校本课程 趣味数学5 分形几何
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曼德勃罗集逐步放大图
Sierpinski三角形
Sierpinski三角形也是比较典型的分形图形,具有严格的 自相似特性(但是在前面说述的Mandelbrot集合却并不 严格自相似)
谢尔宾斯基地毯
谢尔宾斯基地毯的构造与谢尔宾斯基三角形相似,区别 仅在于谢尔宾斯基地毯是以正方形而非等边三角形为基 础的。将一个实心正方形划分为的9个小正方形,去掉 中间的小正方形,再对余下的小正方形重复这一操作便 能得到谢尔宾斯基地毯。
这样,康托集的总长度为1-1=0。计 算表明康托集不包括任何非零的长度 。事实上,令人惊讶的是,它可能在 所有中间被扣掉的部分之和就等于它 的最初的长度。然而,仔细观察这个 过程却有很重要的东西被剩下,因为 重复地消除只是中间的1/3开集(这 个集合不包含它的端点)。从最初的 [0,1]线段中除去(1/3, 2/3),而两个 端点1/3和 2/3被留下。随后的操作, 不移动这些端点,因为被移除的部分 总是在剩余部分的内部。所以康托集 是非空的,而事实上,它包括无限多 个点。
张家港高级中学校本课程 趣味数学5
——储聪忠
目录
自然中的分形 分形几何 分形艺术
大自然中的分形现象
大自然中的分形欣赏
从海洋贝壳到螺旋状的星系, 再到人体肺部的结构,在我们周 围有着各种各样的形状。分形是 指一个粗糙或零碎的几何形状, 能够分成数个部分,每一部分都 (至少近似)是整体缩小后的形 状。
孔雀依靠羽毛上重复的图案来吸引异性。
水结晶
水结晶形成了雪花上重复的图形。
雪花
科赫雪花(Koch snowflake)是第一种被描述的分形曲线。
瀑布
与峡谷一样,不规则的岩石和重力作用产生了重复的水流模式。
分形几何
分形几何学是一门以不规则几何形态为研究对象的几何 学。相对于传统几何学的研究对象为整数维数如,零维 的点、一维的线、二维的面、三维的立体乃至四维的时 空。 分形几何学的研究对象为分数维数,如0.63、1.58、2.72 。因为它的研究对象普遍存在于自然界中,因此分形几 何学又被称为“大自然的几何学”。
花椰菜
这种花椰菜变体堪称终极的分形蔬菜,其形状代表了斐波那契数列(又称黄金螺线)。
旧金山湾的盐滩
旧金山湾的盐滩进行商业制盐 的历史已经超过了一个世纪。 如果你将一个分形图案进行分 割,你就会得到一个近似于整 体的缩小版本。
旧金山湾的盐滩
旧金山湾的盐滩进行商业制盐的历史已经超过了一个世纪。 如果你将一个分形图案进行分割,你就会得到一个近似于 整体的缩小版本。
第一步,给定一个初始图形——一条线段; 第二步,将这条线段中间的 1/3 处向外折起; 第三步,按照第二步的方法不断的把各段线段 中间的 1/3 处向外折起。这样无限的进行下去, 最终即可构造出Koch曲线。
Koch雪花(Koch星)
Cantor集
康托三分集 由重复删除直线段中间的三分之一开区间 而创造出来的。 康托集的被扣下去的部分是等比级数,其长度
巴塞罗教堂中楼梯
菊石外壳还启发了西班牙巴塞罗那这座教堂中楼梯的设计。
山脉
山脉是构造力将地壳向上推动,以及一部分地壳受到侵蚀之后的结 果。图中为喜马拉雅山脉,拥有许多世界最高的山峰。7000万年前, 印度板块和欧亚板块的碰撞造成了喜马拉雅山脉,该山脉至今还在 上升。
蕨类植物
蕨类是自相似的典型例子。
Koch 曲线
数学家科赫(Koch)从一个三角形的“岛”出发 ,始终保持面积不变,把它的“海岸线”变成 无限曲线,其长度也不断增加,并趋向于无穷 大。可以看到分维才是“Koch岛”海岸线的 确切特征量,即海岸线的分维均介于1到2之间 。 根据分形的次数不同,生成的Koch 曲线也有 很多种。下面以三次 Koch 曲线为例,介绍构 造方法:
客观自然界中许多事物,具有自相似的“层次”结构,适 当的放大或缩小几何尺寸,整个结构并不改变. 客观事物有它自己的特征长度,要用恰当的尺度去测量。 用尺来测量万里长城,嫌太短;用尺来测量大肠杆菌, 又嫌太长。从而产生了特征长度。
万里长城
大肠杆菌
还有的事物没有特征尺度,就必须同时考虑从小到大的 许许多多尺度,这叫做“无标度性”的问题。湍流是自然 界中普遍现象,小至静室中缭绕的轻烟,巨至木星大气 中的涡流,都是十分紊乱的流体运动。流体宏观运动的 能量,经过大、中、小、微等许许多度尺度上的漩涡, 最后转化成分子尺度上的热运动,同时涉及大量不同尺 度上的运动状态,就要借助“无标度性”解决问题,湍 流中高漩涡区域,就需要用分形几何学。
美国数学家B.Mandelbrot曾出这样一个 著名的问题:英格兰的海岸线到底有多 长?这个问题在数学上可以理解为:用 折线段拟合任意不规则的连续曲线是否 一定有效?这个问题的提出实际上是对 以欧氏几何为核心的传统几何的挑战。 实际上,数学家们很早就认识到,有的 曲线不能用欧式几何与微积分研究其长 度。但那时解决办法是讨论具备什么条 件的曲线有长度。而没有长度的曲线就 没有深入研究。此外,在湍流的研究。 自然画面的描述等方面,人们发现传统 几何依然是无能为力的。因此就产生一 种新的能够更好地描述自然图形的几何 学,就是分形几何。
三维谢氏塔的自相似结构
分形艺术欣赏
分形艺术——
用数学创造美丽的世界
分形艺术欣赏
菊石
菊石是已经灭绝了6500万年的海洋头足类动物,具有螺旋形的带腔 室的外壳。这些腔室之间的组隔壁被称为缝线(sutures),是复杂 的分形曲线。
菊石
菊石外壳的生长也遵循着对数螺线,这种螺线在自然界中经常可以 见到。分形的数学之美在于,这种无限的复杂性是基于相对简单的 方程式。通过多次迭代和重复生成分形的方程式,随机的输出就会 创造出独特的美丽图案。在大自然中,我们可以看到众多令人惊叹 的分形图案。
门格海绵
它是康托尔集和谢尔宾斯基地毯在三维空间的推广。 把正方体的每一个面分成9个正方形,这将把正方体分 成27个小正方体,像魔方一样。 把每一面的中间的正方体去掉,把最wenku.baidu.com心的正方体也去 掉,留下20个正方体。 把每一个留下的小正方体都重复前面的步骤。 把以上的步骤重复无穷多次以后,得到的图形就是门格 海绵。
为什么长度已不是海岸线的特征量? 任何海岸线在一定意义上都是无限长的. 为什么在测量海岸线长度时,随测量单位的减小,海岸 线长度会越来越大? 逼近 如何建立海岸线的数学模型 Koch曲线
数千年以来,我们涉及的和研究的主要是欧氏几何。欧 氏几何主要是基于中小尺度上,点线、面之间的关系, 这种观念与特定时期人类的实践认识水平是相适应的, 欧氏几何是人们认识、把握客观世界的一种工具、但不 是唯一的工具。 进入20世纪以后,科学的发展极为迅速。特别是二战以 后,大量的新理论、新技术以及新的研究领域不断涌现 ,同以往相比,人们对物质世界以及人类社会的看法有 了很大的不同。其结果是,有些研究对象已经很难用欧 氏几何来描述了,如对植物形态的描述,对晶体裂痕的 研究,等等。
小溪中的湍流
木星大气
轻烟
分形几何简介
英国的海岸线有多长
在二十世纪七十年代,法国数学家芒德勃罗在他的著作 中探讨了“英国的海岸线有多长”这个问题。这依赖于 测量时所使用的尺度。
英国的海岸线
分形中的维度
如果用公里作测量单位,从几米到几十米的一些曲折会 被忽略;改用米来做单位,测得的总长度会增加,但是 一些厘米量级以下的就不能反映出来。 由于涨潮落潮使海岸线的水陆分界线具有各种层次的不 规则性。海岸线在大小两个方向都有自然的限制,取不 列颠岛外缘上几个突出的点,用直线把它们连起来,得 到海岸线长度的一种下界。使用比这更长的尺度是没有 意义的。 还有海沙石的最小尺度是原子和分子,使用更小的尺度 也是没有意义的。在这两个自然限度之间,存在着可以 变化许多个数量级的“无标度”区,长度不是海岸线的 定量特征,就要用分维。
蕨类植物
描述蕨类植物的数学方程以迈克尔· 巴恩斯利(Michael Barnsley) 命名,第一个揭示了混沌尽管不可预知,但总体上遵循着基于非线 性迭代方程的规则。
植物的枝叶
许多植物的枝叶生长都遵循着简单的递推公式。
闪电
闪电发生时,其路径是一步一步向地面推进的。 闪电的路径也是分形图案。
孔雀的羽毛
Mandelbrot集
除了自相似性以外,分行具有的另一个普遍特征是具有 无限的细致性。下面的动画所演示的是对Mandelbrot集 的放大,只要选对位置进行放大,就会发现:无论放大 多少倍,图象的复杂性依然丝毫不会减少。但是,注意 观察会发现:每次放大的图形却并不和原来的图形完全 相似。这告诉我们:其实,分形并不要求具有完全的自 相似特性。