现代密码学

合集下载

现代密码学杨波课后习题讲解

现代密码学杨波课后习题讲解

选择两个不同的大素数p和q, 计算n=p*q和φ(n)=(p-1)*(q-1)。 选择整数e,使得1<e<φ(n)且e 与φ(n)互质。计算d,使得 d*e≡1(mod φ(n))。公钥为 (n,e),私钥为(n,d)。
将明文信息M(M<n)加密为 密文C,加密公式为 C=M^e(mod n)。
将密文C解密为明文信息M,解 密公式为M=C^d(mod n)。
课程特点
杨波教授的现代密码学课程系统介绍了密码学的基本原 理、核心算法和最新进展。课程注重理论与实践相结合, 通过大量的案例分析和编程实践,帮助学生深入理解和 掌握密码学的精髓。
课后习题的目的与意义
01 巩固课堂知识
课后习题是对课堂知识的有效补充和延伸,通过 解题可以帮助学生加深对课堂内容的理解和记忆。
不要重复使用密码
避免在多个账户或应用中使用相同的密码, 以减少被攻击的风险。
注意网络钓鱼和诈骗邮件
数字签名与认证技术习题讲
05

数字签名基本概念和原理
数字签名的定义
数字签名的应用场景
数字签名是一种用于验证数字文档或 电子交易真实性和完整性的加密技术。
电子商务、电子政务、电子合同、软 件分发等。
数字签名的基本原理
利用公钥密码学中的私钥对消息进行签 名,公钥用于验证签名的正确性。签名 过程具有不可抵赖性和不可伪造性。
Diffie-Hellman密钥交换协议分析
Diffie-Hellman密钥交换协议的原理
该协议利用数学上的离散对数问题,使得两个通信双方可以在不安全的通信通道上协商出一个共 享的密钥。
Diffie-Hellman密钥交换协议的安全性
该协议在理论上被证明是安全的,可以抵抗被动攻击和中间人攻击。

现代密码学精讲PPT课件

现代密码学精讲PPT课件
3
2.1.1 什么是密码学(续)
发送者 Alice
明文m 加密器 Ek
密文c 公 共 信道
密钥k
密钥源
安全 信道
图 2.1 Shannon保密系统
分析者 Eve
解密器 明文m Dk
密钥k
接收者 Bob
4
2.1.1 什么是密码学(续)
通信中的参与者 (1) 发送者(Alice): 在双方交互中合法的信息发 送实体。 (2) 接收者(Bob):在双方交互中合法的信息接收 实体。 (3) 分析者(Eve):破坏通信接收和发送双方正常 安全通信的其他实体。可以采取被动攻击和主动 攻击的手段。 信道 (1) 信道:从一个实体向另一个实体传递信息的 通路。 (2) 安全信道:分析者没有能力对其上的信息进 行阅读、删除、修改、添加的信道。 (3) 公共信道:分析者可以任意对其上的信息进 行阅读、删除、修改、添加的信道。
定义2 一个加密方案可以被破译是指,第三方在 没有事先得到密钥对(e, d)的情况下,可以在适当 的时间里系统地从密文恢复出相对应的明文。 # 适当的时间由被保护数据生命周期来确定。
12
2.1.4 现代密码学主要技术(续)
私钥加密 定义3 一个由加密函数集{Ee: eK}和解密函数集{Dd: dK}组成加密方案,每一个相关联的密钥对(e, d) , 如果知道了e在计算上很容易确定d,知道了d在计算 上很容易确定e,那么,就是私钥加密方案。 # 私钥加密需要一条安全信道来建立密钥对。
2.1.4 现代密码学主要技术(续)
公钥加密实例
A1
Ee(m1)=c1
e
c1
e
A2
Ee(m2)=c2
c2
Dd(c1)=m1 Dd(c2)=m2

现代密码学课程ppt(完整版)

现代密码学课程ppt(完整版)

3
数字签名的基本概念
手写签名与数字签名的区别 手写签名是一种传统的确认方式,如写信、 手写签名是一种传统的确认方式,如写信、签订 协议、支付确认、批复文件等. 协议、支付确认、批复文件等
手写签名是所签文件的物理组成部分;数字签名必须与所签文件捆绑 在一起。 手写签名通过与标准签名比较或检查笔迹来验证,伪造签名比较容易; 数字签名是通过公开的验证算法来验证。好的数字签名算法应该伪造 签名十分困难。 手写签名不易复制;数字签名是一个二进制信息,十分容易复制,所 以必须防止数字签名重复使用。
16
一般数字签名算法一般数字签名算法-DSA
参数 p:满足2L-1<p<2L 的大素数,其中512≤L≤1024且 L是64的倍数. q:p-1的素因子,满足2159<q<2160 ,即q长为160 比特. g:g≡h(p-1)/q mod p,其中h是满足1<h<p-1且使 得h(p-1)/q mod p>1的任一整数. 用户秘密钥x(0<x<q的随机数或伪随机数); 用户的公开钥y:y≡gx mod p.
23
一般数字签名算法
基于离散对数问题的数字签名体制是数字签 基于离散对数问题 名体制中最为常用的一类,其中包括 ElGamal签名体制、DSA签名体制、Okamoto 签名体制等.
24
一般数字签名算法
离散对数签名体制 1) 参数和密钥生成 p:大素数;q:p-1或p-1的大素因子; g:g∈RZ*p,且gq≡1(mod p), g∈R Z*p表示g是从Z*p中随机选取的, Z*p=Zp-{0}; x:用户A的秘密钥,1<x<q; y:用户A的公开钥,y≡gx(mod p).
28

现代密码学概述

现代密码学概述

现代密码学概述现代密码学是研究保护信息安全的科学,它使用密码算法来加密和解密数据,以防止未经授权的访问和篡改。

密码学在现代社会中扮演着至关重要的角色,它保证了电子通信、互联网交易和数据存储的安全性。

一、密码学的基本概念和原理1.1 加密和解密在密码学中,加密是将明文转换为密文的过程,而解密则是将密文还原为明文的过程。

加密和解密的过程需要使用特定的密钥和密码算法。

1.2 对称密码和非对称密码对称密码算法使用相同的密钥进行加密和解密,加密和解密的速度较快,但密钥的分发和管理比较困难。

非对称密码算法使用一对密钥,分别用于加密和解密,密钥的管理更为灵活,但加密和解密的速度较慢。

1.3 数字签名和数字证书数字签名是在数字信息中添加的一种类似于手写签名的标识,用于验证数据的完整性和真实性。

数字证书则是由可信的第三方机构颁发的用于验证签名者身份的证书。

二、现代密码学的应用领域2.1 网络安全现代密码学在网络安全中扮演着重要的角色。

它通过对通信数据进行加密,保护用户的隐私和数据的安全,防止信息被窃听、篡改和伪造。

2.2 数据存储密码学被广泛应用于数据存储领域,如数据库加密、文件加密和磁盘加密等。

通过对数据进行加密,即使数据泄露也不会造成重大的损失。

2.3 电子支付现代密码学在电子支付领域也有广泛的应用。

它通过使用数字签名和加密技术,确保支付过程的安全性和可信度,防止支付信息被篡改和伪造。

三、常见的密码学算法3.1 对称密码算法常见的对称密码算法有DES(Data Encryption Standard)、AES (Advanced Encryption Standard)和RC4等。

这些算法在加密和解密的速度上都较快,但密钥的管理较为困难。

3.2 非对称密码算法常见的非对称密码算法有RSA、DSA和ECC等。

这些算法在密钥的管理上更为灵活,但加密和解密的速度较慢。

3.3 哈希函数算法哈希函数算法用于将任意长度的数据转换为固定长度的摘要值。

现代密码学的基础知识与应用

现代密码学的基础知识与应用

现代密码学的基础知识与应用现代密码学是信息安全领域中的重要分支,旨在保护数据的机密性、完整性和可用性。

它通过使用密钥和算法来加密、解密和签名数据,以确保数据在传输和存储过程中的安全。

本文将介绍现代密码学的基础知识和应用,包括加密算法、密钥管理和攻击方法。

加密算法加密算法是现代密码学中最基本的概念之一,它用于将数据转换为不可读的形式,以保护数据的机密性。

加密算法可分为两种类型:对称加密算法和非对称加密算法。

对称加密算法是加密和解密使用相同密钥的算法。

数据在发送和接收方之间传输时,使用相同的密钥对数据进行加密和解密。

常见的对称加密算法包括DES、3DES、AES等。

这些算法在整个过程中的安全性取决于密钥的安全性。

如果密钥被攻击者窃取或暴力破解,对称加密的安全性就会被破坏。

非对称加密算法,又称为公钥加密算法,使用一对密钥进行加密和解密,其中一个密钥称为公钥,另一个密钥称为私钥。

公钥可以公开发布并共享给发送方,而私钥通常只有接收方持有。

常见的非对称加密算法包括RSA、Elgamal等。

由于使用了不同的密钥进行加密和解密,非对称加密算法的安全性比对称加密算法更高,但也需要保护好私钥的安全性。

密钥管理密钥是加密和解密过程中的关键元素,好的密钥管理对加密算法的效果至关重要。

密钥管理的主要目的是确保密钥的安全、可靠和有效使用。

密钥的生成是密钥管理的首要任务。

生成密钥的方法包括随机生成、使用密码短语生成和使用密钥派生算法等。

在使用密钥之前,需要对密钥进行保密处理,并将其存储在安全的位置。

密钥的分配应该限制在需要访问加密数据的人员中,并且在不再需要使用时应该立即取消分配。

当使用对称加密算法时,密钥的分发和交换也是一个关键问题。

因为对称加密算法使用相同的密钥加密和解密数据,发送方需要将密钥发送给接收方。

这个过程暴露出密钥的风险,因此需要采取一些预防措施,如使用密钥协商算法、使用加密密钥交换协议和使用数字签名等。

攻击方法密码学中的攻击方法可以分为两种类型:袭击和侵入。

现代密码学

现代密码学

课程名称:现代密码学课程编码:学分:2适用学科:理工科硕士研究生现代密码学Modern Cryptography教学大纲一、课程性质《现代密码学》是应用数学硕士研究生的一门专业方向选修课程。

随着计算机和通信网络的应用,信息的安全性受到人们的普遍重视,现代的信息安全除了涉及国家安全外,也涉及个人权益、企业生存和金融防范等。

密码学是信息安全的重要领域,它的理论和技术随着计算机技术的发展也得到了迅速发展和广泛应用。

本课程主要就是学习密码学的基本内容。

二、课程教学目的通过学习密码学理论,信息与计算科学和应用数学专业的学生应能正确理解其基本概念和理论,掌握常用的密码算法。

本课程将培养学生基础理论与应用结合的能力,并为后续课程的学习和本课程的进一步运用打下良好的基础。

三、教学基本内容与要求第一章引言1、了解密码学的发展概况2、熟练掌握密码学的基本概念第二章古典密码1、熟练掌握古典密码中的基本加密运算2、理解几种典型的古典密码体制3、了解古典密码的统计分析第三章香农理论1、熟练掌握密码体制的数学模型2、掌握熵及其性质3、了解伪密钥和唯一解距离4、了解密码体制的完善保密性5、理解乘积密码体制第四章分组密码1、熟练掌握分组密码的基本原理2、理解数据加密标准DES3、了解多重DES及DES的工作模式4、理解高级加密标准AES第五章公钥密码1、熟练掌握公钥密码的理论基础2、掌握RSA公钥密码3、掌握大素数的生成方法4、了解椭圆曲线上的Menezes- Vanstone公钥密码第六章序列密码与移位寄存器1、熟练掌握序列密码的基本原理2、理解移位寄存器与移位寄存器序列3、掌握移位寄存器的表示方法4、了解线性移位寄存器序列的周期性、序列空间和极小多项式5、知道m-序列的伪随机性几点说明本课程教学时数为48学时,根据不同章节难易程度安排上机练习。

课程内容要求的高低用不同词汇加以区分:对于概念、理论,从高到低以“理解”、“了解”、“知道”三级区分;对于运算、方法,以“熟练掌握”、“掌握”、“会”或“能”三级区分。

现代密码学第四版答案

现代密码学第四版答案

现代密码学第四版答案第一章简介1.1 密码学概述1.1.1 什么是密码学?密码学是研究通信安全和数据保护的科学和艺术。

它涉及使用各种技术和方法来保护信息的机密性、完整性和可用性。

1.1.2 密码学的分类密码学可以分为两个主要方向:对称密码学和非对称密码学。

•对称密码学:在对称密码学中,发送者和接收者使用相同的密钥来进行加密和解密。

•非对称密码学:在非对称密码学中,发送者和接收者使用不同的密钥来进行加密和解密。

1.2 密码系统的要素1.2.1 明文和密文•明文(plaintext):未经加密的原始消息。

•密文(ciphertext):经过加密后的消息。

1.2.2 密钥密钥是密码系统的核心组成部分,它用于加密明文以生成密文,或者用于解密密文以恢复明文。

密钥应该是保密的,只有合法的用户才能知道密钥。

1.2.3 加密算法加密算法是用来将明文转换为密文的算法。

加密算法必须是可逆的,这意味着可以使用相同的密钥进行解密。

1.2.4 加密模式加密模式是规定了加密算法如何应用于消息的规则。

常见的加密模式包括电子密码本(ECB)、密码块链路(CBC)和计数器模式(CTR)等。

1.3 密码的安全性密码的安全性取决于密钥的长度、加密算法的复杂度以及密码系统的安全性设计。

第二章对称密码学2.1 凯撒密码凯撒密码是一种最早的加密方式,它将字母按照给定的偏移量进行位移。

例如,偏移量为1时,字母A加密后变为B,字母B变为C,以此类推。

2.2 DES加密算法DES(Data Encryption Standard)是一种对称密码算法,它使用56位密钥对64位的明文进行加密。

DES算法包括初始置换、16轮迭代和最终置换三个阶段。

2.3 AES加密算法AES(Advanced Encryption Standard)是一种对称密码算法,它使用128位、192位或256位的密钥对128位的明文进行加密。

AES算法使用了替代、置换和混淆等操作来保证对抗各种密码攻击。

现代密码学(第一章)

现代密码学(第一章)

双钥密码体制
一对密钥可供多用户向一用户 单向使用。 有消息认证功能。
n个用户之间的保密通信,一共 n个用户之间的保密通信,一共 需要n(n-1)/2对密钥。 需要n对密钥。
加解密算法简洁快速。 通信伙伴之间需要协商密钥。
2017/3/20
加解密算法相对较慢。 通信伙伴之间不用协商密钥。
31
三、古典密码
2017/3/20 23
一、信息安全的基本概念
(简单介绍)为了抵抗诸如此类的攻击,以便适用于 多次一密,加解密算法应该满足: (1)具有良好的“混淆性”(confusion)和“扩散 性”(diffusion); (2)具有良好的“非线性性”(non-linearity); (3)具有良好的“差分均匀性”(difference balance)。 (4)密钥的可能变化范围(密钥量)应该大到不可能 穷举搜索密钥(brute force search)。
2017/3/20 14
一、信息安全的基本概念
如果加解密密钥(z,k)在多次加密/解密过 程中反复地重复使用,则加解密方式称为多 次一密的。 现有的实用加解密方式都是多次一密的。 多次一密的加解密方式极大地省却了通信伙伴 的工作量。 但同时,多次一密的加解密方式使得攻击者增 加了几种新的攻击手段。其中包括:已知明 文攻击。
2017/3/20 20
一、信息安全的基本概念
可以看出,以上两个例子所用的加解密算法都 不能抵抗已知明文攻击,因此不能用作多次 一密的加解密方式。
2017/3/20
21
一、信息安全的基本概念
注解三:已知明文攻击的一些弱化形式 设攻击者Eve知道了以往的一个密文c以及c所对 应的明文m 。 Eve又截获了一个新的密文c’, Eve试图猜测出 c’所对应的明文m’。 如果加解密算法设计得“不好”,则密钥对明 文的覆盖就可能出现漏洞。此时由{m ,c, c’} 猜测出c’所对应的明文m’就会变得容易得多。 可能出现以下的现象:

现代密码学中的名词解释

现代密码学中的名词解释

现代密码学中的名词解释密码学是研究如何保护信息安全的学科领域。

随着信息技术的快速发展,保护数据的安全成为了当代社会的重要需求之一。

为了加强密码学的理论和应用,现代密码学涌现了许多重要的概念和名词。

本文将重点解释现代密码学中的一些常见名词,以帮助读者更好地理解和运用密码学的基本原理。

一、对称密钥密码体制(Symmetric Key Cryptography)对称密钥密码体制是最早也是最简单的密码学方法之一。

其基本原理是发送方和接收方使用相同的密钥进行加密和解密操作。

这意味着密钥需要在通信双方之间事先共享,因此也被称为共享密钥密码体制。

对称密钥密码体制具有高效、快速的特点,但存在密钥管理困难和密钥安全问题。

二、公钥密码体制(Public Key Cryptography)与对称密钥密码体制相比,公钥密码体制采用了一对密钥:公钥和私钥。

发送方使用接收方的公钥进行加密操作,而接收方则使用自己的私钥进行解密。

在公钥密码体制中,公钥可以公开,私钥必须保密。

公钥密码体制解决了对称密钥密码体制中的密钥管理和密钥安全问题,但加解密过程相对较慢。

三、数字签名(Digital Signature)数字签名是公钥密码体制的一个重要应用,用于验证电子文档的真实性和完整性。

发送方使用自己的私钥对文档进行加密,生成数字签名,并将文档和数字签名发送给接收方。

接收方使用发送方的公钥解密数字签名,再与原始文档进行比较,如果一致,则可以确定文档的来源和完整性。

四、哈希函数(Hash Function)哈希函数是一种将任意长度的输入数据转换为固定长度的输出数据的算法。

哈希函数具有以下特性:(1)输入和输出具有固定的长度;(2)对于相同的输入,输出总是相同;(3)对于不同的输入,输出应该尽量不同;(4)给定输出,很难推导出对应的输入。

五、数字证书(Digital Certificate)数字证书是用于证明公钥的有效性和所有者身份的一种数字文件。

现代密码学范畴

现代密码学范畴

现代密码学范畴
现代密码学是一门研究和应用于保护信息安全的学科,其范畴包括以下几个方面:
1. 对称密码学:研究加密算法中的密钥管理,包括数据加密和解密。

2. 非对称密码学:研究使用公钥和私钥进行加密和解密的算法,也称为公钥密码学。

3. 消息认证码(MAC):用于验证消息的完整性和真实性,
防止数据被篡改。

4. 数字签名:用于验证消息或文档的发信人身份,并确保消息的完整性和真实性。

5. 密码协议:研究通过密码控制通信过程中的安全性。

6. 认证和访问控制:研究证实用户身份,并控制其对系统或资源的访问权限。

7. 安全协议和协议分析:研究设计安全协议以及对现有协议进行分析和改进。

8. 密码算法设计与分析:研究设计新的密码算法并评估其安全性,以及分析现有算法的强弱点。

9. 密码学理论:研究密码学的数学基础,如复杂性理论、概率论和代数等。

现代密码学的范畴不仅仅局限于上述几个方面,随着信息技术的不断发展,还涉及到密码学与计算机科学、网络安全、量子密码学、生物密码学等多个交叉学科的应用和研究。

《现代密码学基础》课件

《现代密码学基础》课件
2 RSA算法
RSA算法是一种常用的公钥加密算法,基于数论的难题,广泛应用于数字签名和密钥交换 等场景。
3 椭圆曲线算法
椭圆曲线算法是一种新兴的公钥加密算法,具有更短的密钥长度和更高的安全性。
消息认证码
消息认证码用于验证消息的完整性和真实性,常用于数据完整性校验和身份认证。
1 消息认证码概述
2 常用的消息认证码
总结
通过此课件,我们回顾了现代密码学的基础知识,并推荐了后续学习的方向。
《现代密码学基础》PPT 课件
现代密码学基础课程的PPT课件,包括密码学概述、对称加密算法、公钥加密 算法、消息认证码、密码学协议、密码学安全等内容。
密码学概述
密码学是研究信息安全和通信安全的一门学科,主要包括加密与解密技术、密钥管和认证协议 等内容。
1 密码学定义
密码学是研究信息安全和通信安全的一门学科,涉及加密与解密技术、密钥管理和认证 协议等内容。
消息认证码用于验证消息的完整性和真实性, 通常包括消息摘要和密钥。
• HMAC算法 • CMAC算法 • GMAC算法
密码学协议
密码学协议用于实现安全的通信和身份认证,常用于保护网络通信和数据传输的安全性。
1 密码学协议定义
2 常用的密码学协议
密码学协议用于实现安全的通信和身份认证, 通常包括密钥协商、身份认证和数据加密等 功能。
对称加密算法使用相同的密钥对信息进行加 密和解密,加密和解密过程效率高,但密钥 管理复杂。
2 常用的对称加密算法
• DES算法 • 3DES算法 • AES算法
公钥加密算法
公钥加密算法使用不同的密钥对信息进行加密和解密,具有更高的安全性。
1 公钥加密算法概述
公钥加密算法使用不同的密钥对信息进行加密和解密,提供更高的安全性和密钥管理的 便利。

现代密码学知识点整理:

现代密码学知识点整理:

第一章 根本概念1. 密钥体制组成局部:明文空间,密文空间,密钥空间,加密算法,解密算法 2、一个好密钥体制至少应满足的两个条件:〔1〕明文和加密密钥计算密文容易;在密文和解密密钥计算明文容易; 〔2〕在不知解密密钥的情况下,不可能由密文c 推知明文 3、密码分析者攻击密码体制的主要方法: 〔1〕穷举攻击 〔解决方法:增大密钥量〕〔2〕统计分析攻击〔解决方法:使明文的统计特性与密文的统计特性不一样〕 〔3〕解密变换攻击〔解决方法:选用足够复杂的加密算法〕 4、四种常见攻击〔1〕唯密文攻击:仅知道一些密文〔2〕明文攻击:知道一些密文和相应的明文〔3〕选择明文攻击:密码分析者可以选择一些明文并得到相应的密文 〔4〕选择密文攻击:密码分析者可以选择一些密文,并得到相应的明文【注:①以上攻击都建立在算法的根底之上;②以上攻击器攻击强度依次增加;③密码体制的安全性取决于选用的密钥的安全性】第二章 古典密码(一)单表古典密码1、定义:明文字母对应的密文字母在密文中保持不变2、根本加密运算设q 是一个正整数,}1),gcd(|{};1,...,2,1,0{*=∈=-=q k Z k Z q Z q q q〔1〕加法密码 ①加密算法:κκ∈∈===k X m Z Z Y X q q ;,;对任意,密文为:q k m m E c k mod )()(+==②密钥量:q (2)乘法密码 ①加密算法:κκ∈∈===k X m Z Z Y X q q ;,;*对任意,密文为:q km m E c k mod )(==②解密算法:q c k c D m k mod )(1-== ③密钥量:)(q ϕ (3)仿射密码 ①加密算法:κκ∈=∈∈∈===),(;},,|),{(;21*2121k k k X m Z k Z k k k Z Y X q q q 对任意;密文q m k k m E c k mod )()(21+==②解密算法:q k c k c D m k mod )()(112-==-③密钥量:)(q q ϕ (4)置换密码 ①加密算法:κσκ∈=∈==k X m Z Z Y X q q ;,;对任意上的全体置换的集合为,密文)()(m m E c k σ==②密钥量:!q③仿射密码是置换密码的特例 3.几种典型的单表古典密码体制 (1)Caeser 体制:密钥k=3 (2)标准字头密码体制: 4.单表古典密码的统计分析【注:出现频率最高的双字母:th ;出现频率最高的三字母:the 】 〔二〕多表古典密码1.定义:明文中不同位置的同一明文字母在密文中对应的密文字母不同〔1〕简单加法密码 ①加密算法:κκ∈=∈====),...,(,),...,(,,11n n n nq n q n n k k k X m m m Z Z Y X 对任意设,密文:),...,()(11n n k k m k m m E c ++==②密钥量:nq 〔2〕简单乘法密码 ①密钥量:n q )(ϕ 1.简单仿射密码 ①密钥量:n nq q)(ϕ2.简单置换密码①密钥量:n q )!( 〔3〕换位密码 ①密钥量:!n〔4〕广义置换密码 ①密钥量:)!(n q 〔5〕广义仿射密码 ①密钥量:n n r q3.几种典型的多表古典密码体制 (1)Playfair 体制: ①密钥为一个5X5的矩阵 ②21m m 对应的密文21c c 确实定:21m m 和同行或同列,如此1c 为1m 后的字符,2c 为2m 后的字符;假如21m m 和既不同行也不同列,如此21c c 在21m m 所确定的矩形的其他两个角上,1c 和1m 同行,2c 和2m 同行。

现代密码学的应用与技术分析

现代密码学的应用与技术分析

现代密码学的应用与技术分析密码学是关于信息安全的一门学科,现代密码学则是指在计算机和互联网环境下发展起来的密码学学派。

现代密码学涉及到许多方面,例如加密算法、对称加密、非对称加密、数字签名等等。

在当今信息时代,密码学研究的越来越深入,应用的领域也越来越广泛。

本文将着重介绍现代密码学的应用和技术分析。

1. 现代密码学的应用1.1 网络安全在当今的信息化时代,网络安全显得尤为重要。

无论是个人用户还是企业机构,都需要保证网络安全,以防止自身信息被窃取或遭受黑客攻击。

现代密码学为网络安全提供了有效的解决方案。

例如,对称加密算法能够在数据传输过程中,将明文转化为密文,保证数据传输的安全性。

而非对称加密算法则能够解决密钥传输问题,为数据传输提供更高的保障。

1.2 金融保密数字货币的出现,让人们意识到金融交易安全的重要性。

现代密码学为金融交易提供了保密性和安全性保障。

数字签名技术和公钥加密技术,使得金融机构可以在网络上安全地完成转账、结算等交易活动。

这些技术保证了金融信息的安全性和完整性,从而提高了金融交易的信任度。

1.3 版权保护随着互联网的发展,数字版权保护显得尤为重要。

现代密码学为数字版权提供了一种更加有效的保护方式。

数字水印技术就是其中一种。

数字水印技术可以在数字产品中嵌入特定的信息,从而达到版权保护的目的。

而数字签名技术也能保护数字版权,确保数字产品在网络上的交易和流通是合法的和受保护的。

2. 现代密码学的技术分析2.1 对称加密算法对称加密算法是现代密码学中的一个重要部分,其特点是加密解密使用的密钥相同。

这样做能够避免密钥传输的问题,但是如果密钥泄漏,对系统的威胁就非常大。

因此,在对称加密算法的应用中,密钥管理非常重要。

2.2 非对称加密算法非对称加密算法是一种采用公钥加密和私钥解密的加密方式。

公钥公开,但是私钥是私有的。

这样的加密方式能够保证密钥传输的安全,但是加密和解密的速度很慢,因此一般只用于密钥传输的过程中,而不是用于具体的数据加密。

现代密码学杨波课后习题讲解

现代密码学杨波课后习题讲解

1
1
1
1
1
0
0
1
1
1
1
1
….
….
习题
6.已知流密码的密文串1010110110和相应的明文串 0100010001,而且还已知密钥流是使用3级线性反馈移位 寄存器产生的,试破译该密码系统。
解:由已知可得相应的密钥流序列为 1010110110⊕0100010001 =1110100111,又因为是3级线 性反馈移位寄存器,可得以下方程:
Li Ri1 Ri Li1 f (Ri1, Ki )
习题
习题
3. 在 DES 的 ECB 模式中,如果在密文分组中有一个错误,解密后 仅相应的明文分组受到影响。然而在 CBC 模式中,将有错误传播。 例如在图 3-11 中 C1 中的一个错误明显地将影响到 P1和 P2 的结 果。 (1) P2 后的分组是否受到影响? (2) 设加密前的明文分组 P1 中有 1 比特的错误,问这一错误将在 多少个密文分组中传播? 对接收者产生什么影响?
c3c2c1 0101
0
1
101
1 1 0
由此可得密钥流的递推关系为:
ai3 c3ai c1ai2 ai ai2
第三章 分组密码体 制
习题
2. 证明 DES 的解密变换是加密变换的逆。 明文分组、密钥
加密阶段:初始置换、16轮变换、逆初始置换
每轮迭代的结构和Feistel结构一样:
定义2.2 设p(x)是GF(2)上的多项式,使p(x)|(xp-1) 的最小p称为p(x)的周期或阶。 定理2.3 若序列{ai}的特征多项式p(x)定义在GF(2) 上,p是p(x)的周期,则{ai}的周期r | p。
习题

请介绍现代密码学的基本原理和常见加密算法。

请介绍现代密码学的基本原理和常见加密算法。

1. 引言现代密码学是信息安全领域的核心技术之一,它涉及到加密、解密、密钥管理等方面的知识。

在信息时代,保护数据的安全至关重要,而现代密码学正是为了在数据传输和存储过程中能够保障数据的机密性、完整性和可用性而被广泛应用。

2. 现代密码学的基本原理现代密码学的基本原理包括明文、密文、密钥和加密算法等要素。

在信息传输过程中,明文是指未经加密的数据,而密文则是指经过加密处理后的数据。

而密钥则是用来进行加密和解密操作的参数,加密算法则是指加密和解密过程中所使用的数学运算和逻辑操作。

3. 常见的加密算法3.1 对称加密算法对称加密算法是指加密和解密使用相同密钥的加密算法,常见的对称加密算法包括DES、3DES、AES等。

在对称加密算法中,数据的发送方和接收方需要事先共享密钥,而且密钥的管理是其中的一个重要问题。

3.2 非对称加密算法非对称加密算法使用一对密钥,分别称为公钥和私钥。

公钥用来加密数据,私钥用来解密数据,常见的非对称加密算法包括RSA、DSA、ECC等。

非对称加密算法不需要发送方和接收方共享密钥,因此能够解决对称加密算法中密钥管理的问题。

3.3 哈希算法哈希算法是一种将任意长度的数据转换为固定长度散列值的算法,常见的哈希算法包括MD5、SHA-1、SHA-256等。

哈希算法的特点是不可逆,同样的输入数据得到的散列值是固定的,而且对输入数据的微小改动都会导致散列值的巨大改变。

4. 个人观点和理解现代密码学是信息安全领域不可或缺的一部分,它的应用范围包括网络通信、金融交易、电子商务等方方面面。

在信息时代,数据的安全非常重要,而现代密码学的发展和应用能够有效保障数据的安全性,确保数据在传输和存储过程中不被泄漏、篡改或者被恶意利用。

5. 总结和回顾现代密码学的基本原理包括明文、密文、密钥和加密算法等要素,而常见的加密算法主要包括对称加密算法、非对称加密算法和哈希算法。

对称加密算法通过使用相同密钥进行加密和解密,而非对称加密算法使用一对密钥进行加密和解密,哈希算法则是将任意长度的数据转换为固定长度散列值的算法。

现代密码学第1章:现代密码学概论

现代密码学第1章:现代密码学概论
8
1.密码学基本概念
对明文进行加密操作的人员称为加密员 或密码员。 密码员对明文进行加密时所采用的一组 规则称为加密算法(Encryption)。 传送消息的预定对象称为接收者,接收 者对密文进行解密时所采用的一组规则称为 解密算法(Decryption)。 。
9
1.密码学基本概念
加密和解密算法的操作通常都是在一组 密钥控制下进行的,分别称为加密密钥和解 密密钥(key )。 传统密码体制所用的加密密钥和解密密 钥相同,或实质上等同,即从一个易于得出 另一个,称其为单钥或对称密码体制。 若加密密钥和解密密钥不相同,从一个 难于推出另一个,则称为双钥或非对称密码 体制。 密钥是密码体制安全保密的关键,它的 产生和管理是密码学中的重要研究课题。
《现代密码学》第1章
现代密码学概论
1
本章主要内容



1、密码学基本概念 2、密码体制的分类 3、密码攻击(分析) 4、密码学的起源、发展及实例 5、密码学的现状和发展趋势
2
1.密码学基本概念
当今社会已经进入信息时代,密码是与信息相关的。 信息:指语言、文字、数据、图象、符号等,它使人们 了解社会上的各种现象、变化以及相互关系等。 信息的传递或广播,往往需要除合法的授权者外,不让 其他任何人知道,这就引发了所谓的秘密通信。 秘密通信的手段基本上可分为两类: •信道保护(传递信息的载体称为信道):如信使传递、 密写、缩微摄影、专线电话、突发式通信等; •密码保护:如电报加密、传真加密、语音加密、图象加 密,计算机数据加密等。 信道保护纯属技术问题,它有较大的局限性。如派信使 传送信息速度太慢,专线电话也难以防止窃听。 密码保护属于理论与技术相结合,是当今最常用的、也 最重要的秘密通信手段。

现代密码学教程 第三版

现代密码学教程 第三版

现代密码学教程第三版
现代密码学教程(第三版)主要涵盖了现代密码学的基本概念、原理和应用。

以下是其主要内容:
1. 密码学概述:介绍密码学的发展历程、基本概念和原理,以及在现代信息技术中的作用和重要性。

2. 加密算法:详细介绍各种现代加密算法,如对称加密算法(如AES)、非对称加密算法(如RSA),以及混合加密算法等。

3. 数字签名与身份认证:介绍数字签名的原理、算法和应用,以及身份认证的常用技术,如基于密码的身份认证、基于生物特征的身份认证等。

4. 密码协议:介绍各种密码协议,如密钥协商协议、身份认证协议、安全协议等。

5. 密码分析:介绍密码攻击的类型和防御措施,如侧信道攻击、代数攻击等,以及密码分析的常用方法和技术。

6. 网络安全:介绍网络安全的基本概念、原理和技术,如防火墙、入侵检测系统、虚拟专用网等。

7. 实践与应用:通过实际案例和实践项目,让读者更好地理解和应用现代密码学的原理和技术。

第三版相对于前两版,在内容上更加深入、全面,同时也增加了一些新的技术和应用,以适应现代信息技术的发展和变化。

对于对密码学感兴趣的学生和专业人士来说,是一本非常值得阅读的教材。

上海市考研数学十八复习资料现代密码学核心知识点详解与考题解析

上海市考研数学十八复习资料现代密码学核心知识点详解与考题解析

上海市考研数学十八复习资料现代密码学核心知识点详解与考题解析现代密码学是研究如何通过密码算法和密码协议保证信息的保密性、完整性和真实性的学科。

在网络时代,密码学的应用越来越广泛,成为信息安全的重要组成部分。

在上海市考研数学考试中,现代密码学作为一个重要的考点,有着较高的考试频率和占比。

本文将详细解析现代密码学的核心知识点,并结合相关考题进行解析。

一、对称密码学对称密码学是现代密码学的基础,它使用同一把密钥进行加密和解密。

在对称密码学中,有几个重要的概念和算法,包括明文、密文、密钥、替代、置换、Feistel网络等。

1. 替代密码替代密码是对明文中的字母或字符进行替换的加密算法。

其中最著名的替代密码算法是凯撒密码,它通过将明文中的字母按照一个固定的偏移量进行替换来实现加密。

例如,将明文中的每个字母都向后移动三个位置,A变成D,B变成E,以此类推。

替代密码算法在实际应用中存在一定的弱点,主要体现在容易受到语言字母分布的影响,从而容易被破解。

为了克服替代密码的弱点,人们提出了更加复杂的置换密码算法。

2. 置换密码置换密码是将明文中的字母或字符进行位置上的调换的加密算法。

其中最著名的置换密码算法是栅栏密码,它通过将明文中的字母按照一定的规则进行排列来实现加密。

例如,将明文中的字母按照栅栏的形式进行排列,然后按照从左往右、从上至下的方式读取密文。

置换密码算法相对于替代密码算法而言,更加复杂,更加难以破解。

但是它仍然存在一些弱点,如易受到频率分析攻击和统计分析攻击。

3. Feistel网络Feistel网络是一种典型的对称密码学算法,它由密钥扩展、轮函数和密钥更新三部分组成。

在Feistel网络中,密钥扩展模块用于生成轮函数中所需的子密钥,轮函数模块用于对明文进行加密或解密操作,密钥更新模块用于更新轮函数中的加密密钥。

Feistel网络算法在现代密码学中得到了广泛的应用,如DES、3DES和AES等算法都采用了这种结构。

现代密码学01 - 概述

现代密码学01 - 概述

1. 知道算法的人可能叛变 历史上这种事屡见不鲜




2. 设计者有个人喜好 喜欢使用一些固定结构,易被猜测




3. 频繁更换算法不现实 设计安全的密码算法很困难
难 保

30
加解密是在密钥的控制下进行的
31
密码体制的形式化描述 以加密为例 它是一个五元组 (P, C, K, E, D)
P
明文空间:所有可能的明文组成的有限集
DK(EK(M))=M
26
区别两个术语
口令 (password) 用于“身份认证”: 确认对方或证明自己的身份 是一些容易记忆,又不易被猜到的字符串
密钥 (key) 用于“变换”: 加解密的辅助输入 是一些随机串
27
密钥的重要性:加解密时,为什么需要密钥
Q:为什么不构造一个无密钥的密码算法?
如果攻击者知道了算法,他们只需执行该算法就可 以恢复你的明文
在这一阶段,密码理论蓬勃发展,密码算法的设计与 分析互相促进,出现了大量的密码算法和各种攻击方法
密码技术的应用范围也在不断扩展,出现了许多通用 的密码标准 (DES、AES等),促进了网络和技术的不断发展
54
密码学史上的重要事件
1949年,香农发表论文 《保密系统的通信原理》
1977年,RSA密码体制出现
C
密文空间:所有可能的密文组成的有限集
K
密钥空间:所有可能的密钥组成的有限集
E
所有加密算法组成的有限集
D
所有解密算法组成的有限集
32
加密算法(函数)必须是一个单射函数
33
Q: 加密函数不是单射会怎么样?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现代密码学基本思想及其展望摘要:由密码学的基本概念出发,介绍密码学及其应用的最新发展状况,包括公钥密码体制及其安全理论、各种密码协议及其面临的攻击,并对安全协议的分析方法进行概述。

根据当今的发展状况指出密码学的发展趋势和未来的研究方向。

关键词:信息安全;密码学;数字签名;公钥密码体制;私钥密码体制引言1引言密码学是一门非常古老的学科,早期的密码技术是把人们能够读懂的消息变换成不易读懂的信息用来隐藏信息内容,使得窃听者无法理解消息的内容,同时又能够让合法用户把变换的结果还原成能够读懂的消息。

密码学的发展大致可以分为4个阶段。

手工阶段的密码技术可以追溯到几千年以前,这个时期的密码技术相对来说是非常简单的。

可以说密码技术是伴随着人类战争的出现而出现的。

早期的简单密码主要体现在实现方式上,即通过替换或者换位进行密码变换,其中比较著名的包括法国Vigenere 密码,古罗马Caeser密码等。

尽管密码学技术与其它学科一样在不断向前发展,但在第一次世界大战之前,很少有公开的密码学文献出现。

一个密码算法的安全性往往是就一定的时间阶段而言的,与人类当时的科技水平息息相关。

随着人类计算水平的提高,针对密码的破译水平也突飞猛进,因此密码技术也必须与时俱进,不断发展。

人类对于密码算法的安全性有着越来越高的要求,这往往导致所设计的密码算法的复杂度急剧增大。

在实际应用中,一个密码算法效率越高越好,因此人们就采用了机械方法以实现更加复杂的密码算法,改进加解密手段。

20世纪初就出现了不少专用密码机,比如Colossus,该密码机是由英国人Turin所设计的。

随着通信、电子和计算机等技术的发展,密码学得到前所未有的系统发展。

1949年,Shannon发表了“保密系统的通信理论”,给出了密码学的数学基础,证明了一次一密密码系统的完善保密性。

由于各种原因,从1949年到1967年,全世界的密码学文献几乎为零,尽管密码技术一直在发展。

直到20世纪70年代初期,IBM提出Feistel网络并发表了在分组密码方而的研究报告,密码学才开始呈现出民间研究的前兆。

随着社会的发展,不管是政府还是普通老百姓都对信息的安全有了更多的认识,信息安全需求也不断增长。

在这一背景下,20世纪70年代末,数据加密标准(Data Encryption Standard, DES)算法由美国政府确定,其具体的加密细节也被公开,从而使得基于DES 加密的安全性只依赖于对密钥的保密。

在1976年,Diffie和Hellman提出了“密码学新方向”,开辟了公钥密码技术理论,使得密钥协商、数字签名等密码问题有了新的解决方法,也为密码学的广泛应用奠定了基础。

手工阶段和机械阶段使用的密码技术可以称为古典密码技术,主要采用简单的替换或置换技术。

DES的公布与公钥密码技术问世标志密码学进入高速发展的现代密码学时代。

密码技术不但可以用于对网上所传送的数据进行加解密,而且也可以用于认证,进行数字签名}},以及关于完整性、安全套接层(SecuritySocket Layer, SSL)安全电子交易(Secure Elegytronic Transaction, SET)等的安全通信标准和网络协议安全性标准中。

对于密码而言,其最基本的功能在于通过变换将明文消息变换成只有合法者才可以恢复的密文。

信息的加密保护涉及到传输信息和存储信息两个方而,其中存储而临的安全问题更大。

所谓数字证书可以看作是“电子身份证”,可用于保证网络的正常运行。

在网络通讯中,数字证书通过一系列数据来标志通讯各方的身份信息。

现在交互式询问回答的应用很广泛,在询问和回答的过程中利用密码技术对消息进行加密,特别是基于密码的带中央处理器( Central Processing Unit,CPU)的智能卡,其安全性特别好。

在电子商务系统中,所有参与活动的实体都要依赖于数字证书来证明自己的身份。

作为生成报文“数字指纹”的一个重要方法,“报文摘要”算法有着非常重要的作用。

近年来,数字指纹受到了极大关注,己经成为现代密码学的一个重要研究方向。

为了防比消息在传输过程中被有意或无意的篡改,可以通过密码技术对消息进行处理,以得到消息的验证码并附在消息之后一起发送,实现对发送信息的验证,这在票据防伪中有重要作用。

信息时代的到来加速了电子数据对我们过去所依赖的个人特征的替代,数字签名有两方而的作用,一是基于自己的签名具有不可否认性,从而可以确定文件己经签署的事实;二是由于签名难以伪造,从而确定了文件的真实性。

2密码学基本概念与分类2.1密码学的基本概念2.1.1 密码编码学把来自信息源的可理解的原始消息变换成不可理解的消息,同时又可恢复到原消息的方法和原理的一门科学。

2.1.2 密码分析学在不知道关于密钥的任何信息这一情况下,利用各种技术手段,试图通过密文来得到明文或密钥的全部信息或部分信息。

密码分析也称为对密码体制的攻击。

按照攻击者是否对通信作干扰,密码分析可分为被动攻击和主动攻击2类。

所谓被动攻击是指,攻击者仅是利用截获的密文及公开的算法,分析明文或密钥,不对通信作干扰。

所谓主动攻击是指,攻击者通过对通信线路进行干扰,如引入新的密文,重复传播旧的密文,替换合法密文等,再对截获的密文进行分析。

按照攻击者掌握的知识条件,密码分析可分为唯密文攻击、己知明文攻击、选择明文攻击和选择密文攻击4类。

所谓唯密文攻击是指,攻击者只知道一个要攻击的密文(通常包含消息的上下文)。

所谓己知明文攻击是指,攻击者知道一些明文/密文对,若一个密码系统能够抵抗这种攻击,合法的接收者就不需要销毁己解密的明文。

所谓选择明文攻击是指,攻击者可以选择一些明文及对应的密文(公钥密码体制必需能够抵抗这种攻击)。

所谓选择密文攻击指,攻击者可以选择一些密文并得到相应的明文。

2.2密码体制的分类通常,密码体制分为对称密码体制与非对称密码体制,而非对称密码体制往往又称为公钥密码体制。

图1给出了密码体制的基本模型。

发送者加密算法解密算法接收者密钥源密文图1密码体制的基木模型在图1中,消息发送者从密钥源得到密钥,通过加密算法对消息进行加密得到密文,接收者收到密文后,利用从密钥源得到的密钥,通过解密算法对密文进行解密,得到原始消息。

2.2.1对称密码体制就对称密码体制而言,除了算法公开外,还有一个特点就是加密密钥和解密密钥可以比较容易的互相推导出来。

对称密码体制按其对明文的处理方式,可分为序列密码算法和分组密码算法。

自20世纪70年代中期,美国首次公布了分组密码加密标准DES之后,分组密码开始迅速发展,使得世界各国的密码技术差距缩小,也使得密码技术进入了突飞猛进的阶段,典型的分组密码体制有DES,3DES 、国际数据加密算法(International Data En-cryption Algorithm, IDEA)、高级数据加密标准(Advanced Encryption Standard, AES)等。

对称加密的流程如图2所示。

消息源加密算法密钥源解密算法目的地破译者安全通道M MCKK图2对称加密的流程2.2.2公钥密码体制公钥密码体制问世不久,Merkle也于1978独立提出这一体制。

该密码体制的诞生可以说是密码学的一次“革命”,公钥密码体制解决了对称密码算法在应用中的致命缺陷,即密钥分配问题。

就公钥密码体制而言,除了加密算法公开外,其具有不同的加密密钥和解密密钥,加密密钥是公开的(称作公钥),解密密钥是保密的(称作私钥),且不能够从公钥推出私钥,或者说从公钥推出私钥在计算上是“困难”的。

这里“困难”是计算复杂性理论中的概念。

公钥密码技术的出现使得密码学得到了空前发展。

在公钥密码出现之前,密码主要应用于政府、外交、军事等部门,如今密码在民用领域也得到了广泛应用。

1977年,为了解决基于公开信道来传输DES 算法的对称密钥这一公开难题,Rivest}Shamir 和Adleman 提出了著名的公钥密码算法RSA ,该算法的命名就是采用了三位发明者姓氏的首字母。

RSA 公钥密码技术的提出,不但很好的解决了基于公开信道的密钥分发问题,而且还可以实现对电文信息的数字签名,防比针对电文的抵赖以及否认。

特别地,利用数字签名技术,我们也可以很容易发现潜在的攻击者对电文进行的非法篡改,进而实现了信息的完整性保护。

公钥密码体制中的典型算法除了RSA 外,还有椭圆曲线密码(Ellip-tic Curve Cryptography ,ECC)、Rabin } ElUamal 和数论研究单位算法(Number Theory Research Unit ,NTRU)等。

公开密钥特别适用于Web 商务这样的业务需求。

公开密钥有一个非常吸引人的优点:即使一个用户不认识另一个实体,但是只要其服务器确信这个实体的认证中心(Certification Authority, CA)是可信的,就可以实现安全通信。

例如,在利用信用卡消费时,根据客户CA 的发行机构的可信度,服务方对自己的资源进行授权。

在任何一个国家,由其他国家的公司充当CA 都是非常危险的,目前国内外尚没有可以完全信任的CA 机构。

然而,在效率方而,公钥密码体制远远不如对称密码体制,其处理速度比较慢。

因此在实际应用中,往往是把公钥技术和私钥技术结合起来使用,即利用公开密钥实现通信双方间的对称密钥传递,而用对称密钥来加解密实际传输的数据。

A 加密算法解密算法目的地破译者PK B SK BM M C M SK B图3公钥加密的流程2.3密码分析学所谓密码分析学主要研究在己知密码算法的条件下,不需要密钥,如何由加密得到的密文推导出明文或密钥的相关信息。

随着密码算法设计技术的发展,密码分析技术也得到了深入的研究。

迄今为比,己经有很多攻击密码技术的方法:强力攻击、插值攻击、能量分析、线性密码分析、差分密码分析等,同时还有一些对哈希(Hash)函数的分析技术、对伪随机序列的分析技术等。

2.3.1强力攻击强力攻击包括查表攻击,时间-存储权衡攻击,字典攻击以及穷举搜索攻击。

对于任何一种分组密码来说,强力攻击都是适用的。

特别地,这种攻击方法的复杂度仅仅取决于密钥和分组的长度。

更严格地讲,这种攻击技术的时间复杂度只取决于分组密码算法的效率,如存储大小,密钥扩展速度,加密和解密的速度等。

2.3.2线性密码分析作为一种己知明文攻击方法,线性密码分析方法的本质思想在于,通过将一个给定的密码算法有效且线性近似地表示出来以实现破译。

现有密码分析技术也得到了一定的推广。

目前,利用己知明文,16轮DES系统己可以通过线性密码分析进行破译,在某些情况下甚至可以实现唯密文攻击。

针对数据加密标准DES系统的主要攻击包括强力攻击手段,差分密码分析等。

相关文档
最新文档