第二章液压油与流体力学基础(4)概述

合集下载

第2章 液压油与液压流体力学基础

第2章 液压油与液压流体力学基础
2.1.4 液压油的类型与选用
1.对液压油的性能要求:
粘温性好、润滑性要好、化学稳定性好,不易氧化、质地纯净,抗 泡沫性好、闪点要高,凝固点要低
《液压与气压传动》
2.液压油的主要品种及其性质:
《液压与气压传动》
3.液压油的选用:
首先应根据液压系统的环境与工作条件选用合适的液压油类型, 然后对油液粘度等级选择。
《液压与气压传动》
2.1.3 液体的粘性
1.粘性的意义
牛顿液体内摩擦定律
Ff
A d
dy
d dy
μ—比例系数,称为动力粘度
《液压与气压传动》
2.粘度 ⑴动力粘度μ
du / dy
物理意义:液体在单位速度梯度下流动或有流动趋势时,相接触的 液层间单位面积上产生的内摩擦力。
法定计量单位:Pas (1Pas=1Ns/m2),以前沿用的单位为P(泊, dynes/cm),它们之间的关系是,1 Pas = 10 P。

Cq—流量系数 Cq=CvCc 。
液流完全收缩情况下(D/d ≥ 7): 当 Re≤105 Cq = 0.964 Re-0、05
当 Re > 105 Cq = 0.61 ∽ 0.63 液流不完全收缩时(D/d < 7), Cq = 0.7 ∽ 0.8
《液压与气压传动》
22..55..21液液体体流流过过缝小隙孔的的流流量量
《液压与气压传动》
2.污染的原因
生成物污染、侵入物污染、残留物污染
3.污染的控制
消除残留物污染、力求减少外来污染、滤除系统产生的杂质、定期 检查更换液压油
《液压与气压传动》
2.2 液体静力学基础
2.2.1液体的压力
液体的压力有如下特性:

第二章 液压油与液压流体力学基础

第二章 液压油与液压流体力学基础
第二章 液压油与 液压流体力学基础
2.1 液体的物理性质
一、 液体的密度和重度
①密度:单位体积液体内所含有的质 量 单位:kg/m3,N.s2/m4 ②重度:单位体积液体的重量
g
二、流体的压缩性及液压弹簧刚性系数
压缩性:液体受压力作用其体积会减小的性质
2.1 液体的物理性质
①体积压缩系数k:当温度不变时,在压力的变化 下,流体密度(体积)所产生的相对变化量
2.3 流动液体力学
3、非恒定流动:通过空间某一固定点的各液 体质点的速度、压力和密度等任一参数只要 有一个是随时间变化的,即为非恒定流动。
4、一维流动:若运动参数(流速、压力、 密度等)只是一个坐标的函数,则称为一维 流动。 5、三维流动:通常流体的运动都是在三维 空间内进行的,若运动参数是三个坐标的函 数,则称这种流动为三维流动。
流束的特性: 恒定流动时,流束的形状不随时间改变; 流体质点不能穿过流束表面流入或流出; 流束是一个物理概念,具有一定的质量和 能量; 由于微小流束的横断面很小,所以在此截 面上各点的运动参数可视为相同。
2.3 流动液体力学
8、通流截面:流束中与所有流线正交的 截面。 9、微小流束:通流截面无限小时的流 束为微小流束,微小流束截面上各点 上的运动速度可以认为是相等的。 10、流量:单位时间内通过某通流截面 的液体体积。 Q=V/t
2.3 流动液体力学
11、平均流速:是假想的液体运动速度,认 为通流截面上所有各点的流速均等于该速度, 以此流速通过通流截面的流量恰好等于以实 际不均匀的流速所通过的流量。
2.3 流动液体力学
二、流量连续性方程
质量守恒 :
单位时间内,流入质量-流出质量=控制体内质量的变化率

第二章 液压油与液压流体力学基础

第二章 液压油与液压流体力学基础

液体单位面积上所受的法向力,称为压力,以p表示,单位Pa、Mpa
F p lim A 0 A

静止液体的压力称为静压力。
性质: (1)液体的压力沿内法线方向作用于承压面上; (2)静止液体内任一点处的压力在各个方向上都相等。
二、重力作用下静止液体中的压力分布 间内流过某一通流截面的液体体积称为流量。 流量以q表示,单位为m³ /s或L/min。
q = V/t = Al/t = Au

当液流通过微小的通流截面dA时,液体在该截面上各 点的速度u可以认为是相等的,所以流过该微小断面的 流量为 dq=udA 则流过整个过流断面A的流量为
m V
(kg / m 3 )
式中:V——液体的体积,单位为m3;
m——液体的质量,单位为kg。
液体的密度随压力或温度的变化而变化,但变化量很 小,工程计算中忽略不计。
(二)液体的可压缩性 液体受压力作用而使体积减小的性质称为液体的可 压缩性。通常用体积压缩率来表示:
1 V k p V0

单位:㎡/s 1㎡/s=104㎝2/s =104斯(St)=106mm2/s =106厘斯(cSt)
液压油牌号:
国际标准按运动粘度对油液的粘度等级(即牌号)进行 划分。常用它在某一温度下(40℃)的运动粘度平均值来表 示,如VG32液压油,就是指这种液压油在40℃时运动粘度 的平均值为32mm2/s(cSt)。
2、粘度 粘性的大小用粘度表示。常用的粘度有三种,即动力 粘度、运动粘度和相对粘度。 ⑴动力粘度 动力粘度又称绝对粘度
du / dy

动力粘度的物理意义是:液体在单位速度梯度下流动 时,流动液层间单位面积上的内摩擦力。 单位: N· s/㎡或Pa· s

第2章液压流体力学基础

第2章液压流体力学基础
至于液体整体完全可以像刚体一样做各种运动。
• 1. 液体的静压力及其性质 • 2. 液体静力学基本方程及其物理意义 • 3. 帕斯卡原理 • 4.压力的表示方法及单位 • 5. 液体作用在固体壁面上的力
2008/09/01
15
安徽工业经济学院
1. 液体的静压力及其性质
• 静压力:指静止液体单位面积上所受的法向力,用p表示
2008/09/01
2
安徽工业经济学院
2.1 液压油的主要性质及选用
• 1. 液压油的物理性质
• (1) 液体的密度 • (2) 液体的黏性 • (3) 液体的可压缩性 • (4) 其它特性
2008/09/01
3
安徽工业经济学院
1. 液压油的物理性质
• (1) 液体的密度
• 密度——单位体积液体的质量;
实验测定指出,液体流动时相邻液层之间的 内摩擦力F与液层间的接触面积A和液层间的 相对速度du成正比,而与液层间的距离dy
成反比,即 F = μA du/dy 式中:μ-比例常数,称为粘性系数或粘度; du/dy -速度梯度。
液体粘性示意图
2008/09/01
∵ 液体静止时,du/dy = 0 ∴ 静止液体不呈现粘性
例如增加Δp,则容器内任意一点的压力将增加同一数值 Δp。也就是说,在密封容器内施加于静止液体任一点的 压力将以等值传到液体各点。这就是帕斯卡原理或静压传 递原理。
• 液压系统中,由于外力作用产生的压力远大于液体自重产
生的压力,因此常常认为在密封容器中静止液体的压力处 处相等。即p ≈ p0
2008/09/01
• 2. 使用要求:
• (1)合适的粘度和良好的粘温特性;(2)良好的润滑性;(3)纯净度好,

液压及气压传动 第二章 液压油及液压流体力学基础讲诉

液压及气压传动 第二章 液压油及液压流体力学基础讲诉
为了使液压油能满足各种不同要求,往往添加各种添加剂来改善油液的性能,以提高油液的抗氧化、抗磨损、防泡沫、防锈蚀、低凝固点和高粘度指数等性能。
第二节液体静力学
一、液体的静压力
1、液体的压力及其性质
压力定义:液体内某点处单位面积上所受到的法向力单位:Pa(帕)
压力性质:(1)液体的静压力永远指向作用面的内法线方向

3、粘性
液体分子间的内聚力阻碍分子间的相对运动而产生的一种内摩擦力。
粘度:绝对粘度、运动粘度、相对粘度
(1)绝对粘度(动力粘度)
液体流动时相邻液层间的内摩擦力 与液层的接触面积A、液层间的相对速度du成正比,与液层间的距离dy成反比,即
比例系数μ即为粘性系数、粘度,称为动力粘度(绝对粘度)
μ=(Fτ/A)(dy/ du)
课时授课计划
授课日期
班别
题目
第二章液压油及液压流体力学基础




掌握液压油的主要物理性质
掌握选用液压油的标准
掌握流体力学的基础知识


掌握选用液压油的标准


掌握流体力学的基础知识
教具
课本
教学方法
课堂教学




第二章液压油及液压流体力学基础
第一节液压油的性质及选用
第二节液体静力学
第三节液体动力学
(2)静止液体内任一点的压力沿各个方向都相等
2、重力作用下静止液体的压力分布
P=P0+ρgh
3、压力的表示方法
绝对压力、表压力、真空度
绝对压力:以绝对真空为基准进行度量得到的压力值
表压力:以大气压为基准进行度量得到的压力值

《液压与气压传动》第二章 液压油与液压流体力学基础

《液压与气压传动》第二章 液压油与液压流体力学基础

液体所受的压力增大时,其分子间 的距离将减小,内摩擦力增大,粘 度亦随之增大。
4、粘度与温度的关系
油液的粘度对温度的变化极为敏感, 温度升高,油的粘度即显著降低。 油的粘度随温度变化的性质称粘温 特性。
四、其它性质
抗燃性、抗凝性、抗氧化性、抗泡沫性、 抗乳化性、防锈性、润滑性、导热性、介 电性、相容性、纯洁性
dq=udA 则流过整个过流断面A的流量为
q
q
uuddAA
AA
A
(2 16)
q
A
4.层流、紊流、雷诺数
液流是分层的, 层与层之间互 不干扰,液体 的这种流动状 态称为层流
液流不分层, 处于紊乱状态, 称为紊流
雷诺数Re
Re d
对通流截面相同的管道来说,若液流的 雷诺数Re相同,它的流动状态就相同。
pA p0A ghA
p p0 gh
(2 14)
重力作用下的静止液体,其压力分布有 如下特征:
⑴静止液体内任一点处的压力都由两部 分组成:一部分是液面上的压力po,另 一部分是该点以上液体自重所形成的压 力,即ρg与该点离液面深度h的乘积。当 液面上只受大气压力pa作用时,则液体 内任一点处的压力为:
垂直于流束的的截面称为通流截面 (或过流断面),通流截面上各点的 运动速度均与其垂直。因此,通流截 面可能是平面,也可能是曲面。
通流面积无限小的流束称为微小流束。
3.流量和平均流速 单位时间内流过某一通流截面的液体体积称为
流量。流量以q表示,单位为m³/s或L/min。
当液流通过微小的通流截面dA时,液体 在该截面上各点的速度u可以认为是相 等的,所以流过该微小断面的流量为
⑶相对粘度 相对粘度又叫条件粘度,它是采用特

液压油与液压流体力学基础

液压油与液压流体力学基础

第2章 液压流体力学基础液压传动以液体作为工作介质来传递能量和运动。

因此,了解液体的主要物理性质,掌握液体平衡和运动的规律等主要力学特性,对于正确理解液压传动原理、液压元件的工作原理,以及合理设计、调整、使用和维护液压系统都是十分重要的。

2.1液体的物理性质液体是液压传动的工作介质,同时它还起到润滑、冷却和防锈作用。

液压系统能否可靠、有效地进行工作,在很大程度上取决于系统中所用的液压油液的物理性质。

2.1.1液体的密度液体的密度定义为dV dm V m V =∆∆=→∆0limρ (2.1) 式中 ρ——液体的密度(kg/m 3);ΔV ——液体中所任取的微小体积(m 3);Δm ——体积ΔV 中的液体质量(kg );在数学上的ΔV 趋近于0的极限,在物理上是指趋近于空间中的一个点,应理解为体积为无穷小的液体质点,该点的体积同所研究的液体体积相比完全可以忽略不计,但它实际上包含足够多的液体分子。

因此,密度的物理含义是,质量在空间点上的密集程度。

对于均质液体,其密度是指其单位体积内所含的液体质量。

V m =ρ (2.2) 式中 m ——液体的质量(kg );V ——液体的体积(m 3)。

液压传动常用液压油的密度数值见表2.1。

表2.1 液压传动液压油液的密度变化忽略不计。

一般计算中,石油基液压油的密度可取为ρ=900kg/m 3。

2.1.2液体的可压缩性液体受压力作用时,其体积减小的性质称为液体的可压缩性。

液体可压缩性的大小可以用体积压缩系数k 来表示,其定义为:受压液体在发生单位压力变化时的体积相对变化量,即VV p k ∆∆-=1 (2.3) 式中 V ——压力变化前,液体的体积;Δp ——压力变化值;ΔV ——在Δp 作用下,液体体积的变化值。

由于压力增大时液体的体积减小,因此上式右边必须冠一负号,以使k 成为正值。

液体体积压缩系数的倒数,称为体积弹性模量K ,简称体积模量。

V K p V=-∆∆ (2.4) 体积弹性模量K 的物理意义是液体产生单位体积相对变化量所需要的压力。

第二章液压流体力学基础-PPT文档资料

第二章液压流体力学基础-PPT文档资料
液压与气动技术 第二章 液压流体力学基础
2019年2月
教学内容:

液压油(重点) 流体静力学 流体动力学 管路中液体的压力损失(重点、难点) 孔口及缝隙的流量—压力特性(液压元件设计理 论基础,定性了解) 液压冲击及气穴现象
2.1液压油
液压系统中完全靠液压油把能量从液压泵经管路、控制阀传递到执 行元件,根据统计,许多液压设备的故障,皆起因于液压油的使用不 当,故应对液压油要有充分的了解。
(3)专用液压油:航空、舰船、炮用及车辆制动用液压油。
2.1液压油
3、液压油的基本性质
(1)密度:密度越大,泵吸入性越差。 (2)闪火点与燃烧点:油温升高时,部分的油会蒸发而与空气混合成油 气,此油气所能点火的最低温度称为闪火点,如继续加热,则会连 续燃烧,此温度称为燃烧点。 (3)粘性:流体流动时,沿其边界面会产生一种阻止其运动的流体磨擦 作用,这种产生内摩擦力的性质称为粘性。 (4)压缩性:有体积压缩系数β或其倒数体积弹性模数K表示。
V /V0 p
1 K
液压油还有其他一些性质,如稳定性、抗泡沫性、抗乳化性、 防锈性、润滑性、以及相容性等。
2.1液压油
4、液压油的粘性 (1)牛顿内摩擦定律 液体流动时相邻液层间的内摩擦力 F与液层的接触面积A和液层间的相 对运动速度du成正比,与液层间的 距离dy成反比。 F= μ Adu/dy
2.1液压油
2、液压油的种类: (1)矿物油系液压油(可燃性):主要由石腊基的原油精制而成,再 加抗氧化剂和防锈剂,为用途最多的一种;其缺点为耐火性差。 (2)耐火性液压油(难燃性):专用于防止有引起火灾危险的乳化型 液压油。有水中油滴型( o/w)和油中水滴形( w/o )两种,水中 油滴型( o/w )的润滑性 差,会侵蚀 油封和金属 ;油中水滴 形 (w/o)化学稳定性很差。

第二章 液压流体力学基础

第二章  液压流体力学基础

1.2静力学
1.3动力学
1.4 压力 损失
1.5 小孔 和缝隙流 量
1.6 液压 冲击空穴 现象
盛放在密封容器内的液体,其外加压力p0发生 变化时,只要液体仍然保持原有的静止状态, 液体中的任一点的压力,均将发生同样大小的 变化。
1.1液压油
§1-3 液体动力学基础
液体动力学: 1.基本概念; 2.基本方程: 连续方程 (质量守恒定律) 伯努利方程(能量守恒定律) 动量方程 (动量守恒定律)
1.2静力学
1.3动力学
1.4 压力 损失
1.5 小孔 和缝隙流 量
1.6 液压 冲击空穴 现象
1.1液压油
四、液压油的污染及控制
1、污染的危害 (1)堵塞 (2)加速液压元件的磨损,擦伤密封件, 造成泄漏增加 (3)水分和空气的混入会降低液压油的润 滑能力,并使其变质,产生气蚀,使液压 元件加速损坏,使液压系统出现振动、噪 音、爬行等现象。
1.6 液压 冲击空穴 现象
1.1液压油
§1-2 液体静力学
三、压力的表示方法及单位
1.绝对压力
2.相对压力 3.真空度 帕(Pa):N/㎡
1.2静力学
1.3动力学
1.4 压力 损失
1.5 小孔 和缝隙流 量
1MPa 106 Pa
1bar 10 Pa
5
1.6 液压 冲击空穴 现象
绝对压力=相对压力+大气压力 真空度=大气压力-绝对压力=负的相对压力
1.2静力学
1.3动力学
1.4 压力 损失
1.5 小孔 和缝隙流 量
1.6 液压 冲击空穴 现象
1.1液压油
2、液压油的品种
主要分为:矿油型、合成型和乳化型三大类

第二章 液压油与液压流体力学基础

第二章  液压油与液压流体力学基础

第二章液压油与液压流体力学基础2.1重点、难点分析本章是液压与气压传动课程的理论基础。

其主要内容包括:一种介质、两项参数、三个方程、三种现象。

一种介质就是液压油的性质及其选用;两个参数就是压力和流量的相关概念;三个方程就是连续性方程、伯努利方程、动量方程;三种现象就是液体流态、液压冲击、空穴现象的形态及其判别。

在上述内容中重点内容为:液压油的粘性和粘度;液体压力的相关概念如压力的表达、压力的分布、压力的传递、压力的损失;流量的相关概念如:流量的计算、小孔流量、缝隙流量;三个方程的内涵与应用。

其中,液压油的粘度与粘性、压力相关概念、伯努利方程的含义与应用、小孔流量的分析是本章重点的重点也是本章的难点。

1.液压油的粘性是液体流动时由于内摩擦阻力而阻碍液层间相对运动的性质,粘度是粘性的度量。

液压油的粘度分为动力粘度、运动粘度和相对粘度。

动力粘度描述了牛顿液体的内摩擦应力与速度梯度间的关系,物理意义明确但是难以实际测量;运动粘度是动力粘度与密度的比值,国产油的标号就是用运动粘度的平均厘斯值的表达,实用性强,直接测量难;相对粘度就是实测粘度,其中恩氏粘度就是用恩氏粘度计测量油液与对比液体流经粘度计小孔时间参数的比值,直观性强,物理意义明确,操作简便。

在一般情况下,动力粘度用作粘度的定义,运动粘度用作油品的标号,相对粘度用作粘度的测量。

三者的换算关系可以用教材中所提供的公式解算,也可通过关手册所提供的线图查取。

影响粘度的因素主要有温度和压力,其中温度的影响较大。

在选用液压油时,除考虑环境因素和设备载荷性质外,主要分析元件的运动速度、精度以及温度变化等因素的影响。

2.液压系统中的压力就是物理学中的压强,压力分静止液体的压力和流动液体的压力两种;按参照基准不同,压力表达为绝对压力、表压力和真空度;在液压系统中,压力的大小取决于负载(广义负载);压力的传递遵循帕斯卡原理,对于静止液体压力的变化量等值传递,对于流动液体压力传递时要考虑到压力损失的因素;压力分布的规律就是伯努利方程在静止液体内的一种表述形式。

2-4液体在管道中的流动详解

2-4液体在管道中的流动详解
?假设理想液体不可压缩且作恒定流动列出1122断面处的伯努利方程单位重量液体的局部能量损失?列出控制体的动量方程对于紊流由此推导出过流断面突然扩大处的局部能量损失其中突然扩大局部损失系数2其它形式的局部能量损失式中为局部损失系数一般由实验确定具体数值可查阅有关液压传动设计手册由此可得局部压力损失的计算公式五管路系统总能量损失
hl
第2章 第四节 液体在管道中的流动
h l —沿程能量损失,这里可近似忽略不计 h —单位重量液体的局部能量损失
•列出控制体的动量方程
第2章 第四节 液体在管道中的流动
对于紊流 由此,推导出过流断面突然扩大处的局部能量损失
(1 A1 ) 2
A2
其中,ξ突然扩大局部损失系数
第2章 第四节 液体在管道中的流动
液体的流态及其实验装置
第2章 第四节 液体在管道中的流动
层流时,液体的流速较低,质点受粘性的约束,不 能随意运动,粘性力起主导作用;紊流时,液体的流速 较高,粘性的制约作用减弱,惯性力起主导作用。
2、圆形断面管道的雷诺数
Re
vd
vcr
Recr
Re Recr 层流 Re Recr 紊流
液流的雷诺数相同,其流动状态就相同
第2章 第四节 液体在管道中的流动
•内摩擦定律
Ff
A
du dr
2 rl du
dr
•则有
•对上式积分并代入边界条件
表明:液体在直管中作层流 运动时,速度对称于圆管中 心线并按抛物线规律分布。 当r = 0时,流速为最大。
第2章 第四节 液体在管道中的流动
圆形管道截流面线上的的特流性量
dQ udA u 2 rdr
第二章 液压油和液压流体力学

第二章 液压油与液压流体力学基础

第二章   液压油与液压流体力学基础

第二章 液压油与液压流体力学基础 液压传动是以液体作为工作介质进行能量传递的,因此,了解液体的物理性质,掌握液体在静止和运动过程中的基本力学规律,对于正确理解液压传动的基本原理,合理设计和使用液压系统都是非常重要的。

第一节 液体的物理性质一、 液体密度单位体积液体的质量称为液体的密度,通常用ρ(kg/3m )表示ρ=M /ν。

式中 v ——液体的体积(3m );M ——液体的质量(㎏)。

密度是液体的一个重要的物理参数。

密度的大小随着液体的温度或压力的变化会产生一定的变化,但其变化量较小,一般可以忽略不计。

常用液压油的密度约为900 kg/3m 。

二、 液体的可压缩性液体受压力作用而使体积减小的性质成为液体的可压缩性。

体积为V 的液体,当压力增大p ∆时,体积减小v ∆,则液体在单位压力变化下的体积相对变化量为K= 1VP V -∆∆式中。

K 为体积的压缩系数。

由于压力增大时,液体的体积减小,即p ∆与v ∆的符号始终相反,为保证K 为正值,在上式的右边加一负号。

K 的倒数成为液体的体积模量,以K 表示,即K= 1K = V P V -∆∆K 表示液体产生单位体积相对量所需要的压力增量。

在常温下,纯净液压油的体积模量K=(1.4~2.0) ×910P a 。

在变动压力下,液压油的可压缩性的作用极像一个弹簧,即压力升高,油液体积减小;压力降低,油液体积增大。

当作用在封闭液体上的压力发生∆F 的变化时,如液体承压面积A 不变,则液柱的长度必有∆ι的变化(见图2-1).在这里,体积变化为V A l ∆=∆,压力变化为/p F A ∆=∆,即2V F K A l -∆=∆ 或 2h F p A A k K l l V-∆-∆===∆∆, 式中h k ——“液压弹簧”的刚度。

三、液体的粘性1.粘性的意义液体在外力作用下流动时,液体分子间的内聚力会阻碍其分子的相对运动,既具有一定的内摩擦力,这种性质称为液体的粘性。

液压与气压传动第二章液压油与液压流体力学基础

液压与气压传动第二章液压油与液压流体力学基础
ν=μ/ρ 运动粘度的单位为m2/s。 (3)恩氏粘度°E 相对粘度又称条件粘度,它是按一定的测量条件制定的。 根据测量的方法不同,可分为恩氏粘度°E、赛氏粘度SSU、 雷氏粘度Re等。
我国和德国等国家采用恩氏粘度。
2006-9-2
6
(4)温度对粘度的影响 液压油的粘度对温度变化十分敏感。温度升高时,粘度下 降。在液压技术中,希望工作液体的粘度随温度变化越小越 好。 粘度随温度变化特性,可以用粘度-温度曲线表示。
(1)油箱中的液面应保持一定高度; (2)正常工作时油箱的温升不应超过液压油所允许的范围,
一般不得超过65℃; (3)为防止系统中进入空气,要做到: ✓ 所有回油管都在油箱液面以下; ✓ 管口切成斜断面;
✓ 油泵吸油管应严格密封;
✓ 油泵吸油高度应尽可能小些,以减少油泵吸油阻力;可 能情况下,应在系统最高点设置放气阀;
洁净液压油
液压油
含水液压油
水一二元醇液压油乳化液 Nhomakorabea油包水 水包油
合成液压油
磷酸脂基液压油 合成液压油(如硅酮,卤化物等)
2006-9-2
9
5.液压油的使用要求
(1)适当的粘度:过大,造成水力损失增加,效率低;粘度小, 漏失大,容积效率低。
选择液压油还与具体使用条件有关。如夏天,粘度要大些, 冬天则选用粘度小;南方,用高号液压油,北方则选用低号 液压油。
(3)根据液压系统的工作压力、环境温度及工作部件的运动速 度确定液压油的粘度后,确定油的具体牌号。工作压力、环 境温度高,而控制的工作部件运动速度低时,为了减少泄露, 宜采用粘度较高的液压油,反之,则采用粘度较低的液压油。
总的来说,应尽量选用较好的液压油。
2006-9-2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4l
结论:管内流速u 沿半径方向呈抛物线规律分布。管内最大流
速在轴线上,即r = 0 处,其值为
umax
Δp 2 p 2 R d 4 l 16l
2.4
(2)流量与压力差
管道内压力损失的计算
如图,在半径r 处取一层厚度为dr 的微小圆环面积,通过此环
形面积的流量为
dq 2 u rdr
积分得
q
R
0
R4 d 4 2 u rdr p p 8l 128l
8l p q 4 R
结论:液体在圆管中作层流流动时,其流量q 与d4 成正比,压 差Δp 与d4 成反比。故d 对q 或Δp 的影响很大。
2.4
管道内压力损失的计算
(3)平均速度v 和动能修正系数α 由前面的求解得出圆管层流的平均流速为
2
du 因 F f 2 rl , dr du p 则 r dr 2l
令 p p1 p2 ,
2.4
将上式积分得
管道内压力损失的计算
p 2 u r C 4l
p 2 C R 4l
常数C由边界条件确定,当r = R 时,u = 0,得
速度分布表达式为 u p ( R 2 r 2 )
l v 32l p 2 v d 2 d
2
p l v2 hλ g d 2g
式中λ——沿程阻力系数,理论值λ=64/Re。实际流动存在温 度变化、管道变形,实际应用中光滑金属管取λ=75/Re,橡胶管 取λ=80/Re。
结论
① 层流状态时,液体流经直管的压力损失Δp与粘度、管长、
流体力学与液压传动
2.4 管道内压力损失的计算
2.5 孔口间隙的流量-压力特性
2.6 液压冲击和气穴现象
2018/8/4
2018年8月4日
第 2 章
液压流体力学基础
2.4 管道内压力损失的计算
实际液体具有粘性,为了克服粘性摩擦阻力,液体流动时要消
耗一部分能量。由于管道中流量不变,因此,能量损耗表现为压
Re
雷诺数Re反映了液体流动时,所受到的惯性力与粘性力之比。 流动状态的判断方法

临界雷诺数Recr —— 液体由紊流转变为层流时的雷诺数。
当实际Re <Recr 时液体为层流;当Re > Recr 时液体为紊流。
Recr的取值可见教材“液流管道的临界雷诺数表”。
一般液压系统采用矿物油,其粘度较大,管中流速不大,液 体流动状态多属层流。当液流流经阀口或弯头时才形成紊流。
2.4
⒋ 圆管紊流
管道内压力损失的计算
液体作紊流流动时,任一处液体质点速度的大小和方向都随
时间变化,其本质是非恒定流动。 为了研究方便,工程上采用一定时间间隔T 内统计的平均值
u 来代替真实流速 u,将紊流当作恒定流动来看待。
通过理论分析得出最大流速为
umax ≈(1 ~ 1.3)v
得出动能修正系数α≈1.05,近似取α= 1。
粗糙度Δ/d,即λ= f(Re,Δ/d)。
圆管层流时的压力损失为
128l 32l p q v 4 2 d d
vd 将 , Re ,

q

4
2
d 2 v , 代入Δp 和 hλ式中,
64 l v l v 得 p , Re d 2 d 2
2
p l v2 h g d 2g
2.4 管道内压力损失的计算
的运动外,还存在着抖动和剧烈的横向运动。
紊流的特点
① 惯性力起主导作用,液体流速较高,粘性力的制约作用 减弱。 ② 液体的能量主要消耗在动能损失上,该损失使液体搅动,
产生旋涡、尾流,并撞击管壁,引起振动,形成液体噪声,最终
化作热能消散掉。
2.4
⒉ 雷诺数
管道内压力损失的计算
vd
一种可判断液体流动状态的无量纲组合数
2.4
3. 圆管层流
管道内压力损失的计算
(1)速度及其分布规律 如图,油液在半径为R的等径水平圆管中作恒定层流流动,在 管内取出一段半径为 r,长度为 l,与管轴相重合的微小圆柱体。 作用在两端面上的压力为p1 和 p2,作用在侧面上的摩擦力为Ff 。 根据力的平衡有
( p1 p2 )r Ff
2.4
管道内压力损失的计算
2.4.2 沿程压力损失 ⒈ 层流状态的沿程压力损失
在伯努利方程中,若只考虑沿程损失,则液体流经水平等直 径的管道时,在管长l 段的沿程能量损失为
2 2 p1 1v1 p2 2v2 z1 z2 hw g 2 g g 2 g
p1 p2 p hw h g g
力损失,损耗的能量转变为热量,使液压系统温度升高。
压力损失产生的内因是液体的粘性,外因是管道结构。
两种压力损失 ① 沿程压力损失 液体在等径直管中流动时,由于粘性摩擦
而产生的压力损失。
② 局部压力损失 管道的截面突然变化、液流方向突然改变 而引起的压力损失。
2.4
管道内压力损失的计算
2.4.1 液体的流动状态 ⒈ 层流和紊流
q 4q 1 p 2 1 v= = 2 = • R = umax A d 2 4l 2
即 圆管通流截面上的平均流速为最大流速的一半。 根据实际速度动能与平均速度动能之比求得α为
u 3 u d A u dA A 2 A 3 1 2 v A v Av 2
2

R
0
p( R 2 r 2 ) 3 [ ] 2rdr 4l 2 2 pR 3 2 [ ] R 8l
流速成正比,与管径平方成反比。
② 液体在管道中流动的能量损失表现为液体的压力损失,压 力差值用来克服流动中的摩擦阻力。
2.4
管道内压力损失的计算
⒉ 紊流状态的沿程压力损失
液体在直管中作紊流流动时,能量损失比层流大,沿程能量 损失或压力损失的计算式与层流的形式相同,即
l v2 p d 2
(1)层流 液体质点互不干扰,其流动呈线性或层状,且平
行于管道轴线的流动状态。
层流的特点
① 粘性力起主导作用,液体流速较低,质点受粘性力制约, 不能随意运动。 一部分被液体带走,一部分传给管壁。
② 液体的能量主要消耗在粘性摩擦损失上,直接转化成热(2)紊流 液体质点的运动杂乱无章,除了平行于管道轴线
相关文档
最新文档