集合与函数练习题附答案
集合与函数概念单元测试题经典(含答案)
第一章集合与函数概念测试题一:选择题1、下列集合中与集合{21,}x x k k N +=+∈不相等的是( ) A .{23,}x x k k N =+∈ B .{41,}x x k k N +=±∈ C .{21,}x x k k N =+∈ D .{23,3,}x x k k k Z =-≥∈2、图中阴影部分所表示的集合是( )A.B ∩[C U (A ∪C)]B.(A ∪B) ∪(B ∪C)C.(A ∪C)∩(C U B)D.[C U (A ∩C)]∪B3、已知集合2{1}A y y x ==+,集合2{26}B x y x ==-+,则A B = ( )A .{(,)1,2}x y x y ==B .{13}x x ≤≤C .{13}x x -≤≤D .∅4、已知集合2{40}A x x =-=,集合{1}B x ax ==,若B A ⊆,则实数a 的值是( )A .0B .12±C .0或12±D .0或125、已知集合{1,2,3,}A a =,2{3,}B a =,则使得Φ=B A C U )(成立的a 的值的个数为( ) A .2 B .3 C .4 D .56、设A 、B 为两个非空集合,定义{(,),}A B a b a A b B ⊕=∈∈,若{1,23}A =,{2,3,4}B =,则A B⊕中的元素个数为 A .3 B .7 C .9 D .127、已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是 ( )A .x =60tB .x =60t +5C .x =⎩⎨⎧>-≤≤)5.3(,50150)5.20(,60t t t tD .x =⎪⎩⎪⎨⎧≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150)5.20(,60t t t t t8、已知g (x )=1-2x, f [g (x )]=)0(122≠-x xx ,则f (21)等于 ( ) A .1B .3C .15D .309、函数y=xx ++-1912是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶数10、设函数f (x )是(-∞,+∞)上的减函数,又若a ∈R ,则( )A .f (a )>f (2a )B .f (a 2)<f (a)C .f (a 2+a )<f (a )D .f (a 2+1)<f (a ) 二、填空题11、设集合A={23≤≤-x x },B={x 1122-≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 .12、已知x ∈[0,1],则函数y =x x --+12的值域是 . 13、设函数xy 111+=的定义域为___________________;值域为_____________________________.14、设f (x )是定义在R 上的偶函数,在区间(-∞,0)上单调递增,且满足,22(25)(21)f a a f a a -+-<++求实数a 的取值范围_______________。
集合和函数练习题集(附答案解析)
集合与函数综合练习一、填空题:1.设函数x xx f =+-)11(,则)(x f 的表达式为 2.函数)(x f 在区间]3,2[-是增函数,则)5(+=x f y 的递增区间是 3. 函数f(x)=)24(log 122x x -+-的定义域为4.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围 .5.函数||2x x y +-=,单调递减区间为6.构造一个满足下面三个条件的函数实例,①函数在)1,(--∞上递减;②函数具有奇偶性;③函数有最小值为0; .7.=+34-3031-]2-[54-0.064)()(___________ ____; 8.已知)(x f =x x +1,则111(1)(2)()(3)()(4)()234f f f f f f f ++++++= 。
9.已知函数()y f x =为奇函数,若(3)(2)1f f -=,(2)(3)f f ---=_______ 10.)(x f =21(0)2(0)x x x x ⎧+≤⎨->⎩,若)(x f =10,则x = .11.若f (x )是偶函数,其定义域为R 且在[0,+∞)上是减函数,则f (-43)与f (a 2-a +1)的大小关系是____.12.log 7[log 3(log 2x )]=0,则21-x等于= 13.函数y=log 21(x 2-5x+17)的值域为 。
14.函数y=lg(ax+1)的定义域为(-∞,1),则a= 。
二、解答题:15.已知集合A 的元素全为实数,且满足:若a A ∈,则11a A a+∈-。
(1)若3a =-,求出A 中其它所有元素;(2)0是不是集合A 中的元素?请你设计一个实数a A ∈,再求出A 中的所有元素?16.已知函数[]5,5,22)(2-∈++=x ax x x f .(1)求实数a 的范围,使)(x f y =在区间[]5,5-上是单调递增函数。
高一数学必修1《集合与函数概念》测试卷(含答案)
高一数学必修1《集合与函数概念》测试卷(含答案)第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一.选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A.函数的值域就是其定义中的数集BB.函数y=f(x)的图像与直线x=m至少有一个交点C.函数是一种特殊的映射D.映射是一种特殊的函数2.如果A={x|x>-1},则下列结论正确的是()A.XXXB.{}⊆AC.{}∈AD.∅∈A3.设f(x)=(2a-1)x+b在R上是减函数,则有()A.a≥1/2B.a≤1/2C.a>1/2D.a<1/24.定义在R上的偶函数f(x),对任意x1,x2∈[0,+∞)(x1≠x2),有|x1-x2|<π/2,则有()A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)5.若奇函数f(x)在区间[1,3]上为增函数,且有最小值,则它在区间[-3,-1]上()A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值06.设f:x→x是集合A到集合B的映射,若A={-2,0,2},则AB等于()A.{}B.{2}C.{0,2}D.{-2,0}7.定义两种运算:a⊕b=ab,a⊗b=a²+b²,则函数f(x⊗3-3)为()A.奇函数B.偶函数C.既不是奇函数又不是偶函数D.既是奇函数又是偶函数8.若函数f(x)是定义域在R上的偶函数,在(-∞,0)上是减函数,且f(-2)=1/4,则使f(x)<1/4的x的取值范围为()A.(-2,2)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)9.函数f(x)=x+(x|x|)的图像是()10.设f(x)是定义域在R上的奇函数,f(x+2)=-f(x),当|x|<1时,f(x)=x,则f(7.5)的值为()A.-0.5B.0.5C.-5.5D.7.511.已知f(-2x+1)=x²+1,且-1/2≤x≤1/2,则f(x)的值域为()A.[1,5/4]B.[1/4,5/4]C.[0,5/4]D.[1/4,2]12.设f(x)是定义在R上的奇函数,且f(x)在[-2,2]上单调递增,则f(x)在(-∞,-2)∪(2,+∞)上()A.单调递减B.单调不增也不减C.单调递增D.无法确定第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A。
(word版)高中数学(必修1)集合与函数试题及答案,文档
集合根底训练A组一、选择题:1.以下各项中,不可以组成集合的是〔C〕A.所有的正数B.等于2的数C.接近于0的数D.不等于0的偶数2.以下四个集合中,是空集的是〔D〕A.{x|x33}B.{(x,y)|y2x2,x,yR}C.{x|x20}D.{x|x2x10,xR}3.以下表示图形中的阴影局部的是〔A〕A.(AUC)I(BUC)A B B.(AUB)I(AUC)C.(AUB)I(BUC)D.(AUB)I C C 4.下面有四个命题:〔1〕集合N中最小的数是1;〔2〕假设a不属于N,那么a属于N;〔3〕假设a N,b N,那么ab的最小值为2;〔4〕x212x的解可表示为1,1其中正确命题的个数为〔A〕A.0个B.1个C.2个D.3个5.假设集合M a,b,c中的元素是△ABC的三边长,那么△ABC一定不是〔D〕A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形二、填空题:1.假设集合2.设集合A x|3 x 7,B x|2 x 10,那么AUBx|2 x10 A {x 3 x 2},B {x2k 1 x 2k 1},且A B,那么实数k的取值范围是k|1k 1 23.Ayy x22x1,B yy2x1,那么AI B y|y0三、解答题:1.集合A8N,试用列举法表示集合A xN|6x解:由题意可知6x是8的正约数,当6x1,x5;当6x2,x4;当6x4,x2;当6x8,x2;而x0,∴x2,4,5,即A2,4,512A{x2x5}, B{xm1x2m1},BA ,m 的取值范围.求 解:当m 1 2m1,即m 2时,B ,满足BA ,即m 2;当m12m1,即m2时,B3,满足BA ,即m2;当m12m 1,即m2时,由Bm 1 2即2m 3;A ,得1 52mm33A a,a1, 3,Ba 3,2a 1,a 1 ,假设AI B3,求实数a 的值.集合22解:∵AI B3 ,∴ 3 B ,而a 2 1 3,∴当a3 3,a 0,A0,1, 3,B3,1,1,这与AI B3 矛盾;当2a 1 3,a 1,符合AI B3∴a14.设全集,2有实数根,2有实数根,求CMINUR Mm|mxx10Nn|xxn0 U解:当m0时,x1,即0 M ;当m 0时, 14m0,即m 1 0,且m4∴m1 ,∴C U Mm|m1 , 而对于N , 14n0,即n1 ,∴Nn|n14444∴(C U M)I Nx|x14综合训练B 组一、选择题1.以下命题正确的有〔A 〕〔1〕很小的实数可以构成集合;〔2〕集合 y|yx 2 1与集合 x,y|yx 2 1是同一个集合;3 61 5个元素;〔3〕1,,,这些数组成的集合有2 42〔4〕集合 x,y|xy0,x,yR 是指第二和第四象限内的点集。
高一数学集合与函数的概念试题答案及解析
高一数学集合与函数的概念试题答案及解析1. 设集合,,则() A .B .C .D .【答案】A【解析】由题意得,,,∴,故选A.【考点】1.解一元二次不等式;2.集合的交集.2. 下列命题正确的是( ) A .∁U (∁U P )={P}B .若M={1,∅,{2}},则{2}⊆MC .∁R Q=QD .若N={1,2,3},S={x|x ⊆N},则N ∈S【答案】D【解析】根据集合的定义和补集运算法则,集集合子集的性质,对A 、B 、C 、D 四个选项进行一一判断;解:A 、∁U (∁U P )=p ,∵{P},∴p ∈{P},故A 错误;B 、集合M 中的元素,有1和,∅,{2},知1是数,∅,{2}是集合,∴1和,∅,{2},不能构成集合B ,故B 错误;C 、∵∁R Q 为无理数集,而Q 为有理数集,故C 错误;D 、∵N={1,2,3},S={x|x ⊆N},∴N 的所有子集构成集合S ,∴N ∈S ,故D 正确; 故选D .点评:此题主要考查集合的定义及其元素与集合的关系,注意集合的三个性质:确定性,互异性,无序性,此题是一道基础题.3. 已知M={y|y=x 2+1,x ∈R},N={y|y=﹣x 2+1,x ∈R},则M∩N=( ) A .{0,1} B .{(0,1)} C .{1} D .以上均不对【答案】C【解析】根据函数值域求得集合M=[1,+∞),N}=(﹣∞,1],根据集合交集的求法求得M∩N . 解;集合M={y|y=x 2+1,x ∈R}=[1,+∞), N={y|y=﹣x 2+1,x ∈R}=(﹣∞,1], ∴M∩N={1} 故选C .点评:此题是个基础题.考查交集及其运算,以及函数的定义域和圆的有界性,同时考查学生的计算能力.4. 集合A 1,A 2满足A 1∪A 2=A ,则称(A 1,A 2)为集合A 的一种分拆,并规定:当且仅当A 1=A 2时,(A 1,A 2)与(A 2,A 1)为集合A 的同一种分拆,则集合A={a ,b ,c}的不同分拆种数为多少?【答案】27种【解析】考虑集合A 1为空集,有一个元素,2个元素,和集合A 相等四种情况,由题中规定的新定义分别求出各自的分析种数,然后把各自的分析种数相加,即可求出值.当A 1为A 时,A 2可取A 的任何子集,此时A 2有8种情况,故拆法为8种;总之,共27种拆法. 解:当A 1=φ时,A 2=A ,此时只有1种分拆;当A1为单元素集时,A2=∁AA1或A,此时A1有三种情况,故拆法为6种;当A1为双元素集时,如A1={a,b},A2={c}、{a,c}、{b,c}、{a,b,c},此时A1有三种情况,故拆法为12种;当A1为A时,A2可取A的任何子集,此时A2有8种情况,故拆法为8种;综上,共27种拆法.点评:本题属于创新型的概念理解题,准确地理解拆分的定义,以及灵活运用集合并集的运算和分类讨论思想是解决本题的关键所在.5.已知a∈R,b∈R,A={2,4,x2﹣5x+9},B={3,x2+ax+a},C={x2+(a+1)x﹣3,1}:求(1)A={2,3,4}的x值;(2)使2∈B,B⊊A,求a,x的值;(3)使B=C的a,x的值.【答案】(1)x=2或x=3;(2)当x=2时,a=﹣;当x=3时,a=﹣;(3){x|x=﹣1或3} {a|a=﹣6或﹣2}.【解析】(1)解方程x2﹣5x+9=3即可求得x值;(2)由x2+ax+a=2与x2﹣5x+9=3联立即可求得a,x的值;(3)x2+(a+1)x﹣3=3与x2+ax+a=1即可求得a,x的值.解:(1)依题意,x2﹣5x+9=3,∴x=2或x=3;(2)∵2∈B,B⊊A,∴x2+ax+a=2且x2﹣5x+9=3,当x=2时,a=﹣;当x=3时,a=﹣;(3)∵B={3,x2+ax+a}=C={x2+(a+1)x﹣3,1},∴整理得:x=5+a,将x=5+a代入x2+ax+a=1得:a2+8a+12=0,解得a=﹣2或a=﹣6.当a=﹣2时,x=3或﹣1;当a=﹣6时,x=﹣1或x=7(当a=﹣6,x=7时代入x2+(a+1)x﹣3="3" 不成立所以舍去).综上所述{x|x=﹣1或3} {a|a=﹣6或﹣2}.点评:本题考查集合关系中的参数取值问题,考查方程思想运算能力,属于中档题.6.若,则的值为A.0B.1C.D.1或【答案】C【解析】由已知得,则有,又,。
集合与函数概念测试,附有详细答案
集合与函数概念一、选择题:1.已知集合{}|110,P x Nx =∈≤≤ {}2|60,Q x R x x =∈+-=则P QI 等于( D ).A. {}1,2,3B. {}2,3C. {}1,2D. {}2 2.已知集合{1,2,3,4,5,6,7}U =,{2,4,5,7}A =,{3,4,5}B =,则()()UU A B = 痧( D ). A. {1,6} B. {4,5} C. {2,3,4,5,7} D. {1,2,3,6,7} 3.设()f x 是R 上的任意函数,下列叙述正确的是( C )A. ()()f x f x -是奇函数B. ()()f x f x -是奇函数C. ()()f x f x +-是偶函数D. ()()f x f x --是偶函数4.设集合{}12A =,,则满足{}123A B = ,,的集合B 的个数是( C ). A. 1B. 3C. 4D. 85、下列表示图形中的阴影部分的是【A 】A 、()()A CBC U I U B 、()()A B A C U I U C 、()()A B B C U I UD 、()A B C U I6、若集合}1,1{-=A ,}1|{==mx x B ,且A B A =U ,则m 的值为【 D 】A 、1B 、1-C 、1或1-D 、1或1-或07、已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是【 A 】 A 、3a ≤- B 、3a ≥- C 、5a ≤ D 、3a ≥8、)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是【 B 】A 、1B 、2C 、 3D 、 4 9、若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是【 D 】A 、)2()1()23(f f f <-<- B 、)2()23()1(f f f <-<-C 、)23()1()2(-<-<f f fD 、 )1()23()2(-<-<f f f 10、设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是【 D 】A 、{}|303x x x -<<>或B 、{}|303x x x <-<<或C 、{}|33x x x <->或D 、{}|3003x x x -<<<<或 二、填空题:11、用最恰当的符号填空≠⊂① 0__∈_Z,5∉N, 16_∈__Q ② 若{}2|A x x x ==,则-1∉A③ ∅ ={}2|10x x +=④ {}0,1≠⊂N ⑤ {}2|x x x =≠⊃{}0 12、若集合{}|37A x x =≤<,{}|210B x x =<<,则A B =U {}|210x x << 13、已知{}21B y y x ==+,{}221,A y y x x ==-+-则A B =I {}|0y y ≤ 14、若函数2()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是[)0,+∞15、奇函数()f x 在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为1-,则2(6)(3)f f -+-=___15___三、解答题:16、若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M⊆,求实数a 的值.16解:由26023x x x +-=⇒=-或,因此,{}2,3M =-.(i )若0a =时,得N =∅,此时,NM⊆;(ii )若0a ≠时,得1{}Na =. 若N M⊆,满足1123a a ==-或,解得1123a a ==-或.故所求实数a 的值为0或12或13-.17、设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求A B , A B.(教材P 14 B 组题2)17解:{1,4}B =.当3a =时,{3}A =,则{1,3,4}A B = ,A B =∅ ; 当1a =时,{1,3}A =,则{1,3,4}A B = ,{1}A B = ; 当4a =时,{3,4}A =,则{1,3,4}A B = ,{4}A B = ;当3a ≠且1a ≠且4a ≠时,{3,}A a =,则{1,3,4,}A B a = ,A B =∅ .18、设集合A ={x |240x x +=}, B ={x |222(1)10x a x a +++-=,a R ∈},若A B =B ,求实数a 的值.19解:先化简集合A ={4,0}-. 由A B =B ,则B ⊆A ,可知集合B 可为∅,或为{0},或{-4},或{4,0}-.(i )若B =∅,则224(1)4(1)0a a ∆=+--<,解得a <1-; (ii )若0∈B ,代入得2a 1-=0⇒a =1或a =1-, 当a =1时,B =A ,符合题意;当a =1-时,B ={0}⊆A ,也符合题意.(iii )若-4∈B ,代入得2870a a -+=⇒a =7或a =1, 当a =1时,已经讨论,符合题意;当a =7时,B ={-12,-4},不符合题意. 综上可得,a =1或a ≤1-.19、已知函数[]2()22,5,5f x x ax x =++∈-。
高中集合与函数试题及答案
高中集合与函数试题及答案一、选择题1. 集合A={1,2,3},集合B={2,3,4},求A∪B的结果。
A. {1,2,3,4}B. {1,2,3}C. {2,3,4}D. {1,4}2. 函数f(x)=2x+3,若f(a)=7,则a的值为多少?A. 1B. 2C. 3D. 43. 已知集合M={x|x<5},N={x|x>3},求M∩N的结果。
A. {x|x<3}B. {x|3<x<5}C. {x|x>5}D. {x|x≤3}4. 函数g(x)=x^2-4x+3的零点是?A. x=1B. x=3C. x=1或x=3D. 无零点5. 集合P={x|x^2-1=0},求P的元素。
A. {1,-1}B. {1}C. {-1}D. {0}二、填空题6. 已知集合Q={x|x^2-4=0},请写出Q的所有元素。
_______________________7. 若函数h(x)=x-1的值域是[2,+∞),则其定义域为______。
8. 集合R={x|x^2+2x+1=0},求R的元素个数。
___________________9. 若函数k(x)=√x的定义域是[0,+∞),则k(4)的值为______。
10. 已知函数m(x)=x^2+2x+1,求m(-1)的值。
______________三、解答题11. 已知集合S={x|-3≤x≤5},集合T={x|x>1},求S∩T的结果。
12. 已知函数f(x)=x^2-2x+1,求f(x)的最小值。
13. 已知函数g(x)=-3x+2,求g(x)的值域。
14. 已知集合U={x|x>0},集合V={x|x<10},求U∪V的结果。
15. 已知函数h(x)=x^3-3x^2+2,求h(x)的导数。
答案:1. A2. B3. B4. C5. A6. {-2, 2}7. (1,+∞)8. 09. 210. 211. {x|1<x≤5}12. 最小值为113. 值域为(-∞,2]14. {x|x>0}15. h'(x)=3x^2-6x结束语:本试题涵盖了高中数学中集合与函数的基础知识,包括集合的运算、函数的定义域、值域、零点、导数等概念,旨在帮助学生巩固和检验对这些知识点的理解和掌握。
集合与函数概念(含答案)
集合与函数概念一、选择题1.设全集U ={(x ,y )| x ∈R ,y ∈R },集合M =⎭⎬⎫⎩⎨⎧1=2-3-|),(x y y x , P ={(x ,y )| y ≠x +1},那么C U (M ∪P )等于( ). A .∅B .{(2,3)}C .(2,3)D .{(x ,y )| y =x +1}2.假设A ={a ,b },B ⊆A ,则集合B 中元素的个数是( ). A .0B .1C .2D .0或1或23.函数y =f (x )的图象与直线x =1的公共点数目是( ). A .1B .0C .0或1D .1或24.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的表达式是( ). A .2x +1B .2x -1C .2x -3D .2x +75. 已知函数f (x )=ax 3+bx 2+cx +d 的图象如下图,则( ). A .b ∈(-∞,0) B .b ∈(0,1) C .b ∈(1,2)D .b ∈(2,+∞)6.设函数f (x )=⎩⎨⎧00++2 x c x c bx x ,,≤, 假设f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( ).A .1B .2C .3D .47.设集合A ={x | 0≤x ≤6},B ={y | 0≤y ≤2},以下从A 到B 的对应法则f 不是映射的是( ).A .f :x →y =21x B .f :x →y =31xC .f :x →y =41x D .f :x →y =61x 8.有下面四个命题:①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称;④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R ). 其中正确命题的个数是( ). A .1B .2C .3D .4(第5题) >9.函数y=x2-6x+10在区间(2,4)上是().A.递减函数B.递增函数C.先递减再递增D.先递增再递减10.二次函数y=x2+bx+c的图象的对称轴是x=2,则有().A.f(1)<f(2)<f(4)B.f(2)<f(1)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)二、填空题11.集合{3,x,x2-2x}中,x应满足的条件是.12.假设集合A={x | x2+(a-1)x+b=0}中,仅有一个元素a,则a=___,b=___.13.建造一个容积为8 m3,深为2 m的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为元.14.已知f(x+1)=x2-2x,则f(x)=;f(x-2)=.15.y=(2a-1)x+5是减函数,求a的取值范围.16.设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x)=x(1+x3),那么当x∈(-∞,0]时,f(x)=.三、解答题17.已知集合A={x∈R| ax2-3x+2=0},其中a为常数,且a∈R.①假设A是空集,求a的范围;②假设A中只有一个元素,求a的值;③假设A中至多只有一个元素,求a的范围.18.已知M={2,a,b},N={2a,2,b2},且M=N,求a,b的值.19.证明f(x)=x3在R上是增函数.20.判断以下函数的奇偶性: (1)f (x )=3x 4+21x ;(2)f (x )=(x -1)xx-+11; (3)f (x )=1-x +x -1;(4)f (x )=12-x +21x -第一章 集合与函数概念参考答案一、选择题1.B 2.D 3.C 4.B 5.A 6.C 7.A 8.A 9.C 10.B . 二、填空题11.x ≠3且x ≠0且x ≠-1.12.a =31,b =91.13.1 760元.14.f (x )=x 2-4x +3,f (x -2)=x 2-8x +15. 15.(-∞,21). 16.x (1-x 3). 三、解答题17.解:①∵A 是空集, ∴方程ax 2-3x +2=0无实数根.∴⎩⎨⎧∆,a a 08-9=,0 解得a >89.②∵A 中只有一个元素,∴方程ax 2-3x +2=0只有一个实数根.当a =0时,方程化为-3x +2=0,只有一个实数根x =32; 当a ≠0时,令Δ=9-8a =0,得a =89,这时一元二次方程ax 2-3x +2=0有两个相等的实数根,即A 中只有一个元素.由以上可知a =0,或a =89时,A 中只有一个元素. ③假设A 中至多只有一个元素,则包括两种情形:A 中有且仅有一个元素;A 是空集.由①②的结果可得a =0,或a ≥89.18.解:根据集合中元素的互异性,有≠ <⎩⎨⎧==⎩⎨⎧==ab b a b b a a 2222或解得 或或再根据集合中元素的互异性,得或19.证明:设x 1,x 2∈R 且x 1<x 2,则f (x 1)-f (x 2)=31x -32x =(x 1-x 2)(21x +x 1x 2+22x ).又21x +x 1x 2+22x =(x 1+21x 2)2+4322x . 由x 1<x 2得x 1-x 2<0,且x 1+21x 2与x 2不会同时为0, 否则x 1=x 2=0与x 1<x 2矛盾,所以 21x +x 1x 2+22x >0.因此f (x 1)- f (x 2)<0,即f (x 1)<f (x 2), f (x )=x 3 在 R 上是增函数.20.解:(1)∵ 函数定义域为{x | x ∈R ,且x ≠0}, f (-x )=3(-x )4+21)(-x =3x 4+21x =f (x ),∴f (x )=3x 4+21x 是偶函数. (2)由xx-+11≥0⇔⎩⎨⎧≠01--1+1x x x ))(( 解得-1≤x <1. ∴ 函数定义域为x ∈[-1,1),不关于原点对称,∴f (x )=(x -1)xx-11+为非奇非偶函数.(3)f (x )=1-x +x -1定义域为x =1,∴ 函数为f (x )=0(x =1),定义域不关于原点对称, ∴f (x )=1-x +x -1为非奇非偶函数. (4)f (x )=1-2x +2-1x 定义域为≥ -10≥1-22x x ⇒ x ∈{±1},∴函数变形为f (x )=0 (x =±1),∴f (x )=1-2x +2-1x 既是奇函数又是偶函数.a =0b =1 a =0b =0a =41b =21 a =0b =1 a =41 b =21 ≥0。
高一数学集合与函数概念试题答案及解析
高一数学集合与函数概念试题答案及解析1.如图所示,是全集,是的子集,则阴影部分所表示的集合是()A.A∩B B.B∩A C.D.A∩B【答案】B【解析】根据韦恩图可知,阴影部分所表示的集合是B∩ A.【考点】本小题主要考查集合关系的判断.点评:判断集合的关系可以借助韦恩图进行.2.下列函数中是偶函数的是()()A.B.C.D.【答案】A【解析】因为选项A是偶函数,选项B,定义域不关于原点对称,不是偶函数,选项C中,是奇函数,选项D,非奇非偶函数。
选A.3.已知函数,则【答案】2【解析】因为函数,那么可知,故答案为2.4.当时,函数和的图象只可能是()【答案】A【解析】对于A:是减函数;A符合;对于B:是增函数;B不符合;对于C:是减函数;B不符合;对于D:是增函数;B不符合;故选A5.已知关于x的方程2a-7a+3=0有一个根是2, 求a的值和方程其余的根【答案】a=或a=3;a=时,x=2或x=1-log3;a=3时,x=2或x=-1-log2【解析】解: 2a-7a+3="0," a=或a=3.a=时, 方程为: 8·()-14·()+3=0x=2或x=1-log 3a=2时, 方程为: ·2-·2+3=0x=2或x=-1-log26.若函数y=(2k+1)x+b在R上是减函数,则()A.k>B.k<C.k>-D.k<-【答案】D【解析】由已知,2k+1<0,解得k<-.7.,B=且,则的值是 ( )A.B.C.D.【答案】B【解析】得或.经检验只有符合题意.8.设,则: , .【答案】【解析】,.9.已知集合若,则实数的取值范围是【答案】【解析】则得又10.设集合,且求的值.【答案】a=4或a=2,-2【解析】解:当B={1,a-1}时,有a-1=3,当时,C中方程无根.即;当时若C={1},有1-m+1=0;若C={3},有若C={1,3},m无解.由上述得:a=4或a=2,-211.设,其中,如果,求实数的取值范围。
函数与集合专题测试题及答案
实用文档集合与函数专题测试题一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{0,1,2},{31|}M N a a M ==-∈,则 M N ⋂=( )A .{0,1} B. {0,1,2} C. {2} D. φ2.函数2lg(2)y x x =--的定义域是( )A .[2,1)-- B. [1,2] C. (1,2] D. [2,1]--3.“1a =”是“函数()f x x a =-在区间[1,)+∞上为增函数”的 ( )A .充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件4.为了得到3lg10x y +=的图像,只需把lg y x =的图像上所有的点 ( )A 向左平移3个单位长度,再向上平移1个单位长度;实用文档B 向右平移3个单位长度,再向上平移1个单位长度;C 向左平移3个单位长度,再向下平移1个单位长度;D 向右平移3个单位长度,再向下平移1个单位长度.5对于集合M 、N ,定义{}M N x x M x N -=∈∉且,()()M N M N N M ⊕=--,设{}23,A y y x x x R ==-∈,{}2,x B y y x R ==-∈,则A B ⊕= ( ) A.9(,0]4- B. 9[,0)4- C. 9(,)[0,)4-∞-+∞ D. 9(,)(0,)4-∞-+∞ 6.函数)1y x =<-的反函数是( )A.)0y x =>B.)0y x =>C.)1y x =<-D.)1y x =<-7. 32()32f x x x =-+在区间[1,1]-上的最大值是 ( )A. 2-B. 0C. 2D. 48.函数1(0,1)x y a b a a =+->≠且的图象经过第二、三、四象限,则一定有 ( )A.01a <<且0b >B.1a >且0b >C.01a <<且0b <D.1a >且0b <实用文档 9.已知()f x 是定义在(,0)(0,)-∞+∞上的奇函数,当0x >时, ()f x 的图象如图所示,则不等式[()()]0x f x f x ⋅--<的解集为 ( )A (3,0)(0,3)-B (,3)(0,3)-∞-C (,3)(3,)-∞-+∞D (3,0)(3,)-+∞10.定义域为R 的函数1(2)()|2|1(2)x f x x x ⎧≠⎪=-⎨⎪=⎩,若关于x 的方程2()()0f x bf x c ++=恰有5个不同的实数解 12345,,,,x x x x x ,则12345()f x x x x x ++++等于 ( )A. 14B. 18C. 112D. 11611.已知()f x 是R 上的增函数,点A (1,2)、(1,1)B -在它的图象上,1()f x -为它的反函数,则不等式13(log )1f x -<的解集是 ( )A. (1,2)B. (1,1)-C. (3,9)D. 1(,3)312.若函数2()log (2)(01)a f x x x a a =+>≠且在区间1(0,)2上恒有()0f x >,则()f x 的单调增区间是实用文档( ) A.1(,)4-∞- B. 1(,)4-+∞ C. (0,)+∞ D. 1(,)2-∞- 二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.设函数221,1()2,1x x f x x x x ⎧-≤=⎨-+>⎩,则1()(2)f f 的值为_______________. 14.不等式20ax bx c ++>,解集区间为1(,2)2-,对于系数,,,a b c 有如下结论: ①0a >;②0b >;③ 0c >;④0a b c ++>;⑤0a b c -+>其中正确结论的序号是___________ .15.定义在(1,1)-上的函数()f x 满足:()()0f x f x -+=,当(1,1)x ∈-时,函数()f x 的导函数'()0f x <恒成立.如果2(1)(1)0f a f a -+->,则实数a 的取值范围是________________;16.已知函数()f x ()x R ∈满足(1)(1)f x f x +=-,且[1,1]x ∈-时,2()f x x =,则()y f x =与5log y x =的图像的交点个数为_______________ .三.解答题:本大题共4小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)实用文档 已知函数()f x =A, []()lg (1)(2)(1)g x x a a x a =---<的定义域为B .(1)求A(2)若B A ⊆,求实数A 的取值范围.18.(本小题满分12分) 已知函数1()21x f x a =+-是奇函数.(Ⅰ)求常数a 的值;(Ⅱ)求函数()f x 的反函数.19.(本小题满分12分)已知函数()f x 满足1(1)()f x f x +=,且()f x 是偶函数,当[3,4]x ∈时,3()log f x x =,求当[1,1]x ∈-时,()f x 的解析式.20.(本小题满分12分)设2()32f x ax bx c =++,若0a b c ++=,(0)(1)0f f >,求证:(1)方程()0f x =有实根; (2) 21ba -<<-;实用文档(3) 设12,x x 是方程()0f x =1223x x ≤-<. 21.(本小题满分12分) 已知定义在R 上的函数()f x 满足:① 值域为(1,1)-,且当0x >时,1()0f x -<<;② 对于定义域内任意实数,x y ,均有()()()1()()f x f y f x y f x f y ++=+. (1)求(0)f 的值;(2)判断函数()f x 的单调性,并给出证明;(3)若函数()f x 存在反函数()g x ,求证:*21111()()()()()511312g g g g n N n n +++>∈++ 22.(本小题满分12分)已知函数432()41f x x x ax =-+-在区间(]0,1上单调递增,在区间[)1,2上单调递减.(1)求a 的值;(2)若点A 00(,())x f x 在函数()f x 的图象上,求证:点A 关于直线1x =的对称点B 也在函数()f x 的图象上;(3)是否存在实数b,使得函数42g x x bx=++(其中b<4)的图像与()()1f x的图像恰有3个交点?若有,求出实数b的范围;若不存在,说明理由.集合与函数专题模拟参考答案一、选择题1.提示:集合为中学数学提供了大量的符号,所以高考在几何方面的考查,主要看对集合符号的认识.本题的关键在于弄清集合N中的元素是什么,由题得M N⋂=N=-,所以,{2}{1,2,5}答案: C实用文档实用文档2.提示:由题意可得220120x x x x +⎧≥⎪-⎨⎪-->⎩,即可直接解,也可带值检验.答案:A3.提示:函数()f x x a =-的对称轴为x a =结合图象解之,其增区间为[),a +∞.区间[1,)+∞⊆[),a +∞.答案:A4. 提示:先将3lg10x y +=变形为lg(3)1y x =+-,然后利用平移公式求解. 答案:C5.提示:这是考查学生学习潜能的一道题,关键在于读懂题中的定义,集合A 、B 表示的是函数值域,然后将9[,),(,0)4A B =-+∞=-∞代入即可. 答案:C6. 提示:本题为反函数的基本题目,反函数在新课程中没有要求,在大纲版却是一个必考内容,基本上以客观题的形式出现,难度中等.反函数问题的解法有两种,一是间接法,就是利用原函数与反函数的定义域、值域的关系来解;也可以利用原函数经过点(a,b ),其反函数经过点(b,a )来解,这时候取点验证就可以.本题略解:解法1:原函数的值域(0,)+∞,即为反函数定义域.解法2:在实用文档原函数经过点(),反函数必过点(1,,验证即可.答案:A7. 提示:直接利用导数求定区间[-1,1]下的最大值.答案:C8. 提示:分0a >和01a <<两类讨论来解.答案:C9. 提示:数形结合思想的考查是两个方面,客观题一般由“数”到“形”,命题主要围绕函数性质;主观题一般由“形”到“数”.由“数”到“形”需要意识,这种意识主要是函数性质的应用意识,比如函数的奇偶性,其主要作用是画图.本题由()f x 为奇函数得[()()]0x f x f x ⋅--<即为2()0x f x <,由图得0()0x f x >⎧⎨<⎩解得03x <<,再由奇函数图象关于原点对称得0()0x f x <⎧⎨>⎩,得30x -<<.答案:A10. 提示:由已知,方程2()()0f x bf x c ++=恰有5个不同的实数解,则其解必满足()1f x =或()(1)f x m m =≠.由()1f x =知,1231,3,2x x x ===;由()f x m =得,实用文档 45112,2x x m m =+=-,1234510x x x x x ∴++++=, 所以 123451()(10)8f x x x x x f ++++== 答案:B11. 提示:由已知得11(2,1),(1,1)A B -在1()f x -的图象上,且1()f x -在(,)-∞+∞上递增,这样,不等式13(log )1f x -< 等价于31log 2x <<,解得,39x <<. 答案:C12. 提示:先由已知得01a <<,再由复合函数单调性解之.答案:D二、填空题13. 提示:先求(2)4f =,再计算,1115()()(2)416f f f ==. 答案:1516 14. 提示:二次函数问题在高考中常考常新,常考不衰,主要因为二次函数在中学阶段研究的最全面,应用的最广泛,几乎所有的问题都要用二次函数类解决,所以二次函数的学习要引起足够的重视.本题有效的考查二次函数根与系数的关系.由已知得0a <,12-、2是对应的二次方程的两个根,对称轴实用文档是它们的中点;0,1都在解集范围内,代入判断知②③④正确.答案:②③④15. 提示:由题知,()f x 为奇函数,且在(1,1)-上递减,所以2(1)(1)0f a f a -+->等价于2211111111a a a a -<-<⎧⎪-<-<⎨⎪-<-⎩,解得1a <<.答案:1a <<16. 提示:由(1)(1)f x f x +=-得,函数()f x 的周期为T=2,结合图像即可求出交点个数.答案:4三、解答题17.解:⑴ 3201x x +-≥+,101x x -∴≥+,1x ∴<-或1x ≥,即(,1)[1,)A =-∞-+∞; ⑵(1)(2)0x a a x --->,(1)(2)0x a x a ∴---<,1a <,21a a ∴<+, ∴不等式的解为21a x a <<+,即(2,1)B a a =+.B A ⊆,11a +≤-或21a ≥, ∴2a ≤-或12a ≥. 18.解:⑴解法1:函数1()21x f x a =+-是奇函数,()()f x f x ∴-=-,实用文档 即112121x x a a -+=----,即211221x x x a a +=----,即1221212x x x a =---, 即121,2a a =∴=. 解法2:由题意知函数的定义域为(,0)(0,)-∞+∞,又知函数为奇函数,所以有(1)(1)f f ∴-=-,解得12a =. ⑵11()212x y f x ==+-,12112x y ∴=+-,12212x y y +∴=-,20x >,12012y y +∴>- 12y ∴<-或12y >,又212log 12y x y +=-, ∴函数()f x 的反函数为121112()log ()1222x f x x x x -+=<->-或. 19.解:由1(1)()f x f x +=,得1(2)()(1)f x f x f x +==+,2T ∴=.当[1,0]x ∈-时,4[3,4]x +∈,3(4)log (4)f x x ∴+=+,而(4)()f x f x +=,3()log (4)f x x =+. 当(0,1]x ∈时,[1,0)x -∈-,3()log (4)f x x -=-+,而()f x 是偶函数,()()f x f x -=,即3()log (4)f x x =-+∴33log (4),10()log (4),01x x f x x x +-≤≤⎧=⎨-+<≤⎩实用文档20解:⑴若0a =,则b c =-,2(0)(1)(32)0f f c a b c c ⋅-=++=-≤,与已知矛盾,0a ∴≠.方程2320ax bx c ++=的判别式24(3)b ac ∆=-,由条件0a b c ++=,消去b ,得2222134()4[()]024a c ac a c c ∆=+-=-+>,故方程()0f x =有实根. ⑵(0)(1)0f f ⋅>,(0)(1)0f f ⋅>,由条件0abc ++=,消去c ,故()(2)0a b a b ++<.(1)(2)0b b a a a ∴++<,故21b a-<<-. ⑶由条件知1223b x x a +=-,1233c a b x x a a +⋅==-,2212431()()923b x x a -=++,21b a -<<-,21214()39x x ∴≤-<,故12233x x ≤-<. 21.解:(1)在()()()1()()f x f y f x y f x f y ++=+中,令0,0x y >=,则有()(0)(),1()(0)f x f f x f x f +=+ 整理得2(0)[()1]0f f x -≠,因此有(0)0f =.(2)函数()f x 在R 上单调递减.证明如下:在()()()1()()f x f y f x y f x f y ++=+中,令,y x =-注意到(0)0f =,得()()0f x f x +-=, 所以函数()f x 为奇函数.因此有()()()1()()f x f y f x y f x f y --=-,即()()()[1()()]f x f y f x y f x f y -=-- 设x y -∞<<<+∞,则0y x ->,故()0f y x -<实用文档又由于函数()f x 的值域为(1,1)-,所以1()()1,1()()0f x f y f x f y -<<-> 即()()()[1()()]0f x f y f y x f x f y -=--->所以,函数()f x 在R 上单调递减.(3)由反函数定义,得 ()()[]1()()f x f y x yg f x f y --=-,令(),()f x s f y t ==,则 (),()x g s y g t ==,因此,又有()()()1s t g s g t g st--=-,可以验证,此式对任意的,(1,1)s t ∈-都成立. 由于211111(1)(2)1211131(1)(2)111(1)(2)12n n n n n n n n n n n n -++++===++++----++++, 所以2111()()()3112g g g n n n n =-++++. 由此可得, 2111()()()51131g g g n n +++++111111[()()][()()][()()]111221*********()()()()()112222g g g g g g n n g g g g g n n =-+-++-++++++=-=+->+++ 点评:抽象函数单调性问题一般离不开定义,即做差()()f x f y -,于是证明函数的奇偶性是解题的第一关键;根据函数单调性与奇偶性的关系有效的利用11()()22g g n n -=-++进行变形是解题的第二关键;由原函数与其反函数的定义实用文档域与值域的关系利用当10x -<<时,()0g x >,即1110,()022g n n -<-<->++成为圆满解决问题的第三关键.本题完成这些步骤都是在抽象式中进行的,题解到“山穷水尽”时,巧妙的利用了特殊与一般,联想与类比使得问题变得“柳暗花明”.22.提示:(1)由题知1x =处()f x 取得极大值,即'(1)0f =于是求得a 值;(2)这一问的关键在于“关于直线1x =的对称”的点的表示;(3)将“函数()g x 与()f x 的图像恰有3个交点”转化为“方程324(4)20x b x +-+=有3个根”进而利用导数求解.解:(1)由条件知1x =是()f x 的极大值点,所以'(1)0f =.又'32()4122f x x x ax =-+ 所以'(1)41220f a =-+=,即 4a =.(2)43222()441(2)1f x x x x x x =-+-=--,设A 00(,())x f x 在函数()f x 的图像上,即22000()(2)1f x x x =--则A 关于直线1x =的对称点为B 00(2,())x f x -.因为2222000000(2)(2)(22)1(2)1()f x x x x x f x -=----=--=所以 点B 也在()f x 图像上.实用文档 (3)函数()g x 与()f x 的图像恰有3个交点,即方程()()g x f x =有3个根, 即421x bx ++432441x x x =-+-有3个根,即方程324(4)20x b x +-+=有3个根. 令()h x 324(4)2x b x =+-+. 则/()h x 2122(4)x b x =+- /1()00h x x =⇒=或2406b x -=>, 所以 ()h x 在0x =处有极大值,在46b x -=处有极小值. (0)20h =>,∴三次函数()0h x =有三个根的条件为4()06b h -<, 从而 32444()(4)()20266b b b b --+-+<⇒<-.。
高中生集合函数试题及答案
高中生集合函数试题及答案一、选择题1. 集合A={1,2,3},集合B={3,4,5},求A∪B。
A. {1,2,3,4,5}B. {1,2,3}C. {3,4,5}D. {1,2,4,5}2. 集合A={1,2,3},集合B={3,4,5},求A∩B。
A. {3}B. {1,2}C. {4,5}D. 空集3. 集合A={1,2,3},求A的补集(设全集U={1,2,3,4,5,6})。
A. {4,5,6}B. {1,2,3}C. {1,2,4,5,6}D. {4,5,6,7}4. 若f(x) = x^2,求f(-3)。
A. 9B. -9C. 3D. -35. 函数f(x) = x^2 + 2x + 1的图像关于什么对称?A. 直线x=-1B. 直线x=0C. 点(-1,0)D. 点(1,0)答案:1-A 2-A 3-A 4-A 5-C二、填空题1. 若集合M={x | x > 0},N={x | x < 0},则M∩N = __________。
答案:空集2. 函数f(x) = 2x - 3的反函数为 __________。
答案:f^(-1)(x) = (x + 3) / 23. 已知函数f(x) = √x,x≥0,求f(4)。
答案:24. 函数g(x) = 3x + 5的值域是 __________。
答案:所有实数R5. 若集合P={y | y = x^2, x∈R},求P的元素范围。
答案:[0, +∞)三、解答题1. 已知集合C={x | x^2 - 5x + 6 = 0},求C的元素。
答案:C的元素为{2, 3},因为x^2 - 5x + 6 = 0的解为x=2和x=3。
2. 函数h(x) = x^3 - 3x^2 + 2,求h(1)和h(2)。
答案:h(1) = 1^3 - 3*1^2 + 2 = -1 + 2 = 1;h(2) = 2^3 - 3*2^2 + 2 = 8 - 12 + 2 = -2。
高一数学上册集合与函数概念试题
1、下列哪个选项描述的集合是空集?A、{x | x > 5 且 x < 3}B、{x | x 是自然数且 x < 1}C、{x | x 是实数}D、{x | x = x + 1}(解析:A选项描述了一个不可能满足的条件,因为没有一个数同时大于5且小于3,所以该集合为空集。
B选项描述的自然数中小于1的只有0,但自然数通常从1开始计数,若从0开始则不为空集,此处按常规理解应为空集;C选项描述了所有实数,显然不是空集;D选项描述的方程无解,但作为一个集合表达式,它表示的是满足该条件的x的集合,而该条件无解,所以集合为空。
)(答案:A)2、设A = {1, 2, 3},B = {x | x 是A中的元素且 x + 1 ∈ A},则集合B为?A、{1, 2}B、{2}C、{1, 3}D、{3}(解析:根据集合B的定义,我们需要找出A中那些加1后仍在A中的元素。
对于A中的元素1,1+1=2在A中;对于元素2,2+1=3在A中;但对于元素3,3+1=4不在A中。
因此,集合B = {1, 2}。
)(答案:A)3、下列哪个选项描述的集合与集合{2, 3, 4}相等?A、{x | x 是大于1且小于5的整数}B、{x | x 是偶数且 x < 4}C、{x | x 是质数且 x > 1}D、{x | x 是2, 3, 5中的任意一个数}(解析:A选项描述的是大于1且小于5的整数,即{2, 3, 4},与给定集合相等。
B选项描述的是小于4的偶数,即{2};C选项描述的是大于1的质数,即{2, 3}(质数定义为只有1和它本身两个正因数的自然数,且大于1);D选项描述的是2, 3, 5中的数,即{2, 3, 5}。
)(答案:A)4、设集合A = {x | x 是正整数且 x ≤ 5},则A的子集个数为?A、5B、15C、31D、32(解析:集合A = {1, 2, 3, 4, 5},含有5个元素。
必修一第一章集合与函数概念同步练习(含答案)
第一章 集合与函数概念同步练习1.1.1 集合的含义与表示 一. 选择题:1.下列对象不能组成集合的是( )A.小于100的自然数B.大熊猫自然保护区C.立方体内若干点的全体D.抛物线2x y =上所有的点 2.下列关系正确的是( )A.N 与+Z 里的元素都一样B.},,{},,{c a b c b a 与为两个不同的集合C.由方程0)1(2=-x x 的根构成的集合为}1,1,0{D.数集Q 为无限集 3.下列说法不正确的是( )A.*0N ∈B.Z ∉1.0C.N ∈0D.Q ∈24.方程⎩⎨⎧-=-=+3212y x y x 的解集是( )A.}1,1{-B.)1,1(-C.)}1,1{(-D.1,1-二.填空题:5.不大于6的自然数组成的集合用列举法表示______________.6.试用适当的方式表示被3除余2的自然数的集合____________.7.已知集合}7,3,2,0{=M ,由M 中任取两个元素相乘得到的积组成的集合为 ________. 8.已知集合}012{2=++∈=x ax R x M 只含有一个元素,则实数=a ______,若M 为空集,可a 的取值范围为_________.三.解答题:9.代数式}{)8(2x x x ∈-- ,求实数x 的值。
10.设集合A=},,2),{(N y x x y y x ∈+-=,试用列举法表示该集合。
11.已知}33,2{12+++∈x x x 试求实数x 的值。
1.1.2 集合的含义与表示一. 选择题:1.集合Φ与}0{的关系,下列表达正确的是( ) A.φ=}0{ B.φ⊆}0{ C.}0{∈φ D.φ}0{⊇2.已知集合A=}3,2,1{,则下列可以作为A 的子集的是( )A.}4,1{B.}3,2{C.}4,2{D.}4,3,1{ 3.集合},,{c b a 的非空真子集个数是( )A.5B.6C.7D.8 4.已知集合M={正方形},N={菱形},则( )A.N M =B.N M ∈C.M ≠⊂ND.N ≠⊂M二.填空题5.用适当的符号填空①},2_____{0Z n n x x ∈=②}_____{1质数③},,_____{}{c b a a ④}0))((_____{},{=--b x a x x b a ⑤},12______{},14{++∈+=∈+=N k k x x N k k x x 6.写出集合}1{2=x x 的所有子集_______________________7.设集合}{},63{a x x B x x A <=≤<-=,且满足A ≠⊂,B 则实数a 的取值范围是_________三.解答题8.已知集合B 满足}2,1{≠⊂B ⊆}5,4,3,2,1{,试写出所有这样的集合 9.已知}5{>=x x A ,}3{x x B <=,试判断A 与B 的关系 10.已知A=}3,4,1{},2,1{a B a =+,且B A ⊆,求a 的值1.1.3集合的基本运算(一)一.选择题1.已知集合A=}4,3,2,1{,}6,4,1{=B ,则=B A I ( ) A.}4,2,1{ B.}6,4,3,2,1{ C.}4,1{ D.}4,3,1{2.设A=}2{->x x ,}21{<<-=x x B ,则=B A Y ( ) A.R B.}2{<x x C.}1{->x x D.}2{->x x3.设{=A 等腰三角形} ,B={等边三角形},C={直角三角形},=C B A I Y )(( ) A.{等腰三角形} B.{直角三角形} C.φ D.{等腰直角三角形}4.已知集合}90{<<∈=x Z x M ,},2{+∈==N n n x x N ,则=N M I ( )A.{}6,4,2B.{}8,6,4,2C.{}7,6,5,4,3,2D.{}8,7,6,5,4,3,2,1 二.填空题5.{偶数}I {奇数}=__________.6.已知集合}31{<≤-=x x A ,}13{≤<-=x x B ,则=B A I __________.7.若集合A B A =I ,则=B A Y ___________.8.已知集合}33{<≤-=x x A ,}2{≤=x x B ,则=B A Y ___________.三.解答题9.集合},,523),{(R y x y x y x A ∈=-=},,132),{(R y x y x y x B ∈-=+=,求 B A I 10.已知集合},3,1{a A =,}1,1{2+-=a a B ,且A B A =Y ,求a 的值 11.已知集合},02{2=+-∈=b ax x R x A }05)2(6{2=++++∈=b x a x R x B且}21{=B A I ,求B A Y1.1.3集合的基本运算(二)一.选择题1.已知全集R U =,集合}1{<=x x M ,则M C u 为( ) A.}1{≥x x B.}1{>x x C.}1{<x x D.}1{≤x x2.设全集}4,3,2{=U ,}2,3{-=a A ,}3{=A C u ,则a 的值是( ) A.7 B.1- C.17-或 D.71-或3.已知全集R U =,集合}32{<≤-=x x A ,则A C u =( )A.}32{≥-≤x x x 或B.}32{>-≤x x x 或C.}32{>-<x x x 或D.}32{≥-<x x x 或 4.已知全集}8,7,6,5,4,3,2,1{=U ,集合}5,4,3{=A ,}6,3,1{=B ,那么集合 C={2,7,8}可以表示为( )A.B C uB.B A IC.B C A C u u ID.B C A C u u Y二.填空题5.设全集R U =,}62{<≤=x x A ,}4{≤=x x B ,则B A I =__,__=B C A u I ,__=B A C u I .6.全集=U {三角形},=A {直角三角形},则A C u =____________.7.设全集}4,3,2,1,0{=U }3,2,1,0{=A ,}4,3,2{=B ,则=B A C u I ____8.已知全集},2,1,0{=U 且}2{=A C u ,则A 的真子集共有___个.三.解答题9.设全集R U =,集合},43{R x x x M ∈<≤-=,},51{R x x x N ∈≤<-=,求①N M Y ②N C M C u u I10.设全集=U {1,2,3,4,5,6,7,8,9},集合}2{=B A I ,}9,1{=B C A C u u I ,}8,6,4{=B A C u I ,求B A ,11.已知}1,4,2{2+-=x x U ,}1,2{+=x B ,}7{=B C u ,求x 的值1.2.1函数的概念(一)一.选择题1.函数13)(+=x x f 的定义域为( )A.)31,(--∞B.),31(+∞- C.),31[+∞- D.]31,(--∞2.已知函数q px x x f ++=2)(满足0)2()1(==f f ,则)1(-f 的值为( ) A.5 B.5- C.6 D.6-3.下列函数中)()(x g x f 与表示同一函数的是( )A.1)()(0==x g x x f 与 B.xx x g x x f 2)()(==与C.22)1()()(+==x x g x x f 与D.33)()(x x g x x f ==与 4.下列各图象中,哪一个不可能为)(x f y =的图象( )二.填空题5.已知x x x f 2)(2-=,则=)2(f ______________.6.已知12)1(2+=+x x f ,则=)(x f ______________.7.已知)(x f 的定义域为],4,2[则)23(-x f 的定义域为_______________. 8.函数11)(22---=x x x f 的定义域为______________.三.解答题9.设⎩⎨⎧≥+<-=)0(22)0(12)(2x x x x x f ,求)2(-f 和)3(f10.求下列函数的定义域 (1)321)(+=x x f (2)x x x g -++=1)10()(011.已知)(x f 为一次函数,且34)]([+=x x f f ,求)(x fx(D)(B)(C) (A)x1.2.1函数的概念(二)一、 选择题1.函数x x y 22-=的定义域为}3,2,1,0{,其值域为( ) A.}3,0,1{- B.}3,2,1,0{ C.}31{≤≤-y y D.}30{≤≤y y2.函数)(11)(2R x xx f ∈+=的值域是( ) A.)1,0( B.]1,0( C.)1,0[ D.]1,0[ 3.下列命题正确的有( ) ①函数是从其定义域到值域的映射②x x x f -+-=23)(是函数③函数)(2N x x y ∈=的图象是一条直线④x x g xx x f ==)()(2与是同一函数 A.1个 B.2个 C.3个 D.4个 4.函数xx x y -+=)32(的定义域为( )A.⎭⎬⎫⎩⎨⎧-≠<230x x x 且B.{}0<x xC.{}0>x xD.⎭⎬⎫⎩⎨⎧-≠≠∈230x x R x 且二.填空题5.已知函数⎪⎩⎪⎨⎧≥<<--≤+=2,221,1,2)(2x x x x x x x f ,若3)(=x f ,则x 的值为__________.6.设函数33)(2+-=x x x f ,则)()(a f a f --等于____________.7.设函数x x x f --=1)(,则=)]1([f f ____________.8.函数[]3,1,322∈+-=x x x y 的值域是________________.三.解答题9.求函数242x x y --=的值域10.已知函数1122---=x x y ,求20072008y x +的值 11.已知函数bax xx f +=)((a .0≠a ,b 且为常数)满足1)2(=f ,x x f =)(有唯一解,求函数)(x f y =的解析式和)]3([-f f 的值.1.2.2 函数表示法(一) 一、 选择题1.设集合{}c b a A ,,=,集合B=R ,以下对应关系中,一定能成建立A 到B 的映射的是( )A.对A 中的数开B.对A 中的数取倒数C.对A 中的数取算术平方D.对A 中的数开立方2.某人从甲村去乙村,一开始沿公路乘车,后来沿小路步行,图中横轴表示走的时间,纵轴表示某人与乙村的距离,则较符合该人走法的图是( )3.已知函数23)12(+=+x x f ,且2)(=a f ,则a 的值等于( )A.8B.1C.5D.1-4.若x xx f -=1)1(,则当10≠≠x x 且时,)(x f 等于( )A.x 1B.11-xC.x -11D.11-x二.填空题5.若[]36)(+=x x g f ,且12)(+=x x g ,则=)(x f ______________.6.二次函数的图象如图所示,则此函数的解析式为___________.ttt ABDC7.已知函数⎩⎨⎧<≥=0,0,)(2x x x x x f 则=-)2(f ________,)4(f =_______8.集合}5,3,1{-=B ,12)(-=x x f 是A 到B 的函数,则集合 A 可以表示为____________________三.解答题9.已知函数)(x f 是一次函数,且14)]([-=x x f f ,求)(x f 的解析式10.等腰三角形的周长为24,试写出底边长y 关于腰长x 的函数关系式,并画出它的图象 11.作出函数31--+=x x y 的图象,并求出相应的函数值域1.2.2 函数表示法(二) 一、 选择题1.已知集合{}{}20,40≤≤=≤≤=y y B x x A ,按对应关系f ,不能成为从A 至B 的映射的一个是( ) A.x y x f 21:=→ B.2:-=→x y x f C.x y x f =→: D.2:-=→x y x f2.如图,函数1+=x y 的图象是( )y3.设}8,6,2,1,0,21{},4,2,1,0{==B A ,下列对应关系能构成A 到B 的映射的是( )A.1:3-→x x fB.2)1(:-→x x fC.12:-→x x fD.x x f 2:→4.已知函数⎩⎨⎧>+-≤+=1,31,1)(x x x x x f ,则⎥⎦⎤⎢⎣⎡)25(f f =( ) A.21 B.23 C.25 D.29 二.填空题5.设函数⎪⎪⎩⎪⎪⎨⎧≥<≤-<≤-+=2,320,2101,22)(x x x x x x f ,则)43(-f 的值为______, )(x f 的定义域为_____.6.)(x f 的图象如图,则)(x f =____________.7.对于任意R x ∈都有)(2)1(x f x f =+,当10≤≤x 时,)5.1-的值是____________.8.23)1(+=+x x f ,且2)(=a f ,则a 的值等于____________.三.解答题9.作出下列函数的图象(1)x y -=1,)2(≤∈x Z x 且 (2)3422--=x x y ,)30(<≤xA B CD10.已知函数⎩⎨⎧<+≥-=4),3(4,4)(x x f x x x f ,求)1(-f 的值11.求下列函数的解析式(1)已知)(x f 是二次函数,且1)()1(,2)0(-=-+=x x f x f f ,求)(x f (2)已知x x f x f 5)()(3=-+,求)(x f1.3.1 函数单调性与最大(小)值(一) 一.选择题1.若),(b a 是函数)(x f y =的单调递增区间,()b a x x ,,21∈,且21x x <,( ) A.)()(21x f x f < B.)()(21x f x f = C.)()(21x f x f > D.以上都不正确2.下列结论正确的是( )A.函数x y -=在R 上是增函数B.函数2x y =在R 上是增函数C.x y =在定义域内为减函数D.xy 1=在)0,(-∞上为减函数 3.函数111--=x y ( ) A.在),1(+∞-内单调递增 B.在),1(+∞-内单调递减 C.在),1(+∞内单调递增 D.在),1(+∞内单调递减 4.下列函数在区间),0(+∞上为单调增函数的是( ) A.x y 21-= B.x x y 22+= C.2x y -= D.xy 2=二.填空题5.已知函数)(x f 在),0(+∞上为减函数,那么)1(2+-a a f 与)43(f 的大小关系是________.6.函数)(x f y =7.已知13)(22-+-=a ax ax x f )0(<a ,则3(f ______.8.函数342+--=x x y 的单调递增区间为_______,当=x _______时,y 有最______值为____.三.解答题9.已知)(x f y =在定义域)1,1(-上为减函数,且)1()1(2-<-a f a f 求a 的取值范围。
高一数学人教版必修一第一章《集合与函数概念》综合测试题(含答案)
第一章集合与函数概念综合测试题、选择题1函数讨二2x -1的定义域是()2•已知集合 A 到B 的映射f:x T y=2x+1,那么集合A 中元素2在B 中对应的元素是( )A • 2B • 6C • 5D • 83•设集合 A 二{x|1 ::: x ::: 2}, B 二{x|x ::: a}.若 A B,则 a 的范围是()A • a_2B • a < 1C • a - 1D . a 乞 24•函数y =(k • 2)x • 1在实数集上是减函数,则 k 的范围是()A • k l :—2B • k z ;—2C • k ^ -2D • k-25•全集 U ={ 0,1,3,5,6,8},集合 A = { 1 , 5, 8 }, B ={2},则(6 A ) B =()A (2,;)B.[];)2 2—1 C.(「2) -1D.( =,2]B • { 0,3,6} {2,1,5,8} D • {0,2,3,6}F列各组函数中,表示同一函数的是(0 x y =x ,y =A •xB y = .x -1 . x 1, y = . x2 -1—2Dy=|x|,y = (、x)F列函数是奇函数的是(1A • y =x2B • y =2x2 3 (一“)若奇函数f x在1,3】上为增函数,且有最小值0,则它在1-3,-1】上A •是减函数,有最小值C •是减函数,有最大值设集合M = X - 2乞x -2 :f,B •是增函数,D •是增函数,N 二:y0 -有最小值有最大值y乞2:,给出下列四个图形,其中能表示集合M为定义域,N为值域的函数关系的是()x2 x 010. 已知f (x) X=0,则 f [ f (-3)]等于( )0 x cO2A . 0 B. n C. n D. 9二. 填空题r X +5(XA 1) nt211. 已知f(x—1)=x2,贝y f(x)= .14.已知f (x) = 2 ,则2x +1(x 兰1)f[f(1)> _______________________ .212. 函数y = x -6x的减区间是_____________ .13•设偶函数f (x)的定义域为R,当x・[0, •::)时f(x)是增函数,则f (2), f (二),f (-3)的大小关系是_________________________三、解答题14.设U =R, A x _1[ B J x 0 :: x :: 5?,求C u 切B 和A C U B .15. 求下列函数的定义域(4)f(X)x —22(2) f(x)|x| -216.集合A = 'xx2• 4x = 0; B -汉x2• 2 a T x • a2-1 = 0若A B = B求a 的取值范围。
集合与函数综合试题多套含答案
集合与函数综合训练含答案第一套:集合概念·基础练习第二套:子集、全集、补集·基础练习第三套:交集、并集·基础练习第四套:集合与函数结合规律试题第五套:集合与函数综合试题一第六套:集合与函数综合试题二第七套:提升训练试题集合·基础练习(一)选择题1.下列命题正确的是[ ]A .1是集合N 中最小的数.B .x 2-4x +4=0的解集为{2,2}C .{0}不是空集D .太湖中的鱼所组成的集合是无限集 2.下列各条件(1)大于5小于20且既能被3整除也能被2整除的数的全体; (2)方程x 2+2x +7=0的解的全体; (3)某学校校园内部的柳树的全体; (4)大于50的无理数的全体;其中能确定一个集合的有________个.A .1个B .2个C .3个D .4个3.已知集合A={y|y=-x 2+5x -4,x ∈R},则有[ ]A .1∈A ,且4∈A(二)填空题1.已知集合A={x ∈R|ax 2+2x +1=0,a ∈R},若A 中元素至多只有一个,则a 的取值范围是________.2.实数集{3,x ,x 2-2x}中的元素x 应满足的条件为________. 3.已知x 、y 、z ∈R ,且x 、y 、z 都不为0,则M=5.设A={x|x=2k ,k ∈Z},B={x|x=2k +1,k ∈Z},C={x|x=4k +1,k ∈Z},又若a ∈A ,b ∈B ,则a +b ∈________(填A 、B 、C 之一).B 1A 4AC 1A 4AD 1A 4A.∈,但.,但∈.,且∉∉∉∉m|m =x |x|+++中元素的个数为.y y z z xyz xyz ||||||⎧⎨⎩⎫⎬⎭4(x y)x y =52x 4y =8.集合,+--用列举法表示为.⎧⎨⎩⎫⎬⎭⎧⎨⎪⎩⎪1.用两种方式写出下列各题解的集合.2.设f(x)=x 2+ax +b ,A={x|f(x)=x}={a},求a 、b 的值.3.已知小于或等于x 的最大整数与大于或等于x 的最小整数之和是7,求x 的集合.ab ∈A .参考答案(一)选择题1.C((A)中N 包含元素0.(B)不满足集合元素互异性.(D)太湖中鱼是有限的而不是无穷多的)2.D(注意(B)中x 2+2x +7=0的解集是空集,(C)学校校园内部的树是确定的.)3.B(集合A 是二次函数y=-x 2+5x -4中,y 的取值范围,而不是一元二次方程-x 2+5x -4=0的解集,而y=-x 2+5x -4=-(x(二)填空题1.a ≥1或a=0 ①当ax 2+2x +1=0是一元二次方程时,即a ≠0时,Δ=4-4a ≤0,∴ a ≥1②当a=0时,ax 2+2x +1=0是一元一次方程2x +1=0也有一个根,因此也满足条件.2.x ≠-1且x ≠0且x ≠3(由集合元素的互异性知,3.3个 ①当x ,y ,z 都是正数时m=4 ②当x ,y ,z 都是负数时m=-4 ③当x ,y ,z 有两个正数一个负数或两个负数一个正数时m=0)①++②-③-④+<x =32y 5x y =4x 1=0 (x 1)=0 (x 1)0222⎧⎨⎩*4A ={x|x =n2m N n N}a A b A m.已知,∈,∈,若∈,∈,求证:-≤,故∈,但.52942)+941A 4A ∉x 3x 2x 3x 2x x x 3x 3x 1x 0x 3x 1x 0x 3)22≠-≠-≠≠≠且≠-≠且≠≠-且≠且≠⎧⎨⎪⎩⎪⇒⎧⎨⎪⎩⎪⇒5.B(A={x|x=2k ,k ∈z}={偶数} B={奇数} C 集合为所有被4整除余1的数,∵ a 为偶数,b 为奇数,∴ a +b 为奇数故a +b ∈B)(三)解答题②{x|x 2-1=0}={1,-1} ③{x|(x -1)2=0}={1}b=0,∵ A={a}∴ 方程x 2+(a -1)x +b=0有两个相等实根为a ,∴ 将a 代入方程得:a 2+a(a -1)+b=0①又由Δ=0得(a -1)2-4b=0② 解3.{x ∈R|3<x <4} ①当x 是整数时:x +x=7 x=3.5∈Z ,舍去.②当x不是整数时,设n <x <n +1,n ∈Z ,∴ n +(n +1)=7,∴ n=3 ∴ 3<x <4,∴ {x ∈R|3<x <4})∴ ab ∈A1{(x y)|x =32y 5x y =4={(11)}.①,++,-⎧⎨⎩⎫⎬⎭④+<{x|(x 1)0}=2∅2a =13b =19(f(x)=x x ax b =x x (a 1)x 22.,.由得++,即+-+①②得,.a =13b =19)4 a b A a =n 2b =n 2m m n n N(m m ) ab =n m m N n n N 1m 2m 1212211121212.证明:∵,∈∴设,.,,,∈>∴∵+∈,∈.n m m 2212+子集、全集、补集·基础练习(一)选择题[ ]A .1个B .2个C .3个D .4个[ ]是[ ]A .8B .7C .6D .5[ ](二)填空题1.设I={0,1,2,3,4,5},A={0,1,3,5},B={0,①0________A ②{0}________B ③C I A________C I B1{0}{012}{0}{01.在以下五个写法中:①∈,,②③,,≠∅⊂2}{120} 01{x|x {12}}⊆∅⊆,,④∈⑤∈,写法正确的个数有2A ={(x y)|yx=1}B ={(x y)|y =x}.集合,与,的关系是A A =B B A B C A BD A B ....≠≠⊂⊇⊃3{01}M {01234}.满足条件,,,,,的不同集合的个数≠⊂⊆M 4I =R A ={x|x 32}a =123.全集,>,则-A a C A B a C A C {a}C AD {a}A I I I ....∈≠⊆/⊆⊂1}从“∈、、、”中选择适当的符号填空.∉⊆⊇④⑤⑥1C B C A AB I I ∅2M ={x|x 1=0}N ={x|ax 1=0}N M a 2.设-,-,若,则的值为⊆3.已知A={x|x=(2n +1)π, n ∈Z},B={y|y=(4k ±1)π,k ∈Z},那么A 与B 的关系为________.________,n=________.的取值范围是________. (三)解答题a 的值.2.已知集合A={x ∈R|x 2+3x +3=0},B={y ∈B|y 2-5y +6=0},3.已知集合A={x|x=a 2+1,a ∈N},B={x|x=b 2-4b +5,b ∈N},求证:A=B .参考答案(一)选择题和③是正确的)有意义,故A 中少一个点(0,0),因此A B)3.C(M 中必须含有0、1,另外再在2、3、4中任取1个、2个或3个,这样集合M 的个数为3+3+1=7个)注:此题也可以理解为求{2,3,4}集合的非空子集个数为23-1=7个(二)填空题2. ±1或0(忽略空集是学生常犯的错误,本题应考虑两方面:①4M ={(x y)|mx ny =4}{(21)(25)}M .设,+且,,-,,则⊆=m 5A ={x|4x p 0}B ={x|x 1x 2}A B .设+<,<-或>,若使,则⊆P 1A ={13a}B ={1a a 1}A B 2.已知集合,,,,-+且,求⊇A P B P ⊆⊂≠,求满足条件的集合. B(=)A B 1.①集合与集合之间应用,或而不是属于关系.②空集是任何非空集合的真子集.③两集合相等时也可以写成的形式.④中不含任何元素.⑤此集合的元素是集合而不是数字.故②⊆⊇⊆∅210.注意与这两个式子是不同的,前者只有≠时才B(yx=y=xx 1 .①∈②③④⑤⑥⊆⊆∉⊆⊇N a =1N =a =0)≠时,±,②时∅∅3.A=B(此题应注意两点:①{2n +1|n ∈Z}与{4k ±1|k ∈Z}都表示奇数集 ②A 与B 的代表元素虽然字母不同但含义相同,因此A 与B 是两个相等集合)(三)解答题-2=0 ∴ a=2或a=-1 ②当a 2-a +1=a 时,a=1,代入A 中不满足A 中元素互异性,舍去 ∴ a=2或a=-1.)3.(提示:任取x ∈B ,x=b 2-4b +5=(b -2)2+1,b ∈N4((21)(25)mx ny =4.,由已知得:,和-,是方程+的两组4343解,将,和-,代入方程得:+-+解得.x =2y =1x =2y =52m n =42m 5n =4 m =43n =43⎧⎨⎩⎧⎨⎪⎪⎩⎪⎪)1a =2a =1( B A a a 1=3a a 22.或-∵∴①当-+时,-⊆2{2}{3}(A =B ={23}B {2}{3} P {2}{3}).或或由已知,,,的真子集为:,,又∵是任何集合的子集,∴可以是,,∅∅∅∅∅交集、并集·基础练习(一)选择题1.已知I={x ∈N|x ≤7},集合A={3,5,7},集合B={2,3,4,5},则[ ] A .C I A={1,2,4,6}B .(C I A)∩(C I B)={1,2,3,4,6}D .B ∩C I A={2,4}2.两个非空集合A 、B 满足A ∩B=A 且A ∪B=A ,那么A 、B 的关系是[ ]C .A=BD .以上说法都不对3.若4∩B={a ,b},A ∪B={a ,b ,c ,d},则符合条件的不同的集合A 、B 有[ ]A .16对B . 8对C . 4对D . 3对4.已知集合A ∪B={a ,b ,c ,d},A={a ,b}则集合B 的子集最多可能有[ ]A .8个B .16个C .4个D .2个5.已知集合A 为全集I 的任一子集,则下列关系正确的是[ ](二)填空题(1)A ∩C I A=________ (2)A ∪C I A=________C A C B =I .∩∅A A B B B A..≠⊂⊇A C A I B (A C A)C (A C A)ID C AI I I I ..∩.∪.≠≠≠⊂⊆∅⊂∅⊂1I A I B I A B .已知是全集,,,,则≠≠≠⊂⊂⊂(3)A ∩C I B=________ (4)B ∪C I A=________ (5)C I I=________(7)C I (C I (A ∩B))=________(8)A ∩I=________ (9)B ∪I=________2.集合A={有外接圆的平行四边形},B={有内切圆的平行四边形},则A ∩B=________.3.设集合A={(x ,y)|a 1x +b 1y +c 1=0},B={(x ,y)|a 2x +b 2y +b 1y +c 1)(a 2x +b 2y +c 2)=0的解集是________.4.集合A={x|x <-2,或x >2},B={x|x <1,或x >4},则A ∩B=________;A ∪B=________.实数a 的取值范围是________. (三)解答题1.A={(x ,y)|ax -y 2+b=0},B={(x ,y)|x 2-ay -b=0},已知2.已知 A={x|a ≤x ≤a +3},B={x|x <-1或x >5},(2)若A ∪B=B ,求 a 的取值范围.3.设方程2x 2+x +p=0的解集为A ,方程2x 2+qx +2=0的解4.以实数为元素的两个集合A={2,4,a 3-2a 2-a +7},B={-4,a +3,(6)C =I ∅c =0}a x b y c =0a xb yc =02111222,则方程组++++的解集是;方程+⎧⎨⎩(a x 15A ={1a}B ={1|a|}A B =.已知集合-,,集合,,若∩,则:∅A B {(12)}a b ∩,,求、.⊇(1)A B =a 若∩,求的取值范围.∅集为,∩,求∪.B A B =12A B ⎧⎨⎩⎫⎬⎭a 2-2a +2,a 3+a 2+3a +7},已知A ∩B={2,5},求:a .5.某中学高中一年级学生参加数学小组的有45人,参加物理小组的有37人,其中同时参加数学小组和物理小组的有15人,数学小组和物理小组都没有参加的有127人,问该校高中一年级共有多少学生?参考答案(一)选择题1.D(N={0,1,2,3,…},而集合N 中含有0是容易忽略的,故(A)C I A={0,1,2,4,6}.(B)中(C I A)∩(C I B)=C I (A ∪B)={0,1,6} (C)A ∩C I B 只要找出在A 中且不在B 中的元素即可为{7})2.C(根据集合运算的结果确定集合之间的关系是常用知识,由A3.C(由韦恩图可推断如下:4.B(B 的元素个数n 最多时子集个数最多,而集合B 最多有4个元素为a 、b 、c 、d ,因此共有24=16个子集.)5.B(注意A 为全集I 的任一子集意味着A 有可能是空集也有可能(二)填空题2.{正方形}(有外接圆的平行四边形可证明是长方形,有内切圆的平行四边形可证明是菱形)3.A ∩B ;A ∪B(注意“{”联立起来的方程组表示两个条件必须同时满足是“并且”的意思,而方程(a 1x +b 1y +c 1)(a 2x +b 2y +c 2)=0是a 1x +b 1y +c 1=0或a 2x +b 2y +c 2=0.)4.(-∞,-2)∪(4,+∞);(-∞,1)∪(2,+∞) (A ∩B :A ∪B :)∩得,由∪得,故此题B =A A B A B =A B A A =B)⊆⊆是全集,而只有中∩是正确的(B)A C A =I ∅⊆∅)1(1) (2)I (3) (4)I (5) (6)I (7)A (8)A (9)I .∅∅∅(三)解答题2.(1)解:∴ a +3<-1或a >5 ∴ a <-4或a >54.解:∵ A ∩B={2,5} ∴ 5∈A 代入得a 3-2a 2-a +7=5∴ a=2或a=±11)当a=2时,B={-4,5,2,25} A={2,4,5}2)当a=1时,B={-4,4,1,12},与A ∩B={2,5}矛盾,舍去 3)当a=-1时,同理舍去 ∴ a=2 5.解:30+15+22+127=194(人)答:该校高一年级学生共194人5a 0a 1(|a|1|a|1|a|a a 0a 1).<且≠-由互异性及题意可知:≠≠≠<≠-⎧⎨⎪⎩⎪⇒⎧⎨⎩11212012401203722.解:由∩,知,满足方程组-+--将,代入得-+--∴-A B {()}x=y=ax y b=x ay b=x=y=a b=a b= a=b=⊇⎧⎨⎪⎩⎪⎧⎨⎩⎧⎨⎩依题意得≥-+≤∴-≤≤解:由∪知a 1a 351a 2(2)A B =B A B⎧⎨⎩⊆3A B =12p =1q =5A B ={12}.解:由∩知为两方程的公共根,代入方程得--再代入原方程,得∪-,,1212⎧⎨⎩强化训练·规律篇(一)选择题1.点M(-3t,4t)(t≠0)是角α终边上一点,则有 [ ][ ]A.在一、二象限取正,三、四象限取负B.在一、四象限取正,二、三象限取负C.在一、三象限取正,二、四象限取负D.仅在一象限取正[ ]A.第一象限B.第三象限C.第一或第三象限D.第二或第四象限[ ]D.1[ ] A.2πB.π[ ]C.[0,2)D.[0,2](ω1≠0,ω2≠0),它们的最小正周期分别是T1,T2,那么“这两个函数的图像重合或通过平移使它们重合”是“T1=T2”的[ ]A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件图像[ ]sin(-3x)的图像,这种变动可以是[ ]的图像[ ]A.与g(x)的图像相同B.与g(x)的图像关于y轴对称12.函数f(x)=3sin(2x+5θ)的图像关于y轴对称的充要条件是 [ ]13.若A为△ABC的内角,则sinA+cosA的取值范围是 [ ][ ]15.方程2sinx=x的实根的个数是[ ]A.0个B.1个C.2个D.3个(二)填空题16.若θ∈(0,2π),则使sinθ<cosθ<tgθ成立的θ的取值范围是______。
高中数学集合和函数基本性质基础专练一含答案
集合与函数基本性质基础专练一一.选择题(共12小题)1.设集合P={x|x2﹣2>0},Q={1,2,3,4},则P∩Q的非空子集的个数为()A.8B.7C.4D.32.设集合A={﹣1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=()A.{2}B.{2,3}C.{﹣1,2,3}D.{1,2,3,4} 3.已知全集U={﹣1,0,1,2,3},集合A={0,1,2},B={﹣1,0,1},则(∁U A)∩B=()A.{﹣1}B.{0,1}C.{﹣1,2,3}D.{﹣1,0,1,3} 4.已知集合A={x|x>﹣1},B={x|x<2},则A∩B=()A.(﹣1,+∞)B.(﹣∞,2)C.(﹣1,2)D.∅5.已知集合A={x|﹣1<x<2},B={x|x>1},则A∪B=()A.(﹣1,1)B.(1,2)C.(﹣1,+∞)D.(1,+∞)6.已知全集U={1,2,3,4,5,6},A={1,2,6},B={2,4,5},则(∁U A)∩B=()A.{4,5}B.{1,2,3,4,5,6}C.{2,4,5}D.{3,4,5}7.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.48.设集合A={1,2,3,4},B={﹣1,0,2,3},C={x∈R|﹣1≤x<2},则(A∪B)∩C =()A.{﹣1,1}B.{0,1}C.{﹣1,0,1}D.{2,3,4}9.设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=()A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2} 10.已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0}D.{﹣2,﹣1,0,1,2}11.已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}12.设f(x)为奇函数,且当x≥0时,f(x)=e x﹣1,则当x<0时,f(x)=()A.e﹣x﹣1B.e﹣x+1C.﹣e﹣x﹣1D.﹣e﹣x+1二.填空题(共11小题)13.已知f(x)=,若f(a)+f(﹣2)=0,则a=______14.已知集合A={﹣1,0,1,6},B={x|x>0,x∈R},则A∩B=______.15.函数y=的定义域是______.16.已知集合A={1,2,3,4,5},B={3,5,6},则A∩B=______.17.已知a∈R,函数f(x)=.若对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则a的取值范围是______.18.已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是______.19.已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为______.20.函数y=的定义域是______.21.函数的定义域为______.22.已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=______.23.若函数f(x)=x3+a为奇函数,则实数a=______.三.解答题(共7小题)24.x1、x2∈R,f(0)≠0,且f(2x1)+f(2x2)=f(x1+x2)•f(x1﹣x2).(1)求f(0);(2)求证f(x)为偶函数;(3)若f(π)=0,求证f(x)为周期函数.25.自选题:已知函数f(x)=|x﹣8|﹣|x﹣4|.(Ⅰ)作出函数y=f(x)的图象;(Ⅱ)解不等式|x﹣8|﹣|x﹣4|>2.26.设a为实数,函数f(x)=x2+|x﹣a|+1,x∈R(1)讨论f(x)的奇偶性;(2)求f(x)的最小值.27.设函数,求f(x)的单调区间,并证明f(x)在其单调区间上的单调性.28.根据函数单调性的定义,证明函数f(x)=﹣x3+1在(﹣∞,+∞)上是减函数.29.求函数.30.30.画出函数的图象.集合和函数基本性质基础专练一参考答案与试题解析一.选择题(共12小题)1.解:;∴P∩Q={2,3,4};∴P∩Q的非空子集的个数为:个.故选:B.2.解:设集合A={﹣1,1,2,3,5},C={x∈R|1≤x<3},则A∩C={1,2},∵B={2,3,4},∴(A∩C)∪B={1,2}∪{2,3,4}={1,2,3,4};故选:D.3.解:∵∁U A={﹣1,3},∴(∁U A)∩B={﹣1,3}∩{﹣1,0,l}={﹣1}故选:A.4.解:由A={x|x>﹣1},B={x|x<2},得A∩B={x|x>﹣1}∩{x|x<2}=(﹣1,2).故选:C.5.解:∵A={x|﹣1<x<2},B={x|x>1},∴A∪B={x|﹣1<x<2}∪{x|x>1}=(﹣1,+∞).故选:C.6.解:由全集U={1,2,3,4,5,6},A={1,2,6},得∁U A={3,4,5},B={2,4,5},则(∁U A)∩B={3,4,5}∩{2,4,5}={4,5}.故选:A.7.解:当x=﹣1时,y2≤2,得y=﹣1,0,1,当x=0时,y2≤3,得y=﹣1,0,1,当x=1时,y2≤2,得y=﹣1,0,1,即集合A中元素有9个,故选:A.8.解:∵A={1,2,3,4},B={﹣1,0,2,3},∴(A∪B)={1,2,3,4}∪{﹣1,0,2,3}={﹣1,0,1,2,3,4},又C={x∈R|﹣1≤x<2},∴(A∪B)∩C={﹣1,0,1}.故选:C.9.解:∵A={x|0<x<2},B={x|x≥1},∴∁R B={x|x<1},∴A∩(∁R B)={x|0<x<1}.故选:B.10.解:集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B={0,2}.故选:A.11.解:∵A={x|x﹣1≥0}={x|x≥1},B={0,1,2},∴A∩B={x|x≥1}∩{0,1,2}={1,2}.故选:C.12.解:设x<0,则﹣x>0,∴f(﹣x)=e﹣x﹣1,∵设f(x)为奇函数,∴﹣f(x)=e﹣x﹣1,即f(x)=﹣e﹣x+1.故选:D.二.填空题(共11小题)13.解:(1)若a<0,则:f(a)+f(﹣2)=2a﹣4=0;解得a=2,不满足a<0,这种情况不存在;(2)若a≥0,则:f(a)+f(﹣2)=a2﹣4=0;∴a=2;综上得,a=2.故答案为:2.14.解:∵A={﹣1,0,1,6},B={x|x>0,x∈R},∴A∩B={﹣1,0,1,6}∩{x|x>0,x∈R}={1,6}.故答案为:{1,6}.15.解:由7+6x﹣x2≥0,得x2﹣6x﹣7≤0,解得:﹣1≤x≤7.∴函数y=的定义域是[﹣1,7].故答案为:[﹣1,7].16.解:∵集合A={1,2,3,4,5},B={3,5,6},∴A∩B={3,5}.故答案为:{3,5}.17.解:当x≤0时,函数f(x)=x2+2x+a﹣2的对称轴为x=﹣1,抛物线开口向上,要使x≤0时,对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则只需要f(﹣3)≤|﹣3|=3,即9﹣6+a﹣2≤3,得a≤2,当x>0时,要使f(x)≤|x|恒成立,即f(x)=﹣x2+2x﹣2a,在射线y=x的下方或在y =x上,由﹣x2+2x﹣2a≤x,即x2﹣x+2a≥0,由判别式△=1﹣8a≤0,得a≥,综上≤a≤2,故答案为:[,2].18.解:x≥0,y≥0,且x+y=1,则x2+y2=x2+(1﹣x)2=2x2﹣2x+1,x∈[0,1],则令f(x)=2x2﹣2x+1,x∈[0,1],函数的对称轴为:x=,开口向上,所以函数的最小值为:f()==.最大值为:f(1)=2﹣2+1=1.则x2+y2的取值范围是:[,1].故答案为:[,1].19.解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,当a=1时,A={1,2},B={1,4},成立;a2+3=1无解.综上,a=1.故答案为:1.20.解:由3﹣2x﹣x2≥0得:x2+2x﹣3≤0,解得:x∈[﹣3,1],故答案为:[﹣3,1]21.解:由x﹣2≥0得,x≥2.∴原函数的定义域为[2,+∞).故答案为[2,+∞).22.解:根据条件得:4=﹣a+2;∴a=﹣2.故答案为:﹣2.23.解:∵f(x)是R上的奇函数;∴f(0)=a=0.故答案为:0.三.解答题(共7小题)24.解:(1)f(2x1)+f(2x2)=f(x1+x2)•f(x1﹣x2),可令x1=x2=0,可得f(0)+f(0)=f(0)•f(0),由f(0)≠0,可得f(0)=2;(2)证明:可令x1=,x2=﹣,则f(x)+f(﹣x)=f(0)f(x)=2f(x),可得f(﹣x)=f(x),则f(x)为偶函数;(3)证明:可令x1=+π,x2=,则f(x+2π)+f(x)=f(x+π)f(π)=0,即有f(x+2π)=﹣f(x),将x换为x+2π,可得f(x+4π)=﹣f(x+2π)=f(x),可得f(x)为最小正周期为4π的函数.25.解:(Ⅰ)f(x)=图象如下:(Ⅱ)不等式|x﹣8|﹣|x﹣4|>2,即f(x)>2,观察知当4<x<8时,存在函数值为2的点.由﹣2x+12=2得x=5.由函数f(x)图象可知,原不等式的解集为(﹣∞,5).26.解:(1)当a=0时,函数f(﹣x)=(﹣x)2+|﹣x|+1=f(x)此时,f(x)为偶函数当a≠0时,f(a)=a2+1,f(﹣a)=a2+2|a|+1,f(a)≠f(﹣a),f(a)≠﹣f(﹣a)此时f(x)既不是奇函数,也不是偶函数(2)①当x≤a时,当,则函数f(x)在(﹣∞,a]上单调递减,从而函数f(x)在(﹣∞,a]上的最小值为f(a)=a2+1.若,则函数f(x)在(﹣∞,a]上的最小值为,且.②当x≥a时,函数若,则函数f(x)在[a,+∞)上的最小值为;若,则函数f(x)在[a,+∞)上单调递增,从而函数f(x)在[a,+∞)上的最小值为f(a)=a2+1.综上,当时,函数f(x)的最小值为当时,函数f(x)的最小值为a2+1当时,函数f(x)的最小值为.27.解:函数的定义域为(﹣∞,﹣b)∪(﹣b,+∞).f(x)在(﹣∞,﹣b)内是减函数,f(x)在(﹣b,+∞)内也是减函数.证明f(x)在(﹣b,+∞)内是减函数.取x1,x2∈(﹣b,+∞),且x1<x2,那么=,∵a﹣b>0,x2﹣x1>0,(x1+b)(x2+b)>0,∴f(x1)﹣f(x2)>0,即f(x)在(﹣b,+∞)内是减函数.同理可证f(x)在(﹣∞,﹣b)内是减函数.28.证明:证法一:在(﹣∞,+∞)上任取x1,x2且x1<x2则f(x2)﹣f(x1)=x13﹣x23=(x1﹣x2)(x12+x1x2+x22)∵x1<x2,∴x1﹣x2<0.当x1x2<0时,有x12+x1x2+x22=(x1+x2)2﹣x1x2>0;当x1x2≥0时,有x12+x1x2+x22>0;∴f(x2)﹣f(x1)=(x1﹣x2)(x12+x1x2+x22)<0.即f(x2)<f(x1)所以,函数f(x)=﹣x3+1在(﹣∞,+∞)上是减函数.证法二:在(﹣∞,+∞)上任取x1,x2,且x1<x2,则f(x2)﹣f(x1)=x13﹣x23=(x1﹣x2)(x12+x1x2+x22).∵x1<x2,∴x1﹣x2<0.∵x1,x2不同时为零,∴x12+x22>0.又∵x12+x22>(x12+x22)≥|x1x2|≥﹣x1x2∴x12+x1x2+x22>0,∴f(x2)﹣f(x1)=(x1﹣x2)(x12+x1x2+x22)<0.即f(x2)<f(x1).所以,函数f(x)=﹣x3+1在(﹣∞,+∞)上是减函数.29.解:解得:{x|﹣2≤x<1}∪{x|1<x≤2}.30.解:y =的图象为然后把次图象向左平移一个单位可得第1页(共1页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合与函数综合练习
一、填空题:
1.设函数x x
x f =+-)11(
,则)(x f 的表达式为 2.函数)(x f 在区间]3,2[-是增函数,则)5(+=x f y 的递增区间是 3. 函数f(x)=)24(log 122x x -+-的定义域为
4.已知集合}023|{2
=+-=x ax x A 至多有一个元素,则a 的取值范围 .
5.函数||2x x y +-=,单调递减区间为
6.构造一个满足下面三个条件的函数实例,
①函数在)1,(--∞上递减;②函数具有奇偶性;③函数有最小值为0; .
7.=+34-3031-]2-[5
4-0.064)()(___________ ____; 8.已知)(x f =x x +1,则111(1)(2)()(3)()(4)()234
f f f f f f f ++++++= 。
9.已知函数()y f x =为奇函数,若(3)(2)1f f -=,(2)(3)f f ---=_______ 10.)(x f =21(0)2(0)
x x x x ⎧+≤⎨->⎩,若)(x f =10,则x = .
11.若f (x )是偶函数,其定义域为R 且在[0,+∞)上是减函数,则f (-
43)与f (a 2-a +1)的大小关系是____.
12.log 7[log 3(log 2x )]=0,则21-x 等于=
13.函数y=log 21(x 2-5x+17)的值域为 。
14.函数y=lg(ax+1)的定义域为(-∞,1),则a= 。
二、解答题:
15.已知集合A 的元素全为实数,且满足:若a A ∈,则11a A a
+∈-。
(1)若3a =-,求出A 中其它所有元素;
(2)0是不是集合A 中的元素?请你设计一个实数a A ∈,再求出A 中的所有元素?
16.已知函数[]5,5,22)(2
-∈++=x ax x x f .(1)求实数a 的范围,使)(x f y =在区间[]5,5-上是单调递增函数。
(2)求)(x f 的最小值。
17. 已知函数x x x f 21
2)(-=
(1) 若2)(=x f ,求x 的値;
(2) 若0)()2(2≥+t mf t f t
对于[]2,1∈t 恒成立,求实数m 的取値范围。
18. 已知函数)0()(2
3≠++=a cx bx ax x f ,当1-=x 时()f x 取得极值5,且11)1(-=f . (Ⅰ)求()f x 的单调区间和极值;
(Ⅱ)证明对任意12,x x )3,3(-∈,不等式32|)()(|21<-x f x f 恒成立.
19.设函数21()ax f x bx c
+=+是奇函数(,,a b c 都是整数,且(1)2f =,(2)3f <. (1)求,,a b c 的值; (2)()f x 在(,1]-∞-上的单调性如何?用单调性定义证明你的结论.
参考答案 1.x x
+-11
2.]2,7[--
[)2,0
=0或
89≥
a
5.]0,21[-和),21[+∞
6.
R x x y ∈=,2 7.1623
8.
(a 2一a +1)≤f (43
)
12.221
13.(-3,-∞)
15.解:(1)由,则,又由,得,
再由,得,而,得,
故中元素为.
(2) 不是的元素.若,则,
而当时,不存在,故0不是的元素.
取,可得.
16.解:(1)因为)(x f 是开口向上的二次函数,且对称轴为a x -=,为了使)(x f 在[]5,5-上是增函数,故5-≤-a ,即5≥a (5分)
(2)当5-≤-a ,即5≥a 时,)(x f 在[]5,5-上是增函数,所以a f x f 1027)5()(min -=-= 当55≤-<-a ,即55<≤-a 时,)(x f 在[]a --,5上是减函数,在[]5,a -上是增函数,所以
2min 2)()(a a f x f -=-=
当5>-a ,即5-<a 时,)(x f 在[]5,5-上是减函数,所以a f x f 1027)5()(min +==
综上可得
⎪⎩⎪⎨⎧-<+<≤--≥-=)5(,1027)55(,2)5(,1027)(2min a a a a a a x f
17.解答;(1)当0x π时,0)(=x f ;当0≥x 时,x x x f 212)(-=。
由条件可知
2212=-
x x ,即012222=-⋅-x x 。
解得212±=x 。
因为0φx ,所以)21(log 2+=x 。
(2)当[]2,1∈t 时,0)212()212(222≥-+-t t t t t m 。
即)12()12(42--≥-t t m ,因为0122φ-t ,所以
)12(2+-≥t m 。
因为[]2,1∈t ,所以
[]5,17)12(2--∈+-t 。
故m 的取值范围是[)+∞-,5。
18.答案:(Ⅰ))0()(23≠++=a cx bx ax x f
c bx ax x f ++='23)(2
由题意可得:⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧-=-==⇒=+-=-+--=++⇒=-'=--=9310235110)1(5)1(11)1(c b a c b a c b a c b a f f f
因此,
x x x x f 93)(23--=,)3)(1(3)(-+='x x x f 当 ),3()1,(+∞--∞∈Y x 时,,当)3,1(-∈x 时,,
所以函数单调增区间为)1,(--∞,),3(+∞,单调减区间为)3,1(-.
在处取得极大值5,在3=x 处取得极小值–27 . (7分)
(Ⅱ)由(Ⅰ)知
93)(23--=x x x f 在)1,3(--上递增,在)3,1(-上递减, 所以,)3,3(-∈x 时,5)1()(=-≤f x f ,27)3()(-=±>f x f 所以,对任意)3,3(-∈恒有 32|)27(5||)()(|21=--<-x f x f .(12分)
19.答案:(1)⎭⎬⎫⎩⎨⎧+=x x x f 241log ,log 3min )(=⎪⎩⎪⎨⎧>+≤++x x x x x x 241224141log log 3,
log log log 3,log 3 3分 解x
x 241log log 3=+得4=x .又函数x
y 411log 3+=在),0(+∞内递减,x y 22log =在),0(+∞内
递增,所以当40<<x 时,x
x 241log log 3>+;当4≥x 时,x
x 241log log 3≤+. 4分 所以⎪⎩⎪⎨⎧≥+<<=4,log 340,log )(412x x x x x f . 1分
(2)2)(<x f 等价于:⎩⎨⎧<<<2log ,402x x ①或⎪⎩⎪⎨⎧<+≥2log 3,441x x ②. 3分
解得:440><<x x 或,即2)(<x f 的解集为),4()4,0(+∞Y .3分
20.解:(1)由是奇函数,得对定义域内x 恒成立,则对对定义域内x 恒成立,即 . (或由定义域关于原点对称得)
又由①得代入②得,
又是整数,得.
(2)由(1)知,,当,在上单调递增,在上单调递减.下用定义证明之.
设,则=
,因为,,.
,故在上单调递增.。