分配有限的资源,以达到最大化效益的目标。

然而,资源分配问题常常面临的挑战是复杂性和不确定性。

为了解决这个问题,动态规划方法被引入到资源分配决策中。

动态规划是一种数学优化方法,其核心思想是将一个问题划分为一系列的子问题,并从子问题中推导出最优解。

在资源分配问题中,这意味着我们可以将资源分配决策划分为一系列的时间步骤,每一步中做出最佳的决策,以实现整体资源的最优分配。

在资源分配问题中,一个常见的情况是多个项目同时需要资源,而资源又是有限的。

动态规划可以帮助我们确定在每个时间步骤中分配给每个项目的资源数量,以最大化整体效益。

具体来说,我们可以使用动态规划来解决两个关键问题:资源分配优先级和资源分配时机。

首先,资源分配优先级是指确定哪些项目在每个时间步骤中应该优先获得资源。

在动态规划中,我们可以为每个项目定义一个价值函数,该函数表示该项目在获得资源后所产生的效益。

然后,我们可以通过比较不同项目的价值函数来确定资源分配的优先级。

通过动态规划的递推过程,我们可以找到最佳的资源分配优先级,以最大化整体效益。

其次,资源分配时机是指确定在每个时间步骤中分配多少资源给每个项目。

动态规划提供了一种方法来计算每个时间步骤中分配给每个项目的最佳资源数量。

通常,我们可以通过建立状态转移方程来描述资源分配问题,其中状态表示当前时间步骤、已分配的资源量和项目的优先级。

通过求解状态转移方程,我们可以计算出最佳的资源分配方案。

动态规划方法在资源分配问题中的应用可以带来许多好处。

首先,它可以明确地确定每个项目获得资源的优先级,帮助决策者做出明智的决策。

其次,它可以考虑到不同项目之间的相互关系,从而避免资源的浪费和冲突。

最重要的是,动态规划方法可以有效地处理不确定性和变化,因为它可以根据不同时间步骤的信息进行适时的调整。

动态规划在资源分配中的应用

动态规划在资源分配中的应用

动态规划在资源分配中的应用在当今复杂多变的社会和经济环境中,资源分配是一个至关重要的问题。

如何有效地将有限的资源分配到不同的任务、项目或活动中,以实现最大的效益和价值,是决策者们面临的挑战。

动态规划作为一种强大的数学优化方法,为解决资源分配问题提供了有效的途径。

让我们先了解一下什么是动态规划。

动态规划是一种在求解多阶段决策过程问题时的优化方法。

它将一个复杂的问题分解成一系列相互关联的子问题,并通过存储子问题的解来避免重复计算,从而提高计算效率。

在资源分配中,动态规划可以帮助我们在不同的阶段做出最优的决策,以实现整体的最优资源分配方案。

以企业的生产资源分配为例。

假设一家企业拥有一定数量的人力、物力和财力资源,需要将这些资源分配到不同的产品生产线上,以实现最大的利润。

每个产品线在不同的资源投入下会产生不同的收益,而且资源的投入是有限的。

这时候,动态规划就可以派上用场。

我们可以将整个生产过程划分为多个阶段,每个阶段对应着不同的资源分配决策。

在每个阶段,我们需要考虑当前的资源状况和各个产品线的收益情况,做出最优的资源分配决策。

通过逐步推进,我们可以找到整个生产过程中的最优资源分配方案。

比如说,在第一阶段,我们有 100 个单位的人力、80 个单位的物力和 120 万元的财力。

产品 A 的生产需要 20 个人力、10 个物力和 30 万元财力,预期收益为 50 万元;产品 B 的生产需要 15 个人力、20 个物力和 40 万元财力,预期收益为 60 万元。

通过计算和比较,我们可能会决定在第一阶段将资源分配给产品 B。

然后进入第二阶段,此时剩余的资源发生了变化,我们再次根据新的资源状况和产品收益情况做出决策。

就这样,一步一步地推进,直到所有的资源都分配完毕。

动态规划在资源分配中的优势是显而易见的。

首先,它能够考虑到资源分配的长期效果。

不像一些短视的决策方法,只关注眼前的利益,动态规划通过全局的视角,综合考虑了各个阶段的决策对最终结果的影响,从而做出更具战略性的资源分配方案。

动态规划资源分配问题

动态规划资源分配问题
动态规划——资源分配问题
小组成员:黄秀梅 罗燕雯 杨俊 李彩霞 林琳 (女) 吴晶莹 邓桂兰 罗碧辉
可编辑ppt
1
资源分配问题:只有一种资源有待于分配到 若干个活动,其目标是如何最有效地在各 个活动中分配这种资源。在建立任何效益 分配问题的DP(Dynamic Programming )模型 时,阶段对应于活动,每个阶段的决策对 应于分配到该活动的资源数量;任何状态 的当前状态总是等于留待当前阶段和以后 阶段分配的资源数量,即总资源量减去前 面各阶段已分配的资源量。
可编辑ppt
3
课程 1 学分 复习天数
234
1
4 35 2
2
54 5 6
3
4
4
5 68 7
8 7 88
可编辑ppt
4
解:这个问题要求作出4个相应关联的决策,即应分配多 少天给每门考试科目。因此,即使这里没有固定的次序, 这四门考试科目可以看成动态规划模型中的四个阶段。 阶段:k=1,2,3,4。考试科目 决策变量:x(k k=1,2,3,4)是分配到阶段(考试科目) k的天数; 状态变量:sk是仍待分配的天数(即前面阶段未分配完的天数)
4
f(k
s

k
x
)=
k
P(k
x
)+
k
max
{
Pi ( x i )}
ik 1
f
பைடு நூலகம்
(*
k
sk
)
max{
f k ( s k , x k )}
x k 1,2 ,3 ..., s k
4
xi sk
ik
x i大于等于 1且为整数
将递推关系写出即是

动态规划动态转移方程大全

动态规划动态转移方程大全

1. 资源问题1-----机器分配问题F[I,j]:=max(f[i-1,k]+w[i,j-k])2. 资源问题2------01背包问题F[I,j]:=max(f[i-1,j-v]+w,f[i-1,j]);3. 线性动态规划1-----朴素最长非降子序列F:=max{f[j]+1}4. 剖分问题1-----石子合并F[i,j]:=min(f[i,k]+f[k+1,j]+sum[i,j]);5. 剖分问题2-----多边形剖分F[I,j]:=min(f[i,k]+f[k,j]+a[k]*a[j]*a);6. 剖分问题3------乘积最大f[i,j]:=max(f[k,j-1]*mult[k,i]);7. 资源问题3-----系统可靠性(完全背包)F[i,j]:=max{f[i-1,j-c*k]*P[I,x]}8. 贪心的动态规划1-----快餐问题F[i,j,k]:=max{f[i-1,j',k']+(T-(j-j')*p1-(k-k')*p2) div p3}9. 贪心的动态规划2-----过河f=min{{f(i-k)} (not stone){f(i-k)}+1} (stone); +贪心压缩状态10. 剖分问题4-----多边形-讨论的动态规划F[i,j]:=max{正正f[I,k]*f[k+1,j];负负g[I,k]*f[k+1,j];正负g[I,k]*f[k+1,j];负正f[I,k]*g[k+1,j];} g为min11. 树型动态规划1-----加分二叉树(从两侧到根结点模型)F[I,j]:=max{f[I,k-1]*f[k+1,j]+c[k]}12. 树型动态规划2-----选课(多叉树转二叉树,自顶向下模型)F[I,j]表示以i为根节点选j门功课得到的最大学分f[i,j]:=max{f[t.l,k]+f[t.r,j-k-1]+c}13. 计数问题1-----砝码称重f[f[0]+1]=f[j]+k*w[j];(1<=i<=n; 1<=j<=f[0]; 1<=k<=a;)14. 递推天地1------核电站问题f[-1]:=1; f[0]:=1;f:=2*f[i-1]-f[i-1-m]15. 递推天地2------数的划分f[i,j]:=f[i-j,j]+f[i-1,j-1];16. 最大子矩阵1-----一最大01子矩阵f[i,j]:=min(f[i-1,j],v[i,j-1],v[i-1,j-1])+1;ans:=maxvalue(f);17. 判定性问题1-----能否被4整除g[1,0]:=true; g[1,1]:=false; g[1,2]:=false; g[1,3]:=false;g[i,j]:=g[i-1,k] and ((k+a[i,p]) mod 4 = j)18. 判定性问题2-----能否被k整除f[I,j±n mod k]:=f[i-1,j]; -k<=j<=k; 1<=i<=n20. 线型动态规划2-----方块消除游戏f[i,i-1,0]:=0f[i,j,k]:=max{f[i,j-1,0]+sqr(len(j)+k),f[i,p,k+len[j]]+f[p+1,j-1,0]}ans:=f[1,m,0]21. 线型动态规划3-----最长公共子串,LCS问题f[i,j]={0(i=0)&(j=0);f[i-1,j-1]+1 (i>0,j>0,x=y[j]);max{f[i,j-1]+f[i-1,j]}} (i>0,j>0,x<>y[j]);22. 最大子矩阵2-----最大带权01子矩阵O(n^2*m)枚举行的起始,压缩进数列,求最大字段和,遇0则清零23. 资源问题4-----装箱问题(判定性01背包)f[j]:=(f[j] or f[j-v]);24. 数字三角形1-----朴素の数字三角形f[i,j]:=max(f[i+1,j]+a[I,j],f[i+1,j+1]+a[i,j]);25. 数字三角形2-----晴天小猪历险记之Hill同一阶段上暴力动态规划if[i,j]:=min(f[i,j-1],f[I,j+1],f[i-1,j],f[i-1,j-1])+a[i,j]26. 双向动态规划1数字三角形3-----小胖办证f[i,j]:=max(f[i-1,j]+a[i,j],f[i,j-1]+a[i,j],f[i,j+1]+a[i,j])27. 数字三角形4-----过河卒//边界初始化f[i,j]:=f[i-1,j]+f[i,j-1];28. 数字三角形5-----朴素的打砖块f[i,j,k]:=max(f[i-1,j-k,p]+sum[i,k],f[i,j,k]);29. 数字三角形6-----优化的打砖块f[I,j,k]:=max{g[i-1,j-k,k-1]+sum[I,k]}30. 线性动态规划3-----打鼹鼠’f:=f[j]+1;(abs(x-x[j])+abs(y-y[j])<=t-t[j])31. 树形动态规划3-----贪吃的九头龙32. 状态压缩动态规划1-----炮兵阵地Max(f[Q*(r+1)+k],g[j]+num[k])If (map and plan[k]=0) and((plan[P] or plan[q]) and plan[k]=0)33. 递推天地3-----情书抄写员f:=f[i-1]+k*f[i-2]34. 递推天地4-----错位排列f:=(i-1)(f[i-2]+f[i-1]);f[n]:=n*f[n-1]+(-1)^(n-2);35. 递推天地5-----直线分平面最大区域数f[n]:=f[n-1]+n:=n*(n+1) div 2 + 1;36. 递推天地6-----折线分平面最大区域数f[n]:=(n-1)(2*n-1)+2*n;37. 递推天地7-----封闭曲线分平面最大区域数f[n]:=f[n-1]+2*(n-1):=sqr(n)-n+2;38 递推天地8-----凸多边形分三角形方法数f[n]:=C(2*n-2,n-1) div n;对于k边形f[k]:=C(2*k-4,k-2) div (k-1); //(k>=3)39 递推天地9-----Catalan数列一般形式1,1,2,5,14,42,132f[n]:=C(2k,k) div (k+1);40 递推天地10-----彩灯布置排列组合中的环形染色问题f[n]:=f[n-1]*(m-2)+f[n-2]*(m-1); (f[1]:=m; f[2]:=m(m-1);41 线性动态规划4-----找数线性扫描sum:=f+g[j];(if sum=Aim then getout; if sum<Aim then inc(i) else inc(j);)42 线性动态规划5-----隐形的翅膀min:=min{abs(w/w[j]-gold)};if w/w[j]<gold then inc(i) else inc(j);43 剖分问题5-----最大奖励f:=max(f,f[j]+(sum[j]-sum)*i-t44 最短路1-----Floydf[i,j]:=max(f[i,j],f[i,k]+f[k,j]);ans[q[i,j,k]]:=ans[q[i,j,k]]+s[i,q[i,j,k]]*s[q[i,j,k],j]/s[i,j];45 剖分问题6-----小H的小屋F[l,m,n]:=f[l-x,m-1,n-k]+S(x,k);46 计数问题2-----陨石的秘密(排列组合中的计数问题)Ans[l1,l2,l3,D]:=f[l1+1,l2,l3,D+1]-f[l1+1,l2,l3,D];F[l1,l2,l3,D]:=Sigma(f[o,p,q,d-1]*f[l1-o,l2-p,l3-q,d]);47 线性动态规划------合唱队形两次F:=max{f[j]+1}+枚举中央结点48 资源问题------明明的预算方案:加花的动态规划f[i,j]:=max(f[i,j],f[l,j-v-v[fb]-v[fa]]+v*p+v[fb]*p[fb]+v[fa]*p[fa]);49 资源问题-----化工场装箱员50 树形动态规划-----聚会的快乐f[i,2]:=max(f[i,0],f[i,1]);f[i,1]:=sigma(f[t^.son,0]);f[i,0]:=sigma(f[t^.son,3]);51 树形动态规划-----皇宫看守f[i,2]:=max(f[i,0],f[i,1]);f[i,1]:=sigma(f[t^.son,0]);f[i,0]:=sigma(f[t^.son,3]);52 递推天地-----盒子与球f[i,1]:=1;f[i,j]:=j*(f[i-1,j-1]+f[i-1,j]);53 双重动态规划-----有限的基因序列f:=min{f[j]+1}g[c,i,j]:=(g[a,i,j] and g[b,i,j]) or (g[c,i,j])54 最大子矩阵问题-----居住空间f[i,j,k]:=min(min(min(f[i-1,j,k],f[i,j-1,k]),min(f[i,j,k-1],f[i-1,j-1,k])),min(min(f[i-1,j,k-1],f[i,j-1,k-1]),f[i-1,j-1,k-1]))+1;55 线性动态规划------日程安排f:=max{f[j]}+P[I]; (e[j]<s)56 递推天地------组合数C[I,j]:=C[i-1,j]+C[I-1,j-1]C[I,0]:=157 树形动态规划-----有向树k中值问题F[I,r,k]:=max{max{f[l,I,j]+f[r,I,k-j-1]},f[f[l,r,j]+f[r,r,k-j]+w[I,r]]}58 树形动态规划-----CTSC 2001选课F[I,j]:=w(if i∈P)+f[l,k]+f[r,m-k](0≤k≤m)(if l<>0)59 线性动态规划-----多重历史f[i,j]:=sigma{f[i-k,j-1]}(if checked)60 背包问题(+-1背包问题+回溯)-----CEOI1998 Substractf[i,j]:=f[i-1,j-a] or f[i-1,j+a]61 线性动态规划(字符串)-----NOI 2000 古城之谜f[i,1,1]:=min{f[i+length(s),2,1],f[i+length(s),1,1]+1}f[i,1,2]:=min{f[i+length(s),1,2]+words[s],f[i+length(s),1,2]+w ords[s]}62 线性动态规划-----最少单词个数f[i,j]:=max{f[I,j],f[u-1,j-1]+l}63 线型动态规划-----APIO2007 数据备份状态压缩+剪掉每个阶段j前j*2个状态和j*2+200后的状态贪心动态规划f:=min(g[i-2]+s,f[i-1]);64 树形动态规划-----APIO2007 风铃f:=f[l]+f[r]+{1 (if c[l]<c[r])}g:=1(d[l]<>d[r]) 0(d[l]=d[r])g[l]=g[r]=1 then Halt;65 地图动态规划-----NOI 2005 adv19910F[t,i,j]:=max{f[t-1,i-dx[d[[t]],j-dy[d[k]]]+1],f[t-1,i,j];66 地图动态规划-----优化的NOI 2005 adv19910F[k,i,j]:=max{f[k-1,i,p]+1} j-b[k]<=p<=j;67 目标动态规划-----CEOI98 subtraF[I,j]:=f[I-1,j+a] or f[i-1,j-a]68 目标动态规划----- Vijos 1037搭建双塔问题F[value,delta]:=g[value+a,delta+a] or g[value,delta-a]69 树形动态规划-----有线电视网f[i,p]:=max(f[i,p],f[i,p-q]+f[j,q]-map[i,j])leaves>=p>=l, 1<=q<=p;70 地图动态规划-----vijos某题F[I,j]:=min(f[i-1,j-1],f[I,j-1],f[i-1,j]);71 最大子矩阵问题-----最大字段和问题f:=max(f[i-1]+b,b); f[1]:=b[1]72 最大子矩阵问题-----最大子立方体问题枚举一组边i的起始,压缩进矩阵B[I,j]+=a[x,I,j]枚举另外一组边的其实,做最大子矩阵73 括号序列-----线型动态规划f[I,j]:=min(f[I,j],f[i+1,j-1](ss[j]=”()”or(”[]”)),f[I+1,j+1]+1 (s[j]=”(”or”[” ] , f[I,j-1]+1(s[j]=”)”or”]” )74 棋盘切割-----线型动态规划f[k,x1,y1,x2,y2]=min{min{f[k-1,x1,y1,a,y2]+s[a+1,y1,x2,y2],f[k-1,a+1,y1,x2,y2]+s[x1,y1,a,y2]min{}}75 概率动态规划-----聪聪和可可(NOI2005)x:=p[p[i,j],j]f[I,j]:=(f[x,b[j,k]]+f[x,j])/(l[j]+1)+1f[I,i]=0f[x,j]=176 概率动态规划-----血缘关系F[A, B]=(f[A0, B]+P[A1, B])/2f[I,i]=1f[I,j]=0(I,j无相同基因)77 线性动态规划-----决斗F[I,j]=(f[I,j] and f[k,j]) and (e[I,k] or e[j,k]),i<k<j78 线性动态规划-----舞蹈家F[x,y,k]=min(f[a[k],y,k+1]+w[x,a[k]],f[x,a[k],k+1]+w[y,a[k]])79 线性动态规划-----积木游戏F[I,a,b,k]=max(f[I,a+1,b,k],f[i+1,a+1,a+1,k’],f[I,a+1,a+1,k’])80 树形动态规划(双次记录)-----NOI2003 逃学的小孩朴素的话枚举节点i和离其最远的两个节点j,k O(n^2)每个节点记录最大的两个值,并记录这最大值分别是从哪个相邻节点传过来的。

资源分配的多目标优化动态规划模型

资源分配的多目标优化动态规划模型

资源分配的多目标优化动态规划模型一、本文概述本文旨在探讨资源分配的多目标优化动态规划模型。

资源分配问题是在有限资源条件下,如何合理、有效地将这些资源分配给不同的活动或项目,以实现特定的目标或优化某些性能指标。

多目标优化则意味着在解决这类问题时,我们需要同时考虑并优化多个目标,如成本最小化、时间最短化、收益最大化等。

动态规划作为一种重要的数学方法,为解决此类问题提供了有效的工具。

本文首先将对资源分配问题的背景和重要性进行简要介绍,阐述为何需要多目标优化的动态规划模型来解决这一问题。

接着,文章将详细阐述多目标优化动态规划模型的基本概念和原理,包括模型的构建、求解方法以及关键要素等。

在此基础上,文章将结合具体案例,分析多目标优化动态规划模型在资源分配问题中的应用,并探讨其在实际操作中的优缺点。

本文还将对多目标优化动态规划模型的发展趋势进行展望,探讨未来研究的方向和可能的应用领域。

文章将总结全文,强调多目标优化动态规划模型在资源分配问题中的重要性和价值,为相关领域的研究和实践提供参考和借鉴。

二、资源分配问题的基本框架资源分配问题是一类重要的优化问题,它涉及到如何在多个可选方案之间分配有限的资源,以达到一个或多个预定目标的最优化。

这类问题广泛存在于各种实际场景中,如生产管理、物流规划、能源分配、投资组合等。

为了有效地解决这些问题,我们需要构建一个合理的资源分配多目标优化动态规划模型。

目标函数:目标函数是资源分配问题的核心,它描述了优化问题的目标。

在多目标优化问题中,目标函数通常是一个由多个子目标组成的函数组,这些子目标可能是相互冲突的,需要在优化过程中进行权衡。

约束条件:约束条件描述了资源分配问题中的限制条件,包括资源数量、分配规则、时间限制等。

这些约束条件限定了资源分配的可能性和范围,对于保证优化问题的可行性和实际意义至关重要。

决策变量:决策变量是资源分配问题中的关键参数,它代表了各种可能的资源分配方案。

资源分配问题优化算法

资源分配问题优化算法

资源分配问题优化算法
资源分配问题是指在有限的资源条件下,将这些资源分配给不同的任务或项目,以达到最优的效益。

资源分配问题优化算法主要有以下几种:
1. 贪心算法:贪心算法是一种简单且高效的算法,它每次选择最优的解决方案,直至得到整体最优的解。

在资源分配问题中,贪心算法可以按照某种规则依次将资源分配给任务,比如按照任务的优先级、资源的利用率等进行选择。

2. 动态规划:动态规划是一种通过将问题分解成子问题,并记录每个子问题的最优解来求解整体最优解的方法。

在资源分配问题中,动态规划可以通过建立一个状态转移方程来求解最优的资源分配方案。

3. 网络流算法:资源分配问题可以转化为网络流问题,其中资源可以被看作是流量,任务可以被看作是网络中的节点。

常用的网络流算法有最大流算法、最小费用最大流算法等,它们可以通过对网络进行建模和优化来求解资源分配问题。

4. 遗传算法:遗传算法是一种模拟生物进化过程的优化算法,它通过模拟选择、交叉和变异等操作来搜索最优解。

在资源分配问题中,可以将每个资源分配方案看作是一个个体,通过遗传算法来优化资源的分配。

5. 整数规划算法:资源分配问题可以建立成整数规划模型,并利用整数规划算法求解。

整数规划算法通过对资源和任务的约束条件进行优化,求解出使目标函数最优的整数解。

以上的算法并不是对资源分配问题的详尽描述,不同的资源分配问题可能需要结合具体的条件和约束来选择合适的算法。

同时,还可以结合多个算法进行求解,以得到更好的优化结果。

资源分配问题的动态规划求解方法

资源分配问题的动态规划求解方法
董 飞
( 凯里学 院 , 贵州 凯里

5 5 6 0 1 1 )
要: 最优 策略 是 一种合 理 分配 资源取得 最大效 益 的分 配方案 . 基 于 多阶段 决策过程 的最优化
问题 , 建立 适 当 图表 , 在 图表 上 引入 阶段状 态变量 、 决策 等将 资 源分 配 问题视 为 多阶段 过程 , 通过
型, 模 型 的求 解 要 技 巧 J . 资源 分 配 问题 是 动 态 规 划在 管理 领域 的一 个重 要应 用 , 本 文基 于动 态规 划 原理 通过 引入 图表 标 号 的方 法 解 决 资 源分 配 问
题 也是 一种 方便 可行 的方 法. 1 原 理与 方法 1 . 1 最优化 原理 和 多阶段 决 策过程
例如 , 某公 司有 资 源 ( 或 资金 ) 个单位 (
为正 整数 ) 将分 配给 Ⅳ个 生产 项 目 , 其 中每 个 生产
项 目都 可能 分 配 到 个单 位 (T = 1 , 2, …, M) 资 源( 或 资金 ) , 并 且 每 个 项 目的投 资 效 益 与投 入 该 项 目的资 金有 关. 假设 第 个生 产项 目获 得 M … 个 单位 ( 其中 “ ㈩ 为非 负整 数 , 称 为决 策 变量 ) 可 创 利润 d ( U … )(k = 1 , 2 , …, Ⅳ .) , 对 Ⅳ个 项 目如 何 进行 分配 可 以使得 总投 资金 生产 最优 效益 .
基 于多 阶 段决 策 过程 的最 优 化 问 优 策 略具 有
这样 的性 质 , 即对 于最 优决 策过程 中的任 意状态 来 说, 无论 其过 去 的状 态 和 决 策如 何 , 由前 面诸 决 策 所 形成 的状 态 出发 , 相 应 的剩余 决策序 列 构成最 优

动态规划在资源配置中的应用分析

动态规划在资源配置中的应用分析

动态规划在资源配置中的应用分析在当今复杂多变的商业环境中,资源的有效配置是企业和组织取得成功的关键因素之一。

动态规划作为一种强大的数学优化方法,在解决资源配置问题方面发挥着重要作用。

它能够帮助决策者在面对不确定性和多个阶段的决策过程中,做出最优的选择,从而实现资源的最大化利用和效益的提升。

动态规划的基本概念可以追溯到 20 世纪 50 年代,它是一种基于分阶段决策的优化方法。

与传统的静态规划不同,动态规划考虑了时间和阶段的因素,将一个复杂的问题分解为一系列相互关联的子问题,并通过逐步求解这些子问题来获得最终的最优解。

在资源配置领域,动态规划的应用范围非常广泛,包括生产计划、库存管理、项目调度、人力资源分配等多个方面。

以生产计划为例,企业需要在一定的生产周期内,根据市场需求和生产能力,合理安排各种产品的生产数量和时间。

这是一个典型的资源配置问题,因为企业需要在有限的人力、物力和财力资源的约束下,满足市场需求并实现利润最大化。

通过运用动态规划方法,企业可以将生产计划划分为多个阶段,每个阶段对应一个生产周期。

在每个阶段,企业需要根据当前的市场需求、库存水平和生产能力,决定生产哪种产品以及生产多少数量。

通过逐步求解每个阶段的子问题,并考虑到后续阶段的影响,企业可以制定出最优的生产计划,从而有效地利用资源,降低生产成本,提高生产效率。

库存管理也是资源配置中的一个重要问题。

企业需要合理控制库存水平,以满足市场需求的同时,降低库存成本。

动态规划可以帮助企业在不确定的市场需求情况下,制定最优的库存策略。

例如,企业可以根据历史销售数据和市场预测,将库存管理划分为多个阶段。

在每个阶段,企业需要决定是否补货以及补货的数量。

通过考虑库存持有成本、缺货成本和补货成本等因素,动态规划可以帮助企业找到最优的库存水平,从而在保证供应的前提下,降低库存成本。

在项目调度方面,动态规划同样具有重要的应用价值。

例如,在建筑工程项目中,需要合理安排各项任务的开始时间和结束时间,以确保项目按时完成,同时最小化项目成本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分析
由于动态规划要满足无后效性和最优化原理,所以我们来分析此题 是否满足以上两点。首先确定状态,商品不超过5种,而每种采购 的数量又不超过5,那么用一个五元组来表示第i种商品买Ai的最小 费用。 F ( A 1 , A 2 , A 3 , A 4 ,A 5 ) (1 ) 考虑这个状态的由来,当然,我们不用优惠商品也可以买,显然这 样不是最优。于是如果我们能够使用第i条商品组合的话,状态就b 变为了: F ( A 1 - S I 1 , A 2 - S I 2 ,A 3 - S I 3 , A 4 - S I 4 ,A 5 - S I 5 ) (2 ) 这样的话,状态1的费用为状态2的费用加上Si的费用,而状态2的费 用必须最低(很显然,用反证法即可),同时,我们也不管状态2 是如何来的(因为每一个优惠商品组合的使用是没有限制的),所 以本题既满足无后效性,又符合最优化原理,同时还有大量重叠子 问题产生,动态规划解决此题是最好不过了。
其他优化方法
1.存储结构:由于每一阶段状态只与上一阶段状态有关,所以我们可以 只用两个100*100的数组滚动实现。但考虑到滚动是有大量的赋值,可以 改进为动态数组,每次交换时只需交换指针即可,这样比原来数组间赋 值要快。 2.减少循环次数:在计算每一阶段状态过程中无疑要用到4重循环,我们 可以这样修改每一重循环的起始值和终数,其中q1,q2为A,B上限值。
i:=1 to n do j:=0 to tot[i] div p1 do k:=0 to (tot[i]-p1*j) div p2 do j1:=0 to j do for k1 := 0 to k do
商店购物
某商店中每种商品都有一个价格。例如,一朵花的价格是2 ICU(ICU 是 信息学竞赛的货币的单位);一个花瓶的价格是5 ICU。为了吸引更多的 顾客,商店提供了特殊优惠价。 特殊优惠商品是把一种或几种商品分成一组。并降价销售。例如:3朵花 的价格不是6而是5 ICU ;2个花瓶加1朵花是10 ICU不是12 ICU。 编一个程序,计算某个顾客所购商品应付的费用。要充分利用优惠价以 使顾客付款最小。请注意,你不能变更顾客所购商品的种类及数量,即 使增加某些商品会使付款总数减小也不允许你作出任何变更。假定各种 商品价格用优惠价如上所述,并且某顾客购买物品为:3朵花和2个花瓶。 那么顾客应付款为14 ICU因为: 1朵花加2个花瓶: 优惠价:10 ICU 2朵花 正常价: 4 ICU
原起始值
for for for for
改进后的起始值
for for for for i:=1 to n do j:=0 to min(q1,tot[i] div p1) do k:=0 to min(q2,(tot[i]-p1*j)div p2) do j1 := max(0,j-t[i] div p1) to min(j,tot[i-1] div p1) do for k1:=max(0,k-(t[i]-(j-j1)*p1) div p2) to min(k,(tot[i-1]-p1*j1)div p2) do
金明的预算方案
金明今天很开心, 金明今天很开心,家里购置 的新房就要领钥匙了, 的新房就要领钥匙了,新房 里有一间金明自己专用的很 宽敞的房间。 宽敞的房间。更让他高兴的 妈妈昨天对他说: 是,妈妈昨天对他说:“你 的房间需要购买哪些物品, 的房间需要购买哪些物品, 怎么布置,你说了算, 怎么布置,你说了算,只要 不超过N元钱就行 元钱就行” 不超过 元钱就行”。今天 一早,金明就开始做预算了, 一早,金明就开始做预算了, 他把想买的物品分为两类: 他把想买的物品分为两类: 主件与附件, 主件与附件,附件是从属于 某个主件的, 某个主件的,下表就是一些 主件与附件的例子: 主件与附件的例子: 主件 电脑 书柜 书桌 工作椅 附件 打印机, 打印机, 扫描仪 图书 台灯, 台灯,文 具 无
状态转移方程
F [a, b, c, d, e] = Min{F[a-Si1,b-Si2,c-Si3,d-Si4,e-Si5]+SaleCost[Si]} (0<=i<=S, 0<=a, b, c, d, e<=5) 初始条件为: F [a, b, c, d, e] = Cost[1]*a+Cost[2]*b+Cost[3]*c+Cost[4]*d+Cost[5]*e
资源类动态规划
朱全民
机器分配
总公司拥有高效生产设备M台,准备分给下属的N个公司。 各分公司若获得这些设备,可以为国家提供一定的盈利。 问:如何分配这M台设备才能使国家得到的盈利最大? 求出最大盈利值。其中M<=15,N<=10。分配原则:每个 公司有权获得任意数目的设备,但总台数不得超过总设 备数M。 数据文件格式为:第一行保存两个数,第一个数是设备 台数M,第二个数是分公司数N。接下来是一个M*N的 矩阵,表明了第I个公司分配J台机器的盈利。
快餐问题
Peter最近在R市开了一家快餐店,为了招揽顾客,该快餐店准备 推出一种套餐,该套餐由A个汉堡,B个薯条和C个饮料组成。价格 便宜。为了提高产量,Peter从著名的麦当劳公司引进了N条生产 线。所有的生产线都可以生产汉堡,薯条和饮料,由于每条生产 线每天所能提供的生产时间是有限的、不同的,而汉堡,薯条和 饮料的单位生产时间又不同。这使得Peter很为难,不知道如何安 排生产才能使一天中生产的套餐产量最大。请你编一程序,计算 一天中套餐的最大生产量。为简单起见,假设汉堡、薯条和饮料 的日产量不超过100个。 输入:第一行为三个不超过100的正整数A、B、C中间以一个空格分 开。第二行为3个不超过100的正整数p1,p2,p3分别为汉堡,薯条 和饮料的单位生产耗时。中间以一个空格分开。第三行为 N(0<=0<=10),第四行为N个不超过10000的正整数,分别为各条生 产流水线每天提供的生产时间,中间以一个空格分开。 输出:每天套餐的最大产量。
商店购物
输入数据 第一个文件INPUT.TXT的格式为:第一行是一个数字B(0≤B≤5), 表示所购商品种类数。下面共B行,每行中含3个数C,K,P。C 代 表商品的编码(每种商品有一个唯一的编码),1≤C≤999。K代 表该种商品购买总数,1≤K≤5。P 是该种商品的正常单价(每件 商品的价格),1≤P≤999。请注意,购物筐中最多可放5*5=25 件商品。 第二个文件OFFER.TXT的格式为:第一行是一个数字S(0≤S≤99), 表示共有S种优惠。下面共S行,每一行描述一种优惠商品的组合 中商品的种类。下面接着是几个数字对(C,K),其中C代表商品 编码,1≤C≤9 99。K代表该种商品在此组合中的数量,1≤K≤5。 本行最后一个数字P(1≤ P≤9999)代表此商品组合的优惠价。 当然, 优惠价要低于该组合中商品正常价之总和。 输出数据 在输出文件OUTPUT.TXT中写 一个数字(占一行), 该数字表示 顾客所购商品(输入文件指明所购商品)应付的最低货款。
分析
用机器数来做状态,数组F[I,J]表示前I 个公司分配J台机器的最大盈利。则状态 转移方程为: F[I,J]=Max{F[I-1,K] + Value[I,J-K]} (1<=I<=N,1<=J<=M,0<=K<=J ) 初始值: F(0,来自)=0 时间复杂度O(N*M2)
系统可靠性
一个系统由若干部件串联而成,只要有一个部件故障,系统就不能正 常运行,为提高系统的可靠性,每一部件都装有备用件,一旦原部件 故障,备用件就自动进入系统。显然备用件越多,系统可靠性越高, 但费用也越大,那么在一定总费用限制下,系统的最高可靠性等于多 少? 给定一些系统备用件的单价Ck,以及当用Mk个此备用件时部件的正常 工作概率Pk(Mk),总费用上限C。求系统可能的最高可靠性。 输入文件格式: 第一行:n C 第二行:C1 P1(0) P1(1) … P1(X1) (0<=X1<=[C/Ck]) … 第 n 行:Cn Pn(0) Pn(1) … Pn(Xn) (0<=Xn<=[C/Cn])
分析
本题是一个非常典型的资源分配问题。由于每条生产线的生产是相 互独立,不互相影响的,所以此题可以以生产线为阶段用动态规划 求解。 状态表示:用p[i,j,k]表示前i条生产线生产j个汉堡,k个薯条的 情况下最多可生产饮料的个数。 用r[i,j,k]表示第i条生产线生产j个汉堡,k个薯条的情况下最多 可生产饮料的个数。 态转移方程 : p[i,j,k] = Max{p[i-1,j1,k1]+r[i,j-j1,k-k1]} ( 0<=j1<=j<=100,0<=k1<=k<=100, 且(j-j1)*p1+(k-k1)*p2<=T[i]---第i条生产线的生产时间 ) r[i,j-j1,k-k1]=(T[i]-(j-j1)*p1+(k-k1)*p2) div p3 ; 此算法的时间复杂度为O(N*1004),
如果要买归类为附件的物品, 如果要买归类为附件的物品,必须先买该附件所 属的主件。每个主件可以有0个 个或2个附件 属的主件。每个主件可以有 个、1个或 个附件。 个或 个附件。 附件不再有从属于自己的附件。 附件不再有从属于自己的附件。金明想买的东西 很多,肯定会超过妈妈限定的N元 于是, 很多,肯定会超过妈妈限定的 元。于是,他把每 件物品规定了一个重要度,分为5等:用整数1~5 件物品规定了一个重要度,分为 等 用整数 表示, 等最重要。 表示,第5等最重要。他还从因特网上查到了每件 等最重要 物品的价格(都是10元的整数倍)。他希望在不 元的整数倍)。 物品的价格(都是 元的整数倍)。他希望在不 超过N元 可以等于N元 的前提下, 超过 元(可以等于 元)的前提下,使每件物品 的价格与重要度的乘积的总和最大。 的价格与重要度的乘积的总和最大。 设第j件物品的价格为 件物品的价格为v[j],重要度为 设第 件物品的价格为 ,重要度为w[j],共选中 , 件物品, 了k件物品,编号依次为 ,j2,……,jk,则所 件物品 编号依次为j1, , , , 求的总和为: 求的总和为: v[j1]*w[j1]+v[j2]*w[j2]+ …+v[jk]*w[jk]。(其中 。(其中 。(其中* 为乘号) 为乘号) 请你帮助金明设计一个满足要求的购物单。 请你帮助金明设计一个满足要求的购物单。
相关文档
最新文档