迭代法求非线性方程的根.

合集下载

牛顿法与割线法求解非线性方程

牛顿法与割线法求解非线性方程

牛顿法与割线法求解非线性方程在数学中,非线性方程是指方程中包含未知数的幂次大于等于2的项的方程。

求解非线性方程是数学中一个重要的问题,它在科学、工程和经济等领域中有着广泛的应用。

本文将介绍两种常用的非线性方程求解方法:牛顿法和割线法。

一、牛顿法牛顿法是一种迭代方法,用于求解非线性方程的根。

它基于泰勒级数展开的思想,通过不断迭代逼近方程的根。

牛顿法的基本思想是:选择一个初始值x0,然后通过迭代公式xn+1 = xn - f(xn)/f'(xn),不断逼近方程的根。

具体步骤如下:1. 选择一个初始值x0;2. 计算函数f(x)在x0处的导数f'(x0);3. 使用迭代公式xn+1 = xn - f(xn)/f'(xn)计算下一个近似解xn+1;4. 判断是否满足停止准则,如果满足,则输出近似解xn+1,算法结束;如果不满足,则将xn+1作为新的近似解,返回第2步继续迭代。

牛顿法的优点是收敛速度快,但缺点是对初始值的选择较为敏感,可能会陷入局部最优解。

二、割线法割线法也是一种迭代方法,用于求解非线性方程的根。

它与牛顿法类似,但是割线法不需要计算函数的导数。

割线法的基本思想是:选择两个初始值x0和x1,通过迭代公式xn+1 = xn - f(xn)(xn - xn-1)/(f(xn) - f(xn-1)),不断逼近方程的根。

具体步骤如下:1. 选择两个初始值x0和x1;2. 使用迭代公式xn+1 = xn - f(xn)(xn - xn-1)/(f(xn) - f(xn-1))计算下一个近似解xn+1;3. 判断是否满足停止准则,如果满足,则输出近似解xn+1,算法结束;如果不满足,则将xn+1作为新的近似解,返回第2步继续迭代。

割线法的优点是不需要计算函数的导数,但缺点是收敛速度相对较慢。

三、牛顿法与割线法的比较牛顿法和割线法都是求解非线性方程的有效方法,它们各有优缺点。

牛顿法的收敛速度较快,但对初始值的选择较为敏感;割线法不需要计算函数的导数,但收敛速度相对较慢。

迭代法求非线性方程的根讲解

迭代法求非线性方程的根讲解
迭代法求非线性方程的根
迭代法是求解非线性方程近似根的一 种方法,这种方法的关键是确定迭代函数 (x),简单迭代法 用直接的方法从原方程 中隐含的求出x,从而确定迭代函数(x), 这种迭代法收敛速度较慢,迭代次数多, 因此常用于理论中,Newton迭代法采用另一 种迭代格式, 具有较快的收敛速度,由牛顿 迭代法可以得到很多其他迭代格式。
( p ) ( )
p!
用条件(*),则有 ( x
k
) (x )
*
( xk x * ) p
*
注意到 ( xk ) xk 1, ( x * )
( p) ( ) * p * x x ( x x ) 由上式得 k 1 k x p!
11
下一页
返回
ek 1 ( p ) ( x*) 因此对迭代误差有: p 。这表明迭代过程 p! ek
1
下一页
迭代法
• • • • • • • 一、简单迭代法的概念与结论 二、 Newton迭代法的基本思想 三、牛顿法的几何意义 四、牛顿迭代法的步骤 五、例题 六、其他注意的事项
2
一、简单迭代法的概念与结论
• 简单迭代法又称逐次迭代法,基本思想是构造不动点方程,以求 得近似根。即由方程f(x)=0变换为x=(x), 然后建立迭代格式, •
x0 均收敛。证毕。 R
下一页
14
返回
二. Newton迭代法的基本思想
• 设X K 是f(x)=0的一个近似根,把f(x)在 X K 处作泰勒展开
的邻近连续,并且 / ( x* ) ( x* ) ( p1) ( x* ) 0 (*) ( p ) ( x * ) 0
则该迭代过程在点 x * 邻近是P阶收敛的。

数值计算的例子

数值计算的例子

数值计算的例子数值计算在现代科学和工程中起着非常重要的作用,它们可以帮助我们解决各种实际问题,从物理学到金融学,从天文学到工程学。

下面是一些以数值计算为主题的例子:1. 迭代法求方程的根迭代法是一种常用的数值计算方法,可以用来求解方程的根。

例如,我们可以使用牛顿迭代法来求解一个非线性方程的根。

假设我们要求解方程f(x)=0,我们可以选择一个初始近似解x0,然后使用迭代公式x_{n+1} = x_n - f(x_n)/f'(x_n)来逐步逼近方程的根。

2. 数值积分数值积分是一种计算定积分近似值的方法。

例如,我们可以使用梯形法则来计算一个函数在给定区间上的定积分。

假设我们要计算函数f(x)在区间[a,b]上的定积分,我们可以将这个区间分成n个小区间,然后使用梯形面积的近似值来计算整个区间上的定积分。

3. 线性方程组的求解线性方程组求解是数值计算中的一个重要问题。

例如,我们可以使用高斯消元法来求解一个线性方程组Ax=b,其中A是一个矩阵,b是一个向量。

高斯消元法可以将这个线性方程组转化为一个上三角矩阵,然后通过回代求解出方程的解。

4. 数值微分数值微分是一种计算导数近似值的方法。

例如,我们可以使用中心差分法来计算一个函数在某一点的导数。

假设我们要计算函数f(x)在点x0处的导数,我们可以选择一个很小的步长h,然后使用中心差分公式f'(x0) ≈ (f(x0+h) - f(x0-h))/2h来估计导数的值。

5. 最优化问题最优化问题是数值计算中的一个重要问题,它可以帮助我们找到一个函数的最小值或最大值。

例如,我们可以使用梯度下降法来求解一个无约束的最小化问题。

梯度下降法通过迭代地沿着函数的负梯度方向更新变量的值,从而逐步接近最优解。

6. 插值和拟合插值和拟合是数值计算中常用的技术,它们可以帮助我们从离散数据中推测出连续函数的形状。

例如,我们可以使用拉格朗日插值法来构造一个通过给定数据点的插值多项式。

第4章 非线性方程求根的迭代法

第4章 非线性方程求根的迭代法
{ x k }。这种方法算为简单迭代法。
精选版课件ppt
18
若{ x k }收敛,即lkimxk x 称迭代法收敛,否则称迭代法发散
精选版课件ppt
19
迭代法的几何意义
x (x)yy(xx)交点的横坐标
y=x
x* x2
x1
x0
精选版课件ppt
20
例题
例 试用迭代法求方程
f(x)x3x10
在区间(1,2)内的实根。 解:由x3 x1 建立迭代关系
精选版课件ppt
30
例题
若取迭代函数 (x)x3 1 , 因为|'(x)||3x2|3 x[1,2] 不满足压缩映像原理,故不能肯定 xn1 (xn) n0,1,....收敛到方程的根。
精选版课件ppt
31
简单迭代收敛情况的几何解释
精选版课件ppt
32
是否取到合适的初值,是否构造合适的 迭代格式,对于是否收敛是关键的。
x2 0.739085178
x3 0.739085133 x4 0.739085133
故取 x* x4 0.739085133
精选版课件ppt
48
例题
例 用Newton法计算 。 2
解: f(x)x2a0 其 中 a2
由 f (x) 2x及Newton迭代公式得
xn 1xnx2 n 2x n21 2(xnx 2 n) n0,1 ,......
迭代法及收敛性
考察方程 x(x)。不能直接求出它的
根,但如果给出根的某个猜测值 x 0, 代
入 x(x)中的右端得到x1 (x0) ,再以 x 1
为一个猜测值,代入x(x) 的右端
得 x2 (x1)

非线性方程求根—牛顿迭代法(新)

非线性方程求根—牛顿迭代法(新)

非线性方程求根——牛顿迭代法一、牛顿迭代法的基本思想基本思想:将非线性方程逐步归结为某种线性方程求解。

设方程f (x )=0有近似根x k (f `(x k )≠0),将f (x )在x k 展开:(ξ在x 和x k 之间)2()()()()()()2!k k k k f f x f x f x x x x x ξ'''=+-+-()()()()k k k f x f x f x x x '≈+-可设记该线性方程的根为x k +1,则()()()0k k k f x f x x x '+-=1()()k k k k f x x x f x +=-'故f (x )=0可近似表示为即为Newton 法迭代格式。

(k =0,1,……)例:用Newton 迭代法求方程310x x --=在x 0=1.5附近的近似实根。

解:32()1,()31f x x x f x x '=--=-迭代公式为312131kk k k k x x x x x +--=--计算步骤如下:(1)取初值x 0=1.5;(2)按照迭代公式计算x 1;(3)若|x 1-x 0|<=0.00001,终止迭代;否则,x 0=x 1;转(2);(4)输出迭代次数和近似根.二、牛顿迭代法的实现MATLAB求解程序设计:方程及一阶导数函数:function[fun,dfun]=fun0(x)fun=x^3-x-1;%求原函数的值dfun=3*x^2-1;%求一阶导数的值计算主程序:clearx0=1.5;[fun,dfun]=fun0(x0);x1=x0-fun/dfun;i=1;while abs(x1-x0)>1e-5x0=x1;[fun,dfun]=fun0(x0);x1=x0-fun/dfun;i=i+1;enddisp('the solution is x1=')x1disp('the iter time is ')i计算结果为:the solution is x1=x1 =1.3247the iter time isi =4可见经过4次迭代即到达要求的精度,原方程的一个近似实数根为1.3247.三、牛顿迭代法的收敛性牛顿迭代法的迭代函数:)()()(x f x f x x '-=ϕ222)]([)()()]([)()()]([1)(x f x f x f x f x f x f x f x '''='''-'-='ϕ设f (x *)=0,f `(x *)≠0,则ϕ`(x *)=0,故Newton 迭代法在x *附近至少平方收敛。

解非线性方程的牛顿迭代法及其应用

解非线性方程的牛顿迭代法及其应用

解非线性方程的牛顿迭代法及其应用一、本文概述非线性方程是数学领域中的一个重要研究对象,其在实际应用中广泛存在,如物理学、工程学、经济学等领域。

求解非线性方程是一个具有挑战性的问题,因为这类方程往往没有简单的解析解,需要通过数值方法进行求解。

牛顿迭代法作为一种古老而有效的数值求解方法,对于求解非线性方程具有重要的应用价值。

本文旨在介绍牛顿迭代法的基本原理、实现步骤以及在实际问题中的应用。

我们将详细阐述牛顿迭代法的基本思想,包括其历史背景、数学原理以及收敛性分析。

我们将通过具体实例,展示牛顿迭代法的计算步骤和实际操作过程,以便读者能够更好地理解和掌握该方法。

我们将探讨牛顿迭代法在各个领域中的实际应用,包括其在物理学、工程学、经济学等领域中的典型应用案例,以及在实际应用中可能遇到的问题和解决方法。

通过本文的介绍,读者可以深入了解牛顿迭代法的基本原理和应用技巧,掌握其在求解非线性方程中的实际应用方法,为进一步的研究和应用提供有力支持。

二、牛顿迭代法的基本原理牛顿迭代法,又称为牛顿-拉夫森方法,是一种在实数或复数域上近似求解方程的方法。

其基本原理是利用泰勒级数的前几项来寻找方程的根。

如果函数f(x)在x0点的导数f'(x0)不为零,那么函数f(x)在x0点附近可以用一阶泰勒级数来近似表示,即:这就是牛顿迭代法的基本迭代公式。

给定一个初始值x0,我们可以通过不断迭代这个公式来逼近f(x)的根。

每次迭代,我们都用当前的近似值x0来更新x0,即:这个过程一直持续到满足某个停止条件,例如迭代次数达到预设的上限,或者连续两次迭代的结果之间的差小于某个预设的阈值。

牛顿迭代法的收敛速度通常比线性搜索方法快,因为它利用了函数的导数信息。

然而,这种方法也有其局限性。

它要求函数在其迭代点处可导,且导数不为零。

牛顿迭代法可能不收敛,如果初始点选择不当,或者函数有多个根,或者根是重根。

因此,在使用牛顿迭代法时,需要谨慎选择初始点,并对迭代过程进行适当的监控和调整。

迭代法(iterative method

迭代法(iterative method

迭代法(iterative method
迭代法是一种数学方法,通过不断地迭代逼近来求解数学问题。

这种方法通常用于求解方程、优化问题、积分问题等。

迭代法的基本思想是:给定一个初始值或初始解,然后根据一定的规则进行迭代,每次迭代都得到一个新的解,直到满足某个终止条件为止。

这个终止条件可以是精度要求、迭代次数限制等。

常见的迭代法包括:
1.牛顿迭代法:用于求解非线性方程的根,通过不断地逼近方程的根来求解。

2.梯度下降法:用于求解最优化问题,通过不断地沿着负梯度的方向搜索来找到最优
解。

3.牛顿-拉夫森方法:结合了牛顿法和二分法的优点,用于求解非线性方程的根。

4.雅可比迭代法:用于求解线性方程组,通过不断地逼近方程组的解来求解。

5.高斯-赛德尔迭代法:用于求解线性方程组,通过不断地逼近方程组的解来求解。

使用迭代法时需要注意初始值的选择、迭代规则的合理性、终止条件的设定等问题,以确保迭代过程的收敛性和有效性。

同时,迭代法也有一定的局限性,对于一些非线性问题或复杂问题,可能需要进行多次迭代或者采用其他方法进行求解。

非线性方程组迭代法

非线性方程组迭代法

实验二 非线性方程的数值解法1.1 实验内容和要求在科学研究和工程技术中大量的实际问题是非线性的,求非线性方程()0f x =满足一定精确度的近似根是工程计算与科学研究中诸多领域经常需要解决的问题。

实验目的:进一步理解掌握非线性方程求根的简单迭代法、埃特金Aitken 加速法、牛顿迭代法的思想和构造。

实验内容: 求方程2320x x x e -+-=的实根。

要求:(1)设计一种简单迭代法,要使迭代序列收敛,然后再用埃特金Aitken 加速迭代,计算到-8110k k x x --<为止。

(2)用牛顿迭代法,同样计算到-8110k k x x --<(3)输出迭代初值、迭代次数k 及各次迭代值,并比较算法的优劣。

1.2 算法描述普通迭代法计算步骤:(1)给定初始近似值0x ,eps 为精确度。

(2)用迭代公式x =x 2+2−e x 3进行迭代,直到-8110k k x x --<为止。

埃特金Aitken 加速迭代法计算步骤:(1)将()0f x =化成同解方程()x x ϕ=()k k y x ϕ= ,()k k z y ϕ=21()2k k k k k k k y x x x z y x +-=--+=22k k k k k kx z y z y x --+ (2)计算到-8110k k x x --<为止。

牛顿法计算步骤:给定初始近似值0x ,1ε为根的容许误差,2ε为()f x 的容许误差,N 为迭代次数的容许值。

计算00(),()f x f x '(1)如果0()0f x '=或者迭代次数大于N ,则算法失败,结束;否则执行(2)(2)按公式0100()()f x x x f x =-'迭代一次,得到新的近似值1x ,计算11(),()f x f x ' (3)如果101x x ε-<或者12()f x ε<,则迭代终止,以1x 作为所求的根,结束;否则执行(4)(4)以111(,(),())x f x f x '代替000(,(),())x f x f x ',转步骤(1)继续迭代。

数值分析课程第五版课后习题答案

数值分析课程第五版课后习题答案

数值分析课程第五版课后习题答案课后习题一:a) 求解非线性方程f(x) = x^3 - 2x - 5的根。

解答:可使用牛顿迭代法来求解非线性方程的根。

牛顿迭代法的迭代公式为:x_(n+1) = x_n - f(x_n)/f'(x_n),其中x_n为第n次迭代的近似解。

对于给定的方程f(x) = x^3 - 2x - 5,计算f'(x)的导数为f'(x) = 3x^2 - 2。

选择一个初始近似解x_0,并进行迭代。

迭代的终止条件可以选择两次迭代间的解的差值小于某个预设的精度。

b) 计算矩阵加法和乘法的运算结果。

解答:设A和B为两个矩阵,A = [a_ij],B = [b_ij],则A和B的加法定义为C = A + B,其中C的元素为c_ij = a_ij + b_ij。

矩阵乘法定义为C = A * B,其中C的元素为c_ij = ∑(a_ik * b_kj),k的取值范围为1到矩阵的列数。

c) 使用插值方法求解函数的近似值。

解答:插值方法可用于求解函数在一组给定点处的近似值。

其中,拉格朗日插值法是一种常用的方法。

对于给定的函数f(x)和一组插值节点x_i,i的取值范围为1到n,利用拉格朗日插值多项式可以构建近似函数P(x),P(x) = ∑(f(x_i) * l_i(x)),其中l_i(x)为拉格朗日基函数,具体表达式为l_i(x) = ∏(x - x_j)/(x_i - x_j),j的取值范围为1到n并且j ≠ i。

课后习题二:a) 解决数值积分问题。

解答:数值积分是求解定积分的数值近似值的方法。

常用的数值积分方法包括矩形法、梯形法和辛普森法。

矩形法采用矩形面积的和来近似曲边梯形的面积,梯形法采用等距离子区间上梯形面积的和来近似曲边梯形的面积,而辛普森法则利用等距离子区间上梯形和抛物线面积的加权和来近似曲边梯形的面积。

b) 使用迭代方法求解线性方程组。

解答:线性方程组的求解可以通过迭代方法来进行。

迭代法解非线性方程

迭代法解非线性方程

则对一个任意接近 x*的初始值,迭代公式
xk1 ( xk )是 p阶收敛的,且有
lim
k
xk1 x * ( xk x*)p
( p)( x*)
p!
定理3可以利用泰勒展开式加以证明
二、弦截法
1. 弦截法的算法过程
(1)过两点(a,f (a)),(b,f (b))作一直线,它与x轴有一个交点,记为x1; (2)如果f (a)f (x1)<0,过两点(a,f (a)),(x1,f (x1 ))作一直线,它与x轴的交点 记为x2, 否则过两点(b,f (b)),(x1,f (x1 ))作一直线,它与x轴的交点记为x2; (3)如此下去,直到|xn-xn-1|< , 就可认为xn为 f (x)=0在区间[a,b]上的一 个根。
2. 弦截法的迭代公式
x1
a
ba f (b) f (a)
f (a),
xk
1
xk
1
a b
xk a f ( xk ) f (a)
xk b f ( xk ) f (b)
f (a), f (b),
f (a) f ( xk ) 0 f (a) f ( xk ) 0
3.弦截法的Matlab编程实现
function root=chord_cut(f,a,b,e)
%弦截法求函数f在区间[a,b]上的一个零点 %f函数名,a区间左端点,b区间右端点,e根的精度,root函数的零点
function [root,n]=chord_cut2(f,a,b,e)
%弦截法求函数f在区间[a,b]上的一个零点 %f函数名,a区间左端点,b区间右端点,e根的精度,root函数的零点,n迭代次数
2. 迭代法的收敛性

python牛顿迭代法求方程解

python牛顿迭代法求方程解

牛顿迭代法是一种求解非线性方程根的有效方法。

基本思想是利用泰勒级数展开,将非线性方程近似为线性方程,然后通过迭代来逼近方程的根。

以下是使用Python实现牛顿迭代法求解非线性方程的示例代码:```pythondef newton_method(f, x0, epsilon=1e-7, max_iter=100):"""使用牛顿迭代法求解非线性方程的根:param f: 函数:param x0: 初始值:param epsilon: 精度:param max_iter: 最大迭代次数:return: 方程的根"""x = x0for i in range(max_iter):fx = f(x)if abs(fx) < epsilon:print("在第{}次迭代中找到了根,值为{}".format(i+1, x))return xdfx = f(x) / f(x) # 计算f'(x)x = x - f(x) / dfx # 更新x的值print("未在{}次迭代内找到根".format(max_iter))return None```其中,`f`是要求根的函数,`x0`是初始值,`epsilon`是精度,`max_iter`是最大迭代次数。

在函数中,首先将`x`赋值为初始值`x0`,然后进行迭代。

在每次迭代中,先计算函数值`fx`和导数值`dfx`,然后根据牛顿迭代公式更新`x`的值。

如果函数值`fx`的绝对值小于精度`epsilon`,则认为找到了方程的根,返回当前值`x`;否则,继续迭代。

如果未在最大迭代次数内找到根,则返回`None`。

第7章 非线性方程求根

第7章 非线性方程求根

k 且区间长度逐次减半, bk ak (b a) 2 .
非线性方程求根的二分法
二分法基本步骤: 随着k的增大,有根区间长度趋于零,区间端点向 * lim a lim b lim x x . 一点收缩, k k k k k k 显然x*即为f(x)=0的根。而x0, x1, …,xk,…为近似根 * 序列。设要求精度为ε ,即 x xk ,

x1 x* ( )(x0 x* ) M ( x0 x* ), x2 ( x1 ), x2 x M ( x1 x ).
* *
加速迭代法
消去M得
x1 x* x0 x* , * * x2 x x1 x
2
2 x x x ( x x ) 1 0 x* x1 0 2 1 x0 , x2 2 x1 x0 x0 2 x1 x2
斯蒂芬森迭代法
结合埃特金加速法和不动点迭代法形成斯 蒂芬森迭代法:

yk ( xk ), z k ( yk ), ( y k xk ) xk 1 xk z k 2 y k xk
2
(k 0,1, ).
斯蒂芬森迭代法几何意义
定义x点关于方程 x ( x) 的误差为: ( x) ( x) x. * * * * ( x ) ( x ) x 0. 则该方程的根x 的误差
非线性方程的迭代法求根
基本概念 非线性方程f(x)=0的根(解) x*,也称为非线性 函数f(x)的零点,f(x*)=0。 f(x)=0的m重根定义:f(x)=(x-x*)mg(x), g(x*)≠0,则称x*为f(x)=0的m重根,或f(x)的 m重零点。 m重根的判定条件: x*为f(x)=0的m重根当 且仅当 * * ( m1) * ( m) * f (x ) f (x ) f ( x ) 0; f ( x ) 0.

牛顿迭代法求根c语言

牛顿迭代法求根c语言

牛顿迭代法求根c语言牛顿迭代法是一种常用的数值计算方法,其可以用来求解非线性方程的根。

本文将介绍牛顿迭代法的基本原理和实现方法,并提供一些使用C语言实现牛顿迭代法求根的示例代码。

一、牛顿迭代法的原理在介绍牛顿迭代法的原理之前,我们先来看一个简单的例子。

假设我们要求解方程f(x) = 0的近似根,其中f(x)是一个可导函数。

我们可以通过利用切线来逼近方程f(x) = 0的根。

具体地,我们可以选择一个起始点x0,然后在x0处取得f(x0)的切线,将其延长到x轴上的交点x1,那么x1就是f(x) = 0的一个近似根。

可以通过数学方法得到x1的表达式:x1 = x0 - f(x0) / f'(x0)其中f'(x0)表示函数f(x)在x0处的导数。

换句话说,我们使用f(x)在x0处的切线来近似替代f(x)的图形,直到得到f(x) = 0的一个近似根为止。

这就是牛顿迭代法的基本思想。

牛顿迭代法的具体步骤如下:1. 选择一个起始点x0;2. 使用f(x)在x0处的切线来近似替代f(x)的图形;3. 在切线上取得x轴的交点x1; 4. 将x1作为新的起始点,重复步骤2和3,直到得到近似根。

二、牛顿迭代法的实现牛顿迭代法的实现过程比较简单,但需要注意一些细节。

具体实现可以分为以下几个步骤:1. 定义一个函数f(x),表示待求解的方程;2. 定义一个函数f_prime(x),表示函数f(x)在x处的导数;3. 定义一个起始点x0;4. 通过牛顿迭代公式计算出x1; 5. 将x1作为新的起始点,重复步骤4,直到满足精度要求为止。

下面,我们提供一段使用C语言实现牛顿迭代法求根的代码示例:```c #include<stdio.h> #include<math.h>#define EPSILON 0.0001double f(double x) { // 表示待求解的非线性方程 return x*x*x - x*x + 2; }double f_prime(double x) { // 表示f(x)在x 处的导数 return 3*x*x - 2*x; }double newton_raphson(double x) { // 牛顿迭代法求根 double x0 = x;while (1) { double x1 = x0 - f(x0) / f_prime(x0);if (fabs(x1 - x0) < EPSILON) return x1;x0 = x1; } }int main() { double x = 0;printf("The root is: %lf\n",newton_raphson(x));return 0; } ```代码中,定义了非线性方程f(x)和它在x处的导数f_prime(x),然后利用牛顿迭代法计算出方程的近似根。

二元非线性方程组求根的牛顿迭代法

二元非线性方程组求根的牛顿迭代法

2 二元函数的牛顿迭代法
设 z = f ( x, y ) 在点 ( x0 , y0 ) 的某一邻域内连续且 有直到 2 阶的连续偏导数 , ( x0 + h, y0 + k ) 为此邻域 内任一点 , 则有
f ( x0 + h, y0 + k ) ≈ f ( x0 , y0 ) +
记符号
gfx - fgx | ( x k, y k) = g ( xk , yk ) fx ( xk , yk ) - f ( xk , yk ) gx ( xk , yk ) fgy - gfy | ( x k, y k) = f ( xk , yk ) gy ( xk , yk ) - g ( xk , yk ) fy ( xk , yk ) gx fy - fx gy | ( x k, y k) = gx ( xk , yk ) fy ( xk , yk ) - fx ( xk , yk ) gy ( xk , yk ) ( 1 ) 式可改写为 x = xk + y = yk + fgy - gfy | ( x k, y k) gx fy - fx gy | ( x k, y k) gfx - fgx | ( x k, y k) gx fy - fx gy | ( x k, y k) fgy - gfy | ( x k, y k) gx fy - fx gy | ( x k, y k) gfx - fgx | ( x k, y k) gx fy - fx gy | ( x k, y k) ( 3) ( 2)
f ( xk ) = xk ( k = 0, 1, …) ( xk ) f′
从而 :
x = xk + y = yk + f ( xk , yk ) gy ( xk , yk ) - g ( xk , yk ) fy ( xk , yk ) gx ( xk , yk ) fy ( xk , yk ) - fx ( xk , yk ) gy ( xk , yk ) g ( xk , yk ) fx ( xk , yk ) - f ( xk , yk ) gx ( xk , yk ) gx ( xk , yk ) fy ( xk , yk ) - fx ( xk , yk ) gy ( xk , yk ) ( 1)

非线性方程的求解方法

非线性方程的求解方法

非线性方程的求解方法非线性方程是数学中的基本概念,对于许多科学领域而言,非线性方程的求解具有重要的意义。

然而,与线性方程相比,非线性方程的求解方法较为复杂,因此需要掌握一些有效的解法。

本文将介绍几种非线性方程的求解方法。

一、牛顿迭代法牛顿迭代法也叫牛顿-拉夫逊迭代法,是一种求解非线性方程的有效方法。

该方法的基本思路是,选择一个初始值,通过迭代计算不断逼近非线性方程的根。

牛顿迭代法的公式为:$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$$其中,$f(x)$表示非线性方程,$f'(x)$表示$ f(x) $的一阶导数。

牛顿迭代法的优点在于速度快,迭代次数少,但其局限性在于收敛性受初始点选取的影响较大。

二、割线法割线法(Secant method)也是一种求解非线性方程的有效方法。

与牛顿迭代法不同,割线法使用的是两个初始值,并根据两点间的连线与$ x $轴的交点来作为新的近似根。

割线法的公式为:$$x_{n+1}=x_n-\frac{f(x_n)(x_n-x_{n-1})}{f(x_n)-f(x_{n-1})}$$割线法的优势是不需要求解导数,但其缺点在于需要两次迭代才能得到下一个近似根,因此计算量较大。

三、二分法二分法(Bisection method)是求解非线性方程的另一种有效方法。

该方法的基本思路是找到非线性方程的一个区间,使函数值在该区间内的符号相反,然后通过逐步缩小区间,在区间内不断逼近非线性方程的根。

二分法的公式为:$$x_{n+1}=\frac{x_n+x_{n-1}}{2}$$其中,$x_n$和$x_{n-1}$是区间的端点。

二分法的优点在于收敛性稳定,但其缺点在于迭代次数较多,因此计算量也较大。

四、弦截法弦截法(Regula Falsi method)也是一种求解非线性方程的有效方法。

它和二分法类似,都是通过缩小根所在的区间来逼近根。

不同之处在于,弦截法不是以区间中点为迭代点,而是以区间两个端点之间的连线与$ x $轴的交点为迭代点。

非线性方程求根的常见方法及其应用

非线性方程求根的常见方法及其应用

非线性方程求根的常见方法及其应用对于一个非线性方程,其解不一定是唯一的,而且很多情况下解根难以直接求得。

因此,寻找一种可靠、有效的方法来求解非线性方程根是非常重要的。

本文将介绍几种常见的非线性方程求根方法,并且介绍它们的应用场景及求解精度。

一、二分法二分法是一种最基本且易于实现的方法,它能够求解任何单峰函数(函数图像中仅有一个极大值或极小值的函数)的根。

该方法的主要思想是不断缩小根的区间,直到找到根。

具体而言,对于一个单峰函数f(x),在区间[a,b]上寻找其根。

首先,取中点c=(a+b)/2,计算f(c)。

如果f(c)≈0,则找到了根;否则,根位于[a,c]或[c,b]中的一个区间上,重复上述步骤,直到找到根。

该方法的主要优点是简单易用,适用于大部分单峰函数,并且收敛速度相对较快。

但是,该方法需要区间起点和终点具有异号,否则无法找到根。

二、牛顿迭代法牛顿迭代法是一种高效的方法,可用于求解任何无奇点的连续可微函数的根。

该方法的主要思想是将一个复杂的函数不断逼近于一条直线,然后通过直线和x轴的交点来不断逼近函数的根。

具体而言,对于一个连续可微函数f(x),在初始点x0处进行求解。

首先,通过f(x)在x=x0处的导数f'(x0)来确定函数的切线。

然后,找到x轴上离该点最近的交点x1处,并将其作为新的起点,迭代上述过程,直到找到根。

该方法的主要优点在于速度快、精度高,并且可适用于大多数函数。

但是,该方法可能会出现迭代过程不稳定的问题,因此需要谨慎选择初值。

三、割线法割线法是一种类似于牛顿迭代法的方法,其主要思想是通过一条割线来逼近函数的根。

相比于牛顿迭代法,割线法更加适用于函数的导数难以求得的情况。

具体而言,对于一个函数f(x),在初始点x0和x1处进行求解。

首先,通过f(x)在x=x0处和x=x1处的取值来确定割线,找到x轴上与割线交点x2处,并将其作为新的起点,重复上述步骤,直到找到根。

该方法的主要优点在于速度快、精度高,并且可适用于大多数函数。

数值分析实验报告之迭代法求非线性方程的根

数值分析实验报告之迭代法求非线性方程的根

数值分析实验报告之迭代法求非线性方程的根1.实验目的掌握迭代法求非线性方程根的基本原理和使用方法,加深对数值计算方法的理解与应用。

2.实验原理迭代法是一种通过不断逼近的方法求解非线性方程的根。

根据不同的函数特点和问题需求,可以选择不同的迭代公式进行计算,如牛顿迭代法、二分法、弦截法等。

3.实验内容本次实验使用牛顿迭代法求解非线性方程的根。

牛顿迭代法基于函数的局部线性逼近,通过不断迭代逼近零点,直至满足收敛条件。

具体步骤如下:Step 1:选择初始点X0。

Step 2:计算函数f(x)在X0处的导数f'(x0)。

Step 3:计算迭代公式Xn+1 = Xn - f(Xn) / f'(Xn)。

Step 4:判断收敛准则,若满足则迭代结束,输出解Xn;否则返回Step 2,继续迭代。

Step 5:根据实际情况判断迭代过程是否收敛,并输出结果。

4.实验步骤步骤一:选择初始点。

根据非线性方程的特点,选择恰当的初始点,以便迭代公式收敛。

步骤二:计算导数。

根据选择的非线性方程,计算函数f(x)的导数f'(x0),作为迭代公式的计算基础。

步骤三:迭代计算。

根据迭代公式Xn+1=Xn-f(Xn)/f'(Xn),计算下一个迭代点Xn+1步骤四:判断收敛。

判断迭代过程是否满足收敛条件,通常可以通过设置迭代次数上限、判断前后两次迭代结果的差值是否足够小等方式进行判断。

步骤五:输出结果。

根据实际情况,输出最终的迭代结果。

5.实验结果与分析以求解非线性方程f(x)=x^3-x-1为例,选择初始点X0=1进行迭代计算。

根据函数f(x)的导数计算公式,得到导数f'(x0)=3x0^2-1,即f'(1)=2根据迭代公式Xn+1=Xn-f(Xn)/f'(Xn),带入计算可得:X1=X0-(X0^3-X0-1)/(3X0^2-1)=1-(1-1-1)/(3-1)=1-0/2=1根据收敛准则,判断迭代结果是否满足收敛条件。

数值分析课件 非线性方程的迭代解法方程求根

数值分析课件 非线性方程的迭代解法方程求根

k
解: 改写为以下两种等价方程 0
方法1 1.5
方法2 1.5
(1)x x3 1, (2)x 3 x 1 1 2.375 1.35721
建立迭代公式:(1)xk 1

x
3 k
1;
2
(2)xk 1 3 xk 1
3
4
各步迭代结果如下:
5
12.39
1.33086 1.32588 1.32494 1.32476
定义:迭代公式 xk+1= g(xk) (k= 0,1, …) 被称为求
解方程 f(x)=0 的简单迭代法(不动点迭代法), 其中g(x)称为迭代函数。
注:上述迭代法是一种逐次逼近法,其基本思想是 将隐式方程归结为一组显示的计算公式,就是说, 迭代过程是一个逐步显示化过程。
例:
求方程 f (x) x3 x 1 0 在x0 1.5 附近的根。
求 g(x) 不动点的过程
找s,使得s = g(s).
从一个初值 x0 出发,计算
x1= g(x0), x2= g(x1), … , xk+1= g(xk), …

{
xk
}
收敛,即存在实数
s
使得
lim
k
xk

s且
g(x)
连续,
则由
lim
k
xk
1
lim g k
xk
可知 s=g(s), 即 s是 g 的不动点, 它也是 f 的零点.
二分法求根思想
找有根区间序列(ak , bk); 用(ak , bk)的中点近似根.
二分法:
设一元非线性函数 f (x) 在 (a, b) 内只有一个 零点s , 用二分法求f (x)=0实根的过程如下:

牛顿迭代法在求解方程中的应用

牛顿迭代法在求解方程中的应用

牛顿迭代法在求解方程中的应用牛顿迭代法是一种常用的求解非线性方程的方法。

它是通过线性逼近来不断迭代,逐渐趋近于方程的根。

在实际生活中,很多问题都可以转化为方程求解问题。

因此,牛顿迭代法在实际应用中有着广泛的应用。

本文将介绍牛顿迭代法的基本原理及其在求解方程中的应用,并通过实际案例的方式来说明该方法的实用性。

一、基本原理牛顿迭代法的基本原理是通过求导数,利用导数的局部线性逼近来逼近非线性函数的根。

以一元函数f(x)为例,设x0为f(x)=0的一个近似解,那么可以用切线来逼近f(x)。

根据切线公式,可以得到:f(x) = f(x0) + f'(x0) (x - x0)将f(x)置为0,得到牛顿迭代法的迭代公式:x(n+1) = x(n) - f(x(n)) / f'(x(n))其中f'(x)代表函数f(x)在点x处的导数。

该公式即为牛顿迭代法的核心公式。

迭代开始时,选择任意一个近似解x0,根据该公式进行逐步迭代,直到形成收敛的数列x(1),x(2)...x(n),其中xn作为方程的近似解。

牛顿迭代法收敛速度较快,一般只需要很少的迭代次数就可以得到较为精确的解。

二、实际应用牛顿迭代法在实际应用中非常广泛。

下面将详细介绍该方法在求解方程中的应用。

1、求解一元方程对于一元方程f(x)=0,可以利用牛顿迭代法求解。

例如,给定方程x^3-4x^2+x+6=0,要求解该方程。

首先,需要选择一个初始值x0,比如x0=2。

然后,根据牛顿迭代法的公式进行逐步迭代,可以得到如下数列:x(0) = 2,f'(x0) = 13x(1) = x(0) - f(x(0))/f'(x(0)) = 2-(-6)/(13) = 2.4615x(2) = x(1) - f(x(1))/f'(x(1)) = 2.4615 - (0.2639)/(18.568) = 2.3668 x(3) = x(2) - f(x(2))/f'(x(2)) = 2.3668 - (0.0167)/(21.707) = 2.3459 x(4) = x(3) - f(x(3))/f'(x(3)) = 2.3459 - (0.0005)/(22.239) = 2.3448经过4次迭代,在x=2.3448处精确到小数点后4位得到方程的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

下一页
13
返回
证明:由连续函数的性质,存在 x * 的某个邻域 R : x x *
,使对于任意 x R 成立 ( x) L 1 。此外,对于任意 x R 总有( x) R。这是因为 依据定义三,可以断定,迭代过程 值
xk 1 ( xk ) 对于任意初
* ( x) x * ( x) ( x * ) L x x * x x,
的邻近连续,并且 / ( x* ) ( x* ) ( p1) ( x* ) 0 (*) ( p ) ( x * ) 0
则该迭代过程在点 x * 邻近是P阶收敛的。
证明:由于 ( x) 0 。据定理一,立即可以断定迭 代过程
xk 1 ( xk ) 具有局部收敛性。再将( xk ) 在根 x * 处展开,利
迭代法求非线性方程的根
迭代法是求解非线性方程近似根的一 种方法,这种方法的关键是确定迭代函数 (x),简单迭代法 用直接的方法从原方程 中隐含的求出x,从而确定迭代函数(x), 这种迭代法收敛速度较慢,迭代次数多, 因此常用于理论中,Newton迭代法采用另一 种迭代格式, 具有较快的收敛速度,由牛顿 迭代法可以得到很多其他迭代格式。
1
下一页
迭代法
• • • • • • • 一、简单迭代法的概念与结论 二、 Newton迭代法的基本思想 三、牛顿法的几何意义 四、牛顿迭代法的步骤 五、例题 六、其他注意的事项
2
一、简单迭代法的概念与结论
• 简单迭代法又称逐次迭代法,基本思想是构造不动点方程,以求 得近似根。即由方程f(x)=0变换为x=(x), 然后建立迭代格式, •
下一页
7
返回
实用中(1.2)式常用
| ( x) | L 1 x (a, b)
定理一:假定函数( x) 满足下列条件:
1、对任意 x a, b有
a ( x) b;(1.1)
2、存在正数 L<1,使对任意
( x1 ) ( x2 ) L x1 x2
则有 x* ( x* )

xk 1 ( xk )
| xk 1 x* || ( xk ) ( x* ) | L | xk ቤተ መጻሕፍቲ ባይዱ* |

x k 1 x * L x k x *
据此反复递推有
x k x * Lk x 0 x *
9
下一页
返回
xk 1 ( xk )
• 当给定处值x0 后, 由迭代格式可求得数列{xk}。如果{xk}收敛于x*, 则它就是方程的根。因为: • * *
x lim x k 1 lim ( xk ) (lim xk ) ( x )
k k k
• 但迭代格式有多种,迭代格式如何建立才能保证迭代法的数列收 敛?有如下定理:
k L ( Lk p 1 Lk p 2 Lk ) x1 x0 x1 x0 1 L
在上式令 p ,注意到 lim xk p x * 即得式(1.3)。证毕。
p
10
下一页
返回
定理二:对于迭代过程xk 1 ( xk ),如果 ( p) ( x) 在所求根x *
xk 1 ( xk )
确实为P阶收敛,证毕。 上述定理告诉我们,迭代过程的收敛速度依赖于迭代函数. 如果选取当 x a, b 时( x) 0,则该迭代过程只能是线性
f ( x) 收敛。对于牛顿迭代公式(1),其迭代函数为 ( x) x f ( x)
,假定 x * 是f(x)的一个单根, f ( x* ) 0 ( x * ) 0 , 即 f ( x * ) 0 则由上式知 。 于是依据定理二可以断定,牛顿法在根 的邻近是平方 x* 12 下一页 返回 收敛的。 由于 ( x)
*
x , x a, b
1 2

(1.2)
0 L 1
则迭代过程 xk 1 ( xk ) 对于任意初值 x0 a, b 均收敛于方程 x ( x) 的根 x ,且有如下的误差估计式:
xk x
*
Lk x1 x0 1 L
(1.3)
8
下一页
返回
证明:设方程 x ( x) 在区间 a, b 内有根 x * ,
( p ) ( )
p!
用条件(*),则有 ( x
k
) (x )
*
( xk x * ) p
*
注意到 ( xk ) xk 1, ( x * )
( p) ( ) * p * x x ( x x ) 由上式得 k 1 k x p!
11
下一页
返回
ek 1 ( p ) ( x*) 因此对迭代误差有: p 。这表明迭代过程 p! ek
x0 均收敛。证毕。 R
下一页
14
返回
二. Newton迭代法的基本思想
• 设X K 是f(x)=0的一个近似根,把f(x)在 X K 处作泰勒展开
故当 k 时迭代值 xk x * 按(1.2)式 有 xk 1 xk ( xk ) ( xk 1 ) L xk xk 1 (1.4), 据此反复递推得:xk 1 xk Lk x1 x0 于是对任意正整数p有
x k p x k x k p x k p 1 x k p 1 x k p 2 x k 1 x k
f ( x) f ( x) f ( x)2
定义一:如果存在 x * 的某个邻域R : x x *
,使迭代过程
xk 1 ( xk ) 对于任意初值x0 R 均收敛,则称迭代过程 xk 1 ( xk ) 在根 x * 邻近具有局部收敛性。
定理三:设 x *为方程 x ( x) 的根,( x)在 x * 的邻近连续。 且则迭代过程在邻近具有局部收敛性。
相关文档
最新文档