专题1 1.2 第2课时

合集下载

第1章 1.2 第2课时 y=k╱x(k<0)的图象与性质

第1章 1.2 第2课时 y=k╱x(k<0)的图象与性质

自我诊断 1.已知点 A(-2,y1)、B(3,y2)是反比例函数 y=kx(k<0)图象上的
两点,则有( B )
A.y1<0<y2 C.y1<y2<0
B.y2<0<y1 D.y2<y1<0
求反比例函数解析式
自我诊断 2. 若反比例函数 y=kx的图象经过点(2,-6),则 k 的值为( A )
A.-12
12.如图,直线 y=-3x 与双曲线 y=m-x 5交于点 P(-1,n). (1)求 m 的值; (2)若点 A (x1,y1)、B(x2,y2)在双曲线 y=m-x 5上,且 x1 <x2<0,试比较 y1、y2 的大小.
解:(1)∵点 P(-1,n)在直线 y=-3x 上,∴n=3,∵点 P(-1,3)在双曲线 m-5
B.12
C.-3
D.3
易错点:忽略了反比例函数图象的位置而将 k 值求错.
自我诊断 3. 如图,反比例函数 y=kx的图象经过点 P,则 k= -6 .
1.反比例函数 y=-3x的大致图象是( B )
2.关于反比例函数 y=-2x的图象,下列说法正确的是( C )
A.经过点(-1,-2)
B.无论 x 取何值时,y 随 x 的增大而增大
A.-1 C.-3
B.-2 D.-4
7.关于反比例函数 y=-2x,下列说法正确的是( D ) A.图象过点(1,2) B.图象在第一、三象限 C.当 x>0 时,y 随 x 的增大而减小 D.当 x<0 时,y 随 x 的增大而增大 8.(张家界中考)在同一平面直角坐标系中,函数 y=mx+m(m≠0)与 y=mx (m≠0)的图象可能是( D )
数学 九年级 上册•X
第1章 反比例函数
1.2 反比例函数的图象与性质 第2课时 y=k╱x(k<0)的图象与性质

高中数学(苏教版必修一)教师用书第1章 1.2 第2课时 全集、补集 Word版含解析

高中数学(苏教版必修一)教师用书第1章 1.2 第2课时 全集、补集 Word版含解析

第课时全集、补集
.了解全集与空集的意义,理解补集的含义.(重点)
.能在给定全集的基础上求已知集合的补集.(难点)
[基础·初探]
教材整理补集、全集的概念
阅读教材思考至例,完成下列问题.
.补集
()定义:设,由

的所有元素组成的集合称为的子集的补集,记为
中不属于

(读作“在中的补集”).
()符号表示


{

}∉
,且

()图形表示:
图--
.全集我们所要研究的各个集合
如果集合包含
,那么这时可以看做一个全集,全
集通常记作.
.判断(正确的打“√”,错误的打“×”)
()一个集合的补集中一定含有元素.( )
()研究在中的补集时,必须是的子集.( )
()一个集合的补集的补集是其自身.( )
【答案】()×()√()√
.={-<<},集合={<<},则∁=.【解析】根据补集的定义,所求为在中但不在中的元素组成的集合,所以
∁={-<≤}.【答案】{-<≤}
[小组合作型]
()已知集合={-≤≤},集合={-<<或<≤},则∁等于;
()已知集合={∈≤},={小于的正奇数},={小于的素数},则∁=,∁=.
【精彩点拨】()利用数轴将集合表示出来再求补集;
()利用列举法表示出全集,集合,,再求,的补集.
【自主解答】()在数轴上表示出全集,集合,如图所示,根据补集的概念可知∁={-≤≤-或≤≤}.
()={},
因为={小于的正奇数}={},所以∁={}.
因为={小于的素数}={},所以∁={}.
【答案】(){-≤≤-或≤≤}
(){} {}。

2019-2020新人教版化学必修1导学讲义:1.2.第2课时气体摩尔体积

2019-2020新人教版化学必修1导学讲义:1.2.第2课时气体摩尔体积

第2课时气体摩尔体积课程目标1. 了解气体摩尔体积的含义。

2.掌握标准状况下有关气体摩尔体积的计算。

3 •理解阿伏加德罗定律及其简单计算。

图说考点,[裁响内重」、——I ——,;气怵摩尔休积;衍屆枫兀 匸—22.4 L ・nwl 1: I 〕—一 ―丁…」冏决加砲頑帝啟/r. f\代J■ ------ -- ------------------- '\ ___ __ i[新知预习]1•影响物质体积大小的因素离这三个因素。

2•阿伏加德罗定律⑴同温同压下,相同体积的任何气体都含有相同数目的分子。

⑵影响气体体积的因素有气体的物质的量、温度和压强。

— 3•气体摩尔体积—单拉囘物质的就的弋体所占的画舸*圧硝温度匣竺;■压强回迎也,吒捧摩尔 14积约为画224 L*nui ]1(1) 物质体积的大小取决于构成这种物质的粒子数目、粒子的大小和 粒子之间的距不同周体 粒子数目相同[W1「或液体■ 休积同不同休积3相同气体摩尔休积⑵[即时性自测]1 •判断正误,正确的打错误的打“X”(1) 在相同条件下,1 mol 任何物质的体积均相同( )(2) 同温同压下,1 mol 气体的体积均为22.4 L( )(3) 标准状况下,1 mol 任何物质的体积都约为22.4 L( )(4) 两种气体分子的分子数相同,体积也相同( )(5) 同温同压下,相同物质的量的气体的体积相同( )答案:(1)X (2) X (3) X (4) X (5) V2•气体的体积主要由以下哪些因素决定()①气体分子的直径②气体物质的量的多少③气体分子间的平均距离④气体分子的相对分子质量A .①②B .①③C.②③ D .②④解析:气体的体积主要取决于气体分子数和分子间平均距离。

答案:C3. 下列有关气体摩尔体积的描述中正确的是()A .一定条件下,单位物质的量的气体所占的体积就是气体摩尔体积B .通常状况下的气体摩尔体积约为22.4 LC. 标准状况下的气体摩尔体积约为22.4 LD. 相同物质的量的气体,摩尔体积也相同解析:气体摩尔体积在标准状况下约为22.4 L mol -1, B、C均不正确;气体摩尔体积与温度、压强有关,故 D 不正确。

人教版高中数学选修2-2学案:第一章1.2第二课时导数的运算法则

人教版高中数学选修2-2学案:第一章1.2第二课时导数的运算法则

第二课时导数的运算法例预习课本P15~ 18,思虑并达成以下问题(1)导数的四则运算法例是什么?在使用运算法例时的前提条件是什么?(2)复合函数的定义是什么,它的求导法例又是什么?[新知初探 ]1.导数的四则运算法例(1)条件: f(x), g(x)是可导的.(2)结论:① [f(x) ±g(x)] =′f′(x)±g′(x).② [f (x)g(x)] =′ f′(x)g(x)+ f(x)g′(x).③f x′=f xg x - f x g x(g(x) ≠ 0).g x2[g x[点睛 ]应用导数公式的注意事项(1)两个导数的和差运算只可推行到有限个函数的和差的导数运算.(2)两个函数可导,则它们的和、差、积、商(商的分母不为零 )必可导.(3)若两个函数不行导,则它们的和、差、积、商不必定不行导.(4)对于较复杂的函数式,应先进行适合的化简变形,化为较简单的函数式后再求导,可简化求导过程.2.复合函数的求导公式(1)复合函数的定义:①一般形式是 y= f(g( x)).②可分解为 y= f(u)与 u= g(x),此中 u 称为中间变量.(2)求导法例:复合函数y= f (g(x))的导数和函数y= f(u), u= g(x)的导数间的关系为:y x′= y u′·u x′.[小试身手 ]1.判断 (正确的打“√”,错误的打“×”)(1) f′(x)=2x,则 f(x)= x2 .()(2)函数 f(x)= xe x的导数是 f′(x)=e x(x+ 1). ()(3)函数 f(x)= sin(- x)的导数为 f′(x)= cos x. ()答案: (1) × (2) √ (3) ×2.函数 y = sin x ·cos xA . y ′= cos 2x + sin 2xC . y ′= 2cos x ·sin x答案: B的导数是()B . y ′= cos 2xD . y ′= cos x ·sin x3.函数 y = xcos x - sin x 的导数为 ________.答案: - xsin x4.若 f(x)= (2x + a)2,且 f ′(2)= 20,则 a = ________.答案: 1利用导数四则运算法例求导[典例 ] 求以下函数的导数:2+ log 3x ; (2)y = x 3 x(3)y = cos x(1) y = x ·e ;x .解 ′= 2+ log =′ 2 ) ′+ (log′ [ ] (1) y (x 3x)(x 3x) = 2x + 1.xln 33 x 3x3 x′′= · ) ′= ( x) ′·e+x· )(2) y(x e(e= 3x 2·e x +x 3 ·e x = e x (x 3+ 3x 2). (3) y ′= cos x ′= xx - cos x x2xx - x ·sin x - cos x xsin x + cos x= 2 =- 2. xx求函数的导数的策略(1)先划分函数的运算特色,即函数的和、差、积、商,再依据导数的运算法例求导数.(2) 对于三个以上函数的积、商的导数,挨次转变为“两个 ”函数的积、商的导数计算.[活学活用 ]求以下函数的导数:x(1) y = sin x - 2x 2; (2)y =cos x ·ln x ; (3) y = sin ex .解: (1)y ′= (sin x - 2x 2) ′= (sin x) ′- (2x 2) ′= cos x - 4x. (2) y ′= (cos x ·ln x) ′= (cos x) ′·x +ln cos x ·(ln x) ′=- sin x ·ln x + cos xx.e xxx - e x x(3) y ′= sin x ′=sin 2x = e x ·sin x - e x ·cos x e x x - cosx2 =2sin xsin x复合函数的导数运算[典例 ] 求以下函数的导数:(1) y = 1 2; (2)y = e sin(ax +b);1- 2x(3) y = sin 2 2x +π3 ; (4)y = 5log 2(2x + 1).[解 ] (1)设 y =u - 1, u = 1- 2x 2,2则 y ′= (u -12) ′ -(12x2) ′= -21u - 32 ·(- 4x)=-1 23 23.(1- 2x )-2(- 4x)= 2x(1- 2x )- 22(2) 设 y = e u , u = sin v , v = ax + b ,则 y x ′= y u ′·u v ′·v x ′= e u ·cos v ·asin(ax +b) .= acos(ax + b) ·e(3) 设 y = uπ2, u = sin v , v =2x + ,3则 y x ′= y u ′·u v ′·v x ′= 2u ·cos v ·22π= 4sin vcos v = 2sin 2v = 2sin 4x + 3 .(4) 设 y = 5log 2 u , u = 2x + 1,则 y ′= 5(log 2u) ′·x +(21) ′= 10 = 10 .uln 2 x +1. 求复合函数的导数的步骤2. 求复合函数的导数的注意点(1) 内、外层函数往常为基本初等函数.(2)求每层函数的导数时注意分清是对哪个变量求导, 这是求复合函数导数时的易错点.[活学活用 ]求以下函数的导数:(1) y = (3x - 2)2 ; (2) y = ln(6x + 4);(3) y = e 2x +1;(4)y = 2x - 1;π; (6)y = cos 2x.解: (1)y ′= 2(3x - 2) ·(3x -2) ′= 18x - 12;13;(2) y ′= 6x + 4·(6x + 4) =′3x + 2(3) y ′= e 2x + 1·(2x + 1) ′=2e 2x +1;(4) y ′= 1 ′=1. ·(2x - 1) 2x - 1 2 2x - 1π ππ(5) y ′= cos 3x - 4 ·3x - 4 ′=3cos 3x - 4 .(6) y ′= 2cos x ·(cos x) ′=- 2cos x ·sin x =- sin 2x.与切线相关的综合问题2π[典例 ]处的切线斜率为 ________.(1) 函数 y = 2cos x 在 x =12(2) 已知函数 f(x)= ax 2+ ln x 的导数为 f ′(x),①求 f(1)+ f ′(1).②若曲线 y = f (x)存在垂直于 y 轴的切线,务实数a 的取值范围.[分析 ] (1) 由函数 y = 2cos 2x = 1+ cos 2x ,得 y ′= (1+ cos 2x) ′=- 2sin 2x ,所以函数在π 2sinπ=处的切线斜率为-2 × =-1.x1212答案:-1(2) 解: ①由题意,函数的定义域为(0,+ ∞),由 f( x)= ax 2+ ln x ,得 f ′(x)= 2ax + 1,x 所以 f(1)+ f ′(1)= 3a + 1.② 因为曲线 y = f(x)存在垂直于y 轴的切线, 故此时切线斜率为0,问题转变为在 x ∈ (0,+∞)内导函数f ′(x)= 2ax + 1存在零点,x即 f ′(x)= 0?2ax + 1x = 0 有正实数解,(5) y = sin 3x - 4即 2ax 2=- 1 有正实数解,故有 a<0 ,所以实数 a 的取值范围是 (-∞, 0).对于函数导数的应用及其解决方法(1) 应用:导数应用主要有:求在某点处的切线方程,已知切线的方程或斜率求切点,以及波及切线问题的综合应用.(2) 方法:先求出函数的导数,若已知切点则求出切线斜率、切线方程﹔若切点未知,则先设出切点,用切点表示切线斜率,再依据条件求切点坐标.总之,切点在解决此类问题时起着至关重要的作用.[活学活用 ]若存在过点 (1,0) 的直线与曲线y = x 3 和 y = ax 2+15都相切,则 a 的值为 ()4 x - 92521A .- 1 或- 64B .- 1 或 4C .- 7或- 25D .-7或 74 644分析:选A 设过点 (1,0)的直线与曲线 y = x 3 相切于点 (x 0, x 03),则切线方程为y - x 03= 3x 02(x - x 0),即 y = 3x 02x - 2x 03.又点 (1,0)在切线上,代入以上方程得 3x 0= 0 或 x 0= .2当 x 0= 0 时,直线方程为 y = 0.21525由 y = 0 与 y = ax +4 x - 9 相切可得 a =- 64.当 x 0= 3时,直线方程为 y = 27x - 27.24 42727215由 y = 4 x - 4 与 y = ax + 4 x - 9 相切可得 a =- 1.层级一学业水平达标1.已知函数 f (x)= ax 2 +c ,且 f ′(1)= 2,则 a 的值为 ()A . 1B. 2C .- 1D . 0分析: 选A∵ f(x)= ax 2+ c ,∴ f ′(x)= 2ax ,又∵ f ′(1)= 2a ,∴ 2a = 2,∴ a = 1.2.函数2y = (x + 1) (x - 1)在x = 1 处的导数等于()A . 1B . 2C . 3D . 4分析:选 D y ′= [(x + 1) 2] ′(x - 1)+ (x + 1) 22= 3x 2+ 2x(x - 1) ′= 2(x + 1) ·(x - 1) + (x + 1) - 1,∴ y ′|== 4.x 13.曲线 f(x)= xln x 在点 x = 1 处的切线方程为 ( )A . y = 2x + 2B . y = 2x - 2C . y = x - 1D . y = x + 1分析:选C∵ f ′(x)= ln x + 1,∴ f ′(1)= 1,又 f(1) =0,∴在点 x = 1 处曲线 f(x)的切线方程为 y = x - 1.4. 已知物体的运动方程为s = t 2+ 3(t 是时间, s 是位移 ),则物体在时辰 t = 2 时的速度t为 ()19 17 A. 4B. 415 13C. 4D. 4分析:选D33 13∵ s ′= 2t -t ,∴ s ′|t2= 4-4=4=5.设曲线 y = ax - ln(x + 1)在点 (0,0) 处的切线方程为 y = 2x ,则 a = ()A . 0B . 1C . 2D . 3分析:选Dy ′= a - 1,由题意得 y ′|x =0= 2,即 a - 1= 2,所以 a =3.x + 13- x + 3 在点 (1,3)处的切线方程为 ________.6.曲线 y = x22分析:∵ y ′= 3x - 1,∴ y ′x1= 3×1 - 1= 2.=∴切线方程为 y - 3= 2(x -1) ,即 2x - y + 1= 0.答案: 2x - y + 1= 07.已知曲线y 1= 2- 1与 y 2= x 3- x 2+ 2x 在 x =x 0 处切线的斜率的乘积为3,则 x 0=x ________.分析: 由题知 y ′=12处切线的斜率分别为12= 3x - 2x + 2,所以两曲线在 x = x2,1x , y ′2x 02-2x 0+ 2,所以3x 02- 2x 0+ 23x 02= 3,所以 x 0= 1.x 0答案: 1ππ8.已知函数 f (x)= f ′4 cos x + sin x ,则 f 4 的值为 ________.π分析: ∵ f ′(x)=- f ′4 sin x + cos x ,ππ 2 2∴ f ′4 =- f ′4 ×2 + 2 ,π得 f ′4 = 2- 1.∴ f( x)= ( 2- 1)cos x + sin x.π∴ f 4 = 1. 答案: 19.求以下函数的导数:2e x + 1x;(1) y = xsin x ; (2)y = e - 1x + cos x(3) y = x + sin x ; (4)y = cos x ·sin 3x.22解: (1)y ′= (x) ′sinx + x(sin x) ′= sin 2 x + x ·2sin x ·(sin x) ′=sin 2x + xsin 2x.(2) y ′= e x + 1 ′ e x - 1- e x + 1e x - 1 ′x 1 2e -- 2e x .=x- 12ex + cos x ′ x + sin x - x + cos xx + sin x ′(3) y ′=x + sin x2=1- sin xx + sin x -x + cos x1+ cos xx + sin x 2- xcos x -xsin x + sin x - cos x - 1 = x + sin x 2.(4) y ′= (cos x ·sin 3x) ′= (cos x) ′sinx3+ cos x(sin 3x) ′=- sin xsin 3x + 3cos xcos 3x= 3cos xcos 3x - sin xsin 3x.10.偶函数 f(x)= ax 4+ bx 3+ cx 2+ dx + e 的图象过点 P(0,1),且在 x = 1 处的切线方程为y =x - 2,求 f(x)的分析式.解: ∵ f(x)的图象过点 P(0,1),∴ e = 1.又∵ f( x)为偶函数,∴ f(- x)= f(x).故 ax 4+ bx 3+ cx 2+ dx + e = ax 4- bx 3+ cx 2- dx + e.∴ b = 0, d = 0.∴ f(x)= ax 4+ cx 2+ 1. ∵函数 f(x)在 x = 1 处的切线方程为y = x - 2,∴切点为 (1,- 1).∴ a + c + 1=- 1.∵f′(x)|x=1= 4a+ 2c,∴ 4a+ 2c= 1.∴a=5, c=-9.225492∴函数 f(x)的分析式为 f (x)=x- x + 1.22层级二应试能力达标1.若函数 f(x)= ax4+ bx2+ c 知足 f′(1)= 2,则 f′(-1)等于 ()A.- 1B.- 2C. 2D. 0分析:选B∵ f′(x)= 4ax3+ 2bx 为奇函数,∴ f′(-1)=- f′(1)=- 2. 2.曲线 y= xe x-1在点 (1,1)处切线的斜率等于 ()A. 2e B. eC. 2D. 1分析:选C函数的导数为 f′(x)= e x-1+ xe x-1= (1+ x)e x-1,当 x= 1 时, f′(1)= 2,即曲线x-1在点 (1,1)处切线的斜率k= f′(1)= 2,应选 C. y= xe3.已知函数 f (x)的导函数为 f′(x),且知足 f(x)= 2xf ′ (e)+ ln x,则 f′ (e)= ()- 1B.- 1A. e- 1D.- eC.- e分析:选C∵ f(x)= 2xf′(e)+ ln x,∴f′(x)= 2f′(e)+1 x,∴f′(e)= 2f′(e)+1,解得 f′(e)=-1,应选 C.e e4.若 f(x)= x2- 2x- 4ln x,则 f′(x)> 0的解集为 ()A. (0,+∞ )B. (- 1,0)∪ (2,+∞) C. (2,+∞ )D. (- 1,0)分析:选C∵ f(x)= x2- 2x- 4ln x,∴f′(x)= 2x- 2-4x> 0,x+x-或 x> 2,整理得> 0,解得- 1< x< 0x又因为 f(x)的定义域为 (0,+∞),所以 x> 2.5.已知直线y= 2x- 1 与曲线 y= ln(x+ a)相切,则a 的值为 ________________.1分析:∵ y= ln(x+ a),∴ y′=,设切点为(x0,y0),1则 y0= 2x0- 1, y0= ln(x0+ a),且x0+a= 2,解之得 a=1ln 2. 2答案:1ln 22x在点 (1,1)的切 l, l 上的点到x2+ y2+ 4x+ 3= 0 上的点的6.曲 y=2x-1近来距离是 ____________.分析: y′=-1|y- 1=- (x- 1),即 x+ y- 2 2, y′x=1=- 1,∴切方程= 0,心 (- 2,0)到直的距离d= 2 2,的半径 r= 1,∴所求近来距离 2 2- 1.答案: 2 2-17.已知曲 f (x)= x3+ ax+ b 在点P(2,- 6)的切方程是13x- y- 32= 0.(1) 求a, b 的;1(2)假如曲 y= f(x)的某全部与直 l:y=-4x+ 3 垂直,求切点坐与切的方程.解: (1)∵ f(x)= x3+ ax+ b 的数 f′(x)= 3x2+ a,由意可得f′(2)= 12+ a=13, f(2)= 8+ 2a+ b=- 6,解得 a= 1, b=- 16.1(2)∵切与直 y=-4x+ 3 垂直,∴切的斜率k= 4.切点的坐(x0, y0),2f′(x0)= 3x0+ 1= 4,∴ x0=±1.由 f( x)= x3+x- 16,可得 y0= 1+ 1- 16=- 14,或 y0=- 1- 1- 16=- 18.切方程y= 4(x- 1)- 14 或 y= 4(x+ 1)- 18.即 y= 4x- 18 或 y= 4x- 14.8. f n(x)= x+ x2+⋯+ x n- 1, x≥0, n∈ N, n≥2.(1) 求 f n′ (2);明:在 0,2内有且有一个零点(a,且<12n(2)f n(x)n)a n-<n+13023.解: (1)由 f n′(x)= 1+ 2x+⋯+ nx n-1.所以 f n′ (2)= 1+ 2×2+⋯+ (n- 1)2n-2+n·2n-1,①2f n′ (2)= 2+ 2×22+⋯+ (n- 1)2n-1+ n·2n,②①-②得,- f n′ (2)= 1+ 2+ 22+⋯+ 2n-1- n·2n=1- 2n n n- n·2= (1- n) ·2- 1,1- 2所以 f n′ (2)= (n-1)n ·2+1.(2)因 f(0)=- 1< 0,22nn 231-3- 1=1-2×2n2×22> 0,f3=23≥ -3 1-13因 x≥0, n≥2.所以 f n(x)= x+ x2+⋯+ x n- 1 增函数,所以 f n(x)在 0,2内增,3所以 f n在 0,2内有且有一个零点 a n(x)3.n+ 1x- x因为 f n(x)=-1,n+1所以 0= f n(a n) =a n- a n- 1,1- a n由此可得11n+ 11,故12 a n=+a n>2< a n< .22231 1 n+112 n+1n所以 0< a n-22=2a n<2×3=3n+ 1.。

高中数学 第一章 数列 1.2 等差数列 1.2.2 第2课时 等差数列的综合问题学案(含解析)北师

高中数学 第一章 数列 1.2 等差数列 1.2.2 第2课时 等差数列的综合问题学案(含解析)北师

第2课时等差数列的综合问题知识点一等差数列的性质[填一填](1)若{a n}为等差数列,则距首末距离相等的两项之和都相等,且等于首末两项之和,即a1+a n=a2+a n-1=a3+a n-2=….(2)若{a n}为等差数列,m,n,p,q∈N+,且m+n=p+q,则a m+a n=a p+a q.(3)若{a n}为等差数列,m,k,n成等差数列,则a m,a k,a n也成等差数列(m,k,n∈N+),即若m+n=2k,则a m+a n=2a k.[答一答]1.对于性质:若{a n}为等差数列,m,n,p,q∈N+,且m+n=p+q,则a m+a n=a p +a q,请给出证明.提示:证明:设{a n}的公差为d,则a m=a1+(m-1)d,a n=a1+(n-1)d,a p=a1+(p-1)d,a q=a1+(q-1)d,∴a m+a n=2a1+(m+n-2)d,a p+a q=2a1+(p+q-2)d,∵m+n=p+q,∴a m+a n=a p+a q.知识点二 等差数列前n 项和的性质[填一填](1)等差数列前n 项和公式S n =na 1+n (n -1)2d 可写成S n =d2n 2+⎝⎛⎭⎫a 1-d 2n ,即S n =An 2+Bn (A ,B 为常数)的形式,当A ≠0时(即d ≠0),S n 是关于n 的二次函数,其图像是抛物线y =Ax 2+Bx 上的一群孤立的点.(2)若{a n },{b n }都是等差数列,则{pa n +qb n }(p ,q 为常数)是等差数列.(3)若等差数列{a n }的公差为d ,前n 项和为S n ,则数列S k ,S 2k -S k ,S 3k -S 2k ,…(k ∈N +)也是等差数列,其公差等于k 2d .(4)若等差数列{a n }的项数为2n (n ∈N +),则S 2n =n (a n +a n +1)(a n ,a n +1为中间两项),且S偶-S 奇=nd ,S 偶S 奇=a n +1a n.(5)若等差数列{a n }的项数为2n -1(n ∈N +),则S 2n -1=(2n -1)a n (a n 为中间项),且S 奇-S偶=a n ,S 偶S 奇=n -1n .[答一答]2.等差数列前n 项和的“奇偶”性质:在等差数列{a n }中,公差为d ,①若数列共有2n 项,则S 2n =n (a n +a n +1),S 偶-S 奇=nd ,S 偶S 奇=a n +1a n ;②若数列共有2n +1项,则S 2n+1=(2n +1)a n +1,S 偶-S 奇=-a n +1,S 偶S 奇=n(n +1).请给出证明.提示:证明:①若数列共有2n 项,则S 2n =2n (a 1+a 2n )2=2n (a n +a n +1)2=n (a n +a n +1),S 偶=n (a 2+a 2n )2=2na n +12=na n +1,S 奇=n (a 1+a 2n -1)2=2na n2=na n ,S 偶-S 奇=na n +1-na n =n (a n +1-a n )=nd , S 偶S 奇=a n +1a n ;②若数列共有2n +1项,则S 2n +1=(2n +1)(a 1+a 2n +1)2=2(2n +1)a n +12=(2n +1)a n +1,S 偶=n (a 2+a 2n )2=2na n +12=na n +1,S 奇=(n +1)(a 1+a 2n +1)2=2(n +1)a n +12=(n +1)a n +1,S 偶-S 奇=-a n +1, S 偶S 奇=n(n +1).1.三数成等差数列的设法为:a -d ,a ,a +d ,其中d 为公差;四数成等差数列的设法为:a -3d ,a -d ,a +d ,a +3d ,其公差为2d .2.会用方程的思想处理等差数列的有关问题.等差数列的通项公式与前n 项和公式涉及五个量:a 1,d ,n ,a n ,S n ,知道其中任意三个就可以通过列方程组求出另外两个(俗称“知三求二”).解等差数列问题的基本方法是方程法,在遇到一些较复杂的方程组时,要注意整体代换,使运算更加迅速和准确.类型一 等差数列的性质的应用【例1】 在等差数列{a n }中,(1)若a 3+a 4+a 5+a 6+a 7=350,则a 2+a 8=________;(2)若a 2+a 3+a 4+a 5=34,a 2·a 5=52,且a 4<a 2,则a 5=________; (3)若a 3=6,则a 1+2a 4=________.【解析】 若设出a 1,d 从通项公式入手,运算过程较为繁琐,若能利用性质,可使问题简化.(1)∵a 3+a 7=a 4+a 6=2a 5=a 2+a 8,又由已知a 3+a 4+a 5+a 6+a 7=350,∴5a 5=350, ∴a 5=70,∴a 2+a 8=2a 5=140.(2)∵a 2+a 3+a 4+a 5=34,又由等差数列的性质知a 3+a 4=a 2+a 5,∴2(a 2+a 5)=34,∴a 2+a 5=17.又a 2·a 5=52,联立⎩⎪⎨⎪⎧a 2+a 5=17a 2·a 5=52,解之得⎩⎪⎨⎪⎧a 2=4a 5=13,或⎩⎪⎨⎪⎧a 2=13a 5=4,又∵a 4<a 2,∴a 4-a 2=2d <0, ∴d <0,∴a 2>a 5,∴a 5=4.(3)∵a 3=6,∴a 1+2a 4=a 1+a 3+a 5=a 3+(a 1+a 5)=a 3+2a 3=3a 3=18. 【答案】 (1)140 (2)4 (3)18规律方法 等差数列具有一些性质,例如当m +n =p +q (m ,n ,p ,q ∈N +)时,有a m +a n =a p +a q ,特别地,当m +n =2k (m ,n ,k ∈N +)时,有a m +a n =2a k ;a n =a m +(n -m )d 等等.灵活运用这些性质,可大大简化解题过程.【例2】 在等差数列{a n }中,已知a 2+a 5+a 8=9,a 3a 5a 7=-21,求数列的通项公式. 【思路探究】 要求通项公式,需要求出首项a 1及公差d ,由a 2+a 5+a 8=9和a 3a 5a 7=-21直接求解很困难,这就促使我们转换思路.如果考虑到等差数列的性质,注意到a 2+a 8=2a 5=a 3+a 7,问题就容易解决了.【解】 a 2+a 5+a 8=9,a 3a 5a 7=-21,又由等差数列的性质知a 2+a 8=a 3+a 7=2a 5,∴a 5=3, ∴a 2+a 8=a 3+a 7=6,① 又a 3a 5a 7=-21, ∴a 3a 7=-7,②由①②解得a 3=-1,a 7=7或a 3=7,a 7=-1. ∴a 3=-1,d =2或a 3=7,d =-2. 由通项公式的变形公式a n =a 3+(n -3)d , 得a n =2n -7或a n =-2n +13.规律方法 若m +n =p +q ,则a m +a n =a p +a q ,此性质要求等式两边必须是两项和的形式,否则不成立,如a 10≠a 2+a 8,只能是a 2+a 8=a 3+a 7,使用时应切记它的结构特征.在等差数列{a n }中,a 3+a 7=36,则a 2+a 4+a 5+a 6+a 8=90. 解析:a 3+a 7=a 2+a 8=a 4+a 6=2a 5=36, ∴a 2+a 4+a 5+a 6+a 8==36+36+18=90.类型二 等差数列前n 项和的性质【例3】 项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求这个数列的中间项及项数.【思路探究】 根据等差数列中的奇数项依次仍成等差数列,偶数项依次仍成等差数列可求解.【解】 设等差数列{a n }共有(2n +1)项,则奇数项有(n +1)个,偶数项有n 个,中间项是第(n +1)项,即a n +1,所以S 奇S 偶=12(a 1+a 2n +1)·(n +1)12(a 2+a 2n )·n=(n +1)a n +1na n +1=n +1n =4433=43.解得n =3.又因为S 奇=(n +1)·a n +1=44,所以a n +1=11. 故这个数列的中间项为11,共有2n +1=7项.规律方法 在等差数列{a n }中,(1)若项数为2n +1(n ∈N +),则S 奇S 偶=n +1n ,其中S 奇=(n +1)a n +1,S 偶=na n +1;(2)若数列的项数为2n (n ∈N +),则S 偶-S 奇=nd .【例4】 已知等差数列{a n }的前10项和为30,它的前30项和为210,则前20项和为( )A .100B .120C .390D .540【解析】 方法一:设等差数列{a n }的前n 项和为S n =na 1+n (n -1)2d .由题意,得⎩⎪⎨⎪⎧10a 1+45d =30,30a 1+435d =210,解得⎩⎨⎧a 1=65,d =25.∴S n =65n +n (n -1)2·25=15(n 2+5n ).∴S 20=15×(202+5×20)=100.方法二:设S n =An 2+Bn ,由题意,得⎩⎪⎨⎪⎧100A +10B =30,900A +30B =210,解得⎩⎪⎨⎪⎧A =15,B =1.∴S n =15n 2+n .∴S 20=15×202+20=100.方法三:由题意,知S 10,S 20-S 10,S 30-S 20也是等差数列. ∴2(S 20-S 10)=S 10+S 30-S 20,即S 20=13(3S 10+S 30)=S 10+13S 30=100.【答案】 A规律方法 一个等差数列,从首项起,分成项数相等的若干段后,各段内诸项之和组成新的等差数列.若每段含有n 项,则新公差是原公差的n 2倍.(1)已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为3. (2)在等差数列{a n }中,a 1=-2 017,其前n 项和为S n ,若S 1010-S 88=2,则S 2 017的值等于-2_017.解析:(1)由等差数列前n 项和的性质,得S 偶-S 奇=102×d (d 为该数列的公差),即30-15=5d ,解得d =3.(2)方法一:设等差数列{a n }的公差为d ,由S 1010-S 88=2得-2 017×10+10×92d10--2 017×8+8×72d8=2,解得d =2,所以S 2 017=-2 017×2 017+2 017×2 0162×2=-2 017.方法二:由等差数列前n 项和的性质可知,数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列,设其公差为d ,则由S 1010-S 88=2可得2d =2,即d =1.又S 11=-2 017,所以S 2 0172 017=-2 017+(2 017-1)×1=-1,所以S 2 017=-2 017.类型三 等差数列的综合应用题【例5】 已知数列{a n }是等差数列. (1)若a m =n ,a n =m (m ≠n ),求a m +n ; (2)若S m =n ,S n =m (m >n ),求S m +n .【思路探究】 (1)由通项公式或前n 项和公式得a 1和d 的关系,通过解方程组求得a 1和d ,进而求得a m +n 和S m +n .(2)利用等差数列的性质可使问题简化.【解】 设首项为a 1,公差为d , (1)解法一:由a m =n ,a n =m ,得⎩⎪⎨⎪⎧a 1+(m -1)d =n ,a 1+(n -1)d =m ,解得a 1=m +n -1,d =-1.∴a m +n =a 1+(m +n -1)d =m +n -1-(m +n -1)=0. 解法二:由a m =n ,a n =m ,得d =n -mm -n =-1,∴a m +n =a m +(m +n -m )d =n +n ×(-1)=0. (2)解法一:由已知可得 ⎩⎪⎨⎪⎧m =na 1+n (n -1)2d ,n =ma 1+m (m -1)2d ,解得⎩⎪⎨⎪⎧a 1=n 2+m 2+mn -m -nmn ,d =-2(m +n )mn .∴S m +n =(m +n )a 1+(m +n )(m +n -1)2d =-(m +n ).解法二:∵{a n }是等差数列, ∴可设S n =An 2+Bn .则⎩⎪⎨⎪⎧Am 2+Bm =n ,①An 2+Bn =m .②①-②得A (m 2-n 2)+B (m -n )=n -m , ∵m ≠n ,∴A (m +n )+B =-1.∴S m +n =A (m +n )2+B (m +n )=-(m +n ).规律方法 (1)灵活运用性质求等差数列中的量,可以简化运算,提高解题速度及准确性;(2)在应用性质:若m +n =l +k ,则a m +a n =a l +a k 时,首先要找到项数和相等的条件,然后根据需要求解,解决此类问题要有整体代换的意识.数列{a n }满足a 1=1,a n +1=a n +2,且前n 项和为S n . (1)求数列{S nn }的前n 项和T n ;(2)求数列{1T n}的前n 项和.解:(1)由a n +1=a n +2,得数列{a n }是等差数列,且a 1=1,公差d =2, 从而a n =2n -1,∴S n =n (a 1+a n )2=n 2.∴S nn =n ,从而T n =n (n +1)2. (2)由(1)有1T n =2n (n +1)=2(1n -1n +1),其前n 项和为2[(11-12)+(12-13)+(13-14)+…+(1n -1n +1)]=2nn +1.——多维探究系列—— 特殊值法解等差数列问题特殊值法在解一些选择题和填空题中经常用到,就是通过取一些特殊值、特殊点、特殊函数、特殊数列、特殊图形等来求解或否定问题的目的.用特殊值法解题时要注意,所选取的特例一定要简单,且符合题设条件.【例6】 在等差数列{a n }中,a 1=1,前n 项和S n 满足条件S 2n S n =4n +2n +1,n =1,2,…,则a n =________.【思路分析】 因S n =na 1+n (n -1)2d =n +n (n -1)2d ,则S 2n =2na 1+2n (2n -1)2d =2n +n (2n -1)d ,故S 2n S n =2n +n (2n -1)d n +n (n -1)2d=2(2dn +2-d )dn +2-d =4n +2n +1, 解得d =1,则a n =n . 【规范解答】 n已知正数数列{a n }对任意p ,q ∈N +,都有a p +q =a p +a q ,若a 2=4,则a 9=( C ) A .6 B .9 C .18D .20解析:解法一:∵a 2=a 1+1=a 1+a 1=4,∴a 1=2,a 9=a 8+1=a 8+a 1=2a 4+a 1=4a 2+a 1=18.解法二:∵a 2=a 1+1=a 1+a 1=4,∴a 1=2,令p =n ,q =1,所以a n +1=a n +a 1,即a n +1-a n =2,∴{a n }是等差数列,且首项为2,公差为2,故a 9=2+(9-1)×2=18.一、选择题1.设S n 是等差数列{a n }的前n 项和,S 5=10,则a 3的值为( C ) A.65B .1C .2D .3 解析:∵S 5=5(a 1+a 5)2=5a 3,∴a 3=15S 5=15×10=2.2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 1=4,则公差d 等于( C ) A .1 B.53C .-2D .3解析:由题意,得6=3×4+3×22d ,解得d =-2.3.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项和S 10等于( C ) A .138 B .135 C .95 D .23解析:设公差为d ,则⎩⎪⎨⎪⎧a 1+d +a 1+3d =4,a 1+2d +a 1+4d =10, 解得a 1=-4,d =3,所以S 10=10a 1+10×92d =95. 二、填空题4.在数列{a n }中,a n =5n -105,则当n =20或21时,S n 取最小值.5.已知{a n }是等差数列,S n 为其前n 项和,n ∈N +,若a 3=16,S 20=20,则S 10的值为110.解析:设等差数列{a n }的首项为a 1,公差为d . a 3=a 1+2d =16,S 20=20a 1+20×192d =20. ∴⎩⎪⎨⎪⎧ a 1+2d =16,2a 1+19d =2.解得⎩⎪⎨⎪⎧ a 1=20,d =-2.∴S 10=10a 1+10×92d =200-90=110. 三、解答题6.等差数列{a n }中,a 2+a 3=-38,a 12=0,求S n 的最小值以及相对应的n 值. 解:解法一:(单调性法)设等差数列{a n }的首项为a 1,公差为d ,则有⎩⎪⎨⎪⎧ (a 1+d )+(a 1+2d )=-38a 1+11d =0, 解得⎩⎪⎨⎪⎧ a 1=-22d =2.∴当⎩⎨⎧ a n ≤0a n +1≥0, 即⎩⎪⎨⎪⎧-22+2(n -1)≤0-22+2n ≥0时,S n 有最小值,解得11≤n ≤12, ∴当n =11或12时,S n 取得最小值,最小值为S 11=S 12=-132. 解法二:(配方法)由解法一得⎩⎪⎨⎪⎧a 1=-22d =2,∴S n =-22n +n (n -1)2×2=n 2-23n =⎝⎛⎭⎫n -2322-5294, ∴当n =11或12时,S n 取得最小值,最小值为S 11=S 12=-132. 解法三:(邻项比较法)由解法二得S n =n 2-23n ,又由⎩⎪⎨⎪⎧ S n ≤S n -1,S n ≤S n +1,得⎩⎪⎨⎪⎧n 2-23n ≤(n -1)2-23(n -1),n 2-23n ≤(n +1)2-23(n +1), 解得11≤n ≤12,故S 11=S 12, ∴当n =11或12时,S n 取得最小值,最小值为S 11=S 12=-132.。

第一章 1.2 第二课时 复合函数求导及应用

第一章   1.2   第二课时   复合函数求导及应用
sin 2x)·(2x)′=2xcos 2x-2x2sin 2x.
答案:B
返回
3.已知f(x)=ln(3x-1),则f′(1)=________.
1 3 解析:f′(x)= · (3x-1)′= , 3x-1 3x-1 3 ∴f′(1)= . 2
3 答案: 2
返回
4.设曲线y=eax在点(0,1)处的切线与直线x+2y+1=0垂
y对u的导数与u对x ,即 y 对 x 的导数等于___________________
的导数的乘积 .
返回
[化解疑难] 对复合函数概念的理解 (1)在复合函数中,内层函数的值域必须是外层函数定 义域的子集. (2)对于复合函数, 中间变量应该选择基本初等函数. 判 断一个函数是基本初等函数的标准是: 运用求导公式可直接 求导.
[例 3]
返回
[类题通法] 解决复合函数求导与导数几何意义综合问题的方法 本题正确求出复合函数的导数是前提,审题时注意所给 点是否是切点,挖掘题目隐含条件,求出参数,解决已知经 过一定点的切线问题,寻求切点是解决问题的关键.
返回
[活学活用] 有一把梯子贴靠在笔直的墙上,已知梯子上端下滑的距离 s(单位: m)关于时间 t(单位: s)的函数为 y=s(t)=5- 25-9t2. 7 求函数在 t= 时的导数,并解释它的实际意义. 15
返回
1 1 2 2 2 - 1 - x 1 - x ′ 2 0- 1-x ′ 2 (3)y′= = 1-x2 1-x2 1

2 -2 x1-x
1-x2
x = 2 2 . 1-x 1-x
(4)y′=x′ln(1+x)+x[ln(1+x)]′ x =ln(1+x)+ . 1+x

北师大2024八年级数学下册 1.2 第2课时 直角三角形全等的判定 教案

北师大2024八年级数学下册 1.2 第2课时 直角三角形全等的判定 教案

1.2 直角三角形第1课时直角三角形的性质与判定教学内容第1课时直角三角形的性质与判定课时1核心素养目标1.经历猜想、操作、观察、证明等活动,获得判定直角三角形全等的“斜边、直角边”定理,并运用“斜边、直角边”定理解决问题.2.经历探索直角三角形全等条件的过程,进一步掌握推理证明的方法,发展演绎推理能力.3.有意识地培养学生对文字语言、符号语言和图形语言的转换能力,关注证明过程及其表达的合理性.知识目标1.探索并理解直角三角形全等的判定方法“HL”.2.会用直角三角形全等的判定方法“HL”判定两个直角三角形全等.教学重点探索并理解直角三角形全等的判定方法“HL”.教学难点会用直角三角形全等的判定方法“HL”判定两个直角三角形全等.教学准备课件教学过程主要师生活动设计意图一、情境导入二、探究新知一、创设情境,导入新知问题1 :我们学过哪些判定三角形全等的方法?问题2 :两边分别相等且其中一组等边的对角相等的两个三角形全等吗如果其中一组等边所对的角是直角呢?师生活动:学生举手回答问题.师追问:如何用数学语言来描述两边分别相等且其中一组等边的对角是直角的两个三角形全等吗?二、小组合作,探究概念和性质知识点一:全等三角形的判定和性质问题:如果这两个三角形都是直角三角形,即∠B=∠E = 90°,且AC = DF,BC = EF,现在能判定△ABC≌△DEF吗?设计意图:从学生已有的知识出发,激发学生强烈的好奇心和求知欲.设计意图:教学时,如果有学生提出仿照七年级探索三角形全等条件的方法,通过赋予两边特殊值、画直角三角形、与同伴所画的直角三角形进行比较,进而归纳出结论,教师也应给予鼓励,同时,教师可由此引导学生考虑用尺规一般作出直角三角形,从而转入下面“做一做”环节.做一做:已知一条直角边和斜边,求作一个直角三角形.已知:如图,线段a,c (a<c),直角α.求作:Rt△ABC,使∠C = ∠α,BC = a,AB = c.(1) 先画∠MCN=∠α=90°.(2) 在射线CM上截取CB=a.(3) 以点B为圆心,线段c的长为半径作弧,交射线CN于点A.(4) 连接AB,得到Rt∠ABC.师生活动:学生先独立在纸上画图,然后小组交流想法,保证学生的参与度,最终派代表对问题进行讲解.验证结论:已知:如图,在∠ABC与∠A′B′C′ 中,∠C′ =∠C = 90°,AB = A′B′,AC = A′C′.求证:∠ABC∠∠A′B′C′证明:在∠ABC中,∠∠C=90°,∠ BC2=AB2-AC2 (勾股定理).同理,B'C' 2=A'B' 2-A'C' 2.∠AB=A'B',AC=A'C',∠ BC=B'C'.∠ ∠ABC∠∠A'B'C'( SSS ) .归纳总结;“斜边、直角边”判定方法文字语言:斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).几何语言:设计意图:1.掌握三角形的尺规作图,从实践中体会三角形全等的条件.2.操作探究活动的设计不仅让学生直观地感受了“斜边、直角边”可以确定一个直角三角形的大小和形状,而且也让学生较好地感悟到“斜边、直角边可以判定两个直角三角形全等.3培养学生的识图能力,并规范证明过程的书写格式.设计意图:学生经历了定理的发现、提出和证明的全过程,感受了合情推理与演绎推理的紧密联系.设计意图:培养学生逻辑思维能力,学会用“HL”条件判定三角形全等.典例精析例1如图,AC∠BC,BD∠AD,垂足分别为C,D,AC = BD. 求证BC = AD.证明:∠ AC∠BC,BD∠AD,∠∠C与∠D都是直角.在Rt∠ABC和Rt∠BAD中,AB = BA,AC = BD.∠ Rt∠ABC∠Rt∠BAD (HL).∠ BC = AD.师生活动:教师给出例题后,让学生独立作业,同时分别选派四名同学上黑板演算. 教师巡视,对学生演算过程中的失误及时予以指正,最后师生共同评析.变式1:如图,∠ACB=∠ADB=90°,要证明∠ABC ∠∠BAD,还需一个什么条件?把这些条件都写出来,并在相应的括号内填写出判定它们全等的理由.(1) AD=BC( HL )(2) BD=AC( HL )(3) ∠DAB=∠CBA( AAS)(4) ∠DBA=∠CAB( AAS)师生活动:学生独立思考,然后举手回答问题,老师针对有问题的给与解释,或者大家一起探讨错误的原因.例2 如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相设计意图:巩固所学的“斜边、直角边”定理,使学生对本节课所形成的概念有更深刻的理解.三、当堂练习,巩固所学等,两个滑梯的倾斜角∠B和∠F的大小有什么关系?师生活动:教学时,给几分钟时间先让学生尝试着解决问题,在学生出现思维盲区时,教师给予详细分析,边讲边演示,在思维的激烈碰撞过程中,逐渐形成对“HL”判定方法证明三角形全等解决实际问题的认识.练一练1.如图,已知AD,AF分别是两个钝角∠ABC和∠ABE的高,若AD=AF,AC=AE,求证:BC=BE.证明:∠ AD,AF分别是两个钝角∠ABC和∠ABE的高,且AD=AF,AC=AE,∠ Rt∠ADC ∠ Rt∠AFE (HL).∠ CD=EF.∠ AD=AF,AB=AB,∠ Rt∠ABD∠Rt∠ABF (HL).∠ BD=BF.∠ BD-CD=BF-EF,即BC=BE.三、当堂练习,巩固所学1. 判断两个直角三角形全等的方法不正确的有( )A. 两条直角边对应相等B. 斜边和一锐角对应相等C. 斜边和一条直角边对应相等D. 两个锐角对应相等2.如图,∠ABC中,AB = AC,AD是高,则∠ADB与∠ADC(填“全等”或“不全等”),依设计意图:及时运用知识解决问题,提高学生分析问题和解决问题的能力,增强应用意识、参与意识,巩固所学的“斜边、直角边”定理.设计意图:规范使用“HL”判定方法证明三角形全等的书写格式.在证明两个直角三角形全等时,要防止学生使用“SSA”来证明.设计意图:考查对使用“HL”证明两个直角三角形全等的使用条件的理解.据是(用简写法).3.如图,在∠ABC中,已知BD∠AC,CE∠AB,BD = CE.求证:∠EBC∠∠DCB.能力拓展4. 如图,有一直角三角形ABC,∠C=90°,AC=10 cm,BC=5 cm,一条线段PQ=AB,P、Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时∠ABC才能和∠APQ全等?设计意图:考查对使用“HL”证明两个直角三角形全等的使用条件的运用.板书设计1.2.2 直角三角形的性质与判定“斜边、直角边”判定方法文字语言:斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).几何语言:课后小结。

高中数学人教A选择性必修一第一章 1.2 第2课时 空间向量基本定理的初步应用

高中数学人教A选择性必修一第一章 1.2 第2课时 空间向量基本定理的初步应用

MN BC
1
1 2 25×
= 1100, 2
故异面直线
MN

BC1
所成角的余弦值为
10 10 .
三、求距离(长度)问题
例3 已知平面α⊥平面β,且α∩β=l ,在l上有两点A,B,线段AC⊂α ,线段 BD⊂β ,并且AC⊥l ,BD⊥l,AB=6,BD=24,AC=8,则CD=____2_6___.
又 SA=2 2,所以 SC= SA2+AC2=4 , 因此 cos〈S→C,A→B〉=SS→→CC·AA→→BB=4×4 2=21 , 所以SC与AB所成角的大小为60° .
12345
4.如图,已知▱ABCD中,AD=4,CD=3,∠D=60°, PA⊥平面ABCD,且PA=6,则PC的长为____7____.
→→ AE·DC → →

AE DC
62×2=
6 6
.
故直线
AE

DC
的夹角的余弦值为
6 6.
反思 感悟
求夹角、证明线线垂直的方法 利用数量积定义可得cos〈a,b〉= a·b ,求〈a,b〉的大小,进
|a||b| 而求得线线角,两直线垂直可作为求夹角的特殊情况.
跟踪训练2 在长方体ABCD-A1B1C1D1中,AB=2,BC=B1B=1,M,N分别 是AD,DC的中点.求异面直线MN与BC1所成角的余弦值.
证明 因为—AC→1 =A→B+A→D+—AA→1 =A→B+A→D+13—AA→1 +23—AA→1 =A→B+13—AA→1 +A→D+23—AA→1 =A→B+B→E+A→D+D→F=A→E+A→F, 所以—AC→1 ,A→E,A→F共面,
所以A,E,C1,F四点共面.

2020-2021年中考初中化学一轮复习:专题1.2 对人体吸入的空气和呼出的气体的探究(第2课时)知

2020-2021年中考初中化学一轮复习:专题1.2 对人体吸入的空气和呼出的气体的探究(第2课时)知

中考初中化学一轮复习:专题1.2 对人体吸入的空气和呼出的气体的探究(第2课时)知识归纳总结教案+测试题课题2 化学是一门以实验为基础的科学第2课时对人体吸入的空气和呼出气体的探究呼吸是生命现象的特征之一,在这司空见惯的现象中有什么科学的奥秘呢?(1)二氧化碳可以使澄清石灰水变成白色浑浊液,实验中白色浑浊物越多,说明气体中二氧化碳越多。

(2)氧气可使带火星的木条复燃,木条燃烧越旺,说明氧气越多。

(3)二氧化碳可以使燃着的木条熄灭。

(4)空气主要是由氮气、氧气组成的,还含有二氧化碳、水蒸气等。

(5)氮气、稀有气体性质较稳定,一般不与其他物质发生反应。

1.收集两瓶空气。

2.排水集气法收集两瓶呼出气体的样品:用集气瓶装满水,用玻璃片盖住瓶口的一部分,然后推动玻璃片,将瓶口全部盖住(注意不能留有气泡),把盛满水的瓶子连同玻璃片一起倒立在水槽中。

将饮管小心插入集气瓶内,向集气瓶缓缓吹气,直到集气瓶内充满呼出的气体。

在水下用玻璃片将集气瓶的瓶口盖好,然后取出集气瓶放在桌上。

3.将燃着的木条分别插入空气样品和呼出气体样品中,观察现象:伸入空气中,燃着的木条,伸入呼出的气体瓶中,燃着的木条。

结论:呼出气体氧气的含量比空气中的少。

4.向一瓶空气样品和一瓶呼出气体的样品中各滴入相同滴数的澄清石灰水,振荡,观察现象:加入盛空气的集气瓶中后振荡,;加入呼出的气体瓶中后振荡,。

结论:呼出气体二氧化碳含量比空气中的多。

5.取两块干燥的玻璃片,对着其中一块哈气,对比观察现象:被呼气的玻璃片上有__________出现,放在空气中的另一块玻璃片上_______________。

结论:呼出气体的水蒸气含量比空气中的____。

【答案】3.无多大变化4.很快熄灭无明显现象澄清石灰水变浑浊5.水雾无明显现象多将集气瓶装满水,倒置在水槽中,气体由瓶口进入,瓶内水排完,说明气体已经收集满,在水下立即用玻璃片将集气瓶口盖好,然后取出集气瓶放在实验桌上。

第1章-1.2-第2课时 矩形的判定

第1章-1.2-第2课时 矩形的判定

课堂小结 矩形的判定方法 方法 1:有一个角是直角的平行四边形是矩形. 方法 2:对角线相等的平行四边形是矩形.(对角线相等
且互相平分的四边形是矩形) 方法 3:有三个角是直角的四边形是矩形.
3. 如图,在四边形 ABCD 中,AD∥BC,∠D=90°, 若再添加一个条件,就能推出四边形 ABCD 是矩形,你所添 加的条件是 ∠∠AA==9900°°或或∠∠BB==9900°°或或 AADD==BBCC或或ABA∥B∥ CD( 写出一个即可 ) .(写出一种情况即可)
4. 如图,将▱ABCD 的边 AB 延长到点 E,使 BE=AB,
【归纳总结】对角线相等的平行四边形是矩形.当涉及 对角线相等时,可选择这一判定方法.
知识点 3 有三个角是直角的四边形是矩形 例3 已知:如图,Rt△ ABC≌Rt△ CDA,其中点 A,D 的对应点分别是 C,B,∠B=∠D=90°.求证:四边形 ABCD 是矩形.
【思路点拨】由 Rt△ ABC≌Rt△ CDA,根据全等三角形 的对应角相等,可得∠BAC=∠ACD,由∠B=∠D=90°, 即可证得∠BCD=90°,由有三个角是直角的四边形是矩形 证得结论.
知识点 2 对角线相等的平行四边形是矩形 例2 (教材 P16T2)如图,点 B 在 MN 上,过 AB 的中点 O 作 MN 的平行线,分别交∠ABM 的平分线和∠ABN 的平分线 于点 C,D.试判断四边形 ACBD 的形状,并证明你的结论.
【思路点拨】根据角平分线的定义和平行线推出∠OCB =∠OBC,推出 OC=OB,同理 OD=OB.说明四边形 ACBD 是对角线互相平分且相等的平行四边形.
证明:∵Rt△ ABC≌Rt△ CDA,∴∠BAC=∠ACD. ∵∠B=∠D=90°, ∴∠BAC+∠ACB=90°, ∴∠ACB+∠ACD=90°,即∠BCD=90°, ∴四边形 ABCD 是矩形.

2019秋人教版七年级数学上册课件:第一章 1.2 第2课时 数轴

2019秋人教版七年级数学上册课件:第一章 1.2 第2课时 数轴
图1-2-4 (1)请你根据图中A,B两点的位置,分别写出它们 所表示的有理数A是____1___;B是___-_2_._5___; (2)观察数轴,与点A的距离为4的点表示的数是 ____-_3_或__5______; (3)若将数轴折叠,使得A点与-3表示的点重合,则 B点与数_____0_._5_____表示的点重合.
第一章 有理数
1.2 有理数
第2课时 数轴
课前预习
A. 规定了______原__点______、____正__方__向______、 ____单__位__长__度____的直线叫做数轴. 1. 下列所画数轴正确的是( D )
B. 所有的____有__理__数______都可以用数轴上的点 表示.
则A和B两点间的距离为( C )
A. 2 016
B. 2 017
C. 2 018
D. 2 019
3. 在数轴上,-2表示A点,3表示B点,则离原点 较近的点是______A_点_______. 4. 填空: (1)数轴上距原点3个单位长度的点表示的数是 _____±__3_______; (2)数轴上表示-6的点在原点的_______左_______侧, 距离原点______6________个单位长度,表示+6的 点在原点的_______右_______侧,距离原点 ________6______个单位长度.
图1-2-3
解:点A表示数1.5,位于原点右边,与原点的距离 是1.5个单位长度;
点B表示数-2,位于原点左边,与原点的距离 是2个单位长度;
点C表示数2,位于原点右边,与原点的距离是 2个单位长度;
点D表示数-2.5,位于原点左边,与原点的距 离是2.5个单位长度.
举一反三
2. 根据下面给出的数轴(如图1-2-4),解答下面 的问题:

2020届高中数学分册同步讲义(必修5) 第1章 1.2 第2课时 角度、面积问题

2020届高中数学分册同步讲义(必修5) 第1章 1.2 第2课时  角度、面积问题

第2课时角度、面积问题学习目标1.能把方向角等角度条件转化为解三角形的条件,解决航海等角度问题.2.掌握用两边及其夹角表示的三角形面积公式.知识点一 角度问题测量角度问题主要是指在海上或空中测量角度的问题,如确定目标的方位,观察某一建筑物的视角等.解决它们的关键是根据题意和图形及有关概念,确定所求的角在哪个三角形中,该三角形中已知哪些量,需要求哪些量.通常是根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形得到所求的量,从而得到实际问题的解. 知识点二 用两边及其夹角表示的三角形面积公式一般地,三角形面积等于两边及夹角正弦乘积的一半,即S △ABC =12ab sin C =12bc sin A =12ac sin B .思考1 S △ABC =12ab sin C 中,b sin C 的几何意义是什么?答案 BC 边上的高.思考2 如何用AB ,AD ,角A 表示▱ABCD 的面积? 答案 S ▱ABCD =AB ·AD ·sin A .1.仰角是视线与视线在水平面的射影的夹角.(√)2.在处理方向角时,两个正北方向线视为平行.(√)3.航海问题中,所求结果中的角度通常要化为方向角或方位角.(√)4.△ABC的面积S=14R abc(其中R为△ABC外接圆半径).(√)题型一角度问题例1如图,在海岸A处发现北偏东45°方向,距A处(3-1)海里的B处有一艘走私船.在A处北偏西75°方向,距A处2海里的C处的我方缉私船奉命以10 3 海里/时的速度追截走私船,此时走私船正以10海里/时的速度,从B处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.解设缉私船应沿CD方向行驶t小时,才能最快截获(在D点)走私船,则CD=103t,BD=10t,在△ABC 中,由余弦定理,有 BC 2=AB 2+AC 2-2AB ·AC cos A=(3-1)2+22-2(3-1)·2·cos 120°=6. ∴BC = 6.又∵BC sin A =ACsin ∠ABC, ∴sin ∠ABC =AC ·sin A BC =2·sin 120°6=22,又∠ABC ∈(0°,60°),∴∠ABC =45°, ∴B 点在C 点的正东方向上, ∴∠CBD =90°+30°=120°, 在△BCD 中,由正弦定理得BD sin ∠BCD =CDsin ∠CBD,∴sin ∠BCD =BD ·sin ∠CBD CD =10t ·sin 120°103t =12.又∵∠BCD ∈(0°,60°),∴∠BCD =30°, ∴缉私船沿北偏东60°的方向行驶.又在△BCD 中,∠CBD =120°,∠BCD =30°, ∴∠CDB =30°,∴BD =BC ,即10t = 6. ∴t =610小时≈15分钟. ∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟.反思感悟 解决航海问题先根据条件,画出示意图,然后把方向角、速度、时间等条件转化为三角形的角、边,化为解三角形问题.跟踪训练1 甲船在A 点发现乙船在北偏东60°的B 处,乙船以每小时a 海里的速度向北行驶,已知甲船的速度是每小时3a 海里,问甲船应沿着什么方向前进,才能最快与乙船相遇? 解 如图所示.设经过t 小时两船在C 点相遇,则在△ABC 中, BC =at 海里, AC =3at 海里, B =90°+30°=120°, 由BC sin ∠CAB =ACsin B,得sin ∠CAB =BC sin B AC =at ×sin 120°3at =323=12,∵0°<∠CAB <60°,∴∠CAB =30°, ∴∠DAC =60°-30°=30°,∴甲船应沿着北偏东30°的方向前进,才能最快与乙船相遇.题型二 用两边夹角表示三角形面积命题角度1 求三角形面积例2 在△ABC 中,已知BC =6,A =30°,B =120°,则△ABC 的面积为( ) A .9 B .18 C .9 3 D .18 3 答案 C解析 由正弦定理得AC sin B =BC sin A ,∴AC =BC ·sin B sin A =6×sin 120°sin 30°=6 3.又∵C =180°-120°-30°=30°,∴S △ABC =12AC ·BC ·sin C =12×63×6×12=9 3.反思感悟 求三角形面积,主要用两组公式(1)12×底×高. (2)两边与其夹角正弦的乘积的一半.选用哪组公式,要看哪组公式的条件已知或易求.跟踪训练2 在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为 .答案 16解析 ∵AB →·AC →=|AB →||AC →|cos A =tan A , ∴|AB →||AC →|=sin A cos 2A ,∴S △ABC =12|AB →||AC →|sin A=12sin 2A cos 2A =12tan 2A =16. 命题角度2 涉及三角形面积的条件转化例3 在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若sin B =2sin A ,且△ABC 的面积为a 2sin B ,则cos B = . 答案 14解析 由sin B =2sin A 及正弦定理,得b =2a ,由△ABC 的面积为a 2sin B , 得12ac sin B =a 2sin B ,即c =2a , ∴cos B =a 2+c 2-b 22ac =a 24a 2=14.反思感悟 表示三角形面积,即使确定用两边夹角,还要进一步选择好用哪两边夹角. 跟踪训练3 已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,面积S =14(a 2+b 2-c 2),则角C 为( )A .135°B .45°C .60°D .120° 答案 B解析 ∵S =14(a 2+b 2-c 2)=12ab sin C ,∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C .由余弦定理c 2=a 2+b 2-2ab cos C ,得sin C =cos C . 又C ∈(0°,180°),∴C =45°.三角形中的建模问题典例 如图,A ,B ,C 三地有直道相通,AB =5 千米,AC =3千米,BC =4 千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为f (t )(单位:千米).甲的路线是AB ,速度为5千米/时,乙的路线是ACB ,速度为8千米/时.乙到达B 地后原地等待.设t =t 1时乙到达C 地.(1)求t 1与f (t 1)的值;(2)已知警员的对讲机的有效通话距离是3千米.当t 1≤t ≤1时,求f (t )的表达式,并判断f (t )在[t 1,1]上的最大值是否超过3.说明理由. 解 (1)由题意可得t 1=AC v 乙=38,设此时甲运动到点M ,则AM =v 甲t 1=5×38=158,∴f (t 1)=MC =AC 2+AM 2-2AC ·AM ·cos A=32+⎝⎛⎭⎫1582-2×3×158×35=3418. (2)当t 1≤t ≤78时,乙在CB 上的Q 点,设甲在P 点,∴QB =AC +CB -8t =7-8t ,PB =AB -AP =5-5t , ∴f (t )=PQ =QB 2+PB 2-2QB ·PB ·cos B =(7-8t )2+(5-5t )2-2(7-8t )(5-5t )×45=25t 2-42t +18,当78<t ≤1时,乙在B 点不动,设此时甲在点P , ∴f (t )=PB =AB -AP =5-5t ,∴f (t )=⎩⎨⎧25t 2-42t +18,38≤t ≤78,5-5t ,78<t ≤1,∴当38≤t ≤1时,f (t )∈⎣⎡⎦⎤0,3418,故f (t )的最大值没有超过3.[素养评析] 本题是关于对讲机有效通话距离的实际问题.其解决完整经历了数学建模的全过程:在实际情境中提出问题(警员能否在行动过程中保持通话),分析问题.建立模型⎝⎛⎭⎪⎪⎫f (t )=⎩⎨⎧25t 2-42t +18,38≤t ≤78,5-5t ,78<t ≤1,计算求解.最终解决实际问题.1.在△ABC中,A,B,C所对的边分别为a,b,c,其中a=4,b=3,C=60°,则△ABC 的面积为()A.3 B.3 3 C.6 D.6 3答案 B解析S△ABC=12ab sin C=12×4×3×sin 60°=3 3.2.如图所示,在坡度一定的山坡A处测得山顶上一建筑物CD的顶端C对于山坡的斜度为15°,向山顶前进100 m到达B处,又测得C对于山坡的斜度为45°,若CD=50 m,山坡对于地平面的坡度为θ,则cos θ等于()A.32 B.22 C.3-1 D.2-1答案 C解析 在△ABC 中,由正弦定理得AB sin 30°=ACsin 135°,∴AC =100 2.在△ADC 中,AC sin (θ+90°)=CDsin 15°,∴cos θ=sin(θ+90°)=AC ·sin 15°CD=3-1.3.已知三角形的面积为14,其外接圆的面积为π,则这个三角形的三边之积为( )A .1B .2 C.12 D .4答案 A解析 设三角形外接圆的半径为R ,则由πR 2=π,得R =1,∵S △=12ab sin C =abc 4R =abc 4=14,∴abc =1.4.某船开始看见一灯塔在南偏东30°方向,后来船沿南偏东60°的方向航行45 km 后,看见该灯塔在正西方向,则这时船与灯塔的距离是 km. 答案 15 3解析 设灯塔位置为A ,船的初始位置为O ,船的终止位置为B , 由题意知∠AOB =30°,∠OAB =120°,则∠OBA =30°, 所以由正弦定理,得AB =153, 即此时船与灯塔的距离是15 3 km.1.各种测量问题本质上是把不能或不易直接测量的量转化为用能直接测量的量表示.而在三角形测量中易获得的数据方向角等多以铅垂线、正南正北为始边,需要准确地转化为三角形的元素.2.(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.一、选择题1.如图已知两座灯塔A ,B 与海洋观察站C 的距离相等,灯塔A 在观察站C 的北偏东40°,灯塔B 在观察站C 的南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东10°D .南偏西10°答案 B解析 如题图,因为△ABC 为等腰三角形, 所以∠CBA =12(180°-80°)=50°,60°-50°=10°.所以灯塔A 在灯塔B 的北偏西10°.2.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( ) A .α>β B .α=β C .α+β=90° D .α+β=180°答案 B3.当太阳光与水平面的倾斜角为60°时,一根长为2 m 的竹竿如图所示放置,要使它的影子最长,则竹竿与地面所成的角是( )A .15°B .30°C .45°D .60° 答案 B解析 设竹竿与地面所成的角为α,影子长为x m. 由正弦定理,得2sin 60°=x sin (120°-α),∴x =433sin(120°-α).∵30°<120°-α<120°,∴当120°-α=90°,即α=30°时,x 有最大值. 即竹竿与地面所成的角是30°时,影子最长.4.在△ABC 中,AB =3,BC =13,AC =4,则△ABC 的面积是( ) A .3 3 B.332 C .3 D.32答案 A解析 ∵cos A =AB 2+AC 2-BC 22AB ·AC =9+16-132×3×4=12,∴sin A =32, S △ABC =12bc sin A =12×4×3×32=3 3.5.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c 2=(a -b )2+6,C =π3,则△ABC的面积是( )A. 3B.932C.332 D .3 3答案 C解析 由题意得c 2=a 2+b 2-2ab +6,由余弦定理可得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab , ∴-2ab +6=-ab ,即ab =6. ∴S △ABC =12ab sin C =332.6.(2018·全国Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C 等于( ) A.π2 B.π3 C.π4 D.π6 答案 C解析 ∵S =12ab sin C =a 2+b 2-c 24=2ab cos C 4=12ab cos C , ∴sin C =cos C ,即tan C =1. 又∵C ∈(0,π),∴C =π4.7.如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m ,50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为( )A .30°B .45°C .60°D .75° 答案 B解析 依题意可得AD =2010,AC =305, 又CD =50,所以在△ACD 中,由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD=(305)2+(2010)2-5022×305×2010= 6 0006 0002=22,又0°<∠CAD <180°,所以∠CAD =45°, 所以从顶端A 看建筑物CD 的张角为45°.8.若钝角△ABC 的面积是12,AB =1,BC =2,则AC 等于( )A .5 B. 5 C .2 D .1 答案 B解析 ∵钝角△ABC 的面积是12,AB =c =1,BC =a =2, ∴S =12ac sin B =12,即sin B =22.当B 为钝角时,cos B =-1-sin 2B =-22. 利用余弦定理,得AC 2=AB 2+BC 2-2AB ·BC cos B =1+2+2=5,即AC =5; 当B 为锐角时,cos B =1-sin 2B =22, 利用余弦定理,得AC 2=AB 2+BC 2-2AB ·BC cos B =1+2-2=1,即AC =1,此时AB 2+AC 2=BC 2,即△ABC 为直角三角形,不合题意,舍去. 故AC = 5. 二、填空题9.在△ABC 中,角A ,B ,C 的对边a ,b ,c 满足b 2+c 2=a 2+bc ,且bc =8,则△ABC 的面积为 . 答案 2 3 解析 因为b 2+c 2=a 2+bc ,所以cos A =b 2+c 2-a 22bc =12,所以A =π3,三角形面积S =12bc sin A=12×8×32=2 3. 10.已知三角形ABC 的三边分别为a ,b ,c ,面积S =a 2-(b -c )2,则cos A = . 答案1517解析 S =a 2-(b -c )2=a 2-b 2-c 2+2bc =-2bc cos A +2bc , ∵S =12bc sin A ,∴12bc sin A =2bc -2bc cos A .即4-4cos A =sin A .平方得17cos 2A -32cos A +15=0. 即(17cos A -15)(cos A -1)=0. 得cos A =1(舍)或cos A =1517.11.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,则cos θ的值为 .答案2114解析 如题图知,在△ABC 中,AB =40,AC =20,∠BAC =120°, 由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800, 所以BC =207, 由正弦定理得sin ∠ACB =AB BC ·sin ∠BAC =217,由∠BAC =120°知∠ACB 为锐角, 故cos ∠ACB =277.故cos θ=cos(∠ACB +30°)=cos ∠ACB cos 30°-sin ∠ACB sin 30°=2114. 三、解答题12.甲船在A 处,乙船在A 的南偏东45°方向,距A 有9海里的B 处,并以20海里/时的速度沿南偏西15°方向行驶,若甲船以28海里/时的速度行驶,用多少小时能最快追上乙船? 解 如图所示,设用t 小时甲船能追上乙船,且在C 处相遇.在△ABC 中,AC =28t ,BC =20t ,AB =9, ∠ABC =180°-45°-15°=120°.由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC , 即(28t )2=92+(20t )2-2×9×20t ×⎝⎛⎭⎫-12, 128t 2-60t -27=0,∴t =34或t =-932(舍去),∴甲船用34小时能最快追上乙船.13.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知A =π4,b 2-a 2=12c 2.(1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值.解 (1)由b 2-a 2=12c 2及正弦定理得sin 2B -12=12sin 2C ,所以-cos 2B =sin 2C .由A =π4,得B +C =34π,则-cos 2B =-cos ⎝⎛⎭⎫32π-2C =sin 2C =2sin C cos C ,所以sin 2C =2sin C cos C ,又sin C ≠0,解得tan C =2. (2)由tan C =2,C ∈(0,π),得sin C =255,cos C =55.因为sin B =sin(A +C )=sin ⎝⎛⎭⎫π4+C , 所以sin B =31010.由正弦定理得c =b sin C sin B =223b ,又因为A =π4,12bc sin A =3,所以bc =62,故b =3.14.如图,四边形ABCD 中,B =C =120°,AB =4,BC =CD =2,则该四边形的面积等于( )A. 3 B.5 3 C.6 3 D.7 3答案 B解析连接BD,四边形面积可分为△ABD与△BCD两部分面积的和,由余弦定理,得BD=23,S△BCD=12BC×CD sin 120°=3,∠ABD=120°-30°=90°,∴S△ABD=12AB×BD=4 3.∴S四边形ABCD=3+43=5 3.15.为保障高考的公平性,高考时每个考点都要安装手机屏蔽仪,要求在考点周围1千米处不能收到手机信号,检查员抽查某市一考点,在考点正西 3 千米有一条北偏东60°方向的公路,在此处检查员用手机接通电话,以每小时12千米的速度沿公路行驶,问最长需要多少分钟检查员开始收不到信号,并至少持续多长时间该考点才算合格?解如图所示,考点为A,检查开始处为B,设检查员行驶到公路上C,D两点之间时收不到信号,即公路上C,D两点到考点的距离为1千米.在△ABC中,AB=3千米,AC=1千米,∠ABC=30°,由正弦定理,得sin∠ACB=sin 30°AC×AB=32,∴∠ACB=120°(∠ACB=60°不合题意),∴∠BAC=30°,∴BC=AC=1 千米.在△ACD中,AC=AD=1千米,∠ACD=60°,∴△ACD为等边三角形,∴CD=1千米.∵BC12×60=5,∴在BC上需5分钟,CD上需5分钟.∴最长需要5分钟检查员开始收不到信号,并持续至少5分钟才算合格.。

专题1.2.2 气体摩尔体积-《易错点专项训练》2018-2019学年高一化学人教必修1(第1章)

专题1.2.2 气体摩尔体积-《易错点专项训练》2018-2019学年高一化学人教必修1(第1章)

第一章从实验学化学第二节化学计量在实验中的应用第2课时气体摩尔体积易错点一气体摩尔体积1.下列叙述中正确的是A.一定温度、压强下,气体体积由其分子的大小决定B.一定温度、压强下,气体体积由其物质的量的多少决定C.气体摩尔体积是指1 mol任何气体所占的体积为22.4 LD.不同的气体,若体积不等,则它们所含的分子数一定不等【答案】B【解析】决定气体体积大小的主要因素是气体分子数目的多少和气体分子间的距离。

一定温度、压强下,气体体积之比等于其物质的量之比,故A项错误,B项正确;说明某气体的摩尔体积时必须指明所处状况,C项错误;不同的气体,若体积不等,但在不同的特定温度和压强下,它们所含的分子数也可能相等,D项错误。

2.下列叙述中,正确的是A.摩尔是国际单位制七个基本物理量之一B.在标况下,1 mol任何物质的体积都约是22.4 LC.25℃和101 kPa的条件下,气体的摩尔体积大于22.4 L/molD.22.4 L气体所含的分子数一定大于11.2 L气体所含的分子数【答案】C【解析】A.摩尔是物质的量的单位,物质的量是国际单位制七个基本物理量之一,故A错误;B.在标况下,1 mol气体物质的体积约是22.4 L,固体和液体的体积不是22.4 L,故B错误;C、气体摩尔体积是1 mol气体在一定温度和压强下的体积,单位为L/mol,25 ℃和101 kPa的条件下,气体的摩尔体积大于22.4 L/mol,故C正确;D.未注明温度和压强,气体摩尔体积不确定,不能计算气体的物质的量,也不能判断气体分子数目的关系,故D错误;故选C。

3.下列说法正确的是①标准状况下,6.02×1023个分子所占的体积约是22.4 L②0.5 mol H2所占体积为11.2 L③标准状况下,1 mol H2O的体积为22.4 L④常温常压下,28 g CO与N2的混合气体所含的原子数为2N A⑤各种气体的气体摩尔体积都约为22.4 L·mol−1⑥标准状况下,体积相同的气体的分子数相同A.①③⑤B.④⑥C.③④⑥D.①④⑥【答案】B【解析】①标准状况下,6.02×1023个分子为1 mol,但该物质不一定是气体,故占有的体积不一定是22.4 L,故①错误;②氢气所处的状态不一定是标准化状况,气体摩尔体积不一定是22.4 L/mol,0.5 mol H2所占体积不一定为11.2 L,故②错误;③标准化状况下,水是液体,1 mol水的体积远大于22.4 L,故③错误;④28 g CO与N2的混合气体为1 mol,二者都是双原子分子,所含的原子数为2N A,故④正确;⑤影响气体摩尔体积的因素有温度、压强,气体所处的状态不确定,各气体的气体摩尔体积不一定是22.4 L/mol,故⑤错误;⑥同温同压下,体积相同,含有的分子数目相同,故⑥正确;故选B。

1.2 第2课时 矩形的判定1

1.2 第2课时 矩形的判定1

第2课时矩形的判定1.理解并掌握矩形的判定方法;(重点)2.能熟练掌握矩形的判定及性质的综合应用.(难点)一、情景导入小明想要做一个矩形相框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形相框?看看谁的方法可行!二、合作探究探究点一:对角线相等的平行四边形是矩形如图所示,外面的四边形ABCD是矩形,对角线AC,BD相交于点O,里面的四边形MPNQ的四个顶点都在矩形ABCD的对角线上,且AM=BP=CN=DQ.求证:四边形MPNQ是矩形.解析:要证明四边形MPNQ是矩形,应先证明它是平行四边形,由已知可再证明其对角线相等.证明:∵四边形ABCD是矩形,∴OA=OB=OC=OD.∵AM=BP=CN=DQ,∴OM=OP=ON=OQ.∴四边形MPNQ是平行四边形.又∵OM+ON=OQ+OP,∴MN=PQ.∴平行四边形MPNQ是矩形(对角线相等的平行四边形是矩形).方法总结:在判断四边形的形状时,若已知条件中有对角线,可首先考虑能否用对角线的条件证明矩形.探究点二:有三个角是直角的四边形是矩形如图,GE∥HF,直线AB与GE交于点A,与HF交于点B,AC、BC、BD、AD分别是∠EAB、∠FBA、∠ABH、∠GAB的平分线,求证:四边形ADBC是矩形.解析:利用已知条件,证明四边形ADBC有三个角是直角.证明:∵GE∥HF,∴∠GAB+∠ABH=180°.∵AD、BD分别是∠GAB、∠ABH的平分线,∴∠1=12∠GAB,∠4=12∠ABH,∴∠1+∠4=12(∠GAB+∠ABH)=12×180°=90°,∴∠ADB=180°-(∠1+∠4)=90°.同理可得∠ACB=90°.又∵∠ABH+∠FBA=180°,∠4=12∠ABH,∠2=12∠FBA,∴∠2+∠4=12(∠ABH+∠FBA)=12×180°=90°,即∠DBC=90°.∴四边形ADBC是矩形.方法总结:矩形的判定方法和矩形的性质是相辅相成的,注意它们的区别和联系,此判定方法只要说明一个四边形有三个角是直角,则这个四边形就是矩形.探究点三:有一个角是直角的平行四边形是矩形如图所示,在△ABC中,D为BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD.连接BF.(1)BD与DC有什么数量关系?请说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.解析:(1)根据“两直线平行,内错角相等”得出∠AFE=∠DCE,然后利用“AAS”证明△AEF和△DEC全等,根据“全等三角形对应边相等”可得AF=CD,再利用等量代换即可得BD=CD;(2)先利用“一组对边平行且相等的四边形是平行四边形”证明四边形AFBD是平行四边形,再根据“有一个角是直角的平行四边形是矩形”可知∠ADB=90°.由等腰三角形三线合一的性质可知△ABC满足的条件必须是AB=AC.解:(1)BD=CD.理由如下:∵AF∥BC,∴∠AFE=∠DCE.∵E是AD的中点,∴AE=DE.在△AEF和△DEC中,⎩⎪⎨⎪⎧∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四边形AFBD是矩形.方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.三、板书设计矩形的判定错误!通过探索与交流,得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力.。

2022成才之路·人教B版数学·选修2-2练习:第1章 1.2 第2课时

2022成才之路·人教B版数学·选修2-2练习:第1章 1.2 第2课时

第一章 1.2 第2课时一、选择题1.若f (x )=cos π4,则f ′(x )为导学号05300134( )A .-sin π4B .sin π4C .0D .-cos π4答案] C解析] f (x )=cos π4=22,∴f ′(x )=0.2.函数f (x )=x a ,a ∈Q ,若f ′(-1)=-4,则a 的值为导学号05300135( ) A .4 B .-4 C .5 D .-5 答案] A解析] f ′(x )=α·x α-1,∴f ′(-1)=α·(-1)α-1=-4,∴α=4. 3.给出下列命题: ①y =ln2,则y ′=12②y =1x 2,则y ′|x =3=-227③y =2x ,则y ′=2x ·ln2 ④y =log 2x ,则y ′=1x ln2其中正确命题的个数为导学号05300136( ) A .1 B .2 C .3 D .4 答案] C解析] 由求导公式知②③④正确.4.设f (x )=sin x -cos x ,则f (x )在x =π4处的导数f ′(π4)=导学号05300137( )A. 2B .- 2C .0D .22答案] A解析] ∵f ′(x )=cos x +sin x , ∴f ′(π4)=cos π4+sin π4=2,故选A.5.设函数f (x )=cos x 则⎣⎡⎦⎤f ⎝⎛⎭⎫π2′等于导学号05300138( ) A .0 B .1C .-1D .以上均不正确答案] A解析] ∵f ⎝⎛⎭⎫π2=cos π2=0, ∴⎣⎡⎦⎤f ⎝⎛⎭⎫π2′=0′=0,故选A. 6.设函数f (x )=sin x ,则f ′(0)等于导学号05300139( ) A .1 B .-1C .0D .以上均不正确答案] A解析] ∵f ′(x )=(sin x )′=cos x , ∴f ′(0)=cos0=1.故选A.7.若y =ln x ,则其图象在x =2处的切线斜率是导学号05300140( ) A .1 B .0 C .2 D .12答案] D解析] ∵y ′=1x ,∴y ′|x =2=12,故图象在x =2处的切线斜率为12.8.已知直线y =kx 是y =ln x 的切线,则k 的值为导学号05300141( ) A.12 B .-12C .1eD .-1e答案] C解析] ∵y ′=1x =k ,∴x =1k,切点坐标为⎝⎛⎭⎫1k ,1,又切点在曲线y =ln x 上,∴ln 1k =1,∴1k =e ,k =1e . 二、填空题9.函数f (x )=sin x 在x =π3处的切线方程为________.导学号05300142答案] x -2y +3-π3=010.(2021·新课标Ⅱ文,16)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.导学号05300143答案] 8解析] 由y ′=1+1x 可得曲线y =x +ln x 在点(1,1)处的切线斜率为2,故切线方程为y =2x -1,与y =ax 2+(a +2)x +1联立得ax 2+ax +2=0,明显a ≠0,所以由Δ=a 2-8a =0⇒a =8.11.曲线y =ln x 与x 轴交点处的切线方程是______________.导学号05300144 答案] y =x -1解析] ∵曲线y =ln x 与x 轴的交点为(1,0) ∴y ′|x =1=1,切线的斜率为1, 所求切线方程为:y =x -1. 三、解答题12.(1)y =e x在点A (0,1)处的切线方程;导学号05300145 (2)y =ln x 在点A (1,0)处的切线方程. 解析] (1)∵(e x )′=e x ,∴y =e x 在点(0,1)处的切线的斜率为1.∴切线方程为y -1=1×(x -0),即x -y +1=0. (2)∵(ln x )′=1x,∴y =ln x 在点A (1,0)处的切线的斜率为1. ∴切线方程为y =1×(x -1),即x -y -1=0.一、选择题1.物体运动的图象(时间x ,位移y )如图所示,则其导函数图象为导学号05300146( )答案] D解析] 由图象可知,物体在OA ,AB ,BC 三段都做匀速运动,位移是时间的一次函数,因此其导函数为常数函数,并且直线OA ,直线AB 的斜率为正且k OA >k AB ,直线BC 的斜率为负,故选D.2.下列函数中,导函数是奇函数的是导学号05300147( ) A .y =sin x B .y =e x C .y =ln x D .y =cos x -12答案] D解析] 由y =sin x 得y ′=cos x 为偶函数,故A 错;又y =e x 时,y ′=e x 为非奇非偶函数,∴B 错;C 中y =ln x 的定义域x >0,∴C 错;D 中y =cos x -12时,y ′=-sin x 为奇函数,∴选D.3.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…f n +1(x )=f n ′(x ),n ∈N +,则f 2021(x )的值是导学号05300148( )A .sin xB .-sin xC .cos xD .-cos x答案] D解析] 依题意:f 1(x )=cos x ,f 2(x )=-sin x , f 3(x )=-cos x ,f 4(x )=sin x ,f 5(x )=cos x ,按以上规律可知:f2021(x)=f3(x)=-cos x,故选D.4.(2022·山东文,10)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线相互垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是导学号 05300149()A .y=sin x B.y=ln xC.y=e x D.y=x3答案] A解析]设两切点坐标分别为(x1,y1),(x2,y2).选项A中,y′=cos x,cos x1cos x2=-1,当x1=0,x2=π时满足,故选项A中的函数具有T性质;选项B、C、D中函数的导数均为正值或非负值,故两点处的导数之积不行能为-1,故选A.二、填空题5.过原点作曲线y=e x的切线,则切点坐标为________,切线方程为________.导学号05300150答案](1,e)y=e x解析]设切点为(x0,e x0),又y′=(e x)′=e x,∴切线的斜率为k=y′|x=x0=e x0,∴切线方程为y-e x0=e x0(x-x0).又切线过原点,∴-e x0=-x0·e x0,即(x0-1)·e x0=0,∴x0=1,∴切点为(1,e),斜率为e,∴切线方程为y=e x.6.函数y=log2x图象上一点A(a,log2a)处的切线与直线(2ln2)x+y-3=0垂直,则a=________.导学号05300151答案] 2解析]y=log2x在点A(a,log2a)处的切线斜率为k1=y′|x=a=1x ln2|x=a=1a ln2.已知直线斜率k2=-2ln2.∵两直线垂直,∴k1k2=-2a=-1,∴a=2.7.若f(x)=x2-2x-4ln x,则f′(x)>0的解集为________.导学号05300152答案](2,+∞)解析]由f(x)=x2-2x-4ln x,得函数定义域为(0,+∞),且f′(x)=2x-2-4x=2x2-2x-4x=2·x2-x-2x=2·(x+1)(x-2)x,f′(x)>0,解得x>2,故f′(x)>0的解集为(2,+∞).三、解答题8.设点P是y=e x上任意一点,求点P到直线y=x的最短距离.导学号05300153解析]依据题意得,平行于直线y=x的直线与曲线y=e x相切的切点为P,该切点即为与y=x距离最近的点,如图,即求在曲线y=e x上斜率为1的切线,由导数的几何意义可求解.令P(x0,y0),∵y′=(e x)′=e x,∴由题意得e x0=1,得x0=0,代入y=e x,y0=1,即P(0,1).利用点到直线的距离公式得最短距离为22.9.已知两条曲线y=sin x、y=cos x,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线相互垂直?并说明理由.导学号05300154解析]由于y=sin x、y=cos x,设两条曲线的一个公共点为P(x0,y0),∴两条曲线在P(x0,y0)处的斜率分别为k1=y′|x=x0=cos x0,k2=y′|x=x0=-sin x0.若使两条切线相互垂直,必需cos x0·(-sin x0)=-1,即sin x0·cos x0=1,也就是sin2x0=2,这是不行能的,∴两条曲线不存在公共点,使在这一点处的两条切线相互垂直.。

北师大版初中数学8年级下册1.2 第2课时 直角三角形全等的判定[1] -课件

北师大版初中数学8年级下册1.2 第2课时 直角三角形全等的判定[1] -课件
首页
随堂训练
A
1.已知:如图,D是△ABC的BC边
上的中点,DE⊥AC,DF⊥AB,垂足
分别为E,F,且DE=DF.
F
E
求证: △ABC是等腰三角形.
B
D
C
分析:要证明△ABC是等腰三角形,
就需要证明AB=AC; 从而需要证明∠B=∠C;
进而需要证明∠B∠C所在的
△BDF≌△CDE; 而△BDF≌△CDE的条件:
第一章 三角形的证明
1.2 直角三角形
第2课时 直角三角形全等的判定
复习 导入
合作 探究
课堂 小结
随堂 作业
复习导入
三角形全等的判定
公理:三边对应相等的两个三角形全等(SSS). 公理:两边及其夹角对应相等的两个三角形全等(SAS). 公理:两角及其夹边对应相等的两个三角形全等(ASA) . 推论:两角及其中一角的对边对应相等的两个三角形全等 (AAS).
你作的直角三角形与小明作的全等吗?
直角三角形全等的判定定理及其 三种语言
定理:斜边和一条直角边分别相等的两个直角三角形 全等(斜边,直角边或HL).
如图,在△ABC和△A′B′C′中, ∠C=∠C′=900 , ∵AC=A′C ′, AB=A′B′(已知), ∴Rt△ABC≌Rt△A′B′C′(HL).
首页
做一做
已知一条直角边和斜边,求作一个直角三 角形. 已知:如图,线段a,c (a<c),直角 . 求作:Rt △ABC,使∠C=
∠ ,BC=a,AB=c.
小明的作法如下: (1)作∠MCN= ∠ =90(°2)在射线CM上截取CB=a.
(3)以点B为圆心,线 (4)连接AB,得到Rt △ABC. 段c的长为半径作弧,交 射线CN与点A.

高中数学 第一章 导数及其应用 1.2 第2课时 基本初等函数的导数公式学案 新人教A版选修22

高中数学 第一章 导数及其应用 1.2 第2课时 基本初等函数的导数公式学案 新人教A版选修22

1.2.2 第二课时 基本初等函数的导数公式一、课前准备 1.课时目标1.熟练记忆基本初等函数的导数公式;2.能利用基本初等函数的导数公式求函数的导数;3.能利用基本初等函数的导数公式解决简单的综合问题。

2.基础预探1.基本初等函数的导数公式(1)若f (x )=c ,则f ′(x )=________.(2)若f (x )=x n,则f ′(x )=________. (3)若f (x )=sin x ,则f ′(x )=________. (4)若f (x )=cos x ,则f ′(x )=________.(5)若f (x )=a x,则f ′(x )=________.(6)若f (x )=e x,则f ′(x )=________. (7)若f (x )=log a x 则f ′(x )=________.(8)若f (x )=ln x ,则f ′(x )=________. 二、学习引领1.对基本初等函数的导数公式的理解(1)基本初等函数的求导公式只要求记住公式的形式,学会使用公式解题即可,对公式的推导不要求掌握.(2)要注意幂函数与指数函数的求导公式的区别。

(3)基本初等函数的导数公式,虽然在高考中单独考查该知识点的题目不多,但却是解决其他导数问题的重要基础,必需熟练记忆并掌握。

2.利用导数公式求曲线切线方程的步骤(1)先利用基本初等函数的导数公式求出函数的导数.(2)判断切线所经过的定点(x 0,y 0)是否在已知曲线上,当点在曲线上时,k =f ′(x 0).当点不在曲线上时,应设切点为(x 1,y 1),k =f ′(x 1)=y 1-y 0x 1-x 0,求出切点.(3)利用点斜式方程y -y 0=f ′(x 0)(x -x 0)或y -y 0=f ′(x 1)(x -x 0) 求得切线. 三、典例导析题型一 利用基本初等函数的公式求导数例1 求下列函数的导数:(1)y =x x ;(2)y =1x4;(3)y (4)y =log 2x 2-log 2x ;思路导析:运用对数性质及三角变换公式,先将问题中不能直接利用公式的问题转化为基本初等函数,再求导数.解析:(1)y ′=(x x )′=(32x )′=32312x -=32x .(2)y ′=⎝ ⎛⎭⎪⎫1x 4′=(x -4)′=-4x -4-1=-4x -5=-4x5.(3)y ′=(35x )′=35315x -=3525x -。

1.2离子反应第2课时课件高一化学人教版必修第一册

1.2离子反应第2课时课件高一化学人教版必修第一册
合时,有的可以发生反应,有的不能发生反应,为什么会这样呢?电解质在溶
生鸟无贵一 有锥翼土,,人常贵有四志海。心。
鸟岂雄胸贵能心有有 尽 志 凌翼如四云,人海志液人意,,中贵万无,但有里高发求志望不无生。风可愧尘攀反我。。心应. 的实质是什么?在什么条件下才能发生反应?
岂鸟能不尽 展如翅人膀意难高,但飞求。无愧我心. 人一生个不 人得如行果胸怀无,大虽志寿,百既岁使犹再为有无壮也丽。的举动也称不上是伟人。 志人之生所 志趋气,立无,远所勿贵届功,业穷昌山。复海不能限也;志之所向,无坚不摧。 虽雄长心不 壮满志七是尺茫,茫而黑心夜雄中万的丈北。斗星。 少雄年心心 志事四当海拿,云万。里望风尘。 有对志没者 志,气事的竟人成,。路程显得远;对没有银钱的人,城镇显得远。 鸟燕不雀展 安翅知膀鸿难鹄高之飞志。哉。
扔用化学式表示,上述化学方程式O42- + Ba2+ + 2Cl- = 2Na+ + 2Cl- + BaSO4 。 (3)、删去方程式两边不参加反应的离子,并将方程式化为最简:
SO42- + Ba2+ = BaSO4

(4)、检查离子方程式两边各元素的原子个数和电荷总数是否相等。
2、下列物质混合后,不会发生离子反应的是( C ) A.NaOH溶液和FeCl3溶液 B.Na2CO3溶液和稀硫酸 C.Na2SO4溶液和MgCl2溶液 D.澄清的石灰水和稀盐酸
解析:根据离子反应发生的条件,分析判断A中有沉淀生成;B中有 气体产生;D中有水生成;只有C中没有发生反应。
3、离子方程式CO32-+2H+===CO2↑+H2O表示( C
)
A.碳酸盐与盐酸之间的反应
B.一切碳酸盐与一切酸之间的反应
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时将目的基因导入受体细胞和目的基因的检测与鉴定[学习目标] 1.熟悉目的基因导入受体细胞的方法。

2.了解农杆菌转化法。

3.画出DNA分子杂交示意图。

4.目的基因的检测方法的比较。

知识点一将目的基因导入受体细胞知识梳理1.转化的含义:目的基因进入受体细胞内,并且在受体细胞内□01维持稳定和表达的过程。

2.将目的基因导入植物细胞(1)□01农杆菌转化法:将目的基因导入□02双子叶植物和裸子植物最常用的方法①农杆菌特点:当植物体受到损伤时,伤口处的细胞会分泌大量的□03酚类化合物,吸引农杆菌移向这些细胞,这时农杆菌中的□04Ti质料上的T-DNA(可转移的DNA)可转移至受体细胞,并且整合到受体细胞染色体的□05DNA上。

②受体细胞:植物□06体细胞或受精卵。

③操作过程:将目的基因插入到□07Ti质粒的T-DNA上―→转入□08农杆菌―→导入□09植物细胞―→目的基因整合到□10受体细胞染色体的DNA上―→目的基因表达。

(2)基因枪法:适用于□11单子叶植物,成本较高。

是利用压缩气体产生的动力,将包裹在金属颗粒表面的□12表达载体DNA打入受体细胞中,使目的基因与其整合并□13表达的方法。

(3)花粉管通道法:我国科学家独创的方法花粉管通道法,就是在植物受粉后,花粉形成的花粉管还未愈合前,剪去□14柱头;然后,滴加□15DNA(含目的基因),使目的基因借助□16花粉管通道进入受体细胞。

该方法十分简单经济。

我国的转基因抗虫棉就是用此种方法获得的。

3.将目的基因导入动物细胞(1)方法:□01显微注射技术,采用最多、最有效的方法。

(2)受体细胞:动物的□02受精卵。

(3)操作过程:将含有□03目的基因的表达载体提纯―→取卵(□04受精卵)―→□05显微注射―→受精卵经胚胎早期培养后,□06移植到雌性动物的□07输卵管或子宫内―→获得□08新性状的动物。

4.将目的基因导入微生物细胞(1)方法①用□01Ca2+处理细胞,使细胞处于一种能吸收周围环境中DNA分子的生理状态(这种细胞称为□02感受态细胞)。

②将重组表达载体DNA分子溶于□03缓冲液中与感受态细胞混合,在一定温度下促进感受态细胞吸收DNA分子,完成转化过程。

(2)受体细胞:原核生物(使用最广泛的是大肠杆菌)。

(3)原核生物的特点:繁殖快、多为单细胞、□04遗传物质相对较少等。

[问题探究]植物基因工程常用的受体细胞为什么是体细胞,而动物基因工程一般只用受精卵?提示:植物体细胞的全能性较高,可经植物组织培养过程形成完整植物体,因此受体细胞可以是体细胞;动物体细胞的全能性受到严格限制,因此动物基因工程中的受体细胞一般只用受精卵。

典题分析题型一农杆菌转化法的辨析[例1]农杆菌是一种在土壤中生活的微生物,能在自然条件下感染植物,因而在植物基因工程中得到了广泛的运用。

如图为农杆菌转化法的示意图,试回答下列问题:(1)一般情况下农杆菌不能感染的植物是____________,利用农杆菌自然条件下感染植物的特点,能实现____________________。

具体原理是在农杆菌的Ti 质粒上存在T-DNA片段,它具有可转移至受体细胞并整合到受体细胞____________上的特点,因此只要将携带外源基因的DNA片段插入到____________(部位)即可。

(2)根据T-DNA这一转移特点,推测该DNA片段上可能含有控制______________________(酶)合成的基因。

(3)图示c过程中,能促进农杆菌向植物细胞转移的物质是________类化合物。

(4)植物基因工程中除了农杆菌转化法之外,还可采取__________________________。

(至少写出两种)解题分析(1)一般农杆菌不能感染的植物是单子叶植物,可感染双子叶植物和裸子植物。

利用其感染植物的特点,可实现将目的基因导入植物细胞。

可转移至受体细胞并整合到受体细胞染色体的DNA上的是农杆菌的Ti质粒上的T-DNA 片段,因此目的基因必须插入到该部位才能成功。

(2)根据T-DNA这一转移特点,可以推测该DNA片段能控制合成DNA连接酶、限制酶以实现与双子叶植物和裸子植物细胞染色体DNA的整合。

(3)植物细胞受伤后可产生酚类化合物,促进农杆菌向植物细胞转移。

(4)植物基因工程中除了农杆菌转化法之外,还有基因枪法和花粉管通道法等。

答案(1)单子叶植物将目的基因导入植物细胞染色体的DNA T-DNA 片段(内部)(2)DNA连接酶、限制酶(3)酚(4)基因枪法、花粉管通道法题后归纳农杆菌转化法中有两次拼接和两次导入。

第一次拼接是将目的基因拼接到Ti 质粒的T-DNA上,第二次拼接(非人工操作)是指插入目的基因的T-DNA被拼接到受体细胞的染色体DNA上;第一次导入是将含目的基因的Ti质粒重新导入农杆菌,第二次导入(非人工操作)是指含目的基因的T-DNA导入受体细胞。

题型二含目的基因的受体细胞的筛选[例2]下图是将人的生长激素基因导入细菌B细胞内制造“工程菌”的示意图。

已知细菌B细胞内不含质粒A,也不含质粒A上的基因。

判断下列说法正确的是()A.将重组质粒导入细菌B常用的方法是显微注射技术B.将完成导入过程后的细菌涂布在含有四环素的培养基上,能生长的是导入了重组质粒的细菌C.将完成导入过程后的细菌涂布在含有氨苄青霉素的培养基上,能生长的就是导入了质粒A或重组质粒的细菌D.目的基因成功表达的标志是受体细胞能在含有氨苄青霉素的培养基上生长解题分析将目的基因导入细菌细胞中常用的方法是Ca2+处理法,A错误;基因必须保持结构的完整性才能得以表达,质粒A和重组质粒中氨苄青霉素抗性基因结构完整,能够表达而使细菌具有对氨苄青霉素的抗性,所以在含有氨苄青霉素的培养基上能存活的是导入了质粒A或导入了重组质粒的细菌,C正确;由于将人的生长激素基因导入质粒的四环素抗性基因上,破坏了四环素抗性基因的完整性,导入了重组质粒的细菌对四环素没有抗性,在含有四环素的培养基上不能存活,能存活的是导入了质粒A的细菌,B错误;目的基因成功表达的标志是产生人的生长激素,D错误。

答案 C技法提升如何筛选出含有目的基因的受体细胞(1)原理:将目的基因插入含有两种抗生素抗性基因的载体时,如果插入到某种抗生素抗性基因内部,则会导致该抗生素抗性基因失活。

如图,目的基因插入到四环素抗性基因内部,则四环素抗性基因失活。

(2)被转化的细菌有三种:含环状目的基因的细菌、含重组质粒的细菌、含质粒—质粒的细菌。

(3)筛选方法:将转化后的细菌先放在含氨苄青霉素的培养基上培养,能生长的是含重组质粒的细菌和含质粒—质粒的细菌,如图1、2、3、4、5菌落,再利用灭菌的绒布影印到含有四环素的培养基上,如图能生长的菌落为2、3、4,则在含四环素培养基上不生长的即为含有目的基因的菌落,如图1、5。

最后,可在含氨苄青霉素的培养基上挑取1、5菌落进行培养。

知识点二目的基因的检测与鉴定知识梳理1.操作目的:目的基因导入受体细胞后,是否可以□01稳定维持和表达其遗传特性,只有通过检测和鉴定才能知道。

这是检查基因工程是否成功的一步。

2.目的基因的检测(分子水平检测)(1)检测转基因生物的DNA上是否插入了目的基因①方法:□01DNA分子杂交技术(DNA与DNA之间)。

②探针:□02放射性同位素标记的含有目的基因的□03DNA片段。

③过程a.提取转基因生物□04基因组DNA;b.制作□05基因探针;c.探针与基因组杂交;d.观察是否出现□06杂交带,如果显示杂交带,表明目的基因已插入染色体DNA上。

(2)检测目的基因是否转录出了mRNA①方法:□07分子杂交技术(DNA与RNA之间)。

②过程:从转基因生物中提取□08mRNA,与□09基因探针进行杂交,如果显示出杂交带,则表明目的基因转录出了mRNA。

(3)检测目的基因是否翻译成蛋白质①方法:□10抗原—抗体杂交(蛋白质与蛋白质之间)。

②过程:从转基因生物中提取□11蛋白质,用相应的□12抗体进行杂交,若有杂交带出现,表明目的基因已形成蛋白质产品。

3.个体水平鉴定(1)植物可进行抗虫或抗病的□01接种实验,以确定是否有抗性以及抗性程度。

(2)基因工程产品可与天然产品的功能进行□02活性比较,以确定转基因产品功能活性是否与天然产品相同。

[问题探究] 1.DNA分子杂交的原理是什么?除了用于目的基因的检测与鉴定以外,试举例说明还有哪些应用?提示:碱基互补配对原则。

还可用于亲子鉴定、刑事侦察、生物亲缘关系确2.检测棉花中导入的抗虫基因是否表达的最简便的方法是什么?提示:用叶片饲养棉铃虫,观察棉铃虫是否死亡。

3.β­珠蛋白是动物血红蛋白的重要组成成分,当它的成分异常时,动物有可能患某种疾病,如镰刀形细胞贫血症。

假如让你用基因工程的方法,使大肠杆菌生产出鼠的β­珠蛋白。

想一想应该如何进行设计。

提示:①提取β­珠蛋白的mRNA。

②逆转录mRNA合成互补DNA,再进行DNA克隆。

③将目的DNA连接到载体(质粒)上,再转移到大肠杆菌细胞中。

④筛选出含有并表达目的基因的菌落。

⑤扩大培养大肠杆菌,表达目的β­珠蛋白。

典题分析题型三目的基因检测与鉴定方法的判断[例3]在判断抗虫基因是否成功转入棉花基因组的方法中,不属于分子检测的是()A.通过观察害虫吃棉叶是否死亡B.检测目的基因片段与DNA探针能否形成杂交带C.检测目的基因转录形成的mRNA与DNA探针能否形成杂交带D.检测目的基因表达产物蛋白质能否与特定抗体形成杂交带解题分析A项属于个体生物学水平的鉴定,不是分子检测,A符合题意;B、C两项为分子检测,利用分子杂交技术,观察目的基因及目的基因转录形成的mRNA能否与DNA探针进行杂交形成杂交带,B、C不符合题意;D项也为分子检测内容,利用抗原—抗体杂交的原理,检测基因表达产物能否与特定抗体形成杂交带,D不符合题意。

答案 A知识拓展关于不同分子检测的原理、场所、探针的异同(1)原理:转录水平的检测原理与复制水平的检测原理是相似的,只是被检测的物质不再是转基因生物的基因组DNA,而是转基因生物细胞内的mRNA;翻译水平的检测,则是利用抗原与抗体特异性结合的原理。

(2)场所:不论是复制水平、转录水平还是翻译水平的检测,都是在体外进行(3)探针:在DNA分子、mRNA分子上检测目的基因是否插入、目的基因是否转录时,用的探针都是放射性同位素等标记的含有目的基因的DNA片段。

题型四正确理解“表达”的含义[例4]1976年,美国的H.Boyer教授首次将人的生长抑制素释放因子的基因转入大肠杆菌,并获得表达。

上述的“表达”是指该基因在大肠杆菌中() A.能合成人抗体基因及其mRNAB.能进行转录C.能控制合成人的生长抑制素释放因子D.能合成人的生长激素解题分析基因的表达即控制相应蛋白质的合成,包括转录和翻译,仅仅转录出mRNA还不能称为表达,只有合成了相应的蛋白质才能证明目的基因完成了在受体细胞中的表达,C正确。

相关文档
最新文档