空间数据库中涉及到的基本知识
空间数据库重点知识

矢量数据结构:通过记录坐标的方式来表达点、线、面等地理实体。
矢量数据结构的主要特点:定位明显和属性隐含。
结构:Spaghetti(面条)结构和拓扑矢量数据结构。
只有像拓扑结构这样的数据结构才是“矢量”数据结构。
拓扑矢量数据结构的特点是:1、一个多边形和另一个多边形之间没有空间坐标的重复,这样就消除了重复线;2、拓扑信息与空间坐标分别存储,有利于进行近邻、包含和相连等查询操作;3、拓扑表必须在一开始就创建,这要花费一定的时间和空间;4、一些简单的操作比如图形显示比较慢,因为图形显示需要的是空间坐标而非拓扑结构。
栅格数据模型是将连续的空间离散化,将地理区域的平面表象按一定分解力作行和列的规则划分,形成大小均匀紧密相邻的网格阵列。
空间数据引擎(SDE):是用来解决如何在关系数据库中存储空间的数据,实现真正的数据库方式管理空间数据,建立空间数据服务器的方法。
工作原理:SDE客户端发出请求,由SDE服务端处理这个请求,转换成DBMS能处理的请求事物,由DBMS处理完相应的请求,SDE服务端再将处理的结果实时反馈给GIS的客户端。
客户通过空间数据引擎将自己的数据交给大型关系型DBMS,由DBMS统一管理,同样,客户可以通过空间数据引擎从关系型DBMS 中获取其它类型的GIS数据,并转换成客户端可以使用的方式。
空间数据引擎的作用:(1)与空间数据库联合,为任何支持的用户提供空间数据服务。
(2)提供开放的数据访问,通过TCP/IP横跨任何同构或异构网格,支持分布式的GIS系统。
(3)SDE对外提供了空间几个对象模型,用户可以在此模型基础之上建立空间几何对象,并对这些几何对象进行操作。
(4)快速的数据提取和分析。
(5)SDE提供了连续DBMS数据库的接口,其他的一切涉及与DBMS数据库进行交互的操作都是在此基础之上完成的。
(6)与空间数据库联合可以管理海量空间信息。
(7)无缝的数据管理,实现空间数据与属性数据统一存储。
武汉大学空间数据库复习资料整理

《空间数据库原理》第一章数据库1、空间数据库:①提供结构用于存储和分析空间数据②空间数据由多维空间的对象组成③在标准数据库中存储空间数据需要大量的空间,从一个标准数据库中检索查询空间数据需要很多时间并且很累赘,通常导致很多错误。
2、DBMS:(数据的操作系统)一种操纵和管理数据库的大型软件,用于建立、使用和维护数据库。
SDBMS:增加了处理空间数据功能的DBMS。
①在它的数据模型中提供空间数据类型和查询语言②至少在执行时支持提供空间数据类型:空间索引;空间链接有效的算法。
在地理信息系统中为什么要研究专门的空间数据库系统?1.空间数据库能提供结构存储和空间数据分析2.空间数据库包含多面空间的对象3.在标准数据库中存储空间数据会需要过多的空间4.标准数据库的查询反馈和空间数据分析会消耗过多时减并且留下大量错误空间5.空间数据库能提供更多有效率的存储和空间数据分析3、哈希(Hash)函数:一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
质数除余法(直接取余法):f(x):=x mod maxM ;maxM一般是不太接近2^t的一个质数。
乘法取整法:f(x):=trunc((x/maxX)*maxlongit) mod maxM,主要用于实数。
平方取中法:f(x):=(x*x div 1000 ) mod 1000000);平方后取中间的,每位包含信息比较多。
第二章数据库基本原理1、数据模型Data Model:关于数据基础或对象以及他们之间的关系的抽象描述被表示在一个数据库中。
3、概念数据模型:也称语义模型,关于实体和实体间联系的抽象概念集,用统一的语言描述、综合、集成的用户视图。
2、数据字典:是指对数据库的内容包括数据项和属性码定义,是元数据的重要组成部分。
(是指对数据的数据项、数据结构、数据流、数据存储、处理逻辑、外部实体等进行定义和描述,其目的是对数据流程图中的各个元素做出详细的说明。
)Metadata:是描述数据的数据,主要是描述数据属性的信息,用来支持如指示存储位置、历史数据、资源查找、文件记录等功能。
空间数据库复习资料最终版

一、名词解释1.空间数据库:描述与特定空间位置有关的真实世界对象的数据集合。
2.数据库:统一存储和管理数据的基地3.空间数据:指以地球表面空间位置为参照,用来描述空间实体的位置、形状、大小及其分布等诸多方面信息的数据4.空间认知:对现实世界的空间属性包括位置、大小、距离、模式、运动和物体内部关系的认知,是通过获取、处理、存储、传递、和解译空间信息,来获取空间知识的过程5.矢量数据结构:利用欧式几何学中的点、线、面及其组合体来表示地理实体空间分布的一种数据组织方式6.栅格数据结构实际实质就是像元阵列,即像元按矩阵形式的集合7.空间关系:空间目标在一定区域上构成的与空间特性有关的联系。
8.四面体网格:将目标空间用紧密排列但不重叠的不规则四面体形成的网格来表示,其实质就是2D TIN结构在3D空间上的拓展9.空间数据库系统:指带有数据库的计算机系统,采用现代数据库技术来管理空间数据。
10.空间数据引擎:用来解决如何在关系数据库存储空间数据,实现真正的数据库方式管理空间数据,建立空间数据服务器的方法11.空间索引:指在存储空间数据时依据空间对象的位置和形状或空间对象之间的某种空间关系,按一定顺序排列的一种数据结构,其中包含空间对象的概要信息。
12.空间链接查询:是空间数据库系统一种重要的多路查询,即从两个数据集合中检索出所有满足某一条件的空间对象。
13.元数据:是关于数据的数据,用于描述数据的内容、质量、表示方式、空间参照系、管理方式、数据的所有者、数据的提供方式以及数据集的其他特征14.空间元数据:描述地理信息数据集内容、表示、空间参照、质量以及管理的数据二、填空1.空间数据特征包括:时空特征、多维特征、多尺度性、海量数据特征2.空间数据库的作用:①空间数据处理与更新②海量数据存储于管理③空间分析与决策④空间信息交换与共享3.空间数据库的特征:综合抽象特征、非结构化特征、分类编码特征、复杂性与多样性4.空间数据管理的五种方式:基于文件管理方式、文件与关系数据库混合型空间数据库、全关系型空间数据库、对象-关系型空间数据库、面向对象空间数据库5.空间类型的表现形式:感知空间、认知空间、符号空间6.空间认知模式:空间特征感知、空间对象认识、空间格局认知7.空间认知的三层模型:空间概念数据模型、空间逻辑数据模型、物理数据模型8.矢量数据结构主要有spaghetti结构和拓扑矢量数据结构9.最基本的拓扑关系:关联、临接、包含10.栅格数据结构实际实质就是像元阵列,即像元按矩阵形式的集合11.栅格数据取值的四种方法:中心归属法、面积占优法、长度占优法、重要性法12.四叉树编码的方式:规则四叉树、线性四叉树、一对四式四叉树13.栅格数据的存储:全栅格式存储、链式编码、行程编码、块式编码、四叉树编码14.空间关系可分为:拓扑关系、度量关系、顺序关系15.面向对象的数据模型涉及四个抽象概念:分类,概括,聚集,联合、以及继承和传播两个语义模型工具16.TIN常用的算法:逐点插入法、分治算法、三角形生长法17.空间构模方法可归纳为:基于面模型、基于体模型、基于混合模型18.根据模型所具有的主要特征大致可以将其分为4类:三维矢量模型、三维体元模型、混合或集成数据模型、面向实体的数据模型19.图形数据与专题数据的链接基本上有4种方式:图形数据与专题属性数据分别管理、对通用DBMS扩展以增加空间数据库的管理能力、属性数据与图形数据有统一的结构、图形数据与属性数据自成体系20.目前空间索引技术超过50多种,可概括为树结构、线性映射和多维空间区域变换三种类型,从应用范围上可以分为静态索引和动态索引21.典型的空间索引技术包括:R树索引、四叉树索引、网格索引22.四叉树索引的方法有:点四叉树索引、MX四叉树索引、PR四叉树索引、CIF四叉树索引、基于固定网格划分的四叉树索引、线性可排序四叉树索引23.SQL查询语言的优点:非过程化语言、统一的语言、所有关系数据库的公共语言24.SQL查询语言的功能:查询、操纵、定义、控制25.SQL可细分为:DDL、DML、DCL26.主要的空间查询包括:点查询、区域查询、最邻近查询27.空间查询采用的算法:过滤筛选步骤、细化步骤28.查询分析的类型:属性查询、空间查询、空间分析29.空间数据交换的方式:①外部数据交换模式②直接数据访问模式③基于空间数据转换标准的转换④空间数据互操作模式30.空间数据库的设计可分为:需求分析,概念设计,逻辑设计,物理设计,数据库的实现,数据库的运行和维护6个阶段31.空间数据库需求分析主要包括三方面内容:用户基本需求调研、分析空间数据现状、系统环境/功能分析三、问答题1.空间数据库与传统数据库的差异:①信息描述差异。
空间数据库学习报告

空间数据库学习报告在当今数字化的时代,数据的管理和处理变得愈发重要。
空间数据库作为一种专门用于存储和管理空间数据的数据库系统,在地理信息系统、城市规划、环境保护等众多领域发挥着关键作用。
通过对空间数据库的学习,我不仅深入了解了其基本概念和原理,还掌握了相关的技术和应用。
一、空间数据库的基本概念空间数据库是一种能够有效存储、管理和查询空间数据的数据库系统。
空间数据与传统的非空间数据不同,它具有空间位置、几何形状、拓扑关系等特性。
例如,地图上的点、线、面等要素,以及它们之间的相邻、包含等关系,都属于空间数据的范畴。
为了准确地表示和处理空间数据,空间数据库采用了特定的数据模型和结构。
常见的空间数据模型包括矢量数据模型和栅格数据模型。
矢量数据模型通过点、线、面等几何对象来描述空间实体,而栅格数据模型则将空间划分为规则的网格单元,并为每个单元赋予相应的值。
二、空间数据库的关键技术1、空间索引空间索引是提高空间数据查询效率的重要技术。
常见的空间索引方法有 R 树、四叉树、KD 树等。
这些索引结构能够快速定位和筛选出与查询条件相关的空间数据,从而大大减少数据检索的时间和开销。
2、空间查询语言为了方便用户对空间数据进行查询和操作,空间数据库提供了专门的查询语言,如 SQL 的空间扩展(如 PostGIS 中的空间查询函数)。
这些查询语言支持空间关系的判断、空间数据的过滤和聚合等操作,使得用户能够灵活地获取所需的空间信息。
3、空间数据的存储管理空间数据的存储方式直接影响着数据库的性能和效率。
在空间数据库中,通常采用优化的存储策略来减少数据冗余、提高存储空间利用率,并保证数据的一致性和完整性。
三、空间数据库的应用领域1、地理信息系统(GIS)GIS 是空间数据库应用最为广泛的领域之一。
通过将地理空间数据存储在空间数据库中,GIS 能够实现地图的绘制、空间分析、路径规划等功能,为城市规划、资源管理、交通运输等提供决策支持。
《空间数据库》复习

《空间数据库》复习在当今数字化的时代,空间数据的管理和应用变得越来越重要。
空间数据库作为专门用于存储和管理空间数据的系统,对于地理信息系统、城市规划、环境保护等众多领域都具有关键作用。
为了更好地掌握这一重要的知识领域,让我们来进行一次全面的复习。
首先,我们来了解一下什么是空间数据库。
简单来说,空间数据库就是能够有效地存储、管理和查询空间数据的数据库系统。
空间数据与传统的数值或文本数据不同,它具有空间位置、形状、大小等特征。
例如,地图上的点、线、面等地理要素,以及它们之间的空间关系,都属于空间数据。
空间数据库的特点主要包括以下几个方面。
一是数据量大,因为它需要涵盖广阔的地理区域和丰富的细节信息。
二是数据结构复杂,不仅包含属性数据,还包含空间几何数据,如点、线、面等,以及它们之间的拓扑关系。
三是查询操作复杂,常常需要进行空间位置的查询、空间关系的判断等。
在空间数据库中,常见的数据模型有矢量数据模型和栅格数据模型。
矢量数据模型通过点、线、面等几何对象来表示地理实体,其优点是数据精度高、存储空间小、便于编辑和更新。
栅格数据模型则将地理空间划分为规则的网格,每个网格单元对应一个数值,适用于对连续现象的表示,如地形、温度等。
空间索引是提高空间数据库查询效率的重要技术。
常见的空间索引方法有 R 树、四叉树、网格索引等。
R 树是一种基于空间分割的索引结构,能够有效地支持空间范围查询和最近邻查询。
四叉树则是将空间区域不断地四分,形成层次结构,适用于区域查询。
网格索引则是将空间划分为固定大小的网格,通过网格来快速定位数据。
在数据存储方面,空间数据库需要考虑如何有效地存储空间数据和属性数据。
一般来说,空间数据可以采用二进制大对象(BLOB)的方式存储在数据库中,而属性数据则可以按照常规的数据库字段进行存储。
接下来谈谈空间数据库的查询处理。
空间查询包括空间选择查询、空间连接查询等。
空间选择查询是根据空间位置或空间关系来筛选数据,例如查找距离某个点一定范围内的所有对象。
空间数据库资料

空间数据库资料在当今数字化的时代,数据的管理和利用变得至关重要。
空间数据库作为一种专门用于存储和管理空间数据的数据库系统,在众多领域中发挥着关键作用。
空间数据,简单来说,就是具有空间位置特征的数据。
比如地图上的地点、道路、建筑物的位置,或者地理信息系统中地形的起伏、河流的走向等。
这些数据不仅包含了常规的属性信息,如名称、类型等,更重要的是其独特的空间位置和几何形状信息。
空间数据库与传统数据库相比,有着显著的差异。
传统数据库主要处理文本、数字等简单数据类型,而空间数据库需要处理复杂的空间对象,如点、线、面等。
这就要求空间数据库具备特殊的功能和结构来有效地存储、索引和查询这些空间数据。
为了实现对空间数据的高效管理,空间数据库采用了一系列专门的技术。
其中,空间索引技术是关键之一。
常见的空间索引方法包括 R 树、四叉树等。
这些索引结构能够快速定位和检索空间数据,大大提高了数据库的查询效率。
在数据存储方面,空间数据库通常采用分层存储的方式。
将不同类型、不同精度的空间数据分别存储在不同的层次中,以便在查询时能够根据需要快速获取相应的数据。
同时,为了保证数据的准确性和完整性,空间数据库还需要进行严格的数据质量控制。
这包括对数据的采集、录入、编辑等环节进行监控和校验,确保数据的可靠性。
空间数据库的应用领域非常广泛。
在城市规划中,它可以帮助规划师分析土地利用、交通流量等情况,从而制定更合理的规划方案。
在环境保护方面,能够监测和分析污染源的分布、生态系统的变化等,为环境保护决策提供支持。
在交通管理中,通过对道路网络、车辆位置等数据的管理和分析,可以优化交通流量,提高交通运输效率。
此外,地理信息系统(GIS)也是空间数据库的重要应用领域之一。
GIS 整合了空间数据库、地图绘制、数据分析等功能,为用户提供了一个强大的工具来处理和分析地理空间信息。
无论是进行资源调查、灾害预警还是城市发展研究,GIS 都离不开空间数据库的支撑。
空间数据库知识点总结

空间数据库知识点总结空间数据库知识点总结1、数据:指客观事物的属性、数量、位置、及其相互关系等的符号描述。
2、信息:是数据的内容,信息=数据+数据处理3、空间数据:是对空间事物的描述,实质上是指以地球表面空间位置为参照,用来描述空间实体的位置、形状、大小及其分布特征诸多方面信息的数据。
是带有空间坐标的数据,包括文字、数字、图形、影像、声音等多种方式。
4、数据库:长期储存在计算机内的、有组织、可共享的数据集合。
5、空间数据库是指描述与特定空间位置有关的真实世界对象的数据集合。
6、空间数据类型:地图数据、影像数据、地形数据、属性数据7、空间数据特征:时空特征、多维特征、多尺度性、海量数据特征8、空间数据库的作用:①空间数据处理与更新②海量数据存储与管理③空间分析与决策④空间信息交换与共享。
9、空间数据管理模式现状(五种方式):文件管理方式、文件与关系数据库混合型空间数据库、全关系型空间数据库、对象-关系型空间数据库和面向对象空间数据库。
10、空间数据模型现状(三维数据结构分类):基于体描述的和基于面表示的数据模型及三维矢量、栅格、混合与面向对象的数据结构。
11、与传统数据库的差异:①信息描述差异②数据管理差异③数据操作差异④数据更新差异⑤服务应用差异。
12、空间认知:是对现实世界的空间属性包括位置、大小、距离、方向、形状、模式、运动和物体内部关系的认知,是通过获取、处理、存储、传递和解译空间信息,来获取空间知识的过程。
13、空间类型表现形式:①感知空间②认知空间③符号空间④物理空间⑤感觉运动空间。
14、空间认知模式:①空间特征感知:空间特征感知发生于感知空间;②空间对象认知:空间对象认知发生于认知空间;③空间格局认知:空间格局认知发生于符号空间。
15、现实世界认知过程:现实世界(是存在于人们头脑之外的客观世界)观察抽象为概念世界(是现实世界在人们头脑的反应)在经过定义编码模型化为数字世界(是概念世界中的信息数据化)。
空间数据库复习重点答案(完整)

空间数据库复习重点答案(完整)1、举例说明什么是空间数据、非空间数据?如何理解空间查询和非空间查询的区别?常用的空间数据库管理方式有哪几种及其各自特点。
文件管理阶段缺点:1)程序依赖于数据文件的存储结构,数据文件修改时,应用程序也随之改变。
2)以文件形式共享,当多个程序共享一数据文件时,文件的修改,需得到所有应用的许可。
不能达到真正的共享,即数据项、记录项的共享。
常用:文件与数据库系统混合管理阶段优点:由于一部分建立在标准的RDBMS上,存储和检索数据比较有效、可靠。
缺点:1)由于使用了两个子系统,它们各自有自己的规则,查询操作难以优化,存储在RDBMS外的数据有时会丢失数据项的语义。
2)数据完整性的约束条件可能遭破坏,如在几何空间数据系统中目标实体仍存在,但在RDBMS中却已删除。
3)几何数据采用图形文件管理,功能较弱,特别是在数据的安全性、一致性、完整性、并发控制方面,比商用数据库要逊色得多全关系型空间数据库管理系统◆属性数据、几何数据同时采用关系式数据库进行管理◆空间数据和属性数据不必进行烦琐的连接,数据存取较快◆属性间接存取,效率比DBMS的直接存取慢,特别是涉及空间查询、对象嵌套等复杂的空间操作◆GIS软件:Sytem9,SmallWorld、GeoView等本质:GIS软件商在标准DBMS顶层开发一个能容纳、管理空间数据的系统功能。
对象关系数据库管理系统优点:在核心DBMS中进行数据类型的直接操作很方便、有效,并且用户还可以开发自己的空间存取算法。
缺点:用户须在DBMS环境中实施自己的数据类型,对有些应用相当困难。
面向对象的数据库系统。
采用面向对象方法建立的数据库系统;GIS是一个利用空间分析功能进行可视化和空间数据分析的软件。
它的主要功能有:搜索、定位分析、地形分析、流分析、分布、空间分析/统计、度量GIS可以利用SDBMS来存储、搜索、查询、分享大量的空间数据集改:地理信息系统是以地理空间数据库为基础,在计算机软硬件的支持下,运用系统工程和信息科学的理论,科学管理和综合分析具有空间内涵的地理数据,以提供管理、决策等所需信息的技术系统。
空间数据库复习资料整理v3

空间数据库复习资料整理v3⼀、名词解释1空间数据库是地理信息系统在计算机物理存储介质上存储和应⽤的相关的地理空间数据的总合。
2空间数据库管理系统:能进⾏语义和逻辑定义存储在空间数据库上的空间数据,提供必需的空间数据查询、检索和存取功能,以及能够对空间数据进⾏有效的维护和更新的⼀套软件系统。
3空间数据库应⽤系统提供给⽤户访问和操作空间数据库的⽤户界⾯,是应⽤户数据处理需求⽽建⽴的具有数据库访问功能的应⽤软件。
⼀般需要进⾏⼆次开发,包括空间分析模型和应⽤模型。
4什么是arcSDE空间数据库引擎(SDE: Spatial Database Engine)ArcSDE是⼀个⽤于访问存储于关系数据库管理系统(RDBMS)中的海量多⽤户地理数据库的服务器软件产品。
5什么是空间数据地理信息系统的数据库(简称空间数据库或地理数据库)是某⼀区域内关于⼀定地理要素特征的数据集合。
6空间数据模型空间数据(库)模型:就是对空间实体及其联系进⾏描述和表达的数学⼿段,使之能反映实体的某些结构特性和⾏为功能。
空间数据模型是衡量GIS功能强弱与优劣的主要因素之⼀。
7空间数据结构不同空间数据模型在计算机内的存储和表达⽅式。
8场模型在空间信息系统中,场模型⼀般指的是栅格模型,其主要特点就是⽤⼆维划分覆盖整个连续空间9对象模型⾯向对象数据模型(Object―Oriented Data Model,简称O―O Data Model)是⼀种可扩充的数据模型,在该数据模型中,数据模型是可扩充的,即⽤户可根据需要,⾃⼰定义新的数据类型及相应的约束和操作。
10概念数据模型按⽤户的观点来对数据和信息建模。
⽤于组织信息世界的概念,表现从现实世界中抽象出来的事物以及它们之间的联系。
如E-R模型。
11结构数据模型从计算机实现的观点来对数据建模,是信息世界中的概念和联系在计算机世界中的表现⽅法。
如层次模型、⽹状模型、关系模型、⾯向对象模型。
12空间元数据空间元数据是指在空间数据库中⽤于描述空间数据的内容、质量、表⽰⽅法、空间参考和管理⽅式等特征的数据,是实现地理空间信息共享的核⼼标准之⼀。
空间数据库

空间数据库模型
•基于纯关系数据库的管理方式
•第一种方式:
•关系数据模型组织
•GIS软件商在标准DBMS顶层开发一 个能容纳、管理空间数据的系统功 能
GIS应用 开发与维护 扩展DBMS以容纳 空间数据
GIS开发人员
空间数据库模型
•基于纯关系数据库的管理方式
•第一种方式:
E
多边形编号 P1 P1 P1 P1 边号 a b c d 边长
返回
空间数据库的概念
•空间数据库系统 空间数据库、空间数据库管 理系统以及其它们的软、硬件 系统的总称。
空间数据库模型
•传统数据库模型 数据结构:是指数据的组织形式,在计算机存储、管理和处理的 数据逻辑结构 数据模型:是描述实体及其相互关系的数学描述,是空间数据库 建立的逻辑模型 层次模型 网络模型
N
边号 起结点号 1 2 终结点号 7 1
P1
P2
a b …
C
结点号 1 2 … x .. … y … …
空间数据库模型
•基于纯关系数据库的管理方式
•第二种方式:
•将图形数据的变长部分处理成 Binary Block字段 •由GIS开发人员完成
GIS应用 开发与维护 关系数据库
GIS开发人员
空间数据库模型
•对象数据模型的含义
•
地理信息系统原理
聂俊堂 昆明冶金高等专科学校测绘学院
第四讲 空间数据库模型
1. 空间数据库的概念 2. 空间数据库模型
空间数据库的概念
•空间数据库 是地理信息系统在计算机物理存储 介质上存储和应用的相关地理空间数 据的总合 空间数据、属性数据以及时间数据 •空间数据库系统 空间数据库、空间数据库管理系统 以及其它们的软、硬件系统的总称。
Spatial空间数据库考试重点

1.空间数据库与传统数据库的区别1、数据量庞大。
空间数据库面向的是地学及其相关对象,而在客观世界中它们所涉及的往往都是地球表面信息、地质信息、大气信息等及其复杂的现象和信息,所以描述这些信息的数据容量很大,容量通常达到GB级。
2、具有高可访问性。
空间信息系统要求具有强大的信息检索和分析能力,这是建立在空间数据库基础上的,需要高效访问大量数据。
3、空间数据模型复杂空间数据库存储的不是单一性质的数据,而是涵盖了几乎所有与地理相关的数据类型,这些数据类型主要可以分为3 类:(1)属性数据:与通用数据库基本一致,主要用来描述地学现象的各种属性,一般包括数字、文本、日期类型。
(2)图形图像数据:与通用数据库不同,空间数据库系统中大量的数据借助于图形图像来描述。
(3)空间关系数据:存储拓扑关系的数据,通常与图形数据是合二为一的。
4、属性数据和空间数据联合管理。
5、空间实体的属性数据和空间数据可随时间而发生相应变化。
6、空间数据的数据项长度可变,包含一个或多个对象,需要嵌套记录。
7、一种地物类型对应一个属性数据表文件。
多种地物类型共用一个属性数据表文件。
8、具有空间多尺度性和时间多尺度性。
9、应用范围广泛。
2.空间数据库定义空间数据库指的是地理信息系统在计算机物理存储介质上存储的与应用相关的地理空间数据的总和,一般是以一系列特定结构的文件的形式组织在存储介质之上的。
空间数据库的研究始于20 世纪70年代的地图制图与遥感图像处理领域,其目的是为了有效地利用卫星遥感资源迅速绘制出各种经济专题地图。
由于传统的关系数据库在空间数据的表示、存储、管理、检索上存在许多缺陷,从而形成了空间数据库这一数据库研究领域。
而传统数据库系统只针对简单对象,无法有效的支持复杂对象(如图形、图像)。
3.GIS和SDBMS的区别GIS和SDBMS的区别与联系:利用GIS可以对某些对象和图层进行多种操作,而利用SDBMS则可以对更多的对象集和图层集进行更为简单的操作。
空间数据管理-空间数据库

contents
目录
• 空间数据库概述 • 空间数据库的核心技术 • 空间数据库的应用领域 • 空间数据库面临的挑战与解决方案 • 空间数据库的未来发展趋势
空间数据库概述
01
定义与特点
定义
空间数据库是一种用于存储和管理空 间数据的数据库系统,它能够存储、 检索、更新和管理空间数据,包括地 理信息、地图数据、遥感数据等。
空间数据查询语言
空间数据查询语言是用于查询和管理 空间数据库的标准语言,它提供了丰 富的空间函数和操作符,用于对空间 数据进行各种复杂的查询和操作。
常见的空间数据查询语言包括SQL、 PostGIS等。
空间数据模型与结构
空间数据模型与结构是描述空间数据的组织和表达方式,它决定了空间数据的表示、存储和查询方式 。
环境监测与保护是空间数据库的重要应用领域之一。 环境监测部门需要利用空间数据库来分析环境质量、 生态状况等信息,为环境保护提供决策支持。
环境监测与保护还包括污染治理、生态修复等领域。
空间数据库面临的挑
04
战与解决方案
数据安全与隐私保护
数据加密
采用先进的加密算法对空间数据进行加密, 确保数据在存储和传输过程中的安全性。
访问控制
实施严格的访问控制策略,对不同用户设定不同的 权限级别,防止未经授权的访问和数据泄露。
隐私保护
在数据采集、处理和使用过程中,采取匿名 化、去标识化等技术手段保护用户隐私。
高性能查询优化
索引技术
利用空间索引技术提高查询效率,如 R-tree、Quadtree等。
查询策略优化
根据查询需求和数据特点,优化查询 路径和算法,减少计算量和I/O负载。
第四章 空间数据库

4 点-线查询 查询某点实体一定范围内的线实体。步骤
: (1)激活点图层,选择一个点
本次您浏览到是第三十二页,共四十三页。
(2)SQL查询 激活线图层,输入查询条件
本次您浏览到是第三十三页,共四十三页。
5 线-线查询
查询与某个线实体相连的其他线实体。步骤:
(1)激活线图层,选择一条线
本次您浏览到是第三十四页,共四十三页。
本次您浏览到是第十三页,共四十三页。
本次您浏览到是第十四页,共四十三页。
网状模型用连接指令或指针来确定数据间的显 式连接关系,是具有多对多类型的数据组织方 式 。网络模型将数据组织成有向图结构,结构 中结点代表数据记录,连线描述不同结点数据间 的关系。
存在以下问题:1)结构复杂,增加了用户查询 和定位的困难。要求用户熟悉数据的逻辑结构, 知道自身所处的位置。(2)网状数据操作命令 具有过程式性质(3)不直接支持对于层次结构 的表达。
(2)SQL查询
输入查条件
本次您浏览到是第三十五页,共四十三页。
6 面-线查询 查询经过某个面实体的线实体。步骤:
(1)激活面图层,选择一个面
本次您浏览到是第三十六页,共四十三页。
(2)SQL查询 激活线图层,输入查询条件
本次您浏览到是第三十七页,共四十三页。
7 点-面查询
查询某个点实体被包含在哪个面实体内部。 步骤: (1)激活点图层,选择一个点
本次您浏览到是第二十四页,共四十三页。
点、线、面实体相互关系的9种查询: 1 点-点查询
查询某点实体给定距离范围内的其他点 实体。如200km。步骤: (1)激活点图层,选择一个点
本次您浏览到是第二十五页,共四十三页。
(2)SQL查询(200km以内的其他点)
04 空间数据库

空间数据库的设计,实质是将地理空间实体以一定的组织形式 在数据库系统中加以表达的过程,也就是GIS中的空间实体建 立数据模型的过程。 数据库的数据模型:包括数据库的数据结构、操作集合和完整 性约束规则集合等。
1.2 空间数据库的设计
GIS空间数据库的设计经历: 现实世界 信息世界 计算机世界
类:河流 实例:岷江
2.2 面向对象的数据模型
继承及类之间的层次关系
继承:是现实世界中对象之间的一种独特关系,它使得某类 对象可以自然地拥有另外一类对象的某些特征和功能。 类的继承性,可以对象之间某些相同或相似的特征和功能不 需重复实现,通过继承而实现相互借用和共享。
继承可分类为:单继承和多继承
曲线对象类 曲面对象类 基类(超类)
04 空间数据库
—— 空间数据的存储和管理方法
04 GIS空间数据库
1 空间数据库概述 2 空间数据库概念模型设计 3 空间数据库逻辑模型设计 4 空间数据库物理设计 5 空间数据查询 6 空间数据库索引
7 空间元数据
8 空间数据库引擎 9 空间时态数据库
04 GIS空间数据库
1 空间数据库概述 2 空间数据库概念模型设计 3 空间数据库逻辑模型设计 4 空间数据库物理设计 5 空间数据查询 6 空间数据库索引 7 空间元数据 8 空间数据库引擎 9 空间时态数据库
自定义完整性:某一具体约束条件
3.1 关系型数据模型
空间数据库关系数据模型的逻辑设计
空间数据库关系模式的构造:就是点、线、面等空间实体特征以关系 模式加以表达和组织。关系数据库的规范化理论是设计的有力工具。
数据依赖:依赖于值域元素语义的限制、依赖于值的相等与否的限制 函数依赖:属性(集合)X的值对属性(集合)Y的值的依赖性,关键字决定依 赖、完全函数依赖、传递函数依赖、多值依赖 范 式:关系满足某种规范化的形式,以对关系属性之间存在的多种多 样函数依赖性的描述和约束。目前,关系模型以后6种关系范式。 其思想是:逐步消除数据依赖中的不合理部分,使模式中的各 个关系达到某种类型的分离,使得一个关系描述一个概念。
空间数据库简单介绍

对空间数据进行压缩,以减少存 储空间占用和提高数据传输效率 。
数据索引
R树索引
一种用于空间数据库的索引结构 ,通过将空间对象按照一定规则 组织成树形结构,提高空间查询 和范围查询的效率。
Quadtree索引
一种用于栅格数据的索引结构, 通过将栅格区域按照一定规则组 织成四叉树结构,提高栅格数据 的查询和检索效率。
大规模数据处理和高性能计算的需求。
与大数据技术的融合
02
大数据技术可以提供高效的数据处理和分析能力,与空间数据
库结合可以实现更复杂的数据分析和挖掘。
与人工智能的融合
03
人工智能技术可以提供智能化的数据处理和决策支持,与空间
数据库结合可以实现更加智能化的空间信息应用。
空间数据库的未来展望
更加广泛的应用领域
提供数据更新和维护的功能,保证空间数据的实时性和准确性。
数据转换与共享
支持多种数据格式的转换和数据共享,方便与其他系统进行数据交互。
主流的空间数据库管理系统
PostGIS
基于PostgreSQL的扩展,提供强大的地理 信息系统功能。
Spatialite
轻量级的关系型空间数据库管理系统。
Oracle Spatial
感谢观看
实时数据处理
随着物联网、遥感等技术的普及,空间数据库将 需要处理大量的实时数据,因此需要提高数据处 理的速度和实时性。
数据安全与隐私保护
随着数据安全和隐私保护问题的日益突出,空间 数据库将加强数据加密、访问控制等安全措施, 以确保数据的安全和隐私。
空间数据库与其他技术的融合
与云计算的融合
01
云计算提供了弹性的计算和存储资源,可以满足空间数据库对
空间数据库

第一章空间数据库概述1、空间数据库系统由空间数据库、空间数据库管理系统与空间数据库应用系统三部分构成。
2、空间数据的特征:空间特征、非结构化特征、空间关系特征、分类编码特征、数据种类多、抽象性特征、海量数据特征3、数据库的发展阶段⏹人工管理阶段⏹文件系统阶段:数据文件是大量文件的集合形式,每个文件包含大量记录面向用户的数据文件,用户可以通过它进行查询、修改、删除等操作;数据文件与对应的程序有一定的独立性,程序员可以不关心数据的物理存储,只考虑逻辑存储结构;由初期的顺利文件发展为索引文件、直接文件等,数据可随机存取。
数据文件只能对应一个或几个程序,仍依赖程序。
数据文件之间不能建立关系,数据冗余。
⏹文件-关系数据库管理系统:用文件系统管理几何图形数据,用商用RDBMS管理属性数据,几何图形数据和属性数据之间通过对象标识或内部连接码(OID)进行连接。
两者独立地组织、管理和检索。
缺点:该模式中,文件管理系统的功能较弱,特别是在数据的安全性、一致性、完整性、并发控制以及数据损坏后的数据恢复方面缺少基本的功能。
⏹全关系型数据库管理系统:图形和属性数据都用RDBMS来管理模式1:图形数据按关系模型组织。
涉及一系列关系连接运算,相当费时。
模式2:将图形数据的变长部分处理成二进制块(Block)字段。
但Block的读写效率比定长的属性字段慢得多,特别涉及对象的嵌套时,更慢。
⏹对象-关系数据库管理系统:DBMS软件商或GIS软件商基于面向对象技术在RDBMS中进行扩展,使之能直接存储和管理非结构化的空间数据。
主要解决空间数据的变长记录的管理,效率比全关系型二进制Block的管理高得多。
缺点:但仍没有解决对象的嵌套问题,空间数据结构不能由用户定义,用户不能根据GIS要求再定义,使用上受一定限制。
⏹面向对象数据库管理系统:适应于空间数据的表达和管理,它不仅支持变长记录,而且支持对象的嵌套、信息的继承与聚集。
面向对象的空间数据库管理系统允许用户定义对象和对象的数据结构以及它的操作。
空间数据库技术

数据库类型
关系型数据库:如 MySQL、Oracle等,以 表格形式存储数据
云数据库:如AWS RDS、 Azure SQL等,提供云 端数据库服务
非关系型数据库:如 MongoDB、Cassandra 等,以键值对形式存储数 据
内存数据库:如Redis、 Memcached等,将数据 存储在内存中,提高查询 速度
空间数据库技术
演讲人
目录
01. 认识数据库 02. 空间数据库技术 03. 空间数据库技术介绍课件
认识数据库
数据库概念
01 02 03 04
01
数据库:存储和管理数据的软件 系统
02
数据库管理系统:负责管理和操 作数据库的软件
03
数据库类型:关系型数据库、非关 系型数据库、对象关系型数据库等
04
课件制作技巧
内容组织:根据 主题和知识点进 行合理组织,确 保内容清晰、连
贯
课件设计:使用 简洁明了的配色 和布局,避免过
于花哨的设计
互动性:设置适 当的互动环节, 如提问、讨论等, 提高学员参与度
案例分析:结合 实际案例进行分 析,帮助学员更 好地理解和应用 空间数据库技术
谢谢
空间数据:描述地理空间位置、形状、属性等信息 的数据
空间数据库技术:用于处理和分析空间数据的技术, 包括数据存储、查询、分析和可视化等
空间数据库应用:广泛应用于地理信息系统 (GIS)、遥感、导航、城市规划等领域
空间数据库特点
空间数据库应用
01 地理信息系统(GIS):用于存储和管理 地理空间数据,如地图、地形、气候等。
数据库应用
01
数据库管理系统:用于管理、 操作和维护数据库
空间数据库

PPT思考题:绪论:地理信息是描述地表形态及其所附的自然和人文地物特征和属性的总称。
地理空间是一个相对空间,是一个空间实体组合排列集,强调宏观的空间分布和空间实体间的相关关系。
空间数据是指带有空间坐标的数据(非结构化特征)。
1、什么是空间数据库?是以特定的信息结构和数据模型表达、存储和管理从地理空间中获取的某类空间信息,以满足不同用户对空间信息需求的数据库。
2、空间数据库系统包括哪几部分?(1)矢量地形图数据库(2)数字高程模型库(3)影像数据库(4)数字栅格地形图(5)专题数据(6)电子地图(7)元数据3、空间数据库主要作用有哪些?(1)海量数据的管理能力(2)空间分析功能(3)设计方式灵活,满足用户要求(4)支持网络功能4、当前空间数据库存在的主要问题是什么?空间数据的获取与处理空间数据组织空间数据库系统空间数据共享研究5、影响空间数据库发展的关键因素是哪几个?空间数据库的计算平台;空间数据模型;空间数据库的组织管理模式。
第二章空间现象计算机表达1、空间实体:具有确定的位置和形态特征并具有地理意义的地理空间的物体2、空间索引相关概念及其包括哪些索引方式?空间索引:依据空间对象所在位置及分布特征,按一定顺序编排的一种数据结构,且该数据结构包含有对象标识和定位这些对象的内容的信息空间数据索引:是指依据空间对象的位置和形状或空间对象之间的某种空间关系,按一定顺序排列的一种数据结构,其中包含空间对象的概要信息,如对象的标识、外接矩形及指向空间对象实体的指针空间检索: 给定查询条件,利用空间索引从数据库中找出符合条件的空间数据的一种操作索引方式:BSP树、K-D-B树、R树、R+树和CELL树3、数据挖掘,空间数据挖掘有哪些方法?数据挖掘:一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程方法:分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等4、地理系统:是指各自然地理要素通过能量流、物质流和信息流的作用结合而成的,具有一定结构和功能的整体,即一个动态的多等级开放系统5、栅格结构与矢量结构的比较第三章空间数据的物理组织文件管理:文件系统把有关数据组织成为文件并予以命名分页技术:即把内、外存空间按同样大小分成若干页面系统缓冲区:是主存中特别指定的一块存储空间,以存放从外存读入内存的数据或从内存写进外存的数据缓冲区管理:就是将缓冲区分成若干块,系统用一个程序分配这些缓冲块,并采用分配算法使缓冲区的利用为最佳文件组织:就是按一定的逻辑结构把有关联的数据记录组织成为文件(称为逻辑文件),用体现这种逻辑结构的物理存储形式把文件中的数据存放到某种存储设备上,使之构成物理文件的机构动态存储管理:研究数据结构的空间分配、回收的方法,以满足某种结构对存储的不同要求流水文件:是一种最简单的文件组织方法,即按照数据到达文件的时间顺序依次连续地存储数据,对数据不分析、不规范,记录的类型既可相同,也可不同索引文件:将每页的最后一个单词与页号列表,那么查单词可先查表(称为索引表),等确定页面号后,再细查该页面。
《空间数据库》范围及重点

《空间数据库》范围及重点1.第一章:绪论1)空间数据库基本概念、组成部分、名称简写之间的联系与区别与联系;答;利用当代的系统方法,在地理学、地图学原理的指导下,对地理空间进行科学的认识与抽象,将地理数据库化为计算机处理时所需的形式与结构,形成综合性的信息系统技术——空间数据库或者SDBMS是海量SD的存储场所、提供SD处理与更新、交换与共享,实现空间分析与决策的综合系统。
组成:存储系统、管理系统、应用系统是SDBS的简称2)目前空间数据库实现方案;答:ORDBMS3)GIS,RS与空间数据库之间的联系;4)常见的空间数据库产品答:轻量级:MS的Access、FoxPro、SUN的MySQL中等:MS的SQL Server系列重量级:Oracle的Oracle不太熟悉的有:Sybase、Informix、DB2 、Ingress、PostgreSQL(PG)等5)产生空间数据库的原因;答:直接利用?SD特征:空间特性非结构化特征空间关系特征多尺度与多态性海量数据特性存在的问题:复杂图形功能:空间对象复杂的空间关系数据变长记录6)空间数据库与普通关系数据库的主要区别。
答:关系数据库管理属性数据,空间数据采用文件库或图库形式;增加大二进制数据类型(BLOB),解决变长数据存储问题;将空间数据/属性数据全部存放在数据库中;但空间特性由程序处理2.第二章:空间数据库模型1)如何理解空间数据库模型;2)空间数据及空间关系;… (1) 空间数据类型几何图形数据影像数据属性数据地形数据元数据:对空间数据进行推理、分析和总结得到的关于数据的数据,数据来源、数据权属、数据产生的时间数据精度、数据分辨率、元数据比例尺地理空间参考基准、数据转换方法…(2) 空间关系指地理空间实体之间相互作用的关系:拓扑关系:形状、大小随投影改变。
在拓扑变换下不变的拓扑变量,如相邻、包含、相交等,反映空间连续变化的不变性方位关系:地理空间上的排列顺序,如前后、上下、左右和东、南、西、北等方位度量关系:距离远近等3)空间数据库如何建模;DB设计三步骤‹ Conceptual Data Model:与应用有关的可用信息组织、数据类型、联系及约束、不考虑细节、E-R模型Logic Data Model 层次、网状、关系,都归为关系,SQL的关系代数(relational algebra, RA) Physical Data Model:解决应用在计算机中具体实现的各种细节,计算机存储、数据结构等4)模型之间如何转换?5)可行的空间数据库建模方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
型,例如线、区域等 ● ADT 原子(atomic)空间数据类型 例如点、线、
区域 ● CDT 集合型(collection)空间数据类型,例如
网络、划分等
2020/2/29
17
● PT 点 ● LN 线 ● RG 区域 ● PTN 划分 ● NTW 网络
∏河流名,城市名(河流 ⋈F城市)
其中,F=Mindist(城市名,ROUTE(河流流域 图))<10000
2020/2/29
32
2.7空间数据查询语言
一般在SQL语言基础上扩充空间数据类型及 其操作和相应的保留字。
2020/2/29
33
例3 ●选择广东省所有城市及其人口: select 城市名,人口 from 城市 where center(城市地图)inside广东省;
2020/2/29
34
●选择流经广东省所有河流的河流名及其在 广东省境内的长度:
select 河流名,length(intersection(route (河流流域图),广东))
from 河流 where route(河流流域图)intersects广东;
2020/2/29
35
●选择距离广州小于等于100000米,人口大 于等于50万的所有城市:
2020/2/29
30
●选择广东省的所有河流:
σF(河流)其中 F=ROUTE(河流)INSIDE广东;
“河流”是关系名,其中有属性“河流流域图”。ROUTE是 空间数据库中的一个函数,计算河流、道路等的中心线。
●选择距离广州小于等于100000米,人口大于等于50万的 所有城市:
σF(城市,广东区域图)其中F=DIST(城市名,广州) <=100000 AND 人口 =>500000;
相离(disjoint),邻接(meet),交叠 (overlap),相等(equal),包含 (contain),在内部(inside),覆盖 (cover)和被覆盖(covered by)。
2020/2/29
12
3.基于方位的关系
● 绝对方位 即在全球定位系统背景下定义的 方位,例如东、西、南、北,东南、西南、 东北等。
● 相对方位 即根据与给定目标的方向来定义 的方位,例如左右、前后、上下等。
● 基于观察者的方位 即按照专门指定的称为 观察者参照对象来定义的方位。
2020/2/29
13
4.基于度量的关系
设有一个集合E,如果在E上定义了一个二元函数d (x,y),x,y∈E,满足如下条件:
(1)非负性 d(x,y)≥0 (2)对称性 d(x,y)= d(y,x)
1 空间数据库中涉及到的知识
●空间数据模型 ●空间索引 ●空间数据库管理系统
2020/2/29
1
2 空间数据模型
12.1空间数据模型 特点:模型的提出、引入与相应的实际应用 密切相关。 空间数据库的一个重要应用领域是GIS。 通常就以GIS为应用背景,介绍其中的基本 空间数据类型。
2020/2/29
2020/2/29
7
2.3 空间对象之间关系
1.基于集合的关系 基于集合的空间对象关系主要有元素与
集合的属于及不属于的关系,集合与集合 的包含、相交、并等关系。在空间对象间 的层次关系就适合用集合的关系理论来讨 论,例如城市包含公园,公园包含树林等。
2020/2/29
8
2.基于拓扑的关系
基于拓扑的空间对象关系主要有邻接 (meet)、包含(within)和交叠(overlap), 这三类拓扑关系也是空间数据查询中最有可能出 现的情况。空间数据库中,基于拓扑的查询需要 解决这样两个问题:
行于坐标轴的最小矩形来代替不规则土星进行查 询。这种矩形就称为不规则区域的最小限定矩形 (minimum bounding rectangle ,MBR)。设 My和和2B纵纵)R坐坐,左标 标则下, 。x角1,x不坐2,y但标1就y区为2分分域(别别可x1为为以,空空用y1间间)M对对B,R象象右近的的上似最最角表大小为示横横(,坐坐x线2标标,也 可以用MBR近似表示;进一步,不但单个空间对 象可以用MBR近似表示,有时MBR还可以包含多 个空间对象。最小限定矩形如下图所示。
(3)区域(Region)例如森林、湖泊、行政区域 等。区域不但有位置,而且有面积、周长等参数, 以表示其覆盖范围。
2020/2/29
3
以上三种是最基本空间数据类rtition)一个区域可以是按其自然、 行政或其他特征,分成若干个区域。如果这些子 区域互不相交,但其“并”覆盖该区域,则此子 区域的集合就称为该区域的一个划分。国家行政 区域划分图,土地利用图等都是划分的例子。划 分可嵌套,例如国家分成省市,省市分成县区、 县区分成乡镇等。
在空间数据库中,空间关系主要用于查 询。为了获得可以接受的查询效率,常常 把空间对象用点、矩形和方盒等简单,规 则的图形表示。
规则的几何图形可以看做空间中标准 的“点集合”,因此,空间数据操作的集 合描述就是这些标准集合间关系的描述。
2020/2/29
25
1.一维空间中两个线段的关系
一维空间中两个线段的7种可能的关系,分别 用记号“=、[、%、]、/、|、<”表示。图104表示了这些关系,其中,(1)~(5)是 相交关系,(6)(7)是非相交关系。
图))<=10000
2020/2/29
37
3 空间索引
空间数据库查询的开销一般比关系数据库大, 特别是空间谓词求值的开销远比数值或字 符串的比较要大。若采用顺序扫描方法进 行查询,则效率就会很低,因此采取空间 索引十分必要的。
2020/2/29
38
3.1空间索引概述
1.空间索引的思路 为了减少开销,通常是采用近似规则图形例如边平
非负性 <x,x>≥0,<x,x>=0x=0, x∈V
对称性 <x,y>=<y,x>
线性性 <αx+βy,z >=α < x,z >+β< y,z >,α, β∈R;x,y,z∈V
直线R,平面R2和空间R3通过适当的定义内积都是 欧氏空间。
2020/2/29
6
2. 空间对象间的关系 • 集合 • 拓扑 • 方位 • 度量
2020/2/29
23
●多点的直径(DIAMETER)
PT→ NUM DIAMETER ●线的长度(LENGTH)
LN → NUM LENGTH ●区域的周长(PERIMETER)或面积
(AREA) RG → NUM PERIMETER 或AREA
2020/2/29
24
2.5空间关系的集合描述与判断
2020/2/29
18
2.基于拓扑的描述 ●两个同类型空间数据是否相等(= 或 ≠) PT×PT →Bool LN×LN→ Bool RG×RG → Bool ●空间数据SDT是否在区域RG中(INSERT) SDT× RG →Bool
2020/2/29
19
●两个大小非零的空间数据是否相交 (INTERSECTS)
2020/2/29
4
(5)网络(Network)网络是由若干点和一 些点与点之间的联线组成。例如公路网、 河网、电力网、电话网、交通线路图等都 是网络的例子。
2020/2/29
5
2.2空间对象所处的环境
1.欧氏空间
设R表示实数域,V是R上向量的非空集合,如果在 V上定义了满足如下条件并称之为内积的一个二 元函数<x,y>,则称V为R的欧氏空间:
● 查询所有与给定对象具有某种拓扑关系R的空间 对象。
● 对象A和B具有怎样的拓扑关系。
2020/2/29
9
在平面上,两个对象A和B之间的二元拓扑关 系时基于以下对象成分的相交(insection) 关系:
A的内部——Aﹾ,A的边界∂A,A的外部—— A-。
B的内部——Bﹾ,B的边界∂B,B的外部—— B-。
设A、B线段的起点和终点分别为x1A,x2A, x1B,x2B,则(1)~(5)的关系可以归纳 为max{x1A,x1B}<min{x2B,x2B}
2020/2/29
26
A B
(1)A=B
A B
(1)A[ B
A B
(1)A%B
A B
(1)A]B
A B
(5)A/B
A B
(6)A| B
A B
(7)A<B
2020/2/29
27
2.二维空间中边平行于坐标轴矩形间的关系
设A、B为这种矩形,其左下角坐标和右上角 坐 {(标x1分B,别y为1B){(,x1(A,x2yB1,A)y2,B)(}。x2A可,以y2得A)到}和, 如果A和B在x轴和y轴上的投影分别相交, 则A、B相交。因此,A,B相交的条件可以 表示为
15
2.4空间数据操作的谓词描述
从理论上讲,空间数据操作特别是空间 数据查询的基础是空间对象之间的相互关 系,从实际上看,由于空间数据类型取决 于实际应用,空间数据操作主要也由现实 中的应用所决定。
空间数据操作的描述可以有谓词形式、 集合形式和代数形式三种。
2020/2/29
16
1.基本符号 先定义空间数据操作中的一些记号。 ● SDT 空间数据类型 ● ZS 大小为零(zero size)空间数据类型,例如
NZS× NSZ→ Bool ●两个区域是否邻接(IS-NEIGHBOR—OF) RG×RG→Bool
2020/2/29
20
3.基于集合运算的描述 (1)相交(Intersection) ●两条线相交为点的集合 LN×LN →2PT ●线与区域相交为线的集合 LN×RG→2LN ●区域与区域相交为区域的集合 RG×RG→2RG