色谱分析—概述
色谱分析法概述
气相色谱法
流动相为气体,根据物质在固定相中 的吸附、溶解等作用的不同进行分离。
液相色谱法
流动相为液体,根据物质在固定相中 的吸附、溶解等作用的不同进行分离。
按分离机制分类
吸附色谱法
利用物质在固定相上的吸附作用进行分离。
分配色谱法
利用物质在固定相和流动相之间的分配平衡 进行分离。
离子交换色谱法
利用物质在固定相上的离子交换作用进行分 离。
缺点
01
02
03
04
样品处理要求高
在进行色谱分析之前,需要对 样品进行预处理,如提取、纯
化等,较为繁琐。
仪器成本高
色谱分析仪器通常较为昂贵, 需要较高的投资成本。
分析时间长
色谱分析法通常需要一定的时 间来完成分离和检测过程。
对操作人员要求高
色谱分析法的操作较为复杂色谱分析法的未来发展
03 色谱分析法的操作流程
样品前处理
01
02
03
样品收集
根据分析目的,选择合适 的采样方法,确保采集到 具有代表性的样品。
样品制备
将采集的样品进行破碎、 混合、稀释等操作,以便 于后续的分离和检测。
样品净化
去除样品中的杂质,降低 干扰,提高检测的准确性 和可靠性。
分离操作
固定相选择
根据待测组分的性质,选择合适的固定相,实现组分 的吸附或分离。
色谱分析法概述
目录
• 色谱分析法简介 • 色谱分析法的分类 • 色谱分析法的操作流程 • 色谱分析法的优缺点 • 色谱分析法的未来发展
01 色谱分析法简介
色谱分析法的定义
定义
色谱分析法是一种分离和分析复杂混合物中各组分的方法,通过利用不同物质 在固定相和流动相之间的吸附、溶解等相互作用的不同,实现各组分的分离和 分析。
第十七章 色谱分析法概论
在流动相和固定中具有不同的分配系数,分配系数的大小
反映了组分在固定相上的溶解-挥发 或 吸附-解吸的能力。
分配系数大的组分在固定相上溶解或吸附能
力强,因此在柱内的移动速度慢;分配系数小的
组分在固定相上溶解或吸附能力弱,因此在柱内 的移动速度快。
经过一定时间后,由于分配系数的差别,使
各组分在柱内形成差速移行,达到分离的目的。
空间总和)
当色谱柱载气流速为F0(ml/min)时,它与死时间的 关系为:
V0(M) = tM· 0 F
(VM 大,色谱峰展宽,柱效低)
4. 保留值:定性参数,是在色谱分离过程中,试样中各组分
在色谱柱内滞留行为的一个指标。 (它可用保留时间、保留体积和相对保留值等表示) (1)保留时间 tR (retention time): 从进样到柱后出现待测组分浓度最大值时(色谱峰顶点) 所需要的时间,称为该组分的保留时间。如图中tR(1)、 tR(2) 所示,
把这些色 带称为 “ 色谱图 ” (chromatography), 相
应的方法叫作“色谱法”
色谱法是一种分离技术:
其中的一相固定不动,称为固定相 另一相是携带试样混合物流过此固 定相的流体(气体或液体),称为 流动相
各组分被分离后,可进一步进行定性和定量
分析: 经典:分离过程和其含量测定过程是离线的,即 不能连续进行 现代:分离过程和其含量测定过程是在线的,即 能连续进行
p tR tM t 'R k q tM tM
任一组分的 k 值可由实验测得,即为调整保留时间 tR’与 不被固定相吸附或溶解的组分的保留时间tM 的比值。可将k 看
作色谱柱对组分保留能力的参数,k 值越大,保留时间越长。
色谱分析法概论
§1.1 概述
色谱法也叫层析法,它是一种
高效能的物理分离技术,将它用于
分析化学并配合适当的检测手段,
就成为色谱分析法。
色谱法的最早应用是用于分 离植物色素,其方法是这样的: 在一玻璃管中放入碳酸钙,将含 有植物色素(植物叶的提取液) 的石油醚倒入管中。
此时,玻璃管的上端立即出现几 种颜色的混合谱带。然后用纯石油醚 冲洗,随着石油醚的加入,谱带不断 地向下移动,并逐渐分开成几个不同 颜色的谱带,继续冲洗就可分别接得 各种颜色的色素,并可分别进行鉴定。 色谱法也由此而得名。
色谱流出曲线的意义: 色谱峰数(样品中单组份的最少个数)
色谱保留值(定性依据)
色谱峰高或面积(定量依据)
色谱保留值或区域宽度(色谱柱分离效
能评价指标)
色谱峰间距(固定相或流动相选择是否
合适的依据)
§1.3 色谱法基本原理
色谱分析的目的是将样品中各组分彼此分离, 组分要达到完全分离,两峰间的距离必须足够远, 两峰间的距离是由组分在两相间的分配系数决定
h. 区域宽度:色谱峰的区域宽
度是色谱流出曲线的重要参数之一
,可用于衡量色谱柱的柱效及反映 色谱操作条件下的动力学因素。宽
度越窄,其效率越高,分离的效果
也越好。
区域宽度通常有三种表示法: 标准偏差:峰高0.607 倍处峰 宽处的一半。 半峰宽W1/2:峰高一半处的峰宽。 W1/2=2.354 峰底宽W:色谱峰两侧拐点上切 线与基线的交点间的距离。W= 4
有关,与两相体积、
柱管特性和所用仪
器无关。
分配系数 K的讨论
试样一定时,K主要取决于固定相性质一定温
度下,组分的分配系数K越大,出峰越慢;每个组 分在各种固定相上的分配系数K不同;选择适宜的 固定相可改善分离效果;试样中的各组分具有不 同的K值是分离的基础;某组分的K=0时,即不被 固定相保留,最先流出。
色谱分析法
29
9.分配系数K与分配比k的关系
ms cs Vs Vm K k k cm m m Vs Vm
其中β称为相比率。 相比率是反映色谱柱柱型特点的又一个参数。例如,对 填充柱,其β值一般为6~35,对毛细管柱,其β值一般 为60~600。
11:19
30
10. 分配比与保留时间的关系
11:19
37
• 但由于死时间tM包含在tR中,而tM并不参加柱 内的分配,所以理论塔板数、理论塔板高并不 能真实地反映色谱柱的好坏。为此: • 常用有效塔板数或有效塔板高度作衡量柱效能 的指标。计算式如下:
' ' tR t 2 R 2 n有 效 5.54( ) 16( ) Y1 Y 2
H有效
第六章
色谱分析法
11:19
1
第一节 概述
一、色谱法简介 u 色谱法是由1906年俄国植物学家茨维特最早创立的。
11:19
2
石油醚
植物叶石 油醚溶液
CaCO3
11:19
3
色谱法中: 起分离作用的分离柱称为色谱柱。 固定在柱内的填充物称固定相。 携带试样混合物流过此固定相的流体(气体或 液体),称为流动相。
L n H
n称为理论塔板数。
11:19
35
(2)
以气相色谱为例,载气进入色谱柱不是连续
进行的,而是脉动式,每次进气为一个塔板体积。
(3) 所有组分开始时存在于第0号塔板上,而且试
样沿轴(纵)向扩散可忽略。
(4) 分配系数在所有塔板上是常数,与组分在某
一塔板上的量无关。
11:19
36
塔板理论指出:
i.保留时间tR:指被测组分从进样开始到出现色 谱峰最高点时所需的时间,如图15-6中的O΄B 所示。
15-色谱分析法简介
色谱图及常用术语
色谱流出曲线: 由检测器输出的电信号强 度对时间作图,所得曲线 色谱峰: 曲线上突起部分
t
1、基线: 没有样品组分流出时的流出曲线; 2、峰高: 色谱峰顶点与基线之间的垂直距离; 3、区域宽度: 即色谱峰的宽度; 峰底宽度wb:Wb = 4 σ 半峰宽w1/2: W1/2 = 2.354 σ 标准偏差σ: 0.607倍峰高处峰宽的一半 。
15
分离度定义:相邻两峰保留值之差与两蜂宽之和的一半的比值
在—般情况下,由于色谱柱中溶质的浓度较低,分配系数K 为常数。——称线性色谱。 色谱峰是对称的呈高斯分布,高斯峰,其蜂底宽度等于4σ。 相邻两个蜂,其峰宽大致相等:
Rs=1,峰间距离4 σ ,4 σ分离。峰有2%的重叠 Rs=1.5,峰间距离6 σ ,称为6 σ分离,峰重叠小于1%, 两峰已完全分开。
9
峰面积A: 4、保留值 常用时间、距离或用将组分带出色谱柱所需要的流动相体
积表示,保留值由色谱分离过程中的热力学因素所决定; 在一 定色谱条件下保留值是特征的,可作为色谱定性的参数是色谱 法的重要概念之一;
a.保留时间 tR 从进样开始到色谱蜂最大值出现时所需要的时间;某组分
的保留时间就是它通过色谱柱所需要的时间; 死时间tM:多用t0表示 不被固定相保留的组分,从进样到出现峰极大值的时间;死 时间实际上就是流动相流经色谱柱所需要的时间;
3
色谱法的实质:分离; 色谱法的依据:各组分在互不相溶的两相——固定相与流动 相中吸附能力、分配系数或其它亲和作用性能的差异. 2. 色谱法的分类 (1)按流动相和固定相所处状态分类 气固色谱 气相色谱:气体作流动相 气液色谱 液相色谱:液体作流动相 液固色谱 液液色谱 超临界流体色谱: (2)按固定相的固定方式分类 柱色谱法:固定相装在色谱柱中 纸色谱法:用滤纸上的水分子作固定相 薄层色谱法:将吸附剂粉末制成薄层作固定相
《色谱分析法概述》课件
开发新型固定相和色谱柱,提高分离效率和分辨率。
灵敏度提升
采用新型检测器和技术,提高检测灵敏度和响应速度 。
联用技术
与质谱等检测技术联用,实现复杂样品的高效分离和 定性分析。
毛细管电泳法的发展趋势
01
02
03
微型化
采用微型化进样技术和毛 细管电泳芯片,实现快速 、便携的样品分析。
多维分离
结合多种分离模式和检测 技术,实现复杂样品的多 维分离和定性分析。
在色谱过程中,固定相和流动相的选择性是关键因素,它们决定了各组分在两 相之间的分配行为,进而影响分离效果。
色谱分析法的分类
分类
色谱分析法有多种分类方式,根据固定相的形态可分为柱色谱、纸色谱和薄层色 谱;根据操作方式可分为吸附色谱、分配色谱、离子交换色谱和凝胶渗透色谱等 。
描述
不同类型的色谱分析法适用于不同的分离需求,如柱色谱适用于大量样品的分离 ,而薄层色谱则适用于快速分离和定性分析。
《色谱分析法概述》ppt 课件
CATALOGUE
目 录
• 色谱分析法简介 • 色谱分析法的应用 • 色谱分析法的优缺点 • 色谱分析法的发展趋势 • 色谱分析法的前景展望
01
CATALOGUE
色谱分析法简介
色谱分析法的定义
定义
色谱分析法是一种分离和分析复杂混 合物中各组分的方法,通过利用不同 物质在固定相和流动相之间的吸附、 溶解等分配行为的差异实现分离。
在环境领域的应用
污染物检测与控制
色谱分析法用于检测环境中的污 染物,如重金属、有机污染物等 ,为环境污染控制和治理提供依 据。
生态毒理学研究
在生态毒理学研究中,色谱分析 法用于检测环境中的有毒物质对 生物体的影响,评估环境安全性 和生态风险。
色谱分析经典知识
色谱分析经典知识色谱概论1、色谱分析法色谱法是一种分离分析方法。
它利用样品中各组分与流动相和固定相的作用力不同(吸附、分配、交换等性能上的差异),先将它们分离,后按一定顺序检测各组分及其含量的方法。
2、色谱法的分离原理当混合物随流动相流经色谱柱时,就会与柱中固定相发生作用(溶解、吸附等),由于混合物中各组分物理化学性质和结构上的差异,与固定相发生作用的大小、强弱不同,在同一推动力作用下,各组分在固定相中的滞留时间不同,从而使混合物中各组分按一定顺序从柱中流出。
这种利用各组分在两相中性能上的差异,使混合物中各组分分离的技术,称为色谱法。
3、流动相色谱分离过程中携带组分向前移动的物质。
4、固定相色谱分离过程中不移动的具有吸附活性的固体或是涂渍在载体表面的液体。
5、色谱法的特点(1)分离效率高,复杂混合物,有机同系物、异构体。
(2)灵敏度高,可以检测出μg.g-1(10-6)级甚至ng.g-1(10-9)级的物质量。
(3)分析速度快,一般在几分钟或几十分钟内可以完成一个试样的分析。
(4)应用范围广,气相色谱:沸点低于400℃的各种有机或无机试样的分析。
液相色谱:高沸点、热不稳定、生物试样的分离分析。
(5)高选择性:对性质极为相似的组分有很强的分离能力。
6、色谱分析法的分类按两相状态分类,按操作形式分类,按分离原理分类。
7、按两相状态分类气相色谱(Gas Chromatography,GC),液相色谱(Liquid Chromatography,LC),超临界流体色谱(Supercritical Fluid Chromatography,SFC)。
气相色谱:流动相为气体(称为载气)。
常用的气相色谱流动相有N2、H2、He等气体,按分离柱不同可分为:填充柱色谱和毛细管柱色谱;按固定相的不同又分为:气固色谱和气液色谱。
液相色谱:流动相为液体(也称为淋洗液)。
按固定相的不同分为:液固色谱和液液色谱。
超临界流体色谱:流动相为超临界流体。
色谱分析概论
分离因子和分离度 色谱中描述相邻组分分离状态的指标一般用分离因子 或分离度表示。
分离因子被定义为两种物质调整保留值之比,又称为 分配系数比或选择性系数,以α表示。
分离因子(选择性系数α):
α
两个物质分离的前提: α≠1,即α>1。
分离度(RS)
两个相邻色谱峰的分离度Rs(resolution)定义为两峰保 留时间差与两峰峰底宽平均值之商。
注:颗粒太小,柱压过高且不易填充均匀
填充柱——60~100目 空心毛细管柱(0.1~0.5mm),A=0,n理较高
速率理论
back
柱子规格: 30m× 0.32mm× 0.25μm
速率理论
(2). 纵向扩散项(分子扩散项):B/u
扩散,即浓度趋向均一的现象。
扩散速度的快慢,用扩散系数衡量。
由于样品组份被载气带入色谱柱后,以“塞子”的形式存在色谱柱的很 小一段空间中,在“塞子”前后(纵向),存在浓度差,形成浓度梯度 ,导致运动着的分子产生纵向扩散。
涡流扩散项
传质阻抗项
纵向扩散项
(1). 涡流扩散项(多径扩散项):A
产生原因: 载气携样品进柱,由于固定相填充不均匀,使 一个组分的分子经过多个不同长度的途径流出色谱柱, 引起峰扩张。
— 填充不规则因子
dp — 填充颗粒直径
影响因素:固体颗粒越小,填充越实,A项越小
讨论:λ↓,dp ↓ →A↓ →H↓ → n↑ → 柱效↑ λ↑ ,dp ↑ →A ↑ →H ↑ → n ↓ → 柱效↓
速率理论
C· u —传质阻力项
气液色谱 传质阻力包括气相传质阻力 Cg和液相传质阻力 CL,即: C = Cg + CL
色谱峰面积
色谱峰与基线间所包围的面积。
色谱分析法概述范文
色谱分析法概述范文色谱分析法是一种广泛应用于科学研究和工业生产中的化学分析方法。
它通过利用物质在固定相和流动相之间的分配行为来分离和测定化合物。
色谱分析方法可以用于分离和确定固、液、气相中的各种有机和无机物质,具有高灵敏度、选择性、重现性和快速分析速度等优点。
气相色谱(GC)是利用气体载气和物质在固定相上的分配行为进行分离和测定的方法。
GC常用于分析挥发性有机物,如石油化工中的燃料、溶剂和有机污染物等。
GC具有高分离效率和分辨率,可以快速分析多种组分。
液相色谱(LC)是利用液体移动相和固定相之间的分配行为进行分离和测定的方法。
LC可分为正相色谱和反相色谱两种类型。
正相色谱是指流动相为非极性溶剂,固定相为极性的固体材料,用于分离非极性有机物和极性无机物。
反相色谱是指流动相为极性溶剂,固定相为非极性的固体材料,用于分离极性有机物。
LC广泛应用于食品、环境、药物等领域的分析。
超高效液相色谱(UHPLC)是一种液相色谱的高效率改进方法,其主要特点是使用高压强制液相通过色谱柱,提高分离速度和分辨率。
UHPLC主要用于分析复杂样品和需要高分辨率的分析。
离子色谱(IC)是利用离子交换柱对离子物质进行分离和测定的方法。
IC主要用于分析离子荧光染料、水中无机离子、药物中的阳离子和阴离子等。
在样品前处理方面,色谱分析法通常需要对样品进行前处理,如提取、分离、浓缩、蒸馏等。
这些步骤有助于减少样品的复杂性和提高分析的灵敏度。
在仪器方面,色谱分析法需要使用高性能液相色谱仪(HPLC)、气相色谱仪(GC)和离子色谱仪(IC)等分析仪器。
这些仪器通过控制流动相和固定相的流动速度和温度等参数来实现样品的分离和测定。
总之,色谱分析法是一种高效、可靠和灵敏的化学分析方法。
它在科学研究、环境保护、食品安全和药物分析等领域起着重要作用,为人们提供了丰富的化学信息。
色谱分析
四、色谱分离过程
色谱分离过程是在色谱柱内完成。以填充柱为例
填充柱类型 气固(液固)色谱 固定相
气液(液液)色谱
多孔性的固体吸附剂颗粒 由担体和固定液所组成
分离机理
固体吸附剂对试样中各组 固定液对试样中各组分 分的吸附能力的不同 的溶解能力的不同
吸附与脱附的不断重复 溶解与挥发的不断重复
分离过程
五、色谱流出曲线(色谱图)及有关术语
5)流动相以不连续方式加入,即以
一个一个的塔板体积加入。
2、塔板分离过程
3 、柱效能指标
对于一个色谱柱来说,其分离能力(叫柱 效能)的大小主要与塔板的数目有关,塔板数 越多,分配次数越多,分离效果越好,柱效能
越高。
色谱柱的塔板数可以用理论塔板数和有效
塔板数来表示。
(1)理论塔板数n
对于一个柱子来说,其理论塔板数可由下式计算:
5. 速率理论的要点
(1)组分分子在柱内运行的多路径与涡流扩散、浓度梯度所 造成的分子扩散及传质阻力使气液两相间的分配不能瞬间达 到平衡等因素是造成色谱峰扩展、柱效下降的主要原因。
(2)通过选择适当的固定相粒度、载气种类、液膜厚度及 载气流速可提高柱效。 (3)速率理论为色谱分离和操作条件选择提供了理论指导。 阐明了流速和柱温对柱效及分离的影响。 (4) 各种因素相互制约,选择最佳条件,才能使柱效达到 最高。
传质阻力导致C ↑,H ↑ ,n ↓分离变差 。 C与扩散系 数、液膜厚度等有关
4. 载气流速与柱效-最佳流速
载气流速高时,传质阻力项 是影响柱效的主要因素
载气流速低时,分子扩散项成 为影响柱效的主要因素
H – u 曲线与最佳流速
由于流速对这两项完全相反的作用,以塔板高度H对载气流速
色谱分析技术
电化学法
利用电化学反应过程中产生的电流、 电位、电导等参数的变化来检测物质 含量。
质谱法
将物质离子化后,根据不同离子质量 进行分离和检测,确定物质的结构和 含量。
色谱图与色谱参数
01
02
03
04
色谱图
记录色谱柱流出组分的浓度随 时间变化的曲线图。
峰高与峰面积
用于定量测定色谱图中各组分 的含量。
分辨率
在生物医学领域的应用
生物样品的分离与分析
色谱分析技术可用于分离和鉴 定生物样品中的化合物,如氨 基酸、糖类等。
疾病标志物的检测
通过色谱分析技术,可以检测 生物样品中与疾病相关的标志 物,如肿瘤标志物、炎症标志 物等。
药物代谢与药代动力学研 究
色谱分析技术能够研究药物在 体内的代谢和排泄过程,为新 药研发和临床用药提供依据。
大气污染物的监测
色谱分析技术可用于监测大气中的有害气体 和颗粒物。
土壤污染物的监测
色谱分析技术能够检测土壤中的有害物质, 如农药残留、重金属等。
水质监测
通过色谱分析技术,可以检测水体中的有害 物质,如重金属、有机污染物等。
固体废物分析
色谱分析技术可以用于固体废物的成分分析, 评估其处理和处置的可行性。
06 案例分享
案例一:食品中农药残留的色谱分析
目的
结果
检测食品中农药残留,确保食品安全。
成功检测出食品中农药残留的种类和 浓度,为食品安全监管提供科学依据。
方法
采用气相色谱法,通过固相萃取技术对 食品中的农药残留进行提取、净化和分 离,再通过电子捕获检测器进行检测。
案例二:环境水中多环芳烃的色谱分析
在药物分析中的应用
药品质量控制
色谱分析方法
4、 保留体积(VR)Retention Volume
•组分从进样到出现峰最大值所需的载气体积。 VR= tR.FC (ml/min)。 FC-载气流速
5、 柱效能Colume efficiency
色谱柱在色谱分离过程中主要由动力学因素(操作参数)所决定的分离效能。 通常用理论板高或有效板数表示。 ①、理论板数(n)Number of theoretical plate •表示柱效能的物理量,可由下式计算 •n=5.54(tR/W)2=16()2 ②、理论板高(H)Height equivalent to a theoretical plate •单位理论板的长度。H=L/n ③ 有效板数(neff)Number of effective plate
峰与峰底之间的面积(见图3中的CHEJDC)。
标准偏差(ɑ)Standard error
0.607倍峰高处所对应峰宽之一半。
•基线Baseline
在正常操作条件下,仅有载气通过检测器系统时所产生的响应信号的曲线。
•基线漂移Baseline drift
基线随时间定向的缓慢变化。
•基线噪声(N)Baseline noise
Ei――标准样中组分i的含量;
AE――标准样中组分i的峰面积。 该方法的优点是操作简单和计算方便。缺点是仪器和操作条件对分析结果影响很大, 不像归一化和内标法定量操作中可以互相抵消。因此,标准曲线使用一段时间后应 当校正。
3、 内标法
当分析样品不能全部出峰,不能用归一法定量时,可考虑用内标法定量。 方法:准确称取样品,选择适宜的组分作为预测组分的参比物,也称内标物。加入 一定量的内标物,根据被测物和内标物的质量及在色谱图上相应的峰面积比按下式 求组分的含量; xi(%)=×100 式中 xi---试样中组分I的百分含量; ms---加入内标物的质量; As---内标物的峰面积; m---试样的质量 Ai---组分I的峰面积;fsi=fi/fs。
色谱分析课件
通用显色剂
定性分析
1. 与标准对照品在三种不同的展开剂中展开 (加熔点);
2. 制备TLC,将待定性化合物分离后,刮下、 洗脱,再波谱分析;
3. TLC与其它技术联用
定量分析
1. 间接定量(洗脱测定法); 2. 直接定量(薄层扫描法)
薄层扫描法:以一定波长的光照射展开后 的薄层色谱板上被分离组分的斑点,测定 斑点对光的吸收强度或所发出的荧光强度, 进行定量分析的方法。 薄层吸收扫描法 薄层荧光扫描法
色谱法的特点
(1)分离效率高 复杂混合物,有机同系物、异构体。手性异构体。
(2) 灵敏度高 可以检测出μg.g-1(10-6)级甚至ng.g-1(10-9)级的物质量。
(3) 分析速度快 一般在几分钟或几十分钟内可以完成一个试样的分析。
(4) 应用范围广 气相色谱:沸点低于400℃的各种有机或无机试样的分析。 液相色谱:高沸点、热不稳定、生物试样的分离分析。
GC的特点
1. 分离效率高(填充柱上千块塔板;开管柱 106块塔板)
2. 分析速度快 3. 样品用量少(检测限低,高灵敏检测器) 4. 缺点:(约20%样品适用) A. 样品须能气化(350度下有一定的挥发性) B. 热稳定性要好 C. 定性困难
第二节 气相色谱术语、理论
1. 气相色谱流出曲线 2. 分配系数与容量因子 3. 塔板理论 4. 速率理论 5. 分离度 6. 基本分离方程
• 添加剂
荧光指示剂
硝酸银溶液
制板、活化
点样
1.溶剂对样品的溶解度适中; 2.溶剂沸点适中; 3.样品浓度适中; 4.原点位置应在展开剂液面上; 5.定性分析:内径0.5mm管口平整的毛细管
中国药科大学-分析化学课件-第17色谱分析
峰宽和之半
tR2 W1
tR1 W2
2
R 2(tR2 tR1) 1.177(tR2 tR1)
W1 W2
W1 2(1) W1 2(2)
讨论
• 设色谱峰为正常峰,W1≈W2= 4σ
R 1.0 tR 4 基本分离 R 1.5 tR 6 完全分离(定量分析前提)
R 1.0 完全未分开
调整保留体积VR’:保留体积与死体积之差,即组分 停留在固定相时所消耗流动相的体积
VR'
VR
V0
t
' R
FC
注:VR' 与Fc无关;t
' R
1 Fc
V0 和 Vm、t0 和 tm 的区别
• V0 :由进样器至检测器的流路中未被固定相占有的空 间体积 ; 流定相充满死体积所需的时间为t0 。
• Vm :平衡时流动相在色谱柱中占有的体积,流动相经 过色谱柱所需时间用tm 表示。
线性:对称峰 凸形:拖尾峰
• 对称因子(symmetry factor)
——衡量色谱峰对称性
色谱峰
正常峰(对称)——fs在0.95~1.05之间
非正常峰 前沿峰 ——fs小于0.95 拖尾峰 ——fs大于1.05
对称因子:(拖尾因子)
fs
W0.05h 2A
A B 2A
8.分离因子和分离度:—分离参数
➢吸附色谱:利用物理吸附性能的差异(固定相固体)
( absorption chromatography)
➢离子交换色谱:利用离子交换原理(固定相离子交换树脂)
(ion exchange chromatography )
➢空间排阻色谱:利用排阻作用力的不同(固定相凝胶)
第五章-色谱分析法概论
Fc:流动相平均体积流速,(单位:cm3·min-1).
(5) 保留体积VR
指从进样开始到被测组分在柱后出现浓度极大点时所通过 的流动相的体积。保留时间与保留体积关系:
VR = Fc·tR (6)调整保留体积VR
某组分的保留体积扣除死体积后,称为该组分的调整保留体 积。
VR = VR VM = tR Fc
3. 保留值与容量因子的关系
k' K1KVs KVs
Vm VM
将色谱过程基本方程代入:
k' VR VM Vs
Vs VM
可得: k' VRVMVR ' tR ' tRtM
VM VM tM tM
将该式改为: VRVM(1k')
tRtM(1k')
tR
L u
(1
k
')
4.相对保留值 2 ,1
某组分2的调整保留值与组分1的调整保留值之比,称为相对
取决于组分在固定相上的热力学性质。
2、分离度的定义
分离度又叫分辨率或分辨度,既能反映柱效率又能反映选择
性的指标,是衡量分离效能的总指标。
定义:
Rs
1 2
{ 根据流动相的
气相色谱(GC) 气-液色谱(GLC)
物态可分为
液相色谱(LC) 液-固色谱(LSC)
液-液色谱(LLC)
按固定相的固 定方式分类
填充柱色谱 柱色谱 毛细管柱色谱
平板色谱 纸色谱 薄层色谱
平板色谱
根据分离机理 可分为
吸附色谱 分配色谱 离子交换色谱 排阻色谱
色谱法的特点和应用
1.分离效能高 2.灵敏度高 可检测10-11~10-13g,适于痕量分析.色
环境仪器分析:第2章 色谱分析法
第二节 气相色谱理论基础
色谱分析的目的是将样品中各组分彼此分离,组 分要达到完全分离,两峰间的距离必须足够远。两峰 间的距离是由组分在两相间的分配系数决定的,即与 色谱过程的热力学性质有关。但是两峰间虽有一定距 离,如果每个峰都很宽,以致彼此重叠,还是不能分 开。这些峰的宽或窄是由组分在色谱柱中传质和扩散 行为决定的,即与色谱过程的动力学性质有关。因此, 要从热力学和动力学两方面来研究色谱行为。
对A、B两组分的选择因子,用下式表示:
α= tR(B)/tR(A)= k(A)/k(B)=K(A)/K(B)
通过选
择因子α把实验测量值k与热力学性质的分配系数K直接联系起来,
α对固定相的选择具有实际意义。如果两组分的K或k值相等,则
α=1,两个组分的色谱峰必将重合,说明分不开。两组分的K或k
值相差越大,则分离得越好。因此两组分具有不同的分配系数是
它不仅随柱温、柱压变化而变化,而且还与流动相及固定相的体 积有关。
k = ms/mm =CsVs/CmVm
式中cs,cm分别为组分在固定相和流动相的浓度;Vm为柱中流 动相的体积,近似等于死体积。Vs为柱中固定相的体积,在各种 不同类型的色谱中有不同的含义。
例如:在分配色谱中,Vs表示固定液的Байду номын сангаас积;在尺寸排阻色谱中, 则表示固定相的孔体积。
➢基线漂移(baseline drift):基线随时间定向的缓慢变化。
➢基线噪声(baseline noise):指各种因素所引起的基线起 伏。
3. 峰高 色谱峰顶点与基线之间的垂直距离,以(h)表示。
4. 保留值 (1) 死时间 tM 不被固定相吸附或溶解的物质(如空气、甲烷)
化学中的色谱分析方法
化学中的色谱分析方法色谱分析是一种在化学领域中广泛应用的分析技术,通过分离混合物中的成分并对其进行定量或定性分析。
色谱分析方法主要包括气相色谱(Gas Chromatography, GC)、液相色谱(Liquid Chromatography, LC)和超高效液相色谱(Ultra-high Performance Liquid Chromatography, UHPLC)等。
本文将重点介绍这几种色谱分析方法的原理、应用及特点。
一、气相色谱(Gas Chromatography, GC)气相色谱是一种在气相流动条件下进行分离的色谱技术。
其原理是利用气相载气将样品混合物分离成单独的组分,然后通过检测器进行检测和定量分析。
气相色谱广泛应用于食品、环境、药物、石油化工等领域。
气相色谱的主要特点包括分离效果好、分析速度快、灵敏度高、分辨率高等。
在实际应用中,气相色谱常用于分析挥发性有机物、气体成分、药物、食品添加剂等。
二、液相色谱(Liquid Chromatography, LC)液相色谱是一种在液相流动条件下进行分离的色谱技术。
其原理是利用固定相和流动相之间的相互作用将样品混合物分离成单独的组分,然后通过检测器进行检测和定量分析。
液相色谱广泛应用于生物、药物、环境、食品等领域。
液相色谱的主要特点包括适用性广、分离效果好、灵敏度高、分辨率高等。
在实际应用中,液相色谱常用于分析生物样品、药物、天然产物、环境污染物等。
三、超高效液相色谱(Ultra-high Performance Liquid Chromatography, UHPLC)超高效液相色谱是一种高效、快速的液相色谱技术。
其原理是利用超高压力将样品混合物快速分离成单独的组分,然后通过检测器进行检测和定量分析。
超高效液相色谱广泛应用于生物、药物、环境、食品等领域。
超高效液相色谱的主要特点包括分离效果好、分析速度快、灵敏度高、分辨率高等。
在实际应用中,超高效液相色谱常用于分析生物样品、药物、天然产物、环境污染物等。
12 色谱分析法
仪器分析
1、基线—在实验操 作条件下,色谱 柱中只有流动相 通过(没有组分 流出时)的曲线 叫基线。 稳定情况下:一条 水平直线。 基线上下波动称为 噪音。
仪器分析
2、色谱峰的高度h
峰高h —色谱峰最高点与基线之间的距离,可用 mm,mV,mA表示。峰的高低与组分浓度有关, 峰越高越窄越好。
h
仪器分析
1.涡流扩散项 A A = 2λdp
(1)影响因素: ①λ:填充物的不规则程度。λ↓,A↓。 ②dP:填充物的平均颗粒直径。 dP ↓,A↓。
(2)减小A的方法:
①填充色谱柱时要均匀、紧密;
②使用适当细度、颗粒均匀的填充物。
仪器分析
2. 分子扩散项 B / u 以GC为例: B / u = 2γ Dg / u (1)影响因素: ①γ:弯曲因子,填充物对分子扩散的障碍因素, γ ↓,B↓,(B/u)↓。 ②Dg:组分在流动相中的扩散系数。 Dg ↓,B↓, (B/u)↓。 影响Dg的因素: 与载气分子量的平方根成反比; 随T柱↓而↓,随P柱↑而↓。
仪器分析
(2)保留时间tR —— —组分流经色谱 柱时所需时间。 进样开始到柱后 出现最大值时所 需的时间。操作 条件不变时,一 种组分对应有一 个tR定值。
仪器分析
(3)调整保留时间t’R
扣除了死时间的保 留时间。 t’R=tR-t0 t’R 体现的是组分在 柱中被吸附或溶解 的实际时间。
VR kVg KVl
VR KVl Vg
仪器分析
(二)塔板理论
把色谱柱比作一个精馏塔,将连续的色 谱分离过程分割成多次的平衡过程的重 复,同时引入理论塔板数作为衡量柱效 率的指标。 对一个色谱柱来说,若色谱柱长度L固 定,每一块塔板的高度用H表示,称为 塔板高度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图示
• 分配系数的微小差异→吸附能力的微小差异 • 微小差异积累→较大差异→吸附能力弱的组分先
流20出20/7/2;8 吸附能力强的组分后流出back
㈡色谱分离原理 ▪ 色谱分离基于各组分在两相之间平衡分配的差异 ▪ 平衡分配可以用分配系数和分配比来衡量
㈢色谱分离特点 1.不同组分通过色谱柱时的迁移速度不等 →提供了分离的可能性 2.各组分沿柱子扩散分布→峰宽 →不利于不同组分分离
2020/7/28
2020/7/28
思考题
• 色谱分离的原理及过程。
2020/7/28
第二节 薄层层析( Thin-layer chromatography )
2020/7/28
1、基本原理
薄层层析法是色谱分析技术的一种 一般是将固体吸附剂涂布在平板上形成薄层作为
固定相。当液相(展开溶剂)在固定相上流动时, 由于吸附剂对不同组分的吸附力不一样,不同组分 在展开溶剂中的溶解度不一样,点在薄板上的混合 样品随着展开剂的移动速率也不同,因而可以彼此 分开。(即通过吸附-解吸-再吸附-再解吸的反复进 行,而将样品各组分分离开来)
2020/7/28
2020/7/28
内标物要满足以下要求: (a)试样中不含有该物质; (b)与被测组分性质比较接近; (c)不与试样发生化学反应; (d)出峰位置应位于被测组分附近,且无组分峰响。
内标法特点
(a) 内标法的准确性较高,操作条件和进样量的稍许 变动对定量结果的影响不大。 (b) 每个试样的分析,都要进行两次称量,不适合大 批量试样的快速分析。
2020/7/28
三、色谱流出曲线与术语
1.基线
无试样通过检测器时, 检测到的信号即为基线。
2.保留值
(1)时间表示的保留值 保留时间(tR):组
分从进样到柱后出现浓度 极大值时所需的时间;
死时间(tM):不与固定相作用的气体(如空气)的保 留时间;
调整保留时间(tR '):tR'= tR-tM
2020/7/28
不足之处: 被分离组分的定性较为困难。
2020/7/28
色谱法的分类
1.按两相分子的聚集状态分类
流动相
液体 液体
固定相
固体 液体
类型 液-固色谱 液相色谱 液-液色谱
气体 气体
固体 液体
气-固色谱 气相色谱 气-液色谱
超临界流体色谱法——流动相为超临界流体
2020/7/28
色谱法分类(续前)
2.按固定相的固定方式分类
Rf of component B = dB dS
The Rf value is a decimal fraction, generally only reported to two decimal places2020/7/28
2020/7/28
Thin-Layer Chromatography: A TwoComponent Mixture
ቤተ መጻሕፍቲ ባይዱ
solvent front
component B
origin mixture
solvent front
component A origin
Increasing Development Time
色谱分析
第一节 色谱法概述
2020/7/28
一、 色谱法的特点、分类和作用
混合物最有效的分离、分析方法。 俄国植物学家茨维特在1906年使用的装置: 色谱原型装置,如图。 色谱法是一种分离技术, 试样混合物的分离过程也就是试样中各组 分在称之为色谱分离柱中的两相间不断进行着的 分配过程。 其中的一相固定不动,称为固定相; 另一相是携带试样混合物流过此固定相的流 体(气体或液体),称为流动相。
2020/7/28
solvent front
component B Less polar!
component A More polar!
origin
Thin-Layer Chromatography: Determination of Rf Values
Rf of component A = dA dS
(2)用体积表示的保留值
保留体积(VR): VR = tR×F0
F0为柱出口处的载气流量, 单位:m L / min。
死体积(VM): VM = tM ×F0
调整保留体积(VR'): V R' = VR -VM
2020/7/28
3. 区域宽度 用来衡量色谱峰宽度的参 数,有三种表示方法: ( 1 ) 标 准 偏 差 ( ) : 即 0.607 倍 峰高处色谱峰宽度的一半。 (2)半峰宽(Y1/2):色谱峰高一 半处的宽度 Y1/2 =2.354 (3)峰底宽(Wb):Wb=4
2020/7/28
2020/7/28
2020/7/28
2020/7/28
2020/7/28
2020/7/28
外标法
外标法也称为标准曲线法。
特点及要求: • 外标法不使用校正因子,准确性较高 • 操作条件变化对结果准确性影响较大 • 对进样量的准确性控制要求较高,适用于大批 量试样的快速分析
2020/7/28
四、分配系数与色谱分离
㈠分配系数和容量因子:相平衡参数
分配系数K(平衡常数):指在一定温度和压力下, 组分在色谱柱中达分配平衡后,在固定相与流动 相中的浓度比(色谱过程的相平衡参数)
K CS Cm
注:K为热力学常数
与组分性质、固定相性质、流动相性质及温度有关 实验条件固定,K仅与组分性质有关
柱色谱
填充柱色谱 毛细管柱色谱
纸色谱
平面色谱 薄层色谱
高分子薄膜色谱 毛细管电泳
3.按分离机制分类
2020/7/28
分配色谱 吸附色谱 离子交换色谱 空间排阻色谱 毛细管电咏法 毛细管电色谱法
二、色谱过程、分离原理及特点
㈠色谱过程 指被分离组分在两相中的“分配”平衡过
程 ✓以吸附色谱为例见图示
吸附→ 解吸→再吸附 →再解吸 →反复多 次洗脱→被测组分分配系数不同→ 差速迁 移 → 分离
2020/7/28
色谱法的特点
(1)分离效率高 复杂混合物,有机同系物、异构体。手性异构体。
(2) 灵敏度高 可以检测出μg.g-1(10-6)级甚至ng.g-1(10-9)级的物质量。
(3) 分析速度快 一般在几分钟或几十分钟内可以完成一个试样的分析。
(4) 应用范围广 气相色谱:沸点低于400℃的各种有机或无机试样的分析。 液相色谱:高沸点、热不稳定、生物试样的分离分析。