二次函数解题方法总结
二次函数零点问题题类型方法总结
二次函数零点问题题类型方法总结二次函数是高中数学中的重要内容,求其零点是常见的题目类型之一。
本文将对二次函数零点问题的题型和解题方法进行总结。
题型总结在求解二次函数零点的过程中,常见的题型可以归纳为以下几种:1. 一元二次方程的解法:给定一个一元二次方程,要求求解方程的解。
2. 零点的个数:给定一个二次函数,要求计算其零点的个数。
3. 零点的坐标:给定一个二次函数,要求计算其零点的坐标。
4. 求参数:已知一个二次函数的零点和另外一个点的坐标,要求求解该二次函数的参数。
解题方法总结对于不同的题型,可以采用不同的解题方法来求解二次函数零点问题。
以下是常见的解题方法总结:1. 完全平方公式:对于一元二次方程,可以使用完全平方公式进行求解,即 $$x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}$$。
通过代入方程中的系数,即可得到方程的解。
2. 判别式法:通过计算方程的判别式来判断二次函数的零点个数。
若判别式 $$\Delta=b^2-4ac$$ 大于0,则方程有两个不相等的实数根;若判别式等于0,则方程有两个相等的实数根;若判别式小于0,则方程没有实数根。
3. 坐标法:对于求零点坐标的问题,可以通过将二次函数表示为顶点形式,然后根据顶点坐标和其他给定的坐标求解未知参数,进而得到零点的坐标。
4. 求参数法:对于求参数的问题,可以利用已知的零点坐标和另一点的坐标,构建方程组,然后通过解方程组求解未知参数。
总结通过以上的总结,我们可以了解到二次函数零点问题的常见题型和解题方法。
在实际解题中,根据题目要求选择合适的方法,并根据具体情况灵活运用,以获得正确的解答。
希望本文对您理解和解决二次函数零点问题有所帮助。
数学二次函数应用题解题技巧
数学二次函数应用题解题技巧
数学二次函数应用题解题技巧包括以下几个方面:
1. 熟悉二次函数的基本性质:二次函数有三个重要的性质,即抛物线的基本性质、对称性和伸缩性。
2. 理解二次函数的图像特点:二次函数的图像通常呈现出抛物线的特点,即开口方向朝上或朝下,对称轴通常是抛物线的横坐标,且经过原点。
3. 利用二次函数的顶点式和一般式:顶点式是二次函数的一种特殊形式,一般式也是二次函数的一种形式。
对于顶点式和一般式,可以利用它们的性质进行变形,从而得到有关函数值、图像等信息。
4. 利用二次函数的求导法则:求导法则是解决二次函数问题的重要工具。
通过求导法则,可以求出函数在某一点处的导数,进而求出函数在该点的函数值。
5. 利用二次函数的图像性质和求导法则,通过图像进行推理和猜测,找到函数的取值范围或者零点位置。
6. 掌握常见的二次函数应用场景:常见的二次函数应用场景包
括求解几何图形、计算函数值、构造函数图像等。
7. 常规解题方法:对于常规问题,可以使用二次函数的基本概念、求导法则和图像特点等工具进行求解。
二次函数问题需要结合函数的性质和图像特点进行思考,同时掌
握求导法则和常见的应用场景,才能进行高效的解题。
二次函数知识点和解题方法总结
...二次函数知识点及解题方法总结一、二次函数概念:1.二次函数的概念:一般地,形如2yaxbxc(a,b,c是常数,a0)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数a0,而b,c可以为零.二次函数的定义域是全体实数.2.二次函数 2yaxbxc的结构特征:⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a,b,c是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1.二次函数基本形式:y ax的性质:a的绝对值越大,抛物线的开口越小。
2a的符号开口方向顶点坐标对称轴性质a向上0,0y轴0 x0时,y随x的增大而增大;x0时,y随x的增大而减小;x0时,y有最小值0.a向下0,0y轴0 x0时,y随x的增大而减小;x0时,y随x的增大而增大;x0时,y有最大值0.2. 2yaxc的性质:上加下减。
a的符号开口方向顶点坐标对称轴性质a向上0,cy轴0 x0时,y随x的增大而增大;x0时,y随x的增大而减小;x0时,y有最小值c.a向下0,cy轴0 x0时,y随x的增大而减小;x0时,y随x的增大而增大;x0时,y有最大值c.3.2yaxh的性质:左加右减。
a的符号开口方向顶点坐标对称轴性质a0向上h,0X=h xh时,y随x的增大而增大;xh时,y随x的增大而减小;xh时,y有最小值0.a向下h,0X=h 0 xh时,y随x的增大而减小;xh时,y随x的增大而增大;xh时,y有最大值0.WORD格式可编辑版...3.2 yaxhk的性质:a的符号开口方向顶点坐标对称轴性质a向上h,kX=h 0 xh时,y随x的增大而增大;xh时,y随x的增大而减小;xh时,y有最小值k.a向下h,kX=h 0 xh时,y随x的增大而减小;xh时,y随x的增大而增大;xh时,y有最大值k.三、二次函数图象的平移4.平移步骤:方法一:①将抛物线解析式转化成顶点式2yaxhk,确定其顶点坐标h,k;②保持抛物线2yax的形状不变,将其顶点平移到h,k处,具体平移方法如下:向上(k>0)【或向下(k<0)】平移|k|个单位y=ax2y=ax2+k向右(h>0)【或左(h<0)】平移|k|个单位向右(h>0)【或左(h<0)】平移|k|个单位向右(h>0)【或左(h<0)】平移|k|个单位向上(k>0)【或下(k<0)】平移|k|个单位y=a(x-h)2向上(k>0)【或下(k<0)】平移|k|个单位y=a(x-h)2+k方法二:2沿y轴平移:向上(下)平移m个单位,yax2bxc变成yax2bxcm①yaxbxc2):②yax2bxc沿轴平移:向左(右)平移m个单位,yax2bxc(或yaxbxcm2(或ya(xm)2b(xm)c)变成ya(x m)b(xm)c5.平移规律:在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”.四、二次函数2yaxhk与2yaxbxc的比较从解析式上看,2yaxhk与2yaxbxc是两种不同的表达形式,后者通过配方可以得到前者,即yax22b4acb2a4a,其中2b4acbh,k.2a4aWORD格式可编辑版...五、二次函数2yaxbxc 图象的画法五点绘图法:利用配方法将二次函数2 yaxbxc 化为顶点式2ya(xh)k ,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点0,c 、以及0,c 关于对称轴对称的点2h ,c 、与x 轴的交点x 1,0,x 2,0(若与x 轴 没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2yaxbxc 的性质4.当a0时,抛物线开口向上,对称轴为xb 2a,顶点坐标为 2b4acb ,.当 2a4a x b 2a时,yb 2a时,y 随x 的增大而增大;当x b 2a时,y 有最小值4acb 4a2随x 的增大而减小;当.x5.当a0时,抛物线开口向下,对称轴为xb 2a,顶点坐标为 2b4acb ,.当 2a4a x b 2a时,yb 2a时,y 随x 的增大而减小;当x b 2a时,y 有最大值4acb 4a2随x 的增大而增大;当.x七、二次函数解析式的表示方法6.一般式: 2yaxbxc (a ,b ,c 为常数,a0);7.顶点式: 2ya(xh)k (a ,h ,k 为常数,a0);8.两根式:yaxxxx (a0,x 1,x 2是抛物线与x 轴两交点的横坐标).()()12注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即 析式的这三种形式可以互化.240bac 时,抛物线的解析式才可以用交点式表示.二次函数解八、二次函数的图象与各项系数之间的关系1.二次项系数a二次函数 2yaxbxc 中,a 作为二次项系数,显然a0.⑴当a0时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大;⑵当a0时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大.WORD格式可编辑版总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小.6.一次项系数b在二次项系数a确定的前提下,b决定了抛物线的对称轴.⑴在a0的前提下,b,即抛物线的对称轴在y轴左侧;当b0时,02ab,即抛物线的对称轴就是y轴;当b0时,02ab,即抛物线对称轴在y轴的右侧.当b0时,02a⑵在a0的前提下,结论刚好与上述相反,即b,即抛物线的对称轴在y轴右侧;当b0时,02ab,即抛物线的对称轴就是y轴;当b0时,02ab,即抛物线对称轴在y轴的左侧.当b0时,02ab总结起来,在a确定的前提下,b决定了抛物线对称轴的位置.ab的符号的判定:对称轴x在2a y轴左边则ab0,在y轴的右侧则ab0,概括的说就是“左同右异”7.常数项c⑴当c0时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵当c0时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑶当c0时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.总之,只要a,b,c都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:9.已知抛物线上三点的坐标,一般选用一般式;10.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;WORD格式可编辑版8.已知抛物线与x轴的两个交点的横坐标,一般选用两根式;9.已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达11.关于x轴对称2yaxbxc关于x轴对称后,得到的解析式是2 yaxbxc;2yaxhk关于x轴对称后,得到的解析式是2 yaxhk;12.关于y轴对称2yaxbxc关于y轴对称后,得到的解析式是2 yaxbxc;2yaxhk关于y轴对称后,得到的解析式是2 yaxhk;13.关于原点对称2yaxbxc关于原点对称后,得到的解析式是2 yaxbxc;2yaxhk关于原点对称后,得到的解析式是2 yaxhk;14.关于顶点对称(即:抛物线绕顶点旋转180°)2yaxbxc关于顶点对称后,得到的解析式是2yaxbxc2b2a;2yaxhk关于顶点对称后,得到的解析式是2 yaxhk.15.关于点m,n对称2yaxhk关于点m,n对称后,得到的解析式是2 yaxh2m2nk根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.WORD格式可编辑版十、二次函数与一元二次方程10.二次函数与一元二次方程的关系(二次函数与x轴交点情况):一元二次方程2axbxc是二次函数2yaxbxc当函数值y0时的特殊情况.图象与x轴的交点个数:b24ac0时,图象与x轴交于两点①当Ax1,0,Bx2,0(x1x2),其中的x1,x2是一元二次方程200axbxca的两根.这两点间的距离ABxx212b4aca.②当0时,图象与x轴只有一个交点;③当0时,图象与x轴没有交点.1'当a0时,图象落在x轴的上方,无论x为任何实数,都有y0;2'当a0时,图象落在x轴的下方,无论x为任何实数,都有y0.11.抛物线 2yaxbxc的图象与y轴一定相交,交点坐标为(0,c);12.二次函数常用解题方法总结:⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数2yaxbxc中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式2(0)axbxca本身就是所含字母x的二次函数;下面以a0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:0抛物线与x轴有两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根0抛物线与x轴只有一个交点二次三项式的值为非负一元二次方程有两个相等的实数根0抛物线与x轴无交点二次三项式的值恒为正一元二次方程无实数根.图像参考:WORD格式可编辑版...y=2x2y=x2x2y=2x2y=-2y=-x2y=-2x2y=2x2+2y=2x2y=2(x-4)2y=2 x2y=2(x-4)2-3y=2x 2-4 y=3(x+4)2y=3x2y=3(x-2)2y=-2(x+3)2y=-2(x-3)2y=-2x2 WORD格式可编辑版...十一、二次函数的应用刹车距离二次函数应用何时获得最大利润最大面积是多少二次函数考查重点与常见题型13.考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x为自变量的二次函数2mm2y(m2)x2的图像经过原点,则m的值是14.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题。
二次函数解题思路十大技巧
二次函数解题思路十大技巧
1、先求出二次函数的顶点:
设二次函数为y=ax2+bx+c,那么顶点的横坐标为-b/2a,纵坐标为f(-b/2a)。
2、确定函数的性质:
判断a的正负,可以确定函数的单调性,从而确定函数的大致形状。
3、利用函数的性质,确定函数的根:
若函数为单调递增,则函数的根在顶点左边;若函数为单调递减,则函数的根在顶点右边。
4、利用绝对值函数的性质,确定函数的根:
若函数为绝对值函数,则函数的根在顶点两边,且根的绝对值相等。
5、利用函数的性质,确定函数的最大值和最小值:
若函数为单调递增,则函数的最大值在顶点右边;若函数为单调递减,则函数的最小值在顶点左边。
6、利用函数的性质,确定函数的极值:
若函数为单调递增,则函数的极大值在顶点右边;若函数为单调递减,则函数的极小值在顶点左边。
7、利用函数的性质,确定函数的极值点:
若函数为单调递增,则函数的极大值点在顶点右边;若函数为单调递减,则函数的极小值点在顶点左边。
8、利用函数的性质,确定函数的增量和减量:
若函数为单调递增,则函数的增量在顶点右边;若函数为单调递减,则函数的减量在顶点左边。
二次函数的实际应用问题解题技巧
二次函数的实际应用问题解题技巧二次函数是一种在数学中非常重要的函数,它在各个领域都有广泛的应用,比如物理、工程、经济学等等。
本文将介绍二次函数的一些实际应用问题解题技巧,以及如何在实际问题中应用这些技巧。
正文:1. 二次函数的实际应用问题二次函数在数学中主要用于描述抛物线、双曲线等曲线的情况。
在各个领域,二次函数都有广泛的应用,下面列举几个例子:- 物理学:在物理学中,二次函数主要用于描述质点的运动轨迹,如牛顿第二定律、万有引力定律等。
- 工程学:在工程学中,二次函数主要用于描述机械、电气、建筑等领域中的问题,如压力、张力、电流等。
- 经济学:在经济学中,二次函数主要用于描述供求关系、价格变化等。
例如,抛物线可以用来描述通货膨胀率的变化。
2. 二次函数的解题技巧在实际问题中,我们需要用到二次函数的一些基本性质和解题技巧,下面列举一些常见的解题技巧:- 求抛物线与x轴的交点:通过用x=0和x=抛物线顶点式来求解。
- 求抛物线的对称轴:通过用y=-b/2a来求解,其中a和b是二次函数的系数。
- 求二次函数的极值:通过用抛物线的对称轴和x轴的交点来求解。
- 求二次函数的图像形状:通过用抛物线的顶点坐标和参数方程来求解。
3. 拓展除了上述技巧,我们还可以利用二次函数的一些特殊性质来解决实际问题。
例如,我们可以通过用二次函数的对称性来解决实际问题,如求解一个二次函数的极值、图像形状等。
此外,我们还可以利用二次函数的性质来解决实际问题,如求解一个二次函数的方程、求抛物线的解析式等。
二次函数在数学中有着广泛的应用,而且在实际问题中,我们需要用到二次函数的基本性质和解题技巧来解决实际问题。
掌握这些技巧,可以帮助我们更好地理解和解决实际问题。
中考数学压轴题,二次函数解题方法
二次函数是初中数学学习的重点也是难点,作为压轴题也是拉开中考分数差距的一个重要部分。
但是很多同学并不能准确快速的理解和掌握。
中考要拿高分,同学们要有这样的心态,会的题的不丢分,不会的题争取多拿分。
所以,我们在解压轴题时,首先就要有必胜的信心;其次要有扎实的基础知识和熟练的解题技能;此外我们要掌握常用的解题方法。
今天给大家分享几种常用的关于二次函数综合题的解题方法:1. 利用坐标系,建立数形结合意识从近几年各地中考二次函数综合题来看,大部分都是与坐标系有关的,它的特点是建立点与坐标之间的对应关系。
我们可以用代数方法研究几何图形的性质;还可以借助几何图形直观得到某些代数问题的答案。
比如:在函数图像中构造三角形(特殊的四边形)这样一来增加了题目的难度,既考查大家对函数知识的掌握程度,又能够通过增加几何的内容,让同学们把代数和几何结合起来,考查同学们利用所学知识解决问题的能力。
2. 利用直线或抛物线,掌握函数与方程直线与抛物线是一次函数与二次函数所表示的图像,是初中数学两类重要函数。
因此,无论是求它的解析式还是研究它的性质,都离不开函数与方程。
例如,利用待定系数法来确定函数解析式,我们需要根据已知条件列方程或方程组解之而得。
特别提醒大家,解题时要仔细计算,千万别马虎,方程计算的每一步都要认真检查,这对最后解答的正确非常重要。
所以,同学们在平时要重视对方程解答的练习。
3. 条件或结论的多变,注意分类讨论分类讨论,是检测同学们思维的准确性和严密性,涉及这种类型的试题,一般是通过条件的多变性或结论的不确定性来进行考查。
有些问题,如果不注意对各种情况进行分类讨论,就有可能造成错解或漏解,近几年,用分类讨论解题已成为新的热点。
例如:二次函数中关于函数图象开口方向的问题需要考虑两种情况;二次函数中有关三角形相似的情况要考虑到三种情况并根据条件进行取舍等,这些基本情形,大家在做题时要考虑到,避免留下疏漏。
4. 综合多个知识点,灵活运用等价转换初中数学中的转换思想大体包括由已知向未知的转换,由复杂向简单的转换,而解答二次函数综合题,要注意的是不同知识点之间的联系与转换。
二次函数复习知识点总结
二次函数复习知识点总结二次函数是高中数学中常见且重要的一个内容。
它的一般形式可以表示为y=ax^2+bx+c,其中a、b、c为实数且a≠0。
在二次函数中,x的次数最高为2,因此该函数的图像是一个抛物线。
以下是二次函数的复习知识点总结。
一、基本概念:1. 定义:二次函数是形如y=ax^2+bx+c的函数,其中a、b、c为实数,且a≠0。
2.首项系数:a是二次函数中x^2的系数,决定了抛物线的开口方向。
-当a>0时,抛物线开口向上;-当a<0时,抛物线开口向下。
3.y-截距:c是二次函数的常数项,表示抛物线与y轴的交点的纵坐标。
4. 零点:二次函数的零点是使得函数值为0的x值。
可以通过求解二次方程ax^2+bx+c=0来找到零点。
二、性质和图像的特征:1.对称轴:二次函数的对称轴是抛物线的对称轴,可以通过求解x=-b/2a来找到对称轴的方程。
2.最值:当抛物线开口向上时,抛物线的最小值为对称轴的纵坐标;当抛物线开口向下时,抛物线的最大值为对称轴的纵坐标。
3. 判别式:判别式Δ=b^2-4ac可以用来判断二次方程ax^2+bx+c=0的根的情况。
-当Δ>0时,方程有两个不相等实数根;-当Δ=0时,方程有两个相等实数根;-当Δ<0时,方程没有实数根。
4.开口方向:抛物线开口的方向由首项系数a决定。
5.图像:二次函数的图像是一个抛物线,可以通过首项系数a的正负和抛物线的其他特征来确定图像的形状、方向和位置。
三、函数的变换:对于二次函数y=ax^2+bx+c,可以进行水平平移、垂直平移、水平缩放等操作来得到其他的二次函数。
1. 水平平移:将函数y=ax^2+bx+c的图像沿x轴平移h个单位得到函数y=a(x-h)^2+b(x-h)+c。
平移后的抛物线的顶点坐标为(h, k),其中k是原抛物线的纵坐标。
2. 垂直平移:将函数y=ax^2+bx+c的图像沿y轴平移k个单位得到函数y=a(x^2+bx+c)+k。
二次函数知识点和解题方法总结
二次函数知识点及解题方法总结、二次函数概念:1.二次函数的概一般地,形如y ax2 bx c(a,b,c 是常数,a 0 )的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数a 0,而b,c 可以为零.二次函数的定义域是全体实数.2. 二次函数y ax2 bx c 的结构特征:⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵ a ,b ,c是常数,a是二次项系数,b是一次项系数, c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:y ax2的性质:a 的绝对值越大,抛物线的开口越小。
2. y ax2 c 的性质:上加下减3. y a x h 2的性质:左加右减24. y a x h k 的性质:a 的符号开口方向 顶点坐标 对称轴 性质 a0向上 h ,kX=h x h 时,y 随x 的增大而增大;x h 时,y 随x 的增大而减小; x h 时,y 有最小值k .a0向下h ,kX=hx h 时,y 随x 的增大而减小;x h 时,y 随x 的增大而增大; x h 时,y 有最大值k .三、二次函数图象的平移1. 平移步骤:方法一:①将抛物线解析式转化成顶点式 y a x h 2 k ,确定其顶点坐标 h ,k ;②保持抛物线 yax 2 的形状不变,将其顶点平移到 h ,k 处,具体平移方法如下:方法二:① y ax 2 bx c 沿 y 轴平移: 向上(下)平移m 个单位,y ax 2 bx c 变成 y ax 2 bx c m (或 y ax 2 bx cm ):② y ax 2 bx c 沿轴平移:向左(右)平移 m 个单位,y ax 2 bx c 变成 y a(x m)2 b(x m) c (或 y a(x m)2 b(x m) c )2. 平移规律:在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左 加右减,上加下减”.四、二次函数 y a x h k 与 y ax 2 bx c 的比较从解析式上看, y a x h k 与 y ax 2 bx c 是两种不同的表达形式,后者通过配方可以得到前b 4ac b 2b 4ac b 2 者,即 y a x,其中 h ,k .2a 4a 2a 4ay=ax 2y=ax 2+k平移 |k|个单位y=a (x-h) 2向右 (h>0)【或左(h<0)】平移 |k|个单位y=a( x-h)2 +k向上 (k>0)【或向下 (k<0)】平移 |k|个单位向右( h>0) 【或左 (h<0)】 向上 (k>0)【或下 (k<0)】平移 |k|个单位向上 (k>0)【或下 (k <0) 】 平移 |k|个单位向右 (h>0)【或左(h<0)】 平移 |k| 个单位五、二次函数 y ax 2 bx c 图象的画法 五点绘图法:利用配方法将二次函数y ax 2 bx c 化为顶点式 ya(x h)2 k ,确定其开口方向、 对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. 一般我们选取的五点为:顶点、与 y轴的交点 0,c 、以及 0,c 关于对称轴对称的点 2h ,c 、与x 轴的交点 x 1,0 , x 2,0 (若与x 轴 没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与 y 轴的交点.六、二次函数 y ax 2 bx c 的性质21. 当a 0时,抛物线开口向上,对称轴为x b ,顶点坐标为 b ,4ac b .当 x b 时,y2a 2a 4a 2a2随 x 的增大而减小;当x b 时, y 随 x 的增大而增大;当 x b 时,y 有最小值 4ac b .2a 2a 4a2随 x 的增大而增大;当x b 时, y 随 x 的增大而减小;当 xb时,y 有最大值 4ac b .2a 2a 4a七、二次函数解析式的表示方法1. 一般式:y ax 2 bx c (a ,b ,c 为常数,a 0);2. 顶点式:y a(x h)2 k (a ,h ,k 为常数,a 0);3. 两根式:y a(x x 1)(x x 2)(a 0,x 1, x 2是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点 式,只有抛物线与 x 轴有交点,即 b 2 4ac 0时,抛物线的解析式才可以用交点式表示.二次函数解 析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数 a二次函数 y ax 2 bx c 中, a 作为二次项系数,显然a 0 .⑴ 当a 0 时,抛物线开口向上, a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当a 0 时,抛物线开口向下, a 的值越小,开口越小,反之a 的值越大,开口越大. 总结起来, a 决定了抛物线开口的大小和方向,a 的正负决定开口方向, a 的大小决定开口的大小.2. 当a 0 时,抛物线开口向下,对称轴为xb, 2a ,顶点坐标为b 2a4ac b 2 4a当x 2b a 时,y2. 一次项系数b 在二次项系数a确定的前提下,b决定了抛物线的对称轴.⑴ 在a 0 的前提下,当b 0时,b 0 ,即抛物线的对称轴在y轴左侧;2a当b 0时,b 0 ,即抛物线的对称轴就是y 轴;2a当b 0时,b 0 ,即抛物线对称轴在y轴的右侧.2a⑵ 在a 0 的前提下,结论刚好与上述相反,即当 b 0时,b 0 ,即抛物线的对称轴在y 轴右侧;2a当 b 0时,b 0 ,即抛物线的对称轴就是y 轴;2a当 b 0时,b 0 ,即抛物线对称轴在y 轴的左侧.总结起来,在a确定的前提下,b 决定了抛物线对称轴的位置.ab的符号的判定:对称轴x b在2ay 轴左边则ab 0,在y 轴的右侧则ab 0 ,概括的说就是“左同右异”3. 常数项c⑴ 当c 0 时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵ 当c 0时,抛物线与y轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0 ;⑶ 当c 0时,抛物线与y轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y轴交点的位置.总之,只要a,b,c都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1.关于x轴对称y ax2 bx c关于x轴对称后,得到的解析式是y ax2 bx c ;y a x h k 关于x 轴对称后,得到的解析式是y a x h k ;2. 关于y 轴对称y ax2 bx c关于y 轴对称后,得到的解析式是y ax2 bx c;22y a x h k 关于y轴对称后,得到的解析式是y a x h k ;3. 关于原点对称y ax2 bx c关于原点对称后,得到的解析式是y ax2 bx c ;y a x h k 关于原点对称后,得到的解析式是y a x h k ;4. 关于顶点对称(即:抛物线绕顶点旋转180°)b2y ax2 bx c关于顶点对称后,得到的解析式是y ax2 bx c b;2a22y a x h k 关于顶点对称后,得到的解析式是y a x h k .5. 关于点m ,n 对称22y a x h k 关于点m,n 对称后,得到的解析式是y a x h 2m 2n k根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程ax2 bx c 0是二次函数y ax2 bx c 当函数值y 0 时的特殊情况.图象与x轴的交点个数:① 当b2 4ac 0 时,图象与x轴交于两点 A x1,0 ,B x2 ,0 (x1 x2),其中的x1 ,x2是一元二次方程ax2 bx c 0 a 0 的两根.这两点间的距离AB x2 x1b 4ac.a② 当0时,图象与x 轴只有一个交点;③ 当0时,图象与x 轴没有交点.1' 当a 0时,图象落在x轴的上方,无论x为任何实数,都有y 0 ;2' 当 a 0时,图象落在x轴的下方,无论x为任何实数,都有y 0.2. 抛物线y ax2 bx c 的图象与y轴一定相交,交点坐标为(0 ,c);3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数y ax2 bx c 中a ,b ,c的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式ax2 bx c a( 0)本身就是所含字母x的二次函数;下面以a 0 时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:一、二次函数的应用刹车距离二次函数应用何时获得最大利润最大面积是多少二次函数考查重点与常见题型1.考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x为自变量的二次函数y (m 2)x2 m2 m 2 的图像经过原点,则m的值是2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题。
二次函数压轴题基本方法和结构
二次函数压轴基本结构和解题方法一、线1、线段与距离 (1)改“斜”归正已知:A(x 1,y 1),B(x 2,y 2),直线AB :y =kx +b ,AB ⊥BC 水平线段:AC =|x 1−x 2| 铅垂线段:AC =|y 1−y 2|斜线段: AB =√(x 1−x 2)2+(y 1−y 2)2=√k 2+1|x 1−x 2|(2)点到直线距离公式:d =PH =|km +b −n|√k 2+1(3)于涵定理 一般位置:条件:直线AB 交抛物线(二次项系数为a )于AB 两点,铅垂线PQ 交抛物线于P ,交直线AB 于P ,AE ⊥PQ ,BF ⊥PQ 结论:①PQ =|a|∙AE ∙BF ;S △PAB =12PQ ∙(AE +BF )=12|a |∙AE ∙BF ∙(AE +BF )=12|a (x A −x P )(x P −x B )(x A −x B )|特殊位置① 若AB 为水平直线: PQ =|a|∙AQ ∙BQ ② 若AB 为水平直线,且AP ⊥BP : PQ =1|a|(PQ =|a|∙AQ ∙BQ ,且PQ 2=AQ ∙BQ )③ 若AB 为水平直线,且P 为抛物线顶点(类似于圆中的垂径结构)AB =√4PQ|a|④ 若AB 为x 轴,且P 为抛物线顶点:AB =√∆|a|(4)焦点准线焦点准线的定义:将抛物线的顶点向上/下平移14|a|个单位,就得到焦点和准线的位置。
焦点:F(−b2a ,14a);准线:直线y=−14a条件:点P是抛物线上任意一点,过P点的直线(非铅垂线)与抛物线有位移公共点(“切线”),与对称轴交于S,与过顶点的水平线交于A,PM⊥准线于M;PQ过焦点F,过P、Q 的切线交于T结论:①PF=PM,DE=DF②PF=FS③FA⊥PS,PA=SA④当直线PQ绕焦点F转动时候,T点在准线上移动(阿基米德三角形特殊情况)⑤TP⊥TQ,TM=TN⑥以MN为直径的圆切PQ于F,以PQ为直径的圆切MN于T准线2、平行“弦”条件:AB//CD//l P结论:x A+x B=x C+x D=2x P变式一:若CE和DF为铅垂线,则AE=BF变式二:若将抛物线向下平移交直线AB于E、F,则AE=BF变式三:将抛物线沿着PQ方向平移,若AB//PQ,则AB=EF,AE=BF3、线段相等和比值(1)左右对称(纵向角平分线)特殊情况:条件:P为抛物线(顶点为M)对称轴上一点,过P点的直线PA交抛物线于C,过C作水平直线BC交抛物线于B点,连接AB交对称轴于Q,连接PB交抛物线于D;结论:①k PA+k PB=0;②PM=QM一般情况:条件:过抛物线内一点T作铅垂、水平直线,交抛物线于M、B、C,在铅垂线上取一点P,连接PC交抛物线于A,连接AB交铅垂线于Q结论:TBTC =QMPM(2)上下对称条件:水平直线与抛物线交于P、Q两点,直线PA、PB分别交抛物线于A、B,且∠APQ=∠BPQ,连接AB,过Q点的直线作抛物线的切线。
二次函数的零点求解技巧
二次函数的零点求解技巧二次函数是高中数学中的重要内容之一,求解二次函数的零点是解析几何和数学建模等领域中常见的问题。
本文将介绍几种常用的二次函数零点求解技巧,希望能够帮助读者更好地理解和应用。
一、一般形式的二次函数求解一般形式的二次函数可表示为y = ax^2 + bx + c,其中a、b、c为常数。
要求解该二次函数的零点,可通过以下步骤进行:1. 判断判别式的值判别式Δ = b^2 - 4ac可以用来判断二次方程的解的情况。
当Δ大于0时,方程有两个不相等的实数根;当Δ等于0时,方程有两个相等的实数根;当Δ小于0时,方程没有实数根。
2. 利用求根公式求解根据一元二次方程的求根公式,实数根的公式可以表示为:x1 = (-b + √Δ) / (2a) 或 x2 = (-b - √Δ) / (2a)如果有两个实数根,可以分别求解x1和x2;如果有一个实数根,那么x1和x2的值相等。
二、顶点形式的二次函数求解顶点形式的二次函数可表示为y = a(x - h)^2 + k,其中a、h、k为常数,(h, k)表示抛物线的顶点坐标。
求解该二次函数的零点,可通过以下步骤进行:1. 将函数转化为一般形式将顶点形式的二次函数展开,可得到一般形式的二次函数,再按照一般形式的求解方法进行操作。
2. 利用顶点坐标求解根据顶点坐标的特性,顶点坐标(h, k)是抛物线的最低(或最高)点,也是零点的对称轴。
因此,求得抛物线的顶点坐标后,可以直接得到零点。
三、配方法求解对于无法直接因式分解或利用求根公式求解的二次函数,可以考虑使用配方法(即完成平方)来求解。
配方法的步骤如下:1. 将二次项分解将二次项的系数拆成两个数的乘积,使得这两个数之和等于一次项的系数b。
2. 完成平方根据配方法的原理,将一次项的系数b除以2,然后平方得到一个常数。
3. 移项求解将原二次函数利用配方法进行变形,将一次项的b拆分成两个数,然后完成平方,并将其移项到等式的另一侧。
初中数学二次函数解题方法与技巧
2024年4月下半月㊀解法探究㊀㊀㊀㊀初中数学二次函数解题方法与技巧◉宁夏回族自治区固原市西吉县兴平乡中心小学㊀王建勤㊀㊀基于中考数学试题的研究可以发现,二次函数的知识点在初中数学试卷中所占比例较大,内容较多,题目较复杂,考题难度较大.特别是二次函数问题经常会在中考压轴题中出现.下面对有关二次函数的常见题型及解题方法进行总结.1解析式问题找㊁代㊁解在求解二次函数解析式的问题中,教师可以引导学生遵循 找㊁代㊁解 的解题思路,解决与二次函数有关的实际问题.图1例1㊀如图1所示,对称轴为直线x =12的抛物线经过B (2,0),C (0,4)两点,抛物线与x 轴的另一为点A ,求抛物线的解析式.找:找出题目中抛物线上的相应坐标信息.如B (2,0),C (0,4),对称轴直线x =12.代:代入到二次函数y =a x 2+b x +c (a ʂ0).解:进一步求解二次函数解析式.注:解析式问题需要学生具有较为扎实的二次函数学习基础.为此,在开展解析式问题教学前,教师可以利用对分课堂教学模式,引导学生梳理二次函数基本知识,提高学生的做题效果和课堂教学效率.2动点问题设㊁找㊁论有关动点问题,主要有x 轴上的动点问题㊁二次函数对称轴上的动点问题以及抛物线上的动点问题三种情况.求解时,首先假设出动点的坐标,由题干中的隐藏关系找出相应的等式,最后根据情况分类讨论,并根据合理性解出正确的结果.例2㊀已知抛物线y =-2x 2+2x +4与x 轴交于A ,B 两点,与y 轴交于点C ,若P 为抛物线第一象限内的一点,设四边形C O B P 的面积为S ,求S 的最大值.设:设P (n ,-2n 2+2n +4)(0<n <2).找:如图2,过点P 作x 轴㊁y 轴的垂线,垂足分别为F ,E ,连接O P .由此可知S =S әC O P +S әP O B =12O C n +12O B (-2n 2+2n +4)=-2(n -1)2+6.图2论:当且仅当n =1时,S 取得最大值,且最大值为6.注:动点问题需要学生耐心思考,找出题干中的关系式,这也是二次函数动点问题的重难点所在.为此,教师要引导学生克服解决动点问题时的恐惧心理,运用二次函数动点问题的三部解题法加强训练.3面积问题找㊁拆㊁设面积问题常以求解三角形面积或四边形面积的形式出现,主要考查求解三角形面积㊁求解两个三角形交点的坐标位置㊁求解三角形或四边形面积最大时的动点坐标这三大问题.图3例3㊀如图3所示,在平面直角坐标系中,抛物线y =-x 2+5x +6与x 轴相交于A ,B 两点,与y 轴相交于点C ,且直线y =x -6过点B ,与y 轴交于点D ,点C 与点D 关于x 轴对称,已知P 是线段O B 上的一个动点,过点P 作x 轴的垂线交抛物线于点M ,交直线B D 于点N .当әMD B 的面积最大时,求点P 的坐标.根据题干,可以发现本道题在考查面积的基础上,进一步提出了求点P 的坐标.但仍需先求出әMD B 面积的最大值,再从中寻找答案.找:找出әMD B 的面积关系.已知在әMD B 中,B 和D 是定点,M 是抛物线上的一个动点,可以使用铅垂模型求解,即线段MN 将әMD B 分割为有公共底边的两个三角形әMN D 和әMN B .拆:根据上述陈述,可以得到S әM D B =S әMN D +S әMN B =12MN |x B -x D |.设:设点P 坐标为(m ,0),则M (m ,-m 2+5m +6),N (m ,m -6),于是MN =-m 2+4m +12,所以S әM D B =12MN |x B -x D |=-3m 2+12m +36=-3(m -2)2+48,当且仅当m =2时,S әM D B 有最大值,且最大值为48,此时点P 的坐标为(2,0).注:教师在开展有关二次函数面积问题题型训练17解法探究2024年4月下半月㊀㊀㊀时,首先要引导学生学习如何找出面积关系.教师可以引导学生复习求面积的方法,如割补法㊁铅垂法等,从而提高学生的学习效率[1].其次,利用面积求解方法引导学生灵活解决面积问题.4几何图形存在性问题找㊁解㊁论中考有关二次函数几何图形存在性问题,主要考查三角形和四边形的存在性,且以考查特殊三角形和四边形居多.通常几何图形会与面积最值或动点问题搭配考查,灵活性较高,难度较大.图4例4㊀如图4所示,已知二次函数y =x 2+2x -3的图象与x 轴相交于点A 和B ,其中点A 的坐标为(-3,0),且过点B 作一条直线与抛物线相交于点D (-2,-3).过x 轴上的点E (a ,0)(点E 在点B 的右侧)作直线E F ʊB D ,且与该抛物线相交于点F ,试分析是否存在实数a ,使得四边形B D F E 为平行四边形若存在,请求出满足条件的实数a ;若不存在,请说明理由.找:根据题干内容,学生能够轻松求出直线B D 的解析式为y =x -1,则直线E F 的解析式为y =x -a .根据 两组对边分别平行的四边形是平行四边形 这一定理可知,若想四边形B D F E 为平行四边形,只需满足D F 与x 轴平行即可.解:若D F 与x 轴平行,则点D 和点F 的纵坐标相等,即点F 的纵坐标为-3.而F 为直线E F 与抛物线的交点,设F 的横坐标为m ,根据B E =D F ,可得a -1=m +2,即m =a -3,则F (a -3,-3).论:将F (a -3,-3)代入y =x 2+2x -3,可以解出a 1=1,a 2=3.当a =1时,点E (1,0)与点B 重合,不符合题意,舍去;当a =3时,点E (3,0)符合题意.所以,当且仅当a =3时,四边形B D F E 为平行四边形.注:关于二次函数几何图形存在性问题的内容较为丰富,出题方式较为灵活,因此,学生需要加强训练,把握解决二次函数几何图形存在性问题的解题思路,提高解题效率和解题质量.5最值问题设㊁找㊁论最值问题是二次函数的常考题型,最值问题通常与面积问题一同出现.因此,在面对这一问题时,教师可以引导学生运用割补法或铅垂(铅垂高,水平宽)法求出几何图形的面积,再通过数式关系求出最大值或最小值.例5㊀如图5,已知抛物y =a x 2-2a x +c 经过点C (1,2),与x 轴交于A ,B 两点,其中A 点坐标图5为(-1,0).(1)求抛物线的解析式;(2)直线y =34x 交抛物线于S ,T 两点,M 为抛物线上A ,T 之间的一个动点,过M 作M E 垂直x 轴于点E ,M F ʅS T 于点F ,求M E +M F 的最大值.本题根据解决解析式问题的步骤,可以很快得出抛物线y =-12x 2+x +32.对于第(2)问,可以通过设㊁找㊁论的步骤求解.设:设点M 的坐标为(t ,-12t 2+t +32),直线O T 交M E 于G ,则G (t ,34t ).找:找出M E +M F 的表达式.M E =-12t 2+t +32,O G =54t ,M G =-12t 2+14t +32.由s i n øO G E =s i n øM G F =45,得M F =45M G =-25t 2+15t +65.所以,可得M E +M F =-910t 2+65t +2710=-910(t -23)2+3110.论:当且仅当t =23时,M E +M F 有最大值,且最大值为3110.注:最值问题首先需要学生找到目标函数的表达式,然后化简等式.其次,最值问题需要学生正确计算出数式的答案,保证运算的准确率[2].综上所述,初中对二次函数的考查内容虽然灵活复杂[3],但是若学生能够利用解析式问题㊁动点问题㊁面积问题㊁几何图形存在性问题和最值问题的解题方法与解题技巧,并进行适当的训练,就能提高有关二次函数的解题能力.参考文献:[1]陆立明.二次函数综合题解题分析与备考策略 以南宁市中考数学二次函数题型为例[J ].中学教学参考,2022(17):22G24.[2]陈丽黎.类比探究透本质,数形结合双翼飞 二次函数的图象与性质(3) 的教学设计与反思[J ].中学数学,2022(12):45G46.[3]王国强,华云锋.慢教学:初中生数感培养的课堂新样态 以 二次函数 单元起始课教学为例[J ].中学数学,2022(10):7G10.Z27。
二次函数最值问题解题技巧
二次函数最值问题解题技巧二次函数最值问题是高中数学中常见的一类问题,也是中考、高考中经常出现的题型之一。
解题时需要掌握一些解题技巧,下面就介绍一些二次函数最值问题的解题技巧。
1. 求最值的方法二次函数的最值可以通过求解二次函数的顶点来得到,顶点即为最值点。
二次函数的顶点公式为:(-b/2a , f(-b/2a))。
其中,a、b、c分别为二次函数的系数,f(x)表示函数值。
2. 求最值的条件要求二次函数的最值,必须先要满足二次函数的a值不为0,否则该函数就不是二次函数。
其次,需要根据二次函数的符号来判断最值,当a>0时,函数的最小值为f(-b/2a),当a<0时,函数的最大值为f(-b/2a)。
3. 求最值的步骤求解二次函数的最值,一般可以分为以下几个步骤:(1)将二次函数化简为标准形式:y=ax+bx+c。
(2)求出二次函数的顶点坐标:(-b/2a , f(-b/2a))。
(3)判断二次函数的最值:当a>0时,函数的最小值为f(-b/2a);当a<0时,函数的最大值为f(-b/2a)。
(4)用最值来解题:根据题目要求,将二次函数的x值代入函数中求出对应的y值,从而得到函数的最值。
4. 拓展除了方法和步骤外,还有一些需要注意的点:(1)二次函数最值问题常常伴随着图像问题,需要将函数的图像画出来,从而更直观地理解问题。
(2)对于一些复杂的二次函数,可以借助计算器等工具来求解,但需要掌握求解方法和步骤。
(3)对于二次函数最值问题的解题,需要练习多种不同类型的题目,从而提高解题能力。
总之,掌握二次函数最值问题的解题技巧,需要学生在学习中不断积累,多加练习,从而提高数学解题能力。
二次函数综合题解题方法
二次函数综合题解题方法二次函数是高中数学中一个重要的内容,也是学生们比较头疼的一个部分。
在解题过程中,很多学生常常会感到困惑和无从下手。
今天我们就来系统地总结一下二次函数综合题的解题方法,希望能够帮助大家更好地掌握这一部分知识。
首先,我们需要明确二次函数的一般形式:y=ax^2+bx+c,其中a、b、c为常数且a≠0。
在解二次函数综合题时,我们通常会遇到以下几种情况:1. 求二次函数的顶点坐标和对称轴,对于y=ax^2+bx+c,其顶点坐标为(-b/2a, c-b^2/4a),对称轴为x=-b/2a。
我们可以利用这些公式来求解顶点坐标和对称轴。
2. 求二次函数的图像和特征,通过顶点坐标和对称轴,我们可以画出二次函数的图像,并且根据a的正负来判断抛物线的开口方向。
这对于理解二次函数的形状和特征非常重要。
3. 求二次函数与坐标轴的交点,当我们需要求二次函数与x轴和y轴的交点时,可以将y=0或x=0代入二次函数的表达式中,从而求得交点的坐标。
4. 求二次函数的零点和解二次方程,通过因式分解、配方法或者求根公式,我们可以求得二次函数的零点,也就是方程y=ax^2+bx+c=0的解。
以上就是二次函数综合题的解题方法总结,希望能够帮助大家更好地理解和掌握二次函数的相关知识。
在解题过程中,我们需要注意以下几点:1. 仔细分析题目,理清思路,确定解题的步骤和方法。
2. 熟练掌握二次函数的基本形式和相关公式,灵活运用。
3. 注意细节,避免计算错误和漏解。
4. 多做练习,加深对二次函数的理解和掌握。
通过不断的练习和总结,相信大家一定能够掌握好二次函数综合题的解题方法,取得更好的成绩。
希望本文的内容能够对大家有所帮助,谢谢大家的阅读!。
二次函数经典解题技巧
龙文教育学科教师辅导讲义之迟辟智美创作对点P (x 0,y 0)到直线滴一般式方程 ax+by+c=0滴距离有2200a b a c by x d +++=经常使用记牢2、如图,已知二次函数24y ax x c =-+的图象与坐标轴交于点A (-1, 0)和点 B (0,-5).(1)求该二次函数的解析式;(2)已知该函数图象的对称轴上存在一点P ,使得△ABP 的周长最小.请求出点P 的坐标.解:(1)根据题意,得⎪⎩⎪⎨⎧+⨯-⨯=-+-⨯--⨯=.0405,)1(4)1(022c a c a …2分解得 ⎩⎨⎧-==.5,1c a …………………………3分∴二次函数的表达式为542--=x x y .……4分 (2)令y =0,得二次函数542--=x x y 的图象与x 轴 的另一个交点坐标C (5, 0).……………5分 由于P 是对称轴2=x 上一点,连结AB ,由于2622=+=OB OA AB ,要使△ABP 的周长最小,只要PB PA +最小.…………………………………6分由于点A 与点C 关于对称轴2=x 对称,连结BC 交对称轴于点P ,则PB PA += BP +PC =BC ,根据两点之间,线段最短,可得PB PA +的最小值为BC .因而BC 与对称轴2=x 的交点P 就是所求的点.……………………………………8分设直线BC 的解析式为b kx y +=,根据题意,可得⎩⎨⎧+=-=.50,5b k b 解得⎩⎨⎧-==.5,1b k所以直线BC 的解析式为5-=x y .…………………………………………………9分 因此直线BC 与对称轴2=x 的交点坐标是方程组⎩⎨⎧-==5,2x y x 的解,解得⎩⎨⎧-==.3,2y x所求的点P 的坐标为(2,-3).……………………………10分压轴题中求最值此种题多分类讨论,求出函数关系式,再求各种情况的最值,最后求出最值. 典范例题:1如图,在梯形ABCD 中,AD ∥BC ,∠B =90°,BC =6,AD =3,∠DCB =30°.点E 、F 同时从B 点动身,沿射线BC 向右匀速F 点移动速度是E 点移动速度的2倍,以EF 为一边在CB 的上方作等边△EFG .设E 点移动距离为x (x >0). ⑴△EFG 的边长是____(用含有x 的代数式暗示),当x =2时,点G 的位置在_______; ⑵若△EFG 与梯形ABCD 重叠部份面积是y ,求 ①当0<x ≤2时,y 与x 之间的函数关系式; ②当2<x ≤6时,y 与x 之间的函数关系式;⑶探求⑵中获得的函数y 在x 取含何值时,存在最年夜值,并求出最年夜值.A DG解:⑴ x ,D 点⑵①当0<x ≤2时,△EFG 在梯形ABCD 内部,所以y =43x 2; ②分两种情况:Ⅰ.当2<x <3时,如图1,点E 、点F 在线段BC 上, △EFG 与梯形ABCD 重叠部份为四边形EFNM ,∵∠FNC =∠FCN =30°,∴FN =FC =6-2x.∴GN =3x -6. 由于在Rt △NMG 中,∠G =60°, 所以,此时 y =43x 2-83(3x -6)2=2392398372-+-x x . Ⅱ.当3≤x ≤6时,如图2,点E 在线段BC 上,点F 在射线CH 上,△EFG 与梯形ABCD 重叠部份为△ECP , ∵EC =6-x, ∴y =83(6-x )2=239233832+-x x . ⑶当0<x ≤2时,∵y =43x 2在x >0时,y 随x 增年夜而增年夜, ∴x =2时,y 最年夜=3;当2<x <3时,∵y =2392398372-+-x x 在x =718时,y 最年夜=739; 当3≤x ≤6时,∵y =239233832+-x x 在x <6时,y 随x 增年夜而减小, ∴x =3时,y 最年夜=839.综上所述:当x =718时,y 最年夜=739如图,直线643+-=x y 分别与x 轴、y 轴交于A 、B 两点;直线x y 45=△ACD 重叠部份(阴影部份)的面积为S (平方单元),点E 的运动时间为t (秒). (1)求点C 的坐标.(2)当0<t<5时,求S 与t 之间的函数关系式. (3)求(2)中S 的最年夜值. (4)当t>0时,直接写出点(4,29)在正方形PQMN 内部时t 的取值范围.【参考公式:二次函数y=ax 2+bx+c 图象的极点坐标为(ab ac a b 44,22--).】解:(1)由题意,得⎪⎪⎩⎪⎪⎨⎧=+-=.45,643x y x y 解得⎪⎩⎪⎨⎧==.415,3y x∴C (3,415).(2)根据题意,得AE=t ,OE=8-t. ∴点Q 的纵坐标为45(8-t),点P 的纵坐标为43t , ∴PQ=45 (8-t)-43t=10-2t.当MN 在AD 上时,10-2t=t ,∴t=310.B E F CA DGNM图1B EC F A DG P H图2。
二次函数最值问题解题技巧
二次函数最值问题解题技巧介绍二次函数是高中数学中重要的内容之一,而求二次函数的最值问题在解题过程中也是非常常见的。
本文将介绍解决二次函数最值问题的一些技巧和方法,帮助读者更好地理解和应用。
1. 二次函数的基本形式二次函数一般可以写成如下形式:f(x)=ax2+bx+c,其中a、b、c为常数。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
先来看一个具体的例子:例子1:设f(x)=2x2−4x+1,求函数f(x)的最值。
2. 求二次函数的顶点求解二次函数的最值问题,首先需要求出函数的顶点。
二次函数f(x)=ax2+bx+c的顶点坐标可以通过以下公式得到:x=−b2a例子1:设f(x)=2x2−4x+1,求函数f(x)的顶点坐标。
解:根据公式x=−b2a ,代入a=2和b=−4,可以得到x=−−42×2=1。
将x=1代入原函数f(x),可以计算出对应的y值:f(1)=2×12−4×1+1=−1。
所以函数f(x)的顶点坐标为(1,−1)。
3. 确定开口方向在求得顶点后,我们还需要确定二次函数的开口方向,以便进一步确定最值的位置。
在一般情况下,当二次函数的系数a为正时,抛物线开口向上;当a为负时,抛物线开口向下。
在已知顶点的情况下,通过判断a的正负即可确定开口方向。
例子1:设f(x)=2x2−4x+1,求函数f(x)的开口方向。
解:由于a=2为正数,所以二次函数f(x)的抛物线开口向上。
4. 求解最值根据顶点坐标和开口方向,我们可以得出二次函数的最值。
当二次函数开口向上时,最小值就是函数的顶点值;当二次函数开口向下时,最大值就是函数的顶点值。
例子1:设f(x)=2x2−4x+1,求函数f(x)的最小值。
解:由于函数f(x)是向上的抛物线,最小值就是顶点坐标的纵坐标。
所以函数f(x)的最小值为−1。
5. 问题求解的一般步骤在解决二次函数最值问题时,我们可以总结出一般的步骤如下:1.将二次函数写成标准形式:f(x)=ax2+bx+c;2.使用公式x=−b求得顶点坐标(x,y);2a3.判断抛物线的开口方向:当a>0时,开口向上;当a<0时,开口向下;4.根据开口方向,并结合顶点坐标,得出最值结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数解题方法总结
二次函数是初中重要的数学知识点,本文就来分享一篇二次函数解题方法总结,希望对大家能有所帮助!
1.求证“两线段相等”的问题:
2.“平行于y轴的动线段长度的最大值”的问题:
由于平行于y轴的线段上各个点的横坐标相等(常设为t),借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t的代数式表示出来,再由两个端点的高低情况,运用平行于y轴的线段长度计算公式,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标。
3.求一个已知点关于一条已知直线的对称点的坐标问题:
先用点斜式(或称K点法)求出过已知点,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可。
4.“抛物线上是否存在一点,使之到定直线的距离最大”的问题:
(方法1)先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式(注意该直线与定直线的斜率相等,因为平行直线斜率(k)相等),再由该直线与抛物线的解析式组成方程组,用代入法把字母y消掉,得到一个关于x的的一元二次方程,由题有△=-4ac=0(因为该直线与抛物线相切,只有一个交点,所以-4ac=0)从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式
组成方程组,求出x、y的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离。
(方法2)该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离。
(方法3)先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出。
5.常数问题:
(1)点到直线的距离中的常数问题:
“抛物线上是否存在一点,使之到定直线的距离等于一个固定常数”的问题:
先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了。
(2)三角形面积中的常数问题:
“抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数”的问题:
先求出定线段的长度,再表示出动点(其坐标需用一个字母表示)到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即
可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了。
6.“在定直线(常为抛物线的对称轴,或x轴或y轴或其它的定直线)上是否存在一点,使之到两定点的距离之和最小”的问题:先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出(利用求交点坐标的方法)。
7.三角形周长的“最值(最大值或最小值)”问题:
“在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题(简称“一边固定两边动的问题):
由于有两个定点,所以该三角形有一定边(其长度可利用两点间距离公式计算),只需另两边的和最小即可。
8.三角形面积的最大值问题:
①“抛物线上是否存在一点,使之和一条定线段构成的三角形面积最大”的问题(简称“一边固定两边动的问题”):
(方法1)先利用两点间的距离公式求出定线段的长度;然后再利用上面3的方法,求出抛物线上的动点到该定直线的最大距离。
最后利用三角形的面积公式底·高1/2。
即可求出该三角形面积的最大值,同时在求解过程中,切点即为符合题意要求的点。
(方法2)过动点向y轴作平行线找到与定线段(或所在直线)的交点,从而把动三角形分割成两个基本模型的三角形,动点坐标一母示后,
进一步可得到,转化为一个开口向下的二次函数问题来求出最大值。
②“三边均动的动三角形面积最大”的问题(简称“三边均动”的问题):
先把动三角形分割成两个基本模型的三角形(有一边在x轴或y 轴上的三角形,或者有一边平行于x轴或y轴的三角形,称为基本模型的三角形)面积之差,设出动点在x轴或y轴上的点的坐标,而此类题型,题中一定含有一组平行线,从而可以得出分割后的一个三角形与图中另一个三角形相似(常为图中最大的那一个三角形)。
利用相似三角形的性质(对应边的比等于对应高的比)可表示出分割后的一
个三角形的高。
从而可以表示出动三角形的面积的一个开口向下的二次函数关系式,相应问题也就轻松解决了。
9.“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:
由于该四边形有三个定点,从而可把动四边形分割成一个动三角形与一个定三角形(连结两个定点,即可得到一个定三角形)的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法与7相同。
10、“定四边形面积的求解”问题:
有两种常见解决的方案:
方案(一):连接一条对角线,分成两个三角形面积之和;
方案(二):过不在x轴或y轴上的四边形的一个顶点,向x轴(或y轴)作垂线,或者把该点与原点连结起来,分割成一个梯形(常为直角梯形)和一些三角形的面积之和(或差),或几个基本模型的三角形面积的和(差)
11.“两个三角形相似”的问题:
12.“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题:
首先弄清题中是否规定了哪个点为等腰三角形的顶点。
(若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形,则有三种情况)。
先借助于动点所在图象的解析式,表示出动点的坐标(一母示),按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程。
解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点(就是不能构成三角形这个题意)。
13、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:
这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标(若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标),任选一个已知点作为对角线的起点,列出所有可能的对角线(显然最多有3条),
此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可。
进一步有:
①若是否存在这样的动点构成矩形呢?先让动点构成平行四边形,再验证两条对角线相等否?若相等,则所求动点能构成矩形,否则这样的动点不存在。
②若是否存在这样的动点构成棱形呢?先让动点构成平行四边形,再验证任意一组邻边相等否?若相等,则所求动点能构成棱形,否则这样的动点不存在。
③若是否存在这样的动点构成正方形呢?先让动点构成平行四
边形,再验证任意一组邻边是否相等?和两条对角线是否相等?若都相等,则所求动点能构成正方形,否则这样的动点不存在。
14.“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题:(此为“单动问题”〈即定解析式和动图形相结合的问题〉,后面的19实为本类型的特殊情形。
)
先用动点坐标“一母示”的方法设出直接动点坐标,分别表示(如果图形是动图形就只能表示出其面积)或计算(如果图形是定图形就
计算出它的具体面积),然后由题意建立两个图形面积关系的一个方程,解之即可。
(注意去掉不合题意的点),如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可。
15.“某图形〈直线或抛物线〉上是否存在一点,使之与另两定点构成直角三角形”的问题:
若夹直角的两边与y轴都不平行:先设出动点坐标(一母示),视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线(没有与y轴平行的直线)垂直的斜率结论(两直线的斜率相乘等于-1),得到一个方程,解之即可。
若夹直角的两边中有一边与y轴平行,此时不能使用斜率公式。
补救措施是:过余下的那一个点(没在平行于y轴的那条直线上的点)直接向平行于y的直线作垂线或过直角点作平行于y轴的直线的垂线与另一相关图象相交,则相关点的坐标可轻松搞定。
16.“某图象上是否存在一点,使之与另两定点构成等腰直角三角形”的问题。
①若定点为直角顶点,先用k点法求出另一直角边所在直线的解析式(如斜率不存在,根据定直角点,可以直接写出另一直角边所在直线的方程),利用该解析式与所求点所在的图象的解析式组成方程组,求出交点坐标,再用两点间的距离公式计算出两条直角边等否?若等,该交点合题,反之不合题,舍去。
②若动点为直角顶点:先利用k点法求出定线段的中垂线的解析式,再把该解析式与所求点所在图象的解析式组成方程组,求出交点坐标,再分别计算出该点与两定点所在的两条直线的斜率,把这两个斜率相乘,看其结果是否为-1?若为-1,则就说明所求交点合题;
反之,舍去。
17.“题中含有两角相等,求相关点的坐标或线段长度”等的问题:
题中含有两角相等,则意味着应该运用三角形相似来解决,此时寻找三角形相似中的基本模型“A”或“X”是关键和突破口。