数列求和方法大全例题变式解析答案——强烈推荐
数列求和7种方法(方法全-例子多)
数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c =.解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加)∴ nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n-+---[例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2∴ 原等式成立练习题1.答案:.练习题2。
高中数学数列求和的五种方法
⾼中数学数列求和的五种⽅法⼀、公式法求和例题1、设 {an} 是由正数组成的等⽐数列,Sn为其前 n 项和,已知 a2 · a4=1 , S3=7,则 S5 等于( B )(A) 15/2 (B) 31/4 (C) 33/4 (D) 17/2解析:∵ {an} 是由正数组成的等⽐数列 , 且 a2 · a4 = 1, q > 0 ,例题1图注:等⽐数列求和公式图例题2、已知数列 {an} 的前 n 项和 Sn = an^2+bn (a、b∈R), 且 S25=100 , 则a12+a14等于( B )(A) 16 (B) 8 (C) 4 (D) 不确定解析:由数列 {an} 的前 n 项和 Sn = an^2 + bn (a、b∈R), 可知数列 {an} 是等差数列,由S25= 1/2 ×(a1 + a25)× 25 = 100 ,解得 a1+a25 = 8,所以 a1+a25 = a12+a14 = 8。
注:等差数列求和公式图⼆、分组转化法求和例题3、在数列 {an} 中, a1= 3/2 ,例题3图(1)解析:例题3图(2)故例题3图(3)∵ an>1,∴ S < 2="">∴有 1 < s=""><>∴ S 的整数部分为 1。
例题4、数列例题4图(1)例题4图(2)解析:例题4图(3)三、并项法求和例题5、已知函数 f(x) 对任意 x∈R,都有 f(x)=1-f(1-x), 则 f(-2) + f(-1) + f(0) + f(1) + f(2) + f(3) 的值是多少?解析:由条件可知:f(x)+f(1-x)=1,⽽x+(1-x)=1,∴f(-2)+f(3)=1,f(-1)+f(2)=1,f(0)+f(1)=1,∴ f(-2) + f(-1) + f(0) + f(1) + f(2) + f(3) = 3。
数列求和常用方法(含答案)
数列专题 数列求和常用方法一、公式法例1在数列{a n }中,2a n =a n -1+a n +1(n ≥2),且a 2=10,a 5=-5.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 的最大值.解: (1)因为2a n =a n -1+a n +1(n ≥2),所以a n +1-a n =a n -a n -1(n ≥2),所以数列{a n }为等差数列,设首项为a 1,公差为d ,则⎩⎪⎨⎪⎧a 2=a 1+d =10,a 5=a 1+4d =-5,解得⎩⎪⎨⎪⎧a 1=15,d =-5, 所以a n =a 1+(n -1)d =15-5(n -1)=-5n +20.(2)由(1)可知S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-52n 2+352n ,因为对称轴n =72, 所以当n =3或4时,S n 取得最大值为S 3=S 4=30. 跟踪练习1、已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求b 1+b 3+b 5+…+b 2n -1. 解 (1)设等差数列{a n }的公差为d . 因为a 1=1,a 2+a 4=10, 所以2a 1+4d =10, 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5, 所以b 1q ·b 1q 3=9. 又b 1=1,所以q 2=3.所以b 2n -1=b 1q 2n -2=3n -1.则b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12.二、分组转化法例2、已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n ={b n −n 2,n 为偶数2a n,n 为奇数,求数列{c n }的前2n 项的和T 2n .解:(1)设数列{a n }的公差为d ,由题意得,⎩⎪⎨⎪⎧5a 1+10d =20,(a 1+2d )2=(a 1+d )(a 1+4d ),化简得⎩⎪⎨⎪⎧a 1+2d =4,a 1d =0, 因为d ≠0,所以a 1=0,d =2,所以a n =2n -2(n ∈N *),S n =n 2-n ,n ∈N *, 因为S n +b n =2n 2,所以b n =n 2+n (n ∈N *).(2)由(1)知,c n ={b n −n 2,n 为偶数2a n ,n 为奇数=⎩⎪⎨⎪⎧n ,n 为偶数,4n -1,n 为奇数,所以T 2n =c 1+c 2+c 3+c 4+…+c 2n -1+c 2n =(2+4+…+2n )+(40+42+…+42n -2) =n (2+2n )2+1-16n 1-16=n (n +1)+115(16n -1).跟踪练习1、已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49. (1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围. 解 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7, 故公差d =a 4-a 3=7-5=2, 故a n =a 3+(n -3)d =2n -1.(2)由(1)知b n =22n -1+2n -1, T n =21+1+23+3+…+22n -1+2n -1 =21+23+…+22n -1+(1+3+…+2n -1) =21-22n +11-4+n (1+2n -1)2=22n +13+n 2-23.易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000, 故T n ≥1 000,解得n ≥6,n ∈N *.三、并项求和法例3、已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25. (1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5, 又a 5=9=a 1+4d ,所以d =2,a 1=1, 所以a n =2n -1,S n =n (1+2n -1)2=n 2.(2)结合(1)知b n =(-1)n n 2,当n 为偶数时, T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)] =1+2+3+…+n =n (n +1)2.当n 为奇数时,n -1为偶数, T n =T n -1+(-1)n·n 2=(n -1)n 2-n 2=-n (n +1)2. 综上可知,T n =(-1)n n (n +1)2.四、裂项相消法例4、已知数列{a n }的前n 项和为S n ,且2S n =3a n -3(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =1log 3a n ·log 3a n +1,求数列{b n }的前n 项和T n .解:(1)当n =1时,2a 1=3a 1-3,解得a 1=3;当n ≥2时,2a n =2S n -2S n -1=3a n -3-3a n -1+3=3a n -3a n -1,得a n =3a n -1, 因为a n ≠0,所以a na n -1=3,因为a 1=3, 所以数列{a n }是以3为首项,3为公比的等比数列,所以a n =3n . (2)因为log 3a n =log 33n =n ,所以b n =1log 3a n ·log 3a n +1=1n (n +1)=1n -1n +1,所以数列{b n }的前n 项和T n =⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1. 跟踪练习1、已知数列{a n }的前n 项和为S n ,S n =2a n -1,数列{b n }是等差数列,且b 1=a 1,b 6=a 5.(1)求数列{a n }和{b n }的通项公式;(2)若c n =1b n b n +1,记数列{c n }的前n 项和为T n ,证明:3T n <1.解: (1)由S n =2a n -1,可得n =1时,a 1=2a 1-1,解得a 1=1;n ≥2时,S n -1=2a n -1-1,又S n =2a n -1,两式相减可得a n =S n -S n -1=2a n -1-2a n -1+1,即有a n =2a n -1,所以数列{a n }是首项为1,公比为2的等比数列,所以a n =2n -1.设等差数列{b n }的公差为d ,且b 1=a 1=1,b 6=a 5=16,可得d =b 6-b 16-1=3,所以b n =1+3(n -1)=3n -2.(2)证明:c n =1b n b n +1=1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1,所以T n =13⎝ ⎛⎭⎪⎫1-14+14-17+17-110+…+13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1<13,则3T n <1.2、设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =1a n -1,求数列{b n }的前n 项和S n .解 (1)因为a n +1+a n =4+2a n +1a n ,n ∈N *,所以a n +1+a n -2a n +1a n =4,即(a n +1-a n )2=4,又{a n }是各项为正数的单调递增数列, 所以a n +1-a n =2,又a 1=2,所以{a n }是首项为2,公差为2的等差数列, 所以a n =2+2(n -1)=2n ,所以a n =4n 2.(2)b n =1a n -1=14n 2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =b 1+b 2+…+b n =12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.3、已知数列{a n }满足:a 1=2,a n +1=a n +2n . (1)求{a n }的通项公式; (2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n . 解 (1)由已知得a n +1-a n =2n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+2+22+…+2n -1=2+2(1-2n -1)1-2=2n .又a 1=2,也满足上式,故a n =2n . (2)由(1)可知,b n =log 2a n =n , 1b n b n +1=1n (n +1)=1n -1n +1,T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1,故T n =nn +1.五、错位相减法例5、在数列{a n }中,a 1=1,a n +1=a n -2a n a n +1. (1)求{a n }的通项公式;(2)若b n =3na n ,求数列{b n }的前n 项和S n .解:(1)∵a 1=1,a n +1=a n -2a n a n +1,∴a n ≠0,∴1a n =1a n +1-2⇒1a n +1-1a n =2,又∵1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列, ∴1a n =1+2(n -1)=2n -1,∴a n =12n -1(n ∈N *). (2)由(1)知:b n =(2n -1)×3n ,∴S n =1×3+3×32+5×33+7×34+…+(2n -1)×3n , 3S n =1×32+3×33+5×34+7×35+…+(2n -1)×3n +1,两式相减得-2S n =3+2×32+2×33+2×34+…+2×3n -(2n -1)×3n +1 =3+2(32+33+34+…+3n )-(2n -1)×3n +1 =3+2×32(1-3n -1)1-3-(2n -1)×3n +1=3+3n +1-9-(2n -1)×3n +1=2(1-n )×3n +1-6 ∴S n =(n -1)×3n +1+3. 跟踪练习1、已知数列{a n }满足:a 1=1,a n +1=2a n +n -1.(1)证明:数列{a n +n }是等比数列并求数列{a n }的前n 项和S n ; (2)设b n =(2n -1)·(a n +n ),求数列{b n }的前n 项和T n .解: (1)因为a n +1=2a n +n -1,所以a n +1+(n +1)=2a n +2n ,即a n +1+(n +1)a n +n=2,又a 1+1=2,所以数列{a n +n }是以2为首项2为公比的等比数列, 则a n +n =2·2n -1=2n ,故a n =2n -n ,所以S n =(2+22+…+2n )-(1+2+…+n )=2·(1-2n )1-2-n (1+n )2=2n +1-2-n (1+n )2.(2)由(1)得,b n =(2n -1)·(a n +n )=(2n -1)·2n , 则T n =2+3×22+5×23+…+(2n -1)·2n ,①2T n =22+3×23+5×24+…+(2n -3)·2n +(2n -1)·2n +1,②①-②得-T n =2+2×22+2×23+…+2×2n -(2n -1)·2n +1=2×(2+22+…+2n )-2-(2n -1)·2n +1=-(2n -3)·2n +1-6,所以T n =(2n -3)·2n +1+6.2、已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式; (2)设b n =na n ,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,S n =3S n -1-2(n -1)+2,又S n +1=3S n -2n +2, 两式相减可得S n +1-S n =3S n -3S n -1-2,即a n +1=3a n -2, 即有a n +1-1=3(a n -1),令n =1,可得a 1+a 2=3a 1,解得a 2=2a 1=4,也符合a n +1-1=3(a n -1), 则数列{a n -1}是首项为1,公比为3的等比数列, 则a n -1=3n -1,故a n =1+3n -1. (2)由(1)知b n =na n =n +n ·3n -1,则T n =(1+2+…+n )+(1·30+2·31+3·32+…+n ·3n -1), 设M n =1·30+2·31+3·32+…+n ·3n -1, 3M n =1·3+2·32+3·33+…+n ·3n ,两式相减可得-2M n =1+3+32+…+3n -1-n ·3n =1-3n1-3-n ·3n , 化简可得M n =(2n -1)·3n +14.所以T n =12n (n +1)+(2n -1)·3n +14.3、设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项. (1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和. 解 (1)设{a n }的公比为q , ∵a 1为a 2,a 3的等差中项, ∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0, ∴q 2+q -2=0, ∵q ≠1,∴q =-2.(2)设{na n }的前n 项和为S n , a 1=1,a n =(-2)n -1,S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,② ①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n =1-(-2)n 1-(-2)-n (-2)n =1-(1+3n )(-2)n3,∴S n =1-(1+3n )(-2)n9,n ∈N *.4、设数列{a n }满足a 1=3,a n +1=3a n -4n . (1)计算a 2,a 3,猜想{a n }的通项公式; (2)求数列{2n a n }的前n 项和S n .解 (1)由题意可得a 2=3a 1-4=9-4=5, a 3=3a 2-8=15-8=7,由数列{a n }的前三项可猜想数列{a n }是以3为首项,2为公差的等差数列,即a n =2n +1. (2)由(1)可知,a n ·2n =(2n +1)·2n ,S n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n ,①2S n =3×22+5×23+7×24+…+(2n -1)·2n +(2n +1)·2n +1,② 由①-②得,-S n =6+2×(22+23+…+2n )-(2n +1)·2n +1 =6+2×22×(1-2n -1)1-2-(2n +1)·2n +1=(1-2n )·2n +1-2, 即S n =(2n -1)·2n +1+2.5、已知正项数列{a n }的前n 项和为S n ,且a 2n +1=2S n +n +1,a 2=2. (1)求数列{a n }的通项公式a n ;(2)若b n =a n ·2n ,数列{b n }的前n 项和为T n ,求使T n >2 022的最小的正整数n 的值. 解 (1)当n ≥2时,由a 2n +1=2S n +n +1,a 2=2, 得a 2n =2S n -1+n -1+1,两式相减得a 2n +1-a 2n =2a n +1, 即a 2n +1=a 2n +2a n +1=(a n +1)2.∵{a n }是正项数列,∴a n +1=a n +1. 当n =1时,a 22=2a 1+2=4, ∴a 1=1,∴a 2-a 1=1,∴数列{a n }是以a 1=1为首项,1为公差的等差数列,∴a n =n . (2)由(1)知b n =a n ·2n =n ·2n ,∴T n =1×21+2×22+3×23+…+n ·2n , 2T n =1×22+2×23+…+(n -1)·2n +n ·2n +1, 两式相减得-T n =2·(1-2n )1-2-n ·2n +1=(1-n )2n +1-2, ∴T n =(n -1)2n +1+2.∴T n -T n -1=n ·2n >0, ∴T n 单调递增.当n =7时,T 7=6×28+2=1 538<2 022, 当n =8时,T 8=7×29+2=3 586>2 022, ∴使T n >2 022的最小的正整数n 的值为8.6、已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.解 (1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9,两式相减可得4a n +1=3a n ,即a n +1a n =34.当n =1时,4S 2=4⎝⎛⎭⎫-94+a 2=-274-9,解得a 2=-2716, 所以a 2a 1=34.所以数列{a n }是首项为-94,公比为34的等比数列,所以a n =-94×⎝⎛⎭⎫34n -1=-3n+14n .(2)因为3b n +(n -4)a n =0, 所以b n =(n -4)×⎝⎛⎭⎫34n.所以T n =-3×34-2×⎝⎛⎭⎫342-1×⎝⎛⎭⎫343+0×⎝⎛⎭⎫344+…+(n -4)×⎝⎛⎭⎫34n ,① 且34T n =-3×⎝⎛⎭⎫342-2×⎝⎛⎭⎫343-1×⎝⎛⎭⎫344+0×⎝⎛⎭⎫345+…+(n -5)×⎝⎛⎭⎫34n +(n -4)×⎝⎛⎭⎫34n +1,② ①-②得14T n =-3×34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -(n -4)×⎝⎛⎭⎫34n +1 =-94+916⎣⎡⎦⎤1-⎝⎛⎭⎫34n -11-34-(n -4)×⎝⎛⎭⎫34n +1 =-n ×⎝⎛⎭⎫34n +1,所以T n =-4n ×⎝⎛⎭⎫34n +1.因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n ×⎝⎛⎭⎫34n +1≤λ⎣⎡⎦⎤(n -4)×⎝⎛⎭⎫34n 恒成立,即-3n ≤λ(n -4)恒成立, 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立,当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3. 所以-3≤λ≤1.。
和、积数列及其变式
和、积数列及其变式⼀、典型和数列1、两项和数列【例】-3,3,0,(),3 ,6 A.2 B.1 C.4 D. 3【解题关键点】两项求和数列典型的和数列。
前两项和等于第三项,往后⼀次类推。
-3+3=0.3+0=3. 验证:0+(3)=3.(3)+3=6.所以选D项。
2、三项和数列【例】1,3,4,8,15 ,27,() A.53 B.38 C.50 D. 42【解题关键点】三项求和数列【答案】C解析:前三项和等于第四项,以此类推,8+15+27=(50).⼆、和数列变式1、第⼀类和数列变式(1)相邻两项之和是等⽐数列【例】1,-5,13,-29,() A.-61 B.-39 C.39 D. 61【解题关键点】第⼀类和数列变式【答案】D解析:相邻两项相加得到的数列-4,8,-16,(32)是等⽐数列,所以-29+(61)=32。
(2)相邻两项之和是等差数列(3)相邻两项之和是平⽅数列、⽴⽅数列【例】44,77,67,102,() A.80 B.94 C.100 D. 112【解题关键点】相邻两项之和是平⽅数列、⽴⽅数列解析:44 77 67 102 (94)∨∨∨∨求和121 144 169 (196)↓↓↓↓211212214平⽅数列132【答案】B(4)相邻两项之和是连续质数2、第⼆类和数列变式(1)前两项之和加固定常数等于第三项【例】3,6,8,13,20,(),51 A.31 B.28 C.42 D.32【解题关键点】和数列变式。
第⼀项+第⼆项-1=第三项,依次类推,13+20-1=(32),20+(32)-1=51. 【答案】D(2)前两项之和加基本数列等于第三项(3)前两项之和的固定倍数等于第三项【例】5,7,24,62,(),468 A.94 B.145 C.172 D.236【解题关键点】从第三项开始,每⼀项等于它前⾯两项之和的2倍. 【答案】C(4)前两项之和的倍数(按基本数列变化)等于第三项3、第三类和数列变式(1)第⼀项加上第⼆项的固定倍数等于第三项【例】13,9,31,71,173,() A.235 B.315 C.367 D.417【解题关键点】第⼀项加第⼆项的2倍等于第三项,所以71+173×2=(417)【答案】D (2)第⼀项的倍数(按基本数列变化)加第⼆项等于第三项(3)第⼀项的固定倍数加第⼆项的固定倍数等于第三项【例】2,8,28,100,() A.196 B.248 C.324 D.356【解题关键点】第⼀项的2倍加第⼆项的3倍等于第三项,往后⼀次类推,28×2+100×3=(356)【答案】D(4)第⼀项的倍数(按基本数列变化)加第⼆项的倍数(按基本数列变化)等于第三项解题模式:观察数列的前三项之间的特征如果前三项之间的关系为积关系,则猜测该数列为积数列,对原数列各相邻项作乘法,并与原数列(从第三项开始)进⾏⽐较。
高中数学解题方法系列:数列中求和问题的7种方法
高中数学解题方法系列:数列中求和问题的7种方法一、公式法利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa a q q a q na S n nn 3、)1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n 5、213)]1(21[+==∑=n n k S nk n [例1]求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.[例2]设S n =1+2+3+…+n,n∈N *,求1)32()(++=n nS n S n f 的最大值.二、错位相减法(等差乘等比)[例3]求和:132)12(7531--+⋅⋅⋅++++=n n xn x x x S [例4]求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………②(设制错位)①-②得1432222222222222211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n ∴1224-+-=n n n S 三、倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5]求证:nnn n n n n C n C C C 2)1()12(5321+=++⋅⋅⋅+++证明:设nn n n n n C n C C C S )12(5321++⋅⋅⋅+++=…………………………..①把①式右边倒转过来得113)12()12(nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-(反序)又由mn nmn C C -=可得n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得nnn n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-(反序相加)∴nn n S 2)1(⋅+=[例6]求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S ………….①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②(反序)又因为1cos sin ),90cos(sin 22=+-=x x x x①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴S=44.5四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7]求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…[例8]求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴∑=++=n k n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得S n=kk k nk nk nk ∑∑∑===++1213132(分组)五、裂项法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1))()1(n f n f a n -+=(2)nn n n tan )1tan()1cos(cos 1sin -+=+(3)111)1(1+-=+=n n n n a n (4)121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n (6)nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则[例9]求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10]在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.[例11]求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+(裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+-=)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅=1sin 1cos 2∴原等式成立六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12]求cos1°+cos2°+cos3°+···+cos178°+cos179°的值.解:设S n =cos1°+cos2°+cos3°+···+cos178°+cos179°∵)180cos(cosn n --=(找特殊性质项)∴S n =(cos1°+cos179°)+(cos2°+cos178°)+(cos3°+cos177°)+···+(cos89°+cos91°)+cos90°(合并求和)=0[例13]数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a ,2,3,1,2,3,1121110987-=-=-====a a a a a a ……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a ∵0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项)∴S 2002=2002321a a a a +⋅⋅⋅+++(合并求和)=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a 2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++=46362616+++++++k k k k a a a a =5[例14]在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质qp n m a a a a q p n m =⇒+=+(找特殊性质项)和对数的运算性质NM N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=(合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++=10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15]求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和.解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个(找通项及特征)∴11111111111个n ⋅⋅⋅+⋅⋅⋅+++=)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和)=)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++=9110)110(1091n n ---⋅=)91010(8111n n --+数列练习一、选择题1.已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a =A.21 B.22 C.2 D.22.已知为等差数列,,则等于A.-1B.1C.3D.73.公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项,832S =,则10S 等于A.18B.24C.60D.90.4设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于A.13B.35C.49D.635.已知{}n a 为等差数列,且7a -24a =-1,3a =0,则公差d =(A )-2(B )-12(C )12(D )26.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和A.90B.100C.145D.1907.等差数列{}n a 的前n 项和为n S ,已知2110m m ma a a -++-=,2138m S -=,则m =(A)38(B)20(C)10(D)9.8.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =A.2744n n+B.2533n n+C.2324n n+D.2n n+9.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是A.90 B.100 C.145 D.190.二、填空题1设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a =.2.设等差数列{}n a 的前n 项和为n S ,则4S ,84S S -,128S S -,1612S S -成等差数列.类比以上结论有:设等比数列{}n b 的前n 项积为n T ,则4T ,,,1612T T 成等比数列.3.在等差数列}{n a 中,6,7253+==a a a ,则____________6=a .4.等比数列{n a }的公比0q >,已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S =.数列练习参考答案一、选择题1.【答案】B【解析】设公比为q ,由已知得()22841112a q a q a q⋅=,即22q=,又因为等比数列}{n a的公比为正数,所以q =,故2122a a q ===,选B 2.【解析】∵135105a a a ++=即33105a =∴335a =同理可得433a =∴公差432d a a =-=-∴204(204)1a a d =+-⨯=.选B。
数列求和7种方法(方法全-例子多)精选全文
可编辑修改精选全文完整版数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c =.解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立练习题1.答案:.练习题2。
数列求和最全方法例题含答案
求数列前n项和题型方法总结1、考纲解读(1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式)。
(2)了解数列是自变量为正整数的一类函数。
(3)理解等差数列、等比数列的概念。
(4)掌握等差数列、等比数列通项公式和前n项和公式。
(5)能在具体的问题情境中识别等差关系或等比关系,并能利用有关知识解决问题。
(6)了解等车数列与一次函数,等比数列与指数函数的关系。
常考题型:填空题,选择题,解答题占分比重:10~17分二、考点梳理(命题特点)&考试趋势2.1.数列的概念与简单表示法2.2.等差数列2.3.等比数列2.4.数列求和、数列的综合应用三、题型讲解3.1解题技巧归纳(提分秘笈)3.1.1公式法公式法:直接利用等差等比数列的前n项和公式.q q a a q q a S q na S q n dn n na a a n S n nn n n n n n --=--=≠==-+=+=11)1(,1.b 1.a 2)1(2)(11111时当;时,当项和公式②等比数列的前项和公式①等差数列的前例1{}.6-3942的值,求项和,且为其前为等差数列,若数列s a a n s a n n =答案 27 解析:{}()272292)(9,346-3359195111=⨯=+===++=+a a a S a d a d a d a d a n ,得,有的公差为设数列【注意事项】(1)善于识别题目类型,确定是等差数列还是等比数列. (2)等比数列中要注意公比为1的情况.3.1.2分组求和分组求和法:把一个数列分成几个可以直接求和的数列例2{}{}{}.)2(2)1(.4-2n n n n n n n T n s n s n a s n a s 项和的前求数列为等比数列;证明:项和,且满足的前是数列已知+-=-答案 (1)见解析;(2)283223--++n n n解析:()[]()()()()283222)1(212142212222-2,2212.24}2{421,3,2122,424)(212313211111-11--+=-++--=-+++++++=+==+-+-=+-=+--=+-+-=-=--++++--n n n n n n n T n S n S n S S a n S n S n S S n S S Sn n n n n n n n n n n n n n n n于,所以)知由(的等比数列,公比为是首项首所以,所以又易知)(所以,即已知【注意事项】(1)数列求和应从通项入手,若无通项,则先求通项.(2)将通项分解成一些等差和等比数列或可直接求和的数列再进行求和.补充:常见数列的前n 项和()()()()()2333322222221321612132112531264221321⎥⎦⎤⎢⎣⎡+=++++++=++++=-+++++=+++++=++++n n n n n n n n n nn n n n n3.1.3裂项相消裂项相消法:把一个数列的通项分成两项差的形式,相加过程中消去中间项,只剩有限项再求和.常见裂项公式{}()()().10log 1log 11log )4(;111)3(;1111)2();11(11),0(0)1(11≠>-+=⎪⎭⎫⎝⎛+-+=+-⎪⎭⎫⎝⎛+-=+-=⋅≠++a a n n n n n n n k n n d k n n a a d a a d d a a a a n n n n n 且则的等差数列,公差为为各项都不为若例3{}{}{}.,)2()1(.240,110111510n n n nn n n n n n T n b a a a a b a s s n a s 项和的前求数列令的通项通项公求数列项和,且满足的前是等差数列设+++===答案()()nn nT nan n21221++== 解析:()()nn nn n n T n n n n n n n n n n b na d a d a d a d n n n 21211141313121211,21111122222222,222402141515110291010,1111++=++-++-+-+-=++-=+++=+++====⎪⎩⎪⎨⎧=⨯+=⨯+ ,解得则有设公差为【注意事项】(1)对于裂项后明显有能够相消的项的一类数列,在求和时常用“裂项相消法”,分式型数列的求和多用此法.(2)利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前边剩两项,后边也剩两项.(3)有些情况下,裂项时需要调整前面的系数,使裂开后的两项之差和系数之积与原项相等.3.1.4错位相减错位相减法:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.例4{}{}{}.,)2()1(.2,22,04322n n nn n n n T n b a nb a a s a s q s n a 项和的前求数列设的通项求数列,公比项和为的前已知等比数列=-=-=>答案()()nn nnn T a222221+-==解析:()()()nn n n n n n n n n n n n n n n n nn n T n n n T n n T n n T n ba a q a q a a a a a a S q q q q a a a a S a S222221122112112122121212121,22122212122123222121222,22,2222.2,0,02222211113213213211112212222434322+-=-⎪⎭⎫ ⎝⎛-=--⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=-++++=-+-+++=+-++++===∴=∴-=+∴-=+∴-==>=---=--=-=++++-则②得①②①,知,由所以又因为,则①得,②②,①,已知【注意事项】(1)善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“Sn ”与“qSn ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确写出“Sn-qSn ”的表达式.(3)应用等比数列求和公式必须注意公比q 时候等于1,如果不能确定公比q 是否为1,应分两种情况进行讨论,这在以前的高考中经常会考查.3.1.5倒序相加倒序相加法:把数列正着写和倒着写再相加,例如等差数列前n 项和公式的推导方法.例5()()()()().,lg lg lg lg lg ,12lg ,1,1,lg 1221S y xyy x y x x S b a y b x a nn n n n 求且满足已知平面向量+++++==⋅==---答案()16+=n n S解析:()()()()()()()()()()()[]()()[]()n n n n n n n n nn n n nn n n n n x y y x xy xy y x y x S x y x y xxyy S y xy y x y x x S xy y x b a y b x a lg lg lg lg lg lg lg lg 2lg lg lg lg lg lg lg lg lg lg .12)lg(,12lg lg 12lg ,1,1,lg 111112211221++++++++=+++++=+++++===+=⋅==---------- 两式相加得,,所以,因为即所以,满足因为为平面向()()()()()()[]()()()()16S 112lg 1lg lg lg lg lg lg 11+=+=+=+++=++⋅+=--n n n n xy n n xy xy xy n x y xy y x y x n n n n n n 所以【注意事项】(1)数列特征是“与首末两项等距离的两项之和相等”(2)把数列正着写和倒着写再相加,,即可求出该数列前n 项和的2倍,不要忘记除以 2.3.1.6合并求和合并求和法:针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在数列求和时,可将这些项放在一起先求和,在求Sn.例7{}.log log log 9103231365的值,求中,数列在各项各项均为正数的a a a a a a n +++=答案 10解析:{}109log )(log )(log log log log 95365921013109321310323136592101==⨯⨯⨯==+++====a a a a a a a a a a a a a a a a a a a a a n 所以,是等比数列,所以因为为数【注意事项】(1)善于发现数列的特殊性质,如对数指数的运算等. (2)计算时不要出现错误.3.1.7构造法构造法:先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求和.例8 之和求个11111111111n ++++ 答案81109101--+n n解析:()()()()()()()[]()()811091091011011091910101010911101101109111111*********199999111111109199991111,11091999111,110919911132121191321--=---⨯=-++++⨯=-++-+-⨯=++++-⨯=⨯=-⨯=⨯=-⨯=⨯=-⨯=⨯=+n n n n n nnn nn n 个个个所以【注意事项】(1)善于发现数列的规律,并能找出其通项.(2)计算时不要出现错误.3.2易错易混归纳3.2.1裂项时不注意系数例1{}{}.611)2()1(.,2,12<⎭⎬⎫⎩⎨⎧∈+=+*n n n n n n n n T T n a a a N n n n S S n a ,求证项和为的前设数列的通项求数列且项和为的前已知数列答案见解析)()2(121+=n a n解析:(1);(2)()()()()()()()()()613121321-3121321-1217151513121321-12121321211122121121212122,311112211=⋅<⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡++=++=+=+=+⨯=+=----+=-=≥==+-n n n T n n n n a a n an a a n n n n n S S a n an n n n nn n n n 则所以,因为所以且时,当时,当3.2.2通项公式与n 为奇数有关时,需要分情况讨论例2{}{}{}.,log )2()1(.21n 2n 1n n 1n n n n n S n b a b a a a a a 项和的前求数列若的通项通项公求数列,中,已知在数列===+答案⎪⎩⎪⎨⎧-=⎪⎩⎪⎨⎧=-为偶数,为奇数)(为偶数,为奇数)(n n n n S n n a n nn n 4,4122,2122221解析:{}{}⎪⎩⎪⎨⎧==⋅==⋅======≥=---++为偶数,为奇数的通项通综上,数列为偶数时,当为奇数时,所以当,,又构成等比数列的奇数项奇数项与偶数所以数列,,所以时,,所以当因为n n a a a n a n a a a a a a a a n a a nn n n n n n n n n n 22121-2n 2121n 1211-n 1n 1-n 1-n 1n n 2,2222;221221.2222)1({}⎪⎩⎪⎨⎧-==-+++=++++++=-=-++++=+++++++===+===--++为偶数,为奇数项和的前综上,数列为偶数时当为奇数时当所以,因为n n n n S n b n n b b b b b b S n n n b b b b b b b S n b n b b a b a a a n n n n n n n n n 4,41.4)1(31)()()(,;41)1(420)()()(,,0,,log ,21)2(22214321215432111n n n 2n 1n n 111。
求数列前N项和的七种方法(含例题和答案)
求数列前N项和的七种方法(含例题和答案)求数列前N 项和的七种方法点拨:1. 公式法等差数列前n 项和:11()(1)22n n n a a n n S na d ++==+ 特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+g ,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。
其他公式:1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求+++++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=?-=?-=x x x由等比数列求和公式得 nn x x x x S ++++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(211++=+n n S n (利用常用公式)∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当nn 8=,即n =8时,501)(max =n f2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+++++=………………………. ② ①-②得 nn n x n x x x x x S x )12(222221)1(1432--++++++=--(错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----?+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列,22,,26,24,2232n n前n 项的和.解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232++++=…………………………………①14322226242221+++++=n n nS ………………………………②(设制错位)①-②得1432222222222222)211(+-+++++=-n n n nS(错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习:求:S n =1+5x+9x 2+·+(4n-3)x n-1解:S n =1+5x+9x 2+·+(4n-3)x n-1①①两边同乘以x ,得x S n =x+5 x 2+9x 3+·+(4n-3)x n ② ①-②得,(1-x )S n =1+4(x+ x 2+x 3+·+n x )-(4n-3)x n当x=1时,S n =1+5+9+·+(4n-3)=2n 2-n当x ≠1时,S n = 1 1-x [ 4x(1-x n ) 1-x +1-(4n-3)x n]3. 反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求οοοοο89sin 88sin 3sin 2sin 1sin 22222+++++的值解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222+++++=S …………. ①将①式右边反序得οοοοο1sin 2sin 3sin 88sin 89sin 22222+++++=S …………..②(反序)又因为 1cos sin ),90cos(sin 22=+-=x x x x ο①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++++++=S =89∴ S =44.54. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-++++-n a a a n ,… 解:设)231()71()41()11(12-++++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+++++++++=-n aa a S n n(分组)当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+---[例7] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +++++++++++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和)=2)2()1(2++n n n练习:求数列+),21(,,813,412,211n n 的前n 项和。
(完整版)数列求和方法归纳
数列求和一、直接求和法(或公式法)掌握一些常见的数列的前n 项和:123+++……+n=(1)2n n +,1+3+5+……+(2n-1)=2n 2222123+++……+n =(1)(21)6n n n ++,3333123+++……+n =2(1)2n n +⎡⎤⎢⎥⎣⎦等. 例1 求2222222212345699100-+-+-+--+.解:原式22222222(21)(43)(65)(10099)3711199=-+-+-++-=++++.由等差数列求和公式,得原式50(3199)50502⨯+==.变式练习:已知3log 1log 23-=x ,求............32+++++n x x x x 的前n 项和. 解:1-n21二、倒序相加法此方法源于等差数列前n 项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和.例2 求222222222222123101102938101++++++++的和. 解:设222222222222123101102938101S =++++++++ 则222222222222109811012938101S =++++++++. 两式相加,得 2111105S S =+++=∴=,.三、裂项相消法常见的拆项公式有:1()n n k =+111()k n n k -+ ,=1k, 1(21)(21)n n =-+111()22121n n --+,等.例3 已知222112(1)(21)6n n n n +++=++,求 22222222235721()11212312n n n*+++++∈++++++N 的和. 解:22221216112(1)(1)(21)6n n n a n n n n n n ++===++++++,11161223(1)111116122311611ln .1n S n n n n n n ⎡⎤∴=+++⎢⎥⨯⨯+⎣⎦⎡⎤⎛⎫⎛⎫=-+-++-⎪ ⎪⎢⎥+⎝⎭⎝⎭⎣⎦⎛⎫=- ⎪+⎝⎭=+小结:如果数列{}n a 的通项公式很容易表示成另一个数列{}n b 的相邻两项的差,即1n n n a b b +=-,则有11n n S b b +=-.这种方法就称为裂项相消求和法.变式练习:求数列311⨯,421⨯,531⨯,…,)2(1+n n ,…的前n 项和S.解:∵)2(1+n n =211(21+-n n )S n =⎥⎦⎤⎢⎣⎡+-+⋅⋅⋅+-+-)211()4121()311(21n n =)2111211(21+-+--n n =42122143+-+-n n 四、错位相减法源于等比数列前n 项和公式的推导,对于形如{}n n a b 的数列,其中{}n a 为等差数列,{}n b 为等比数列,均可用此法. 例4 求2335(21)n x x x n x ++++-的和.解:当1x ≠时,21122(1)(21)1(1)1n n n x x x n x S x x x-+--=+----; 当1x =时,2n S n =. 小结:错位相减法的步骤是:①在等式两边同时乘以等比数列{}n b 的公比;②将两个等式相减;③利用等比数列的前n 项和公式求和.)1(2)1(=+a n n变式练习:求数列a,2a 2,3a 3,4a 4,…,na n , …(a 为常数)的前n 项和。
数列求和方法大全例题变式解析答案强烈推荐
1.7 数列前n 项和求法知识点一 倒序相加法特征描述:此种方法主要针对类似等差数列中112n n a a a a -+=+=,具有这样特点的数列.思考: 你能区分这类特征吗?知识点二 错位相减法特征描述:此种方法主要用于数列}{n n b a 的求和,其中}{n a 为等差数列,}{n b 是公比为q 的等比数列,只需用n n S qS -便可转化为等比数列的求和,但要注意讨论q=1和q ≠1两种情况.思考:错位时是怎样的对应关系?知识点三 分组划归法特征描述:此方法主要用于无法整体求和的数列,例如1,112+,11124++,……, 11124+++……+112n -,可将其通项写成等比、等差等我们熟悉的数列分别进行求和,再综合求出所有项的和.思考:求出通项公式后如何分组?知识点四 奇偶求合法特征描述:此种方法是针对于奇、偶数项,要讨论的数列 例如11357(1)(21)n n S n -=-++++--,要求S n ,就必须分奇偶来讨论,最后进行综合.思考:如何讨论?知识点五 裂项相消法 特征描述:此方法主要针对12231111n na a a a a a -+++这样的求和,其中{a n }是等差数列.思考:裂项公式你知道几个?知识点六 分类讨论法特征描述:此方法是针对数列{n a }的其中几项符号与另外的项不同,而求各项绝对值的和的问题,主要是要分段求. 思考:如何表示分段求和?考点一 倒序相加法例题1:等差数列求和12n n S a a a =+++变式1:求证:nn n n n n n C n C C C 2)1()12(53210+=+++++变式2:数列求和2222sin 1sin 2sin 3sin 89++++考点二 错位相减法例题2:试化简下列和式: 21123(0)n n S x x nx x -=++++≠变式1:已知数列)0()12(,,5,3,112≠--a a n a a n ,求前n 项和。
高考数列求和的八种重要方法与例题
典例. 已知 lg(xy) 2 2.倒序相加法
S =lgxn +lg(xn-·1 y)+ ...+lg(x·1 yn-1)+lgyn,
(x > 0,y > 0) 求S .
Q S =lgxn +lg(xn-·1 y)+ ...+lgyn
S =lgyn +lg(yn-·1 x)+ ...+lgxn 2S =lg(xy)n +lg(xy)n + ...+lg(xy)n
0,
bn
)
n
bn1
4 3
2(bn
4), 3
b1
4 3
2 3
0,
{bn
4}是首项为 3
2 3
,公比q
2的等比数列
bn
4 3
1 3
2n
,即bn
1 2n 3
4 3
(n
1).
1 (1 2n ) 3
5
n
12 3
1 (2n 5n 1) 3
热点题型3:递归数列.
已知数列{an}的各项都是正数,且满足:a01,an1
1
数列{an}满足a11且8an116an12an50 (n1)。记bn
(n1)。 (1)求b1、b2、b3、b4的值;
an
1 2
(2)求数列{bn}的通项公式及数列{anbn}的前n项和Sn。
bn
an
1
1 2
得an
4 6
bn1bn bn1
3 bn
b1n 012,即, 代b入n1递推2关bn系843an,1aSnn1a612nabn(nb11122bban2n1L5
高中数列求和方法大全(配练习及答案)
数列的求和1.直接法:即直接用等差、等比数列的求和公式求和。
(1)等差数列的求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn (切记:公比含字母时一定要讨论)3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。
常见拆项公式:111)1(1+-=+n n n n ;1111()(2)22n n n n =-++ )121121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=⋅5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。
6.合并求和法:如求22222212979899100-++-+- 的和。
7.倒序相加法:8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析:例1.求和:①个n n S 111111111++++= ②22222)1()1()1(n n n xx x x x x S ++++++= ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。
解:①)110(9110101011112-=++++==kkk k a个])101010[(91)]110()110()110[(9122n S n n n -+++=-++-+-= 8110910]9)110(10[911--=--=+n n n n ②)21()21()21(224422+++++++++=nnn x x x x x x S n xx x x x x n n 2)111()(242242++++++++=(1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2)1()1)(1(21)1(1)1(22222222222+-+-=+--+--=+--- (2)当n S x n 4,1=±=时 ③kk k k k k k k k k a k 23252)]23()12[()]1()12[()12(2)12(2-=-+-=-+-+++++-=2)1(236)12)(1(25)21(23)21(2522221+-++⋅=+++-+++=+++=n n n n n n n a a a S n n)25)(1(61-+=n n n 总结:运用等比数列前n 项和公式时,要注意公比11≠=q q 或讨论。
详解数列求和的六种方法八个典型例题,值得收藏
详解数列求和的六种方法八个典型例题,值得收藏数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。
第一类:公式法利用下列常用求和公式求和是数列求和的最基本最重要的方法。
1、等差数列的前n项和公式2、等比数列的前项和公式3、常用几个数列的求和公式第二类:乘公比错项相减(等差x等比)这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{a ×b,}的前n项和,其中{a},{b}分别是等差数列和等比数列。
第三类:裂项相消法这是分解与组合思想在数列求和中的具体应用。
裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的通项分解(裂项)如:解析:要先观察通项类型,在裂项求和时候,尤其要注意:究竟是像例2-样剩下首尾两项,还是像例3-样剩下四项。
第四类:倒序相加法解析:此类型关键是抓住数列中与首末两端等距离的两项之和相等这--特点来进行倒序相加的。
此例题不仅利用了倒序相加法,还利用了裂项相消法。
在数列问题中,要学会灵活应用不同的方法加以求解。
第五类:分组求和法有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可。
这个题,除了注意分组求和外,还要注意分类讨论思想的应用。
第六类:拆项求和法在这类方法中,我们先研究通项,通项可以分解成几个等差或等比数列的和或差的形式,再代入公式求和。
解析:根据通项的特点,通项可以拆成两项或三项的常见数列,然后再分别求和。
这篇文章中,有6类重要方法,8个典型例题,大部分常见数列的前n项和都可以求出来了,由于知识的不完备,在该类知识上还有些缺憾,在此希望这篇文章可以带给学习数列的同学。
(经典)第九课:数列求和方法技巧(教师) 一10.14
第九课:数列求和方法技巧一10.14(1)公式法:直接应用等差、等比数列的求和公式求和.(2)错位相减法这种方法主要用于求数列{a n·b n}的前n项和,其中{a n}、{b n}分别是等差数列和等比数列.(3)倒序相加法这是在推导等差数列前n项和公式时所用的方法,也就是将一个数列倒过来排列(反序),当它与原数列相加时若有公因式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.(4)裂项相消法利用通项变形,将通项分裂成两项或几项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.(5)分组转化求和法有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,可先分别求和,然后再合并.2.数列的综合问题(1)等差数列与等比数列的综合.(2)数列与函数、方程、不等式、三角、解析几何等知识的综合.(3)增长率、分期付款、利润成本效益的增减等实际应用问题.数列的实际应用问题一般文字叙述较长,反映的事物背景陌生,知识涉及面广,因此要解好应用题,首先应当提高阅读文解能力,将普通语言转化为数学语言或数学符号,实际问题转化为数学问题,然后再用数学运算、数学推文予以解决.【误区警示】1.应用错位相减法求和时,注意项的对应.2.正确区分等差与等比数列模型,正确区分实际问题中的量是通项还是前n项和.考点一由递推关系求通项例1、(2016·高考全国卷Ⅲ)(本小题满分12分)已知各项都为正数的数列{a n}满足a1=1,a2n-(2a n+1-1)a n-2a n =0.+1(1)求a2,a3;(2)求{a n}的通项公式.【方法规律】求数列通项的常用方法1.归纳猜想法:已知数列的前几项,求数列的通项公式,可采用归纳猜想法.2.已知S n 与a n 的关系,利用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2求a n .3.累加法:数列递推关系形如a n +1=a n +f (n ),其中数列{f (n )}前n 项和可求,这种类型的数列求通项公式时,常用累加法(叠加法).4.累乘法:数列递推关系形如a n +1=g (n )a n ,其中数列{g (n )}前n 项积可求,此数列求通项公式一般采用累乘法(叠乘法).5.构造法:(1)递推关系形如a n +1=pa n +q (p ,q 为常数)可化为a n +1+qp -1=p ⎝⎛⎭⎫a n +q p -1(p ≠1)的形式,利用⎩⎨⎧⎭⎬⎫a n +q p -1是以p 为公比的等比数列求解. (2)递推关系形如a n +1=pa n a n +p (p 为非零常数)可化为1a n +1-1a n =1p的形式.【变式探究】数列{a n }的前n 项和为S n ,且a 1=3,a n =2S n -1+3n (n ≥2),则该数列的通项公式为a n =________. 【答案】(2n +1)3n -1【解析】∵a n =2S n -1+3n ,∴a n -1=2S n -2+3n -1(n ≥3),两式相减得:a n -a n -1=2a n -1+2×3n -1,即a n =3a n -1+2×3n -1,∴a n 3n =a n -13n -1+23(n ≥3),又a 2=2S 1+32=2a 1+32=15,a 232=53,a 13+23=53, 即a 232=a 13+23,∴数列⎩⎨⎧⎭⎬⎫a n 3n 是以1为首项,23为公差的等差数列, ∴a n 3n =1+(n -1)×23,∴a n =(2n +1)3n -1. 考点二 分组转化法求和例2、(2016·高考全国卷Ⅱ)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.【方法规律】1.若一个数列由若干个等差数列或等比数列组成,则求和时可用分组转化法分别求和再相加减. 形如a n =(-1)n f (n )类型,可采用相邻两项并项(分组)后,再分组求和. 2.分组求和中的分组策略 (1)根据等差、等比数列分组. (2)根据正号、负号分组.【变式探究】已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和. 解:(1)等比数列{b n }的公比q =b 3b 2=93=3,所以b 1=b 2q =1,b 4=b 3q =27.设等差数列{a n }的公差为d . 因为a 1=b 1=1,a 14=b 4=27, 所以1+13d =27,即d =2. 所以a n =2n -1(n =1,2,3,…). (2)由(1)知,a n =2n -1,b n =3n -1.因此c n =a n +b n =2n -1+3n -1从而数列{c n }的前n 项和S n =1+3+…+(2n -1)+1+3+…+3n -1=n 1+2n -1 2+1-3n 1-3=n 2+3n -12.考点三 错位相减法求和例3、【2017山东,文19】(本小题满分12分)已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){ b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T . 【答案】(Ⅰ)2n n a =.(Ⅱ)2552n nn T +=-. 【解析】又234113572121222222n n n n n T +-+=+++++ , 两式相减得2111311121222222n n n n T -++⎛⎫=++++- ⎪⎝⎭ 所以2552n nn T +=-. 【变式探究】(2016·高考山东卷)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式.(2)令c n = a n +1 n +1b n +2 n,求数列{c n }的前n 项和T n .【方法技巧】错位相减法的关注点1.适用题型:等差数列{a n }与等比数列{b n }对应项相乘({a n ·b n })型数列求和. 2.具体步骤:(1)求和时先乘以数列{b n }的公比; (2)把两个和的形式错位相减; (3)整理结果形式.【变式探究】已知数列{a n }的前n 项和为S n ,数列{b n }的前n 项和为T n ,且有S n =1-a n (n ∈N *),点(a n ,b n )在直线y =nx 上.(1)求T n ;(2)试比较T n 和2-n 22n 的大小,并说明理由.(2)令B n =2-n 22n ,则T n -B n =-n +22n +n 22n=n 2-n -22n=n -2 n +12n, 所以当n =1时,T 1-B 1<0,所以T 1<B 1;当n =2时,T 2-B 2=0, 所以T 2=B 2;当n ≥3时,T n -B n >0, 所以T n >B n .综上所述,当n =1时,T n <2-n 22n ;当n =2时,T n =2-n 22n ;当n ≥3时,T n >2-n 22n .考点四 裂项相消法求和例4、【2017课标3,文17】设数列{}n a 满足123(21)2n a a n a n +++-= . (1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.【答案】(1) ()221n a n N n +=∈-;(2)221nn + . 【解析】.(2).,.【变式探究】已知数列{a n }的前n 项和为S n ,且满足:1a 1+1+2a 2+1+3a 3+1+…+na n +1=n ,n ∈N *.(1)求a n .(2)设T n =1S n +1+1S n +2+1S n +3+…+1S 2n ,是否存在整数m ,使对任意n ∈N *,不等式T n ≤m 恒成立?若存在,求出m 的最小值;若不存在,请说明理由.【方法规律】1.裂项相消法是指把数列和式中的各项分别裂开后,某些项可以相互抵消从而求和的方法,主要适用于{1a n a n +1}或{1a n a n +2}(其中{a n }为等差数列)等形式的数列求和. 2.裂项相消的规律(1)裂项系数取决于前后两项分母的差. (2)裂项相消后前、后保留的项数一样多. 【方法规律】已知数列{a n }的前n 项和是S n ,且S n +13a n =1(n ∈N *).(1)求数列{a n }的通项公式.(2)设b n =log 4(1-S n +1)(n ∈N *),T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求使T n ≥1 0082 018成立的最小的正整数n 的值.解:(1)当n =1时,a 1=S 1, 由S 1+13a 1=1⇒a 1=34,当n ≥2时,S n +13a n =1, ①S n -1+13a n -1=1, ②(二)真题练习1.【2017北京,文15】已知等差数列{}n a 和等比数列{}n b 满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{}n a 的通项公式;(Ⅱ)求和:13521n b b b b -++++ .【答案】(Ⅰ)21n a n =- ;(Ⅱ)312n -.【解析】(Ⅰ)设等差数列{a n }的公差为d . 因为a 2+a 4=10,所以2a 1+4d =10. 解得d =2. 所以a n =2n −1.(Ⅱ)设等比数列的公比为q . 因为b 2b 4=a 5,所以b 1qb 1q 3=9. 解得q 2=3. 所以.从而.2.【2016高考新课标3文数】已知数列{}n a 错误!未找到引用源。
数列求和各种方法总结归纳
1 1 1 = 2n-1-2n+1, 2
1 1 1 1 1 1 + - +…+ ∴Sn= 1-3 2n-1-2n+1 2 3 5
1 1 n = 1-2n+1= . 2 2n+1
[理](2012· 西南大学附中月考)已知函数f(x)=2x+1,g(x)=x,x∈ R,数列{an},{bn}满足条件:a1=1,an=f(bn)=g(bn+1),n∈N*. (1)求证:数列{bn+1}为等比数列; 2n 2 011 (2)令Cn= ,Tn是数列{Cn}的前n项和,求使Tn>2 012成立的 an·n+1 a 最小的n值.
解:(1)证明:由题意得2bn+1=bn+1, ∴bn+1+1=2bn+2=2(bn+1). 又∵a1=2b1+1=1, ∴b1=0,b1+1=1≠0.
故数列{bn+1}是以1为首项,2为公比的等比数列.
(2)由(1)可知,bn+1=2n-1,∴an=2bn+1=2n-1. 2n 2n 1 1 故Cn= = n = n - n+1 . an·n+1 2 -12n+1-1 2 -1 2 -1 a ∴Tn=C1+C2+…+Cn 1 1 1 1 1 =(1-3)+(3-7)+…+( n - ) 2 -1 2n+1-1 1 2 011 =1- n+1 .由Tn>2 012,得2n+1>2 013,解得n≥10. 2 -1 ∴满足条件的n的最小值为10.
②不能转化为等差或等比数列的数列,往往通过裂项
相消法、错位相减法、倒序相加法等来求和.
[例1] (2011· 山东高考)等比数列{an}中,a1,a2,a3分别是下表 第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不 在下表的同一列. 第一行 第二行 第一列 第二列 第三列 3 6 9 2 4 8 10 14 18
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.7 数列前n 项和求法知识点一 倒序相加法特征描述:此种方法主要针对类似等差数列中112n n a a a a -+=+=,具有这样特点的数列.思考: 你能区分这类特征吗?知识点二 错位相减法特征描述:此种方法主要用于数列}{n n b a 的求和,其中}{n a 为等差数列,}{n b 是公比为q 的等比数列,只需用n n S qS -便可转化为等比数列的求和,但要注意讨论q=1和q ≠1两种情况.思考:错位时是怎样的对应关系?知识点三 分组划归法特征描述:此方法主要用于无法整体求和的数列,例如1,112+,11124++,……, 11124+++……+112n -,可将其通项写成等比、等差等我们熟悉的数列分别进行求和,再综合求出所有项的和.思考:求出通项公式后如何分组?知识点四 奇偶求合法特征描述:此种方法是针对于奇、偶数项,要讨论的数列 例如11357(1)(21)n n S n -=-++++--,要求S n ,就必须分奇偶来讨论,最后进行综合.思考:如何讨论?知识点五 裂项相消法 特征描述:此方法主要针对12231111n na a a a a a -+++这样的求和,其中{a n }是等差数列.思考:裂项公式你知道几个?知识点六 分类讨论法特征描述:此方法是针对数列{n a }的其中几项符号与另外的项不同,而求各项绝对值的和的问题,主要是要分段求. 思考:如何表示分段求和?考点一 倒序相加法例题1:等差数列求和12n n S a a a =+++变式1:求证:nn n n n n n C n C C C 2)1()12(53210+=+++++变式2:数列求和2222sin 1sin 2sin 3sin 89++++考点二 错位相减法例题2:试化简下列和式: 21123(0)n n S x x nx x -=++++≠变式1:已知数列)0()12(,,5,3,112≠--a a n a a n ,求前n 项和。
变式2:求数列23,2,3,,,n a a a na ;的前n 项和变式3:求和:n n an a a a S ++++= 32321考点三:分组划归法 例三:求数列1,112+,11124++,……,11124+++……+112n -的和.变式1:5,55,555,5555,…,5(101)9n-,…;变式2:13,24,35,,(2),n n ⨯⨯⨯+;变式3:数列1,(1+2),(1+2+22),……(1+2+2 2+…+2 n -1),……前n 项的和是( )A .2 nB .2 n -2C .2 n+1-n -2D .n2n考点四:奇偶求合法 例四:11357(1)(21)n n S n -=-++++--变式1:求和:n 1n S n-3-+=1-5+9-13++(∈)…(-1)(4) n N变式2:已知数列{a n }中a 1=2,a n +a n+1=1,S n 为{a n }前n 项和,求S n 变式3:已知数列{a n }中a 1=1,a 2=4,a n =a n-2+2 (n ≥3),S n 为{a n }前n 项和,求S n考点五:裂项相消法例五:{a n }为首项为a 1,公差为d 的等差数列,求12233411111n n nS a a a a a a a a -=++++变式1:1111,,,,,132435(2)n n ⨯⨯⨯+;变式2:数列通项公式为n a =n 项和变式3::求和)12)(12()2(534312222+-++⋅+⋅=n n n S n考点六:分类讨论法例六:在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列. (1)求d ,a n ;(2)若d<0,求|a 1|+|a 2|+|a 3|+…+|a n |.变式1:在等差数列}{n a 中,,369181716-==++a a a a 其前n 项和为n S . (1)求n S 的最小值,并求出n S 的最小值时n 的值; (2)求n n a a a T +++= 21.变式2:设数列}{n a 满足132,511++=-=+n a a a n n ,已知存在常数q p ,使数列}{q pn a n ++ 为等比数列.求n a a a +++ 21.变式3:已知等比数列{n a }中,1a =64,q=21,设n b =log 2n a ,求数列{|n b |}的前n 项和n S .答案及解析 考点一 例一: 等差数列求和12n n S a a a =+++111()[(1)]a a d a n d =+++++- ①把项的次序反过来,则:()[(1)]n n n n S a a d a n d =+-++--②①+②得:()1112()()n n n n n S a a a a a a =++++++个1()n n a a =+1()2n n n a a S +=变式1:思路分析:由mn n m n C C -=可用倒序相加法求和。
证:令)1()12(53210nnn n n n C n C C C S +++++=则)2(35)12()12(0121n n n n n n n n C C C C n C n S ++++-++=-mn n m n C C -=nn n n n n C n C n C n C n S )22()22()22()22(2:)2()1(210++++++++=+∴ 有 n n n n n n n n C C C C n S 2)1(])[1(210⋅+=+++++=∴ 等式成立变式2:设2222sin 1sin 2sin 3sin 89S =++++, 又∵2222sin 89sin 88sin 87sin 1S =++++, ∴ 289S =,892S =. 考点二例二:21123(0)n n S x x nx x -=++++≠解:①若x=1,则S n =1+2+3+…+n =(1)2n n + ②若x ≠1,则21123n n S x x nx -=++++2323n n xS x x x nx =++++两式相减得:2(1)1n x S x x -=+++…+n n nx x --111nn x nx x-=-- ∴ 21(1)1n nn x nx S x x-=--- 变式1:思路分析:已知数列各项是等差数列1,3,5,…2n-1与等比数列12,,,,-n a a a a 对应项积,可用错位相减法求和。
解:()1)12(53112--++++=n n a n a a S()2)12(5332nn a n a a a aS -++++=()()n n na n a a a a S a )12(22221)1(:21132--+++++=---当nn n n a a a S a a )12()1()1(21)1(,121----+=-≠-时 21)1()12()12(1a a n a n a S n n n --++-+=+ 当2,1n S a n ==时变式2:2323n n S a a a na =++++,当1a =时,123n S =+++ (1)2n n n ++=, 当1a ≠时,2323n S a a a =+++…nna + ,23423n aS a a a =+++…1n na ++,两式相减得 23(1)n a S a a a -=+++ (1)1(1)1n n n n a a a nana a++-+-=--,∴212(1)(1)n n n na n a aS a ++-++=-.变式3:n n an a a a S ++++=32321 解:⑴2)1(3211+=+++==n n n S a n 时, ⑵01≠≠a a 时,因为 n n a na a a S ++++= 32321 ① 1321211++-+++=n n n an a n a a S a ② 由①-②得:⎪⎪⎩⎪⎪⎨⎧≠----=+=----=---=-+++=-++)1)1()1()1()1(2)1()1()1()1(11)11(1111)11(22112a a a a n a a a n n S a a a n a a S a n aa aan a a a S a n nn n n n n n n n n 综上所述,所以考点三例三:求数列1,112+,11124++,……,11124+++……+112n -的和. 解:∵ 11111242n n a -=++++ 111()1221212nn --==-- ∴1111(1)(1)224n S =++++++1111(1)242n -+++++211(21)(2)(2)22=-+-+-11(2)2n -++-11112(1)242n n -=-++++ 11222n n -=-+变式1:555555555n n S =++++个5(999999999)9n =++++个235[(101)(101)(101)(101)]9n =-+-+-++- 235505[10101010](101)9819n n n n =++++-=--. 变式2:∵2(2)2n n n n +=+,∴ 原式222(123=+++ (2))2(123n ++⨯+++…)n +(1)(27)6n n n ++=.变式3:C 考点四 例四:解:当n = 2k (k ∈N +)时,2(13)(57)n k S S ==-+-+[(43)(41)]k k +---2k n =-=-当21()n k k N +=-∈时,21222[(41)]n k k k S S S a k k -==-=----21k n=-=综合得:1(1)n n S n+=-变式1:解:当n 为偶数时:()()[]()S 1591342n =-+-+⋯+(4-7) - (4-3) =-=-2nn n n当n 为奇数时:()()[]()159134n 32n S =-+-+⋯+(4-11) - (4-7) +=-+=2-1(4-3)(4-)n -1n n n n变式2:解:①当n 为偶数时:12341n n n S a a a a a a -=++++++…12341()()()122n n n n a a a a a a -=++++++=⋅=…②当n 为奇数时:123451()()()n n n S a a a a a a a -=+++++++…13222n n -+=+=变式3:解:∵a n -a n-2=2 (n ≥3)∴a 1,a 3,a 5,…,a 2n-1为等差数列;a 2,a 4,a 6,…,a 2n 为等差数列当n 为奇数时:11(1)22n n a n +=+-•=当n 为偶数时:4(1)222n na n =+-•=+即n ∈N +时, 1(1)nn a n ⎡⎤=++-⎣⎦∴①n 为奇数时:1(1)(123)2122n n n n S n n -+=+++++⋅=+-…②n 为偶数时:(1)(123)222n n n n S n n+=+++++⋅=+…考点五例五: 解:∵1111()()k kk k k k k k a d a a a a a d d a a d ++-==++1111111()()k k k k d a a d d a a +=-=-+ ∴1223111111()()n S d a a d a a =-+- 1111()n n d a a -++- 122311111111[()()()]n n d a a a a a a -=-+-++- 1111()nd a a =- 111[(1)]n a a n d -=+- 变式1: ∵1111()(2)22n n n n =-++, ∴11111111[(1)()()()]2324352n S n n =-+-+-++-+1111(1)2212n n =+--++.变式2:解:∵n a===∴11n S n=+++1)(1n =++++1=.变式3:思路分析:分式求和可用裂项相消法求和.解:)121121(211)12)(12(11)12)(12(11)2()12)(12()2(22+--+=+-+=+-+-=+-=k k k k k k k k k k a k 12)1(2)1211(21)]121121()5131()311[(2121++=+-+=+--++-+-+=+++=n n n n n n n n a a a S n n练习:求n n a n a a a S ++++= 32321 答案: ⎪⎪⎩⎪⎪⎨⎧≠----=+=)1()1()1()1()1(2)1(2a a a a n a a a n n S n n n考点六例六:解:(1))由题意得a 1·5a 3=(2a 2+2)2,即d 2-3d -4=0.所以d =-1或d =4.所以a n =-n +11,n∈N *或a n =4n +6,n∈N *.(2)设数列{a n }的前n 项和为S n .因为d<0,由(1)得d =-1,a n =-n +11,则 当n≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=-12n 2+212n. 当n≥12时, |a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=12n 2-212n +110. 综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=⎩⎪⎨⎪⎧-12n 2+212n ,n≤11,12n 2-212n +110,n≥12.变式1:解:(1)当20=n 或21时,n S 的最小值为-630.(2)⎪⎩⎪⎨⎧>+-≤+-=21,126021232321,21232322n n n n n n T n变式2:⎪⎪⎩⎪⎪⎨⎧>-+-≤-++=+++++3,26011323,224113211221n n n n n n a a a n n n变式3:解:n a =1a 1-n q =n -72∴n b = log 2n a =n 7(1)当n ≤7时,n b ≥0此时,n S =-212n +213n (2)当n >7时,n b <0此时,n S =212n -213n +42(n ≥8) -212n +213n (n ≤7) ∴n S =212n -213n +42(n ≥8)。