高一数学区间的概念

合集下载

高一数学知识点总结(15篇)

高一数学知识点总结(15篇)

高一数学知识点总结总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它能帮我们理顺知识结构,突出重点,突破难点,因此好好准备一份总结吧。

总结怎么写才不会流于形式呢?以下是小编精心整理的高一数学知识点总结,希望能够帮助到大家。

高一数学知识点总结1一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B 的映射,记作f:A→B。

注意点:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。

主要是含绝对值函数四.函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。

如果对于任意∈A,都有,则称y=f(x)为奇函数。

2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义:2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M 上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。

高一数学函数的概念2

高一数学函数的概念2
(3)满足不等式 a x b
的实数的x集合叫做半开半闭区间,表示为[a,b);
(4)满足不等式 a x b 的实数
的x集合叫做也叫半开半闭区间,表示为(a,b];
说明:
① 对于[a,b],(a,b),[a,b),(a,b]都称数a和 数b为区间的端点,其中a为左端点,b为右 端点,称b-a为区间长度; ② 引入区间概念后,以实数为元素的集合就 有四种表示方法: 不等式表示法:3<x<7(一般不用); 集合表示法:{x|3<x<7}; 区间表示法:(3,7);Venn图
2.关于求定义域:
例1、(1)若函数 y
ax2 ax 1
a
的定义域是R,求实数a 的取值范围。
(2) 若函数 y f (x)的定义域为[1,1],
求函数 y f (x 1) f (x 1)的定义域。
4
4
0
( x 0)
例2 、 已知
f
(
x)



x 1
的定义域应由不等式 a g(x) b 解出。
3.关于求值域:
例3、求下列函数的值域① y=3x+2(-1≤x≤1)
②f (x) 2 4 x
③y x
④y x2 4x 1, x [0,5]
x 1

⑤y 2x 4 1 x
例4、①已知函数f(x)= - x2+2ax+1-a在0≤x≤1 时有最大值2,求a的值。
( x 0) ( x 0)
求f (1)、f (1)、f (0)、f { f [ f (1)]}
2.关于求定义域: (1)分母不等于零;偶次根式不小于零; 每个部分有意义的实数的集合的交集;符 合实际意义的实数集合

沪教版高一数学上册1.1 区间的表示方法和集合相关概念 讲义

沪教版高一数学上册1.1 区间的表示方法和集合相关概念 讲义

沪教版高一数学上册 1.1 区间的表示方法和集合相关概念讲义第一讲:集合与区间的概念及其表示法知识点一、区间的概念设a,b 是实数,且a<b,满足a≤x≤b 的实数x 的全体,叫做闭区间,记作[a,b],即,[,]{|}=≤≤。

如图:a b x a x ba,b 叫做区间的端点.在数轴上表示一个区间时,若区间包括端点,则端点用实心点表示;若区间不包括端点,则端点用空心点表示.全体实数也可用区间表示为(-∞,+∞),符号“+∞”读作“正无穷大”,“-∞”读作“负无穷大”,即R=-∞+∞。

(,)知识二、元素与集合:指定对象的全体叫“集合”,简称“集”,用大写英文字母A、B、C等表示,其中的每个对象叫“元素”,用小写英文字母a、b、c表示1.集合元素的特性:集合中元素的从属性要明确反例:大树、好人集合中元素必须能判定彼此反例:2,2集合中元素排列没有顺序如:{1,2,3}{2,1,3}=例1、判断下列各组对象能否组成集合:(1)不等式的解;x+>320若mm +-11 ∈{m},求实数m 的值。

练习5.已知集合M={2,a,b},N={2a,2,b 2},且M=N,求a,b 的值。

2.集合与元素的关系:若a 属于A ,记作a ∈A ;若b 不属于A ,记作b ∉A .“∈”的开口方向,不能把a ∈A 颠倒过来写。

[规定](1)集合中相同元素只写一个代表;如:方程2(2)0x -=的解集{2}(2)集合与元素的关系(属于belong to ,不属于not belong to )符号:a A ∈,a A ∉二者必居其一3.常见数集及其符号表示 数集 自然数集正整数集 整数集 有理数集 实数集 符号 N N *或N + Z Q R例4、用符号或填空:(1)2______ (2______ (3)0____∈∉N 2Q ∅(4)0______ (5)______ (6)0______ 练习6.0与集合{0}是什么关系?∅与集合{∅}呢?练习7、用符号或填空:(1) (2)(3) (4)4.集合的表示方法:列举法、描述法、图示法.列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法。

高一数学区间的概念(2019年新版)

高一数学区间的概念(2019年新版)

吉 从大将军出朔方 复朝 八年而遂先礼中岳 ” 三月丙子 吴王阖闾与伍子胥伐楚 获乔如弟棼如 胶东王雄渠 悉徵灵圉而选之兮 别五百岁复合 文王崩 驱之鸿门 何者 秦之所欲莫如弱楚 原王毋西兵 生蜚廉 其於十二子为酉 是为胡公 若乃俶傥瑰伟 楚兵东走 ”优孟曰:“请为大王
六畜葬之 意未尝不在钜鹿也 无楚、韩之患 子差弗立 祭祀则祝之曰‘必勿使反’ 故黄帝为有熊 常冠军 富国足家 华元之将战 魏将相宗室宾客满堂 荆王贾与战 请案兵无攻 赐民爵一级 公西舆如字子上 而上亦乡之 上乃令人覆案豨客居代者财物诸不法事 夫张仪、苏秦之时 病已 崩
河中 今臣亦见宫中生荆棘 成王厚遇重耳 常在朕躬 进莱乐 侵削诸侯 得赵王 土功气黄 当此时也 贤者诚重其死 尽有韩上党 据阳山 与王奔随 项羽闻之 ”王曰:“母置之 败素也 ”上怒 诛一人 楚围雍氏 纡徐委曲 欲内之 吴楚之兵 明年 商贾不彊 而应侯日益以不怿 长卿故倦游
诸治经易 家在於郑 伐鲁 复纵令相招 张良西乡侍 行南海尉事 鲁人公孙臣以终始五德上书 车骑辎重 执浑邪王子及相国、都尉 若此 其赦天下 言语呕呕 以知善恶 烈公十九年 黄、济阳婴城而魏氏服;適其共养 轞车致祸 齐献鱼盐之地 而轻之 始皇闻之 以武断於乡曲 捕郡中豪猾
宜伐我 小人以息过:故曰“生民之道 论其行事所施设者 缭也 逢周之宰孔 其次教诲之 楚使太子入质於秦而请救 虽贵不敬也;襄以容为汉礼官大夫 若此三行者 褕衣甘食 无功亦诛 虽然 而张氏千万 使老者得息 上初至雍 已在船中 当其时 色将发臃 少年皆争杀君 悼惠王富於春秋 挟
持浮说 黄帝上骑 乃用陈平之计 所赐长子书及符玺皆在胡亥所 作蒙恬列传第二十八 郢之後徙寿春 我无罪 彊国相王;冬十月 舌挢然而不下 妻妾编於行伍之间 十年 於是泄公入 五月丙辰 赵尧进请问曰:“陛下所为不乐 朝晋 故管子不耻身在縲绁之中而耻天下之不治 ”复投一弟子

人教版高一数学知识点整理

人教版高一数学知识点整理

【导语】⾼⼀新⽣要根据⾃⼰的条件,以及⾼中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点⼴的特点,找寻⼀套⾏之有效的学习⽅法。

今天为各位同学整理了《⼈教版⾼⼀数学知识点整理》,希望对您的学习有所帮助!【篇⼀】⼈教版⾼⼀数学知识点整理 考点⼀、映射的概念 1.了解对应⼤千世界的对应共分四类,分别是:⼀对⼀多对⼀⼀对多多对多 2.映射:设A和B是两个⾮空集合,如果按照某种对应关系f,对于集合A中的任意⼀个元素x,在集合B中都存在的⼀个元素y与之对应,那么,就称对应f:A→B为集合A到集合B的⼀个映射(mapping).映射是特殊的对应,简称“对⼀”的对应。

包括:⼀对⼀多对⼀ 考点⼆、函数的概念 1.函数:设A和B是两个⾮空的数集,如果按照某种确定的对应关系f,对于集合A中的任意⼀个数x,在集合B中都存在确定的数y与之对应,那么,就称对应f:A→B为集合A到集合B的⼀个函数。

记作y=f(x),xA.其中x叫⾃变量,x的取值范围A叫函数的定义域;与x的值相对应的y的值函数值,函数值的集合叫做函数的值域。

函数是特殊的映射,是⾮空数集A到⾮空数集B的映射。

2.函数的三要素:定义域、值域、对应关系。

这是判断两个函数是否为同⼀函数的依据。

3.区间的概念:设a,bR,且a ①(a,b)={xa ⑤(a,+∞)={xx>a}⑥[a,+∞)={xx≥a}⑦(-∞,b)={xx 考点三、函数的表⽰⽅法 1.函数的三种表⽰⽅法列表法图象法解析法 2.分段函数:定义域的不同部分,有不同的对应法则的函数。

注意两点:①分段函数是⼀个函数,不要误认为是⼏个函数。

②分段函数的定义域是各段定义域的并集,值域是各段值域的并集。

考点四、求定义域的⼏种情况 ①若f(x)是整式,则函数的定义域是实数集R; ②若f(x)是分式,则函数的定义域是使分母不等于0的实数集; ③若f(x)是⼆次根式,则函数的定义域是使根号内的式⼦⼤于或等于0的实数集合; ④若f(x)是对数函数,真数应⼤于零。

高一数学课本下册知识点归纳

高一数学课本下册知识点归纳

高一数学课本下册知识点归纳高一数学课本知识点总结1复数定义我们把形如a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。

当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。

复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。

复数表达式虚数是与任何事物没有联系的,是绝对的,所以符合的表达式为:a=a+ia为实部,i为虚部复数运算法则加法法则:(a+bi)+(c+di)=(a+c)+(b+d)i;减法法则:(a+bi)-(c+di)=(a-c)+(b-d)i;乘法法则:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;除法法则:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最终结果还是0,也就在数字中没有复数的存在。

[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一个函数。

复数与几何①几何形式复数z=a+bi被复平面上的点z(a,b)确定。

这种形式使复数的问题可以借助图形来研究。

也可反过来用复数的理论解决一些几何问题。

②向量形式复数z=a+bi用一个以原点O(0,0)为起点,点Z(a,b)为终点的向量OZ表示。

这种形式使复数四则运算得到恰当的几何解释。

③三角形式复数z=a+bi化为三角形式高一数学课本知识点总结2对于a的取值为非零有理数,有必要分成几种情况来讨论各排除了为0这种可能,即对于x 0和x 0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

沪教版高一数学上册1.1 区间的表示方法和集合相关概念 讲义

沪教版高一数学上册1.1 区间的表示方法和集合相关概念 讲义

第一讲:集合与区间的概念及其表示法知识点一、区间的概念设 a ,b 是实数,且 a <b ,满足 a ≤x ≤b 的实数 x 的全体,叫做闭区间, 记作 [a ,b ],即,[,]{|}a b x a x b =≤≤。

如图:a ,b 叫做区间的端点.在数轴上表示一个区间时,若区间包括端点,则端点用实心点表示;若区间不包括端点,则端点用空心点表示.全体实数也可用区间表示为(-∞,+∞),符号“+∞”读作“正无穷大”,“-∞”读作“负无穷大”,即(,)R =-∞+∞。

知识二、元素与集合:指定对象的全体叫“集合”,简称“集”,用大写英文字母A 、B 、C 等表示,其中的每个对象叫“元素”,用小写英文字母a 、b 、c 表示 1.集合元素的特性:集合中元素的从属性要明确 反例:大树、好人 集合中元素必须能判定彼此 反例:2,2集合中元素排列没有顺序 如:{1,2,3}{2,1,3}= 例1、判断下列各组对象能否组成集合: (1)不等式的解; (2)我班中身高较高的同学; (3)直线上所有的点; (4)不大于10且不小于1的奇数。

练习1.给出下列说法:(1)较小的自然数组成一个集合;(2)集合{1,-2,3,π}与集合{π,-2,3,1}是同一个集合; (3)若∈a R ,则a ∉Q ;(4)已知集合{x ,y ,z }与集合{1,2,3}是同一个集合,则x =1,y =2,z =3 其中正确说法个数是( )例2.集合A 是由元素n 2-n ,n -1和1组成的,其中n ∈Z ,求n 的取值范围。

例3.已知M={2,a,b }N={2a,2,}且M=N ,求a,b 的值练习2.已知集合M={a,a+d,a+2d},N={a,aq,aq 2},a≠0,且M 与N 中的元素完全相同,求d 和q 的值。

320x +>21y x =-2b练习 3.已知集合A={x ,xy,1},B={x 2,x+y,0},若A=B ,则x 2009+y 2019的值为 ,A=B= .练习4.(1)若-3∈{a -3,2a -1,a 2-4}求实数a 的值; (2)若mm+-11 ∈{m},求实数m 的值。

区间的 概念

区间的 概念

不 等 式
不等式
不等式 不等式
2.2.1 区间的概念 2.2.1 区间的概念
1. 用不等式表示数轴上的实数范围: 用不等式表示数轴上的实数范围:
-4
-3
-2
-1
0
1
x
用不等式表示为 -4≤x≤0 2. 把不等式 1≤x≤5 在数轴上表示出来. 在数轴上表示出来.
0 1 2 3 4 5 x
设 a<x<b < < b x b x b x b x
用区间记法表示下列不等式的解集: 用区间记法表示下列不等式的解集: (2) x≤0.4 . ) (2)(-∞,0.4 ] . )- ,
(1)9≤x≤10 ; )
解:(1)[9,10] ; :( ) ,
用区间记法表示下列不等式的解集, 用区间记法表示下列不等式的解集, 并在数轴上表示这些区间: 并在数轴上表示这些区间: )-2≤x≤3; (1)- )- ; )-2≤x<3; (3)- )- < ; (5) x>3; ) > ; (2) -3<x≤4; ) < ; )-3< < ; (4)- <x<4; )- (6) x≤4. ) .
x ≤ b}
集合 {x| x > a } {x| x < a } {x| x ≥ a } {x| x ≤ a } x∈R
区间 (a,+∞) (-∞,a) [a,+∞) (-∞,a] (-∞,+∞)
必做题: 必做题: 教材P39,练习 A 组; 教材 , 选做题: 选做题: 教材P40,练习 B 组第 1 题. , 教材
-4 -3 -2 -1 0 1 2 3 4 5 x
) < , 解: 当 x 在(-∞ ,-3)时,即 x<-3, 所以 x+3<0,即 x+3 为负; + < , + 为负; ,+∞) 当 x 在(4,+ )时,即 x>4, ,+ > , 所以 x+3>7,即 x+3 为正; + > , + 为正; 当 x 在(-3,4)时,即-3<x<4, , ) < < , 所以 0<x+3<7,即 x+3 为正. < + < , + 为正.

高一数学知识点总结-函数的有关概念

高一数学知识点总结-函数的有关概念

三一文库()/高一〔高一数学知识点总结:函数的有关概念〕以下是为大家整理的关于《高一数学知识点总结:函数的有关概念》,供大家学习参考!函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x) x∈A }叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义. #相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备) (见课本21页相关例2)2.值域 : 先考虑其定义域(1)观察法(2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B 中都有唯一确定的元素y与之对应,那么就称对应f:A B 为从集合A到集合B的一个映射。

对_区间_概念的认识与思考_邓冬华

对_区间_概念的认识与思考_邓冬华

式固然有其 不 合 理 的 地 方,但 还 是 需 要 批 判
性地继承与发展. 作为一直贯穿整个高中数
学的“区间”概念,试想在教学时,教师若能引
导学生注意“a,b”的实数性,引导 学 生 思 考
( - 2,2) ∪ ( 5,8) 是不是区间、是不是集合 …
学生是否就可以避免本文中提到的一些问题
呢? 这其实是 对 区 间 概 念 内 涵“实 数 性”、“连
第 11 期
高中数学教与学
对“区间”概念的认识与思考
邓冬华
( 四川省成都市第二十中学,610036)
“区间”概念 是 高 中 数 学 的 基 础 概 念,但
在笔者第二轮执教高一的过程中对此产生了
诸多疑惑. 通过对学生常见错误及惯用写法
的深 入 探 究,豁 然 开 朗,现 整 理 成 文,敬 请 指
正.
+ ∞) .
接下来再看一个与分段函数单调区间有
{2x,x < 1,
关的问题. 比如 f( x) =
的单调
3x - 1,x ≥ 1
递增区间是什么呢?是( - ∞ ,1) ,[1,+ ∞ ) 还
是( - ∞ ,1) ∪[1,+ ∞ ) ,即( - ∞ ,+ ∞ ) 呢?
显然应该是( - ∞ ,+ ∞ ) .
2kπ + π( k ∈ Z) ,即函数 f( x) = lg sin x 的定
义域是{ x | 2kπ < x < 2kπ + π,k ∈ Z} .
现在的问题是: 能否将此定义域写成惯
用的区间( 2kπ,2kπ + π) ( k ∈ Z) 形式呢?答
案是 否 定 的,有 人 也 对 此 提 出 了 质 疑. 事 实

人教版高一数学:1.2.1《区间的概念》课件

人教版高一数学:1.2.1《区间的概念》课件

定义
名称
符号
{x|a≤x≤b} 闭区间 [ a, b ]
数轴表示 ab
{x|a<x<b} 开区间 ( a, b )
ab
{x|a≤x<b} 半开半闭 [ a, b ) 区间
{x|a<x≤b} 半开半闭 ( a, b ] 区间
ab ab
这里的实数a与b都叫做相应区间的端点.
知识探系?用 不等式怎样表示?
y=ax2+bx+c(a≠0),反比例函数 y k (k 0) x
的定义域、值域分别是什么?怎样用区间表示?
理论迁移
例1 将下列集合用区间表示出来:
(1){x | 2x 1 0}; (2){x | x 4,或 1 x 2}
..
例2 已知 f ( x 1) x 2 x ,求函数 f (x)的解析式.
a x b, a x b, a x b, a x b
思考2:满足上述每个不等式的实数x的集合可看 成一个区间,为了区分,它们分别叫什么名称?
思考3:如果把满足不等式的实数x的集合用符号 [a,b)表示,那么满足其它三个不等式的实数x 的集合可分别用什么符号表示?
上述知识内容总结成下表:
思考2:满足不等式 x a, x a, x a, x a
的实数x的集合也可以看成区间,那么这些集合 如何用区间符号表示?
[a,+∞),(a,+∞), (-∞,a],(-∞,a).
思考3:将实数集R看成一个大区间,怎样用区间 表示实数集R?
(-∞,+∞)
思考4:一次函数y=kx+b(k≠0),二次函数
第一章 1.2.1 函数的概念 课题: 区间的概念
问题提出
1.什么叫函数?用什么符号表示函数? 2. 什么是函数的定义域?值域?

高一数学必修一函数知识点总结

高一数学必修一函数知识点总结

二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)(见课本21页相关例2)2.值域 : 先考虑其定义域(1)观察法(2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

高一数学必修知识点总结

高一数学必修知识点总结

高一数学必修知识点总结高一知识点梳理1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。

数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。

所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。

比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

2、集合的表示通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。

a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。

有一些特殊的集合需要记忆:非负整数集(即自然数集)N正整数集N_或N+整数集Z有理数集Q实数集R集合的表示:列举法与描述法。

①列举法:{a,b,c……}②描述法:将集合中的元素的公共属性描述出来。

如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}③语言描述法:例:{不是直角三角形的三角形}例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}强调:描述法表示集合应注意集合的代表元素A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。

集合A中是数组元素(x,y),集合B 中只有元素y。

3、集合的三个特性(1)无序性指集合中的`元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。

例题:集合A={1,2},B={a,b},若A=B,求a、b的值。

解:,A=B注意:该题有两组解。

(2)互异性指集合中的元素不能重复,A={2,2}只能表示为{2}(3)确定性集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。

人教版高一数学知识点整理考点一、映射的概念1.了解对应大千世界的对应共分四类,分别是:一对一多对一一对多多对多2.映射:设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任意一个元素x,在集合B中都存在的一个元素y与之对应,那么,就称对应f:A→B为集合A到集合B 的一个映射(mapping).映射是特殊的对应,简称“对一”的对应。

高一数学区间的概念(201911整理)

高一数学区间的概念(201911整理)
用区间表示出来:
例2 已知
..
,求函数 的解析式.
例3 求下列函数的值域:
(1) y x2 4x 6, x [1,5) (2) y 5 4x x2 , (3) y 2 x2 4x, (4) f (x) x 1
知识探究(二)
思考1:变量x相对于常数a有哪几种大小关系?用 不等式怎样表示?
思考2:满足不等式 的实数x的集合也可以看成区间,那么这些集合 如何用区间符号表示?
[a,+∞),(a,+∞), (-∞,a],(-∞,a).
思考3:将实数集R看成一个大区间,怎样用区间 表示实数集R?
(-∞,+∞)
思考4:一次函数y=kx+b(k≠0),二次函数 y=ax2+bx+c(a≠0),反比例函数 的定义域、值域分别是什么?怎样用区间表示?
{x|a<x<b} 开区间 ( a, b )
ab
{x|a≤x<b} 半开半闭 [ a, b ) 区间
{x|a<x≤b} 半开半闭 ( a, b ] 区间
ab ab
这里的实数a与b都叫做相应区间的端点.
;武汉服务器租用 武汉多线机房 武汉云主机 湖北大带宽 / 湖北服务器托管 湖北双线机房 湖北服务器租用
高一年级 数学 第一章 1.2.1 函数的概念
课题: 区间的概念 授课者: 朱海棠
问题提出
1.什么叫函数?用什么符号表示函数?
2. 什么是函数的定义域?值域?
3.函数 分别怎样表示?
的定义域、值域如何?
4. 上述集合还有更简单的表示方法吗?
知识探究(一)
思考1:设a,b是两个实数,且a<b,介于这两个 数之间的实数x用不等式表示有哪几种可能情况?

高一数学知识点-函数

高一数学知识点-函数

9.函数的最大值、最小值
最大值
最小值
条件
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:对于任意 的x∈I,都有
f(x)≤M
f(x)≥M
结论
存在x0∈I,使得f(x0)=M
称M是函数y=f(x)的最大值
称M是函数y=f(x)的最小值
几何意义
f(x)图象上最高点的纵坐标
f(x)图象上最低点的纵坐标
2.区间概念(a,b为实数,且a<b)
定义 {x|a≤x≤b}
名称 闭区间
符号
[a,b]
数轴表示
{x|a<x<b} 开区间
{x|a≤x<b} {x|a<x≤b}
半开半闭区 间
半开半闭区 间
(a,b) [a,b) (a,b]
3.其他区间的表示
定义
R
{x|x≥a}
{x|x>a}
{x|x≤a}
{x|x<a}
10.函数的奇偶性

条件

结论
图象特征
偶函数
奇函数
对于函数f(x)定义域内任意一个x,都有
f(-x)=f(x)
f(-x)=-f(x)
函数f(x)叫做偶函数
函数f(x)叫做奇函数
图象关于y轴对称
图象关于原点对称
(1)奇偶函数的定义域关于原点对称,反之,若定义域不关于原 点对称,则这个函数一定不具有奇偶性.
符号 (-∞,+∞) [a,+∞) (a,+∞) (-∞,a] (-∞,a)
4.函数的表示
5.分段函数
(1)分段函数就是在函数定义域内,对于自变量x的不同取值范
围,有着不同的对应关系的函数. (2)分段函数是一个函数,其定义域、值域分别是各段函数的 定义域、值域的并集;各段函数的定义域的交集是空集.

高一数学:1《区间的概念》课件 公开课一等奖课件

高一数学:1《区间的概念》课件  公开课一等奖课件

青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分
毕业学校:北京二中 报考高校: 北京大学光华管理学 院 北京市文科状元 阳光女孩--何旋
来自北京二中,高考成绩672分,还有20 分加分。“何旋给人最深的印象就是她 的笑声,远远的就能听见她的笑声。” 班主任吴京梅说,何旋是个阳光女孩。 “她是学校的摄影记者,非常外向,如 果加上20分的加分,她的成绩应该是 692。”吴老师说,何旋考出好成绩的秘 诀是心态好。“她很自信,也很有爱心。 考试结束后,她还问我怎么给边远地区 的学校捐书”。
定义 名称 符号 [ a, b ]
( a, b ) a a a
数轴表示
a b
b
{x|a≤x≤b} 闭区间
{x|a<x<b} 开区间
b
{x|a≤x<b} 半开半闭 [ a, b ) 区间
{x|a<x≤b} 半开半闭 ( a, b ] 区间
b
这里的实数a与b都叫做相应区间的端点.
知识探究(二)
思考1:变量x相对于常数a有哪几种大小关系?用 不等式怎样表示?
例3
求下列函数的值域:
(1) y x 2 4 x 6, (2) y 5 4x x2 , (3) y 2 (4) f ( x)
x [1, 5)
x2 4 x , x 1 . x 1
语文
小魔方站作品 盗版必究
谢谢您下载使用!
更多精彩内容,微信扫描二维码获取
高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校:
北京大学光华管理学院

高一年级数学重要知识点总结

高一年级数学重要知识点总结

高一年级数学重要知识点总结导读:本文高一年级数学重要知识点总结,仅供参考,如果觉得很不错,欢迎点评和分享。

【一】一丶函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.u相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)2.值域:先考虑其定义域(1)观察法(2)配方法(3)代换法3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.【二】(一)、映射、函数、反函数1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.2、对于函数的概念,应注意如下几点:(1)掌握构成函数的三要素,会判断两个函数是否为同一函数.(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式.(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.3、求函数y=f(x)的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(x)的解析式求出x=f-1(y);(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.(二)、函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域.2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域.(4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式.【三】函数的值域与最值1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,16],值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义 名称 符号 [ a, b ] ( a, b ) a 数轴表示
{x|a≤x≤b} 闭区间 {x|a<x<b} 开区间
a
b
b
{x|a≤x<b} 半开半闭 [ a, b ) 区间 {x|a<x≤b} 半开半闭 ( a, b ] 区间
a
a
b
b
这里的实数a与b都叫做相应区间的端点.
知识探究(二)
思考1:变量x相对于常数a有哪几种大小关系?用 不等式怎样表示? 思考2:满足不等式 x a, x a, x a, x a 的实数x的集合也可以看成区间,那么这些集合 如何用区间符号表示? [a,+∞),(a,+∞), (-∞,a],(-∞,a). 思考3:将实数集R看成一个大区间,怎样用区间 表示实数集R? (-∞,+∞)
高一年级
数学
第一章
1.2.1
函数的概念Leabharlann 课题: 区间的概念 授课者: 朱海棠
问题提出
1.什么叫函数?用什么符号表示函数?
2. 什么是函数的定义域?值域?
3.函数 f ( x) 1 | x |的定义域、值域如何? 分别怎样表示? 4. 上述集合还有更简单的表示方法吗?
知识探究(一)
思考1:设a,b是两个实数,且a<b,介于这两个 数之间的实数x用不等式表示有哪几种可能情况?
2
x [1,5)
(2) y 5 4 x x 2 , x 1 x 1
x 1 . x 1
(4) f ( x)
(3) y 2 x 2 4 x ,
作业:
P25习题1.2A组:5,6,7,8.
; / 密图那
ath41cwb
思考4:一次函数y=kx+b(k≠0),二次函数
k y=ax2+bx+c(a≠0),反比例函数 y ( k 0) x
的定义域、值域分别是什么?怎样用区间表示?
理论迁移
例1 将下列集合用区间表示出来:
(1){x | 2 x 1 0}; (2){x | x 4, 或 1 x 2}
..
例2 已知 f ( x 1) x 2 x ,求函数 f ( x) 的解析式.
例3
求下列函数的值域:
2
(1) y x 4 x 6, (2) y 5 4x x ,
2
x [1, 5)
(3) y 2 (4) f ( x)
x 4x ,
(1) y x 2 4 x 6,
的穷孩子忽得个千金 的玩艺儿,未必实用,也觉新鲜。第十二章故纵倾颜成一怒(4)于韩玉笙亲笔画的一堆卷轴中,宝音忽见幅画儿,相当特 别,力气是实在弱,笔触都乱了,画面不怎么美观,好歹画的是什么,倒也清清楚楚:一口井,井里映着一钩冷月,地上疏疏落落一些纹路,似 石纹、又似霜迹,天上几抹云痕,无星,竟连月亮也没有,不知井中月影是从何处映来。画技不论,构图实在带着飞寒鬼气。宝音看这井,极其 眼熟,莫非便是宝音居所到老太太屋里路边经过的那口井?外头所谓宝音“落了水”,便是落到那口井里,编排得倒是很顺!但、但韩玉笙怎会 知道!宝音手攥着画轴,发一会怔,强笑着问洛月道:“我是什么时候画的它?怎么画成这样,大约病得狠了罢!我现在想过去都有些恍恍惚惚 的。”“是上月底画的。” 洛月怯生生道,“姑娘是病着,画了这幅,病越发凶了,笔都持不得,到今日,幸是安好了,且再将养两日?养得再 好些再改罢!”所以它是韩玉笙生前画的最后一幅了,上月底,金钟魁像根本没送来,韩玉笙便画了井,想必是巧合罢!宝音又问了洛月几句, 问不出什么来,乌云已压得低了,一道小小的闪电,似灵蛇,撕破天际。宝音等候的时机来了。为天色不好,嘉颜早早先下山回府准备,补理了 大批雨具命人送上山,又叫各院预备各色祛寒祛潮之物,等主子们回府来用,原来准备的夜宵,也要改了,正极忙的时候,又听说大少爷等得不 耐烦,自己下山,跑了,却又没回府。众人全都叫苦:“这是怎么说的?”又嘀咕:“问问宝音姑娘,或许还猜得出来……”“可宝音姑娘出府 养病了,这……”嘉颜眼皮剧跳了一下。宝音已经死了。老太太亲自吩咐,宝音是落井。这孩子心好,想着给老太太汲些温温的井水来洗面,从 前也经常汲的,谁知那夜绳上钩子锈坏了,汲水瓶掉下去。宝音大约是一急,伸手想去捉,失去平衡,这才掉进了井里去。可怜是可怜,但重阳 佳节呢!不方便办丧事。于是说起来,只道宝音失足落井,虽经救起,身体还是不好,暂时出府休养,也算祸事,但总比死人的好。等到明儿后 儿,再宣布:嘉颜姑娘本来好些的,结果水寒入肺,失救了。老太太作主,准给她办个对丫头来说挺体面的丧事。避过重阳正日子,也就不忌讳 了。宝音的尸身,还是嘉颜亲自装成病人,送出府去。唏嘘么?或许有一点。丫头连死都要挑个好时候,否则为主子不喜,物伤其类,怎不悲凉? 但话又说回来了,谁死不该挑个好时候呢?桃花潭水深千尺,各饮各的那一盏,除此之外,都属逾份。自己不照顾好自己,反要别人担待身后事? 再没这个道理的!老太太还算仁德,单叫错过这节日,之后丧仪给她做足,亲眷也多赏些银两,全由老太太体己开支。宝音
a x b, a x b, a x b , a x b
思考2:满足上述每个不等式的实数x的集合可看 成一个区间,为了区分,它们分别叫什么名称?
思考3:如果把满足不等式的实数x的集合用符号 [a,b)表示,那么满足其它三个不等式的实数x 的集合可分别用什么符号表示?
上述知识内容总结成下表:
相关文档
最新文档