数值分析试题及答案
数值分析试题及答案
数值分析试题及答案一、选择题1. 下列哪个方法不适合用于求解非线性方程的根?A. 二分法B. 牛顿法C. 弦截法D. 正割法2. 当使用二分法求解非线性方程的根时,需要满足的条件是:A. 函数f(x)在区间[a, b]上连续B. 函数f(x)在区间[a, b]上单调递增C. 函数f(x)在区间[a, b]上存在根D. 函数f(x)在区间[a, b]上可导3. 数值积分是通过将定积分转化为求和的方法来近似计算积分值的过程。
下列哪个方法是常用的数值积分方法?A. 矩形法则B. 辛普森规则C. 梯形规则D. 高斯-勒让德法则4. 龙格-库塔法是常用于求解常微分方程的数值解法。
以下哪个选项是描述龙格-库塔法的特点?A. 该方法是一种多步法B. 该方法是一种多项式插值法C. 该方法是一种单步法D. 该方法是一种数值积分法5. 用有限差分法求解偏微分方程时,通常需要进行网格剖分。
以下哪个选项是常用的网格剖分方法?A. 多边形剖分法B. 三角剖分法C. 矩形剖分法D. 圆形剖分法二、解答题1. 将函数f(x) = e^x 在区间[0, 1]上用复化梯形规则进行数值积分,分为6个子区间,求得的近似积分值为多少?解:将区间[0, 1]等分为6个子区间,每个子区间的长度为h = (1-0)/6 = 1/6。
根据复化梯形规则的公式,近似积分值为:I ≈ (1/2) * h * [f(0) + 2f(1/6) + 2f(2/6) + 2f(3/6) + 2f(4/6) + 2f(5/6) +f(1)]≈ (1/2) * (1/6) * [e^0 + 2e^(1/6) + 2e^(2/6) + 2e^(3/6) + 2e^(4/6) +2e^(5/6) + e^1]2. 使用二分法求解方程 x^3 - 3x + 1 = 0 在区间[1, 2]上的根。
要求精确到小数点后三位。
解:首先需要判断方程在区间[1, 2]上是否存在根。
数值分析期末试题及答案
数值分析期末试题及答案试题一:1. 简答题(共10分)a) 什么是数值分析?它的主要应用领域是什么?b) 请简要解释迭代法和直接法在数值计算中的区别。
2. 填空题(共10分)a) 欧拉方法是一种______型的数值解法。
b) 二分法是一种______法则。
c) 梯形法则是一种______型的数值积分方法。
3. 计算题(共80分)将以下函数进行数值求解:a) 通过使用二分法求解方程 f(x) = x^3 - 4x - 9 = 0 的近似解。
b) 利用欧拉方法求解微分方程 dy/dx = x^2 + 2x + 1, y(0) = 1 在 x = 1 处的解。
c) 使用梯形法则计算积分∫[0, π/4] sin(x) dx 的近似值。
试题二:1. 简答题(共10分)a) 请解释什么是舍入误差,并描述它在数值计算中的影响。
b) 请解释牛顿插值多项式的概念及其应用。
2. 填空题(共10分)a) 数值稳定性通过______号检查。
b) 龙格-库塔法是一种______计算方法。
c) 零点的迭代法在本质上是将方程______转化为______方程。
3. 计算题(共80分)使用牛顿插值多项式进行以下计算:a) 已知插值节点 (-2, 1), (-1, 1), (0, 2), (1, 4),求在 x = 0.5 处的插值多项式值。
b) 已知插值节点 (0, 1), (1, 2), (3, 7),求插值多项式,并计算在 x = 2 处的值。
c) 使用 4 阶龙格-库塔法求解微分方程 dy/dx = x^2 + 1, y(0) = 1。
答案:试题一:1. a) 数值分析是研究使用数值方法解决数学问题的一门学科。
它的主要应用领域包括数值微积分、数值代数、插值和逼近、求解非线性方程、数值积分和数值解微分方程等。
b) 迭代法和直接法是数值计算中常用的两种方法。
迭代法通过反复迭代逼近解,直到满足所需精度为止;而直接法则通过一系列代数运算直接得到解。
数值分析试卷及答案
数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
(完整版)数值分析整理版试题及答案,推荐文档
9
1
xdx T4
h[ 2
f
1
3
2 k 1
f
xk
f
9]
2[ 1 2 3 5 7 9] 2
17.2277
(2)用 n 4 的复合辛普森公式
由于 h 2 , f x
x
,
xk
1
2k k
1, 2,3,
x
k
1
2
2k k
0,1, 2,3,所以,有
2
3
9
1
xdx S4
h[ 6
f
1
若 span1, x,则0 (x) 1 ,1(x) x ,这样,有
2
1
0 ,0 1dx 1
0
1,1
1 0
x2dx
1 3
0
,1
1,0
1
0
xdx
1 2
1
f ,0 exdx 1.7183
0
1
f ,1 xexdx 1
0
所以,法方程为
1
1
1
2 1
a0
a1
1.7183 1
1 0
1
23
2 1
a0
a1
6 1
12
3
再回代解该方程,得到
a1
4
,
a0
11 6
故,所求最佳平方逼近多项式为
S1*
(
x)
11 6
4x
例 3、 设 f (x) ex , x [0,1] ,试求 f (x) 在[0, 1]上关于 (x) 1 , span1, x的最
佳平方逼近多项式。 解:
1
4
x1
1 5
数值分析版试题及答案
例1、已知函数表求()f x的Lagrange二次插值多项式和Newton二次插值多项式。
解:(1)由题可知插值基函数分别为故所求二次拉格朗日插值多项式为(2)一阶均差、二阶均差分别为均差表为故所求Newton 二次插值多项式为例2、 设2()32f x x x =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近多项式。
解:若{}span 1,x Φ=,则0()1x ϕ=,1()x x ϕ=,且()1x ρ=,这样,有 所以,法方程为01123126119234a a ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦,经过消元得01231162110123a a ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦ 再回代解该方程,得到14a =,0116a =故,所求最佳平方逼近多项式为*111()46S x x =+例3、 设()x f x e =,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近多项式。
解:若{}span 1,x Φ=,则0()1x ϕ=,1()x x ϕ=,这样,有 所以,法方程为解法方程,得到00.8732a =,1 1.6902a =, 故,所求最佳平方逼近多项式为例4、 用4n =的复合梯形和复合辛普森公式计算积分1⎰。
解:(1)用4n =的复合梯形公式由于2h =,()f x =,()121,2,3k x k k =+=,所以,有 (2)用4n =的复合辛普森公式由于2h =,()f x =,()121,2,3k x k k =+=,()12220,1,2,3k xk k +=+=,所以,有例5、 用列主元消去法求解下列线性方程组的解。
解:先消元再回代,得到33x =,22x =,11x =所以,线性方程组的解为11x =,22x =,33x = 例6、 用直接三角分解法求下列线性方程组的解。
数值分析期末考试题及答案
数值分析期末考试题及答案一、选择题(每题2分,共20分)1. 在数值分析中,下列哪个算法用于求解线性方程组?A. 牛顿法B. 高斯消元法C. 插值法D. 傅里叶变换答案:B2. 以下哪个选项不是数值分析中的误差类型?A. 舍入误差B. 截断误差C. 测量误差D. 累积误差答案:C3. 多项式插值中,拉格朗日插值法的特点是:A. 插值点必须等距分布B. 插值多项式的次数与插值点的个数相同C. 插值多项式是唯一的D. 插值多项式在插值点处的值都为1答案:B4. 在数值分析中,下列哪个方法用于求解非线性方程?A. 辛普森法则B. 牛顿迭代法C. 欧拉法D. 龙格-库塔法答案:B5. 以下哪个是数值稳定性的指标?A. 收敛性B. 收敛速度C. 条件数D. 误差传播答案:C二、简答题(每题10分,共20分)1. 简述高斯消元法求解线性方程组的基本原理。
答案:高斯消元法是一种直接解法,通过行变换将增广矩阵转换为上三角形式,然后通过回代求解线性方程组。
它包括三个基本操作:行交换、行乘以非零常数、行相加。
2. 解释什么是数值稳定性,并举例说明。
答案:数值稳定性是指数值解对输入数据小的扰动不敏感的性质。
例如,某些数值方法在计算过程中可能会放大舍入误差,导致结果不可靠,这样的方法就被认为是数值不稳定的。
三、计算题(每题15分,共30分)1. 给定线性方程组:\[\begin{align*}x + 2y - z &= 4 \\3x - y + 2z &= 1 \\-x + y + z &= 2\end{align*}\]使用高斯消元法求解该方程组,并给出解。
答案:首先将增广矩阵转换为上三角形式,然后回代求解,得到\( x = 1, y = 2, z = 1 \)。
2. 给定函数 \( f(x) = x^2 - 3x + 2 \),使用拉格朗日插值法在\( x = 0, 1, 2 \) 处插值,并求出插值多项式。
《数值分析》练习题及答案解析
《数值分析》练习题及答案解析一、单选题1. 以下误差公式不正确的是( D )A .()1212x x x x ∆-≈∆-∆B .()1212x x x x ∆+≈∆+∆C .()122112x x x x x x ∆≈∆+∆D .1122()x x x x ∆≈∆-∆ 2. 已知等距节点的插值型求积公式()()352kkk f x dx A f x =≈∑⎰,那么3kk A==∑( C )A .1 B. 2 C.3 D. 4 3.辛卜生公式的余项为( c )A .()()32880b a f η-''-B .()()312b a f η-''-C .()()()542880b a f η--D .()()()452880b a f η--4. 用紧凑格式对矩阵4222222312A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦进行的三角分解,则22r =( A ) A .1 B .12C .–1D .–25. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( D ) A .()00l x =0,()110l x = B . ()00l x =0,()111l x = C .()00l x =1,()111l x = D . ()00l x =1,()111l x =6. 用二分法求方程()0f x =在区间[],a b 上的根,若给定误差限ε,则计算二分次数的公式是n ≥( D )A .ln()ln 1ln 2b a ε-++ B. ln()ln 1ln 2b a ε-+-C.ln()ln 1ln 2b a ε--+ D. ln()ln 1ln 2b a ε--- 7.若用列主元消去法求解下列线性方程组,其主元必定在系数矩阵主对角线上的方程组是( B )A .123123123104025261x x x x x x x x x -+=⎧⎪-+=⎨⎪-+=-⎩ B 。
数值分析试题及答案
数值分析试题及答案一、选择题(每题2分,共20分)1. 以下哪个算法是数值分析中用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 梯度下降法D. 蒙特卡洛方法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的共同点是:A. 都是多项式插值B. 都使用差商C. 都只适用于等距节点D. 都需要预先知道所有数据点答案:A3. 在数值积分中,辛普森(Simpson)公式比梯形公式的误差:A. 更大B. 更小C. 相同D. 无法比较答案:B4. 以下哪个是数值稳定性分析中常用的方法?A. 条件数B. 收敛性C. 收敛速度D. 误差分析答案:A5. 在求解常微分方程的数值解时,欧拉方法属于:A. 单步法B. 多步法C. 隐式方法D. 显式方法答案:A6. 以下哪个是数值分析中求解非线性方程的迭代方法?A. 高斯-约当消元法B. 牛顿-拉弗森方法C. 雅可比迭代法D. 高斯-赛德尔迭代法答案:B7. 线性插值公式中,如果给定两个点\( (x_0, y_0) \)和\( (x_1, y_1) \),插值多项式是:A. \( y = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) \)B. \( y = y_0 + \frac{y_1 - y_0}{x_0 - x_1}(x - x_0) \)C. \( y = y_0 + \frac{x - x_0}{x_1 - x_0}(y_1 - y_0) \)D. \( y = y_1 + \frac{x_1 - x}{x_1 - x_0}(y_0 - y_1) \)答案:C8. 以下哪个是数值分析中用于求解特征值问题的算法?A. 幂法B. 共轭梯度法C. 牛顿法D. 欧拉法答案:A9. 在数值微分中,使用有限差分法来近似导数时,中心差分法的误差:A. 与步长成正比B. 与步长的平方成正比C. 与步长的立方成正比D. 与步长的四次方成正比答案:B10. 以下哪个是数值分析中用于求解线性最小二乘问题的算法?A. 梯度下降法B. 牛顿法C. 奇异值分解法D. 共轭梯度法答案:C二、简答题(每题10分,共30分)1. 简述数值分析中病态问题的特点及其对算法的影响。
数值分析练习题附答案
目录一、绪论------------------------------------------------------------------------------------- 2-2二、线性方程组直接解法列主元高斯LU LDL T GG T-------------------- 3-6二、线性方程组迭代法----------------------------------------------------------------- 7-10 三、四、非线性方程组数值解法二分法不动点迭代---------------------- 11-13五、非线性方程组数值解法牛顿迭代下山弦截法----------------- 14-15六、插值线性插值抛物线插值------------------------------------------------ 16-18七、插值Hermite插值分段线性插值-----------------------------------------19-22八、拟合------------------------------------------------------------------------------------ 23-24九、数值积分----------------------------------------------------------------------------- 25-29十、常微分方程数值解法梯形欧拉改进----------------------------------- 30-32 十一、常微分方程数值解法龙格库塔------------------------------------------ 33-35绪论1-1 下列各数都是经过四舍五入得到的近似值 ,试分别指出它们的绝对误差限,相对误差限和有效数字的位数.X 1 =5.420, X 2 =0.5420, X 3 =0.00542, X 4 =6000, X 5 =0.6×105注:将近似值改写为标准形式X 1 =(5*10-1+4*10-2+2*10-3+0*10-4)*101 即n=4,m=1 绝对误差限|△X 1|=|X *1-X 1|≤ 12×10m-n =12×10-3 相对误差限|△r X 1|= |X∗1−X1||X∗1|≤|X∗1−X1||X1|= 12×10-3/5.4201-2 为了使101/2 的相对误差小于0.01%, 试问应取几位有效数字?1-3 求方程x 2 -56x+1=0的两个根, 使它们至少具有4位有效数字( √783≈27.982)注:原方程可改写为(x-28)2=783线性方程组解法(直接法)2-1用列主元Gauss消元法解方程组解:回代得解:X1=0 X2=-1 X3=12-2对矩阵A进行LU分解,并求解方程组Ax=b,其中解:(注:详细分解请看课本P25)A=(211132122)→(211(1/2)5/23/2(1/2)3/23/2)→(2111/25/23/21/2(3/5)3/5)即A=L×U=(11/211/23/51)×(2115/23/23/5)先用前代法解L y=P b 其中P为单位阵(原因是A矩阵未进行行变换)即L y=P b 等价为(11/211/23/51)(y1y2y3)=(111)(465)解得 y 1=4 y 2=4 y 3=35再用回代解Ux =y ,得到结果x即Ux =y 等价为(2115/23/23/5)(x 1x 2x 3)=(y 1y 2y 3)=(443/5) 解得 x 1=1 x 2=1 x 3=1即方程组Ax=b 的解为x =(111)2-3 对矩阵A 进行LDL T 分解和GG T 分解,求解方程组Ax=b,其中A=(164845−48−422) , b =(123)解:(注:课本 P 26 P 27 根平方法)设L=(l i j ),D=diag(d i ),对k=1,2,…,n,其中d k =a kk -∑l kj 2k−1j=1d jl ik =(a ik −∑l ij l kj k−1j=1d j )/ d k 即d 1=a 11-∑l 1j 20j=1d j =16-0=16因为 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=a 21/ d 1=416=14 所以d 2=a 22-∑l 2j 21j=1d j =5-(14)2d 1=4同理可得d 3=9 即得 D=(1649)同理l 11=(a 11−∑l ij l 1j 0j=1d j )/ d 1=1616=1=l 22=l 33 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=416=14 l 31=(a 31−∑l 3j l 1j 0j=1d j )/ d 1=816=12 l 32=(a 32−∑l 3j l 2j 1j=1d j )/ d 2=−4−12×14×164=−64=-32即L=(114112−321) L T=(114121−321) 即LDL T分解为A=(114112−321)(1649)(114121−321)解解:A=(164845−48−422)→(41212−32−33)故得GG T分解:A=(4122−33)(4122−33) LDL T分解为A=(114112−321)(1649)(114121−321) 由(114112−321)(y 1y 2y 3)=(123) ,得(y 1y 2y 3)=(0.250.8751.7083)再由(4122−33)(x 1x 2x 3)=(0.250.8751.7083) ,得(x 1x 2x 3)=(−0.54511.29160.5694)2-4 用追赶法求解方程组:解:(4−1−14−1−14−1−14−1−14)→(4−14−1154−415−15615−1556−120956−56209−1780209)由(4−1154−15615−120956−1780209)(y1y2y3y4y5)=(100200),得(y1y2y3y4y5)=(256.66671.785700.4784753.718)再由(1−141−4151−15561−562091)(x1x2x3x4x5)=(256.66671.785700.4784753.718),得(x1x2x3x4x5)=(27.0518.20525.769314.87253.718)线性方程组解法(迭代法)2-1 设线性方程组{4x 1−x 2+2x 3=1−x 1−5x 2+x 3=22x 1+x 2+6x 3=3(1) 写出Jacobi 法和SOR 法的迭代格式(分量形式) (2) 讨论这两种迭代法的收敛性(3) 取初值x (0)=(0,0,0)T ,若用Jacobi 迭代法计算时,预估误差 ||x*-x (10)||∞ (取三位有效数字)解:(1)Jacobi 法和SOR 法的迭代格式分别为Jacobi 法迭代格式SOR(2)因为A 是严格对角占优矩阵,但不是正定矩阵,故Jacobi 法收敛,SOR 法当0<ω≤1时收敛.⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=-+-=+-=+++216131525151412141)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x xx x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-++-=+-+-=+-+-+=++++++)216131()525151()412141()(3)1(2)1(1)(3)1(3)(3)(2)1(1)(2)1(2)(3)(2)(1)(1)1(1k k k k k k k k k k k k k k k x x x x x x x x x x x x x x x ωωω(3)由(1)可见||B ||∞=3/4,且取x (0)=(0,0,0)T ,经计算可得x (1)=(1/4,-2/5,1/2)T ,于是||x (1)-x (0)||∞=1/2,所以有2-2 设方程组为{5x 1+2x 2+x 3=−12−x 1+4x 2+2x 3=202x 1−3x 2+10x 3=3试写出其Jacobi 分量迭代格式以及相应的迭代矩阵,并求解。
数值分析试卷及答案
数值分析试卷及答案**注意:以下是一份数值分析试卷及答案,试卷和答案分别按照题目和解答的格式排版,以确保整洁美观,语句通顺。
**---数值分析试卷一、选择题(每题2分,共20分)1. 数值分析是研究如何用计算机处理数值计算问题的一门学科。
以下哪个选项不是数值分析的应用领域?A. 金融风险评估B. 天气预测C. 数据挖掘D. 图像处理2. 在数值计算中,稳定性是指算法对于输入数据的微小扰动具有较好的性质。
以下哪个算法是稳定的?A. 高斯消元法B. 牛顿迭代法C. 不动点迭代法D. 雅可比迭代法二、填空题(每题3分,共30分)1. 下面关于插值多项式的说法中,不正确的是:一般情况下,插值多项式的次数等于插值点的个数减1。
2. 线性方程组中,如果系数矩阵A是奇异的,则该方程组可能无解或有无穷多解。
......三、解答题(共50分)1. 请给出用割线法求解非线性方程 f(x) = 0 的迭代格式,并选择合适的初始值进行计算。
解:割线法的迭代公式为:x_(k+1) = x_k - f(x_k) * (x_k - x_(k-1)) / (f(x_k) - f(x_(k-1)))选择初始值 x0 = 1,x1 = 2 进行计算:迭代1次得到:x2 = x1 - f(x1) * (x1 - x0) / (f(x1) - f(x0))迭代2次得到:x3 = x2 - f(x2) * (x2 - x1) / (f(x2) - f(x1))继续迭代直至满足精度要求。
2. 对于一个给定的线性方程组,高斯消元法可以用来求解其解空间中的向量。
请简要描述高斯消元法的基本思想并给出求解步骤。
高斯消元法的基本思想是通过一系列的行变换将线性方程组化为上三角形式,然后再通过回代求解方程组的未知数。
求解步骤如下:步骤1:将方程组表示为增广矩阵形式,即将系数矩阵和常数向量连接在一起。
步骤2:从第一行开始,选取第一个非零元素作为主元,然后通过行变换将其它行的该列元素消去。
数值分析试题及答案
数值分析试题及答案一、选择题(每题3分,共30分)1. 下列关于数值分析的说法,错误的是()。
A. 数值分析是研究数值方法的科学B. 数值分析是研究数值方法的数学理论C. 数值分析是研究数值方法的误差分析D. 数值分析是研究数值方法的数学理论、误差分析及数值方法的实现答案:B2. 在数值分析中,插值法主要用于()。
A. 求解微分方程B. 求解积分方程C. 求解线性方程组D. 通过已知数据点构造一个多项式答案:D3. 线性方程组的解法中,高斯消元法属于()。
A. 直接方法B. 迭代方法C. 矩阵分解方法D. 特征值方法答案:A4. 牛顿法(Newton's method)是一种()。
A. 插值方法B. 拟合方法C. 迭代方法D. 优化方法答案:C5. 在数值分析中,下列哪种方法用于求解非线性方程的根?A. 高斯消元法B. 牛顿法C. 雅可比方法D. 斯托尔-温格尔方法答案:B6. 下列关于误差的说法,正确的是()。
A. 绝对误差总是大于相对误差B. 相对误差总是小于绝对误差C. 误差是不可避免的D. 误差总是可以消除的答案:C7. 在数值分析中,下列哪个概念与数值稳定性无关?A. 条件数B. 截断误差C. 舍入误差D. 插值多项式的阶数答案:D8. 用泰勒级数展开函数f(x)=e^x,下列哪一项是正确的?A. f(x) = 1 + x + x^2/2! + x^3/3! + ...B. f(x) = 1 - x + x^2/2! - x^3/3! + ...C. f(x) = x + x^2/2 + x^3/6 + ...D. f(x) = x - x^2/2 + x^3/6 - ...答案:A9. 插值多项式的次数最多为()。
A. n-1B. nC. n+1D. 2n答案:B10. 下列关于数值积分的说法,错误的是()。
A. 梯形法则是一种数值积分方法B. 辛普森法则是一种数值积分方法C. 龙格法则是数值积分方法中的一种D. 数值积分方法总是精确的答案:D二、填空题(每题3分,共15分)1. 在数值分析中,条件数是衡量问题的______。
数值分析试题及答案
数值分析试题及答案一、单项选择题(每题3分,共30分)1. 线性代数中,矩阵A的逆矩阵记作()。
A. A^TB. A^-1C. A^+D. A*答案:B2. 插值法中,拉格朗日插值多项式的基函数是()。
A. 多项式B. 指数函数C. 正弦函数D. 余弦函数答案:A3. 在数值积分中,梯形规则的误差是()阶的。
A. O(h^2)B. O(h^3)C. O(h)D. O(1/h)答案:A4. 求解线性方程组时,高斯消元法的基本操作不包括()。
A. 行交换B. 行乘以非零常数C. 行加行D. 行除以非零常数答案:D5. 非线性方程f(x)=0的根的迭代法中,收敛的必要条件是()。
A. f'(x)≠0B. f'(x)=0C. |f'(x)|<1D. |f'(x)|>1答案:C6. 利用牛顿法求解非线性方程的根时,需要计算()。
A. 函数值B. 函数值和导数值C. 函数值和二阶导数值D. 函数值、一阶导数值和二阶导数值答案:B7. 矩阵的特征值和特征向量是()问题中的重要概念。
A. 线性方程组B. 特征值问题C. 线性规划D. 非线性方程组答案:B8. 在数值分析中,条件数是衡量矩阵()的量。
A. 稳定性B. 可逆性C. 正交性D. 稀疏性答案:A9. 利用龙格现象说明,高阶插值多项式在区间端点附近可能产生()。
A. 振荡B. 收敛C. 稳定D. 单调答案:A10. 雅可比迭代法和高斯-塞德尔迭代法都是求解线性方程组的()方法。
A. 直接B. 迭代C. 精确D. 近似答案:B二、填空题(每题4分,共20分)11. 线性代数中,矩阵A的行列式记作________。
答案:det(A) 或 |A|12. 插值法中,牛顿插值多项式的基函数是________。
答案:差商13. 在数值积分中,辛普森规则的误差是________阶的。
答案:O(h^4)14. 求解线性方程组时,迭代法的基本思想是从一个初始近似解出发,通过不断________来逼近精确解。
《数值分析》测试题答案
测 试 题——数值分析一、选择题1. 设近似值m n a a a x 10.021*⨯±= 有n 位有效数字,01≠a ,则其相对误差限为A .111021+⨯n a B. 111021+-⨯n a C. 11101+-⨯n a 2. 要使20的近似值的相对误差限小于%1.0,则要取的有效数字有 位。
A .4 B. 3 C. 5 3. lagrange 插值多项式的一个显著缺点是A .不是线性组合 B. 不具备承袭性 C. 计算结果误差大 4. 对于定理:设)(x ϕ在)(x x ϕ=的根*x 及邻近有连续一阶导数,且1)(,<x ϕ,则迭代过程)(1k k x x ϕ=+具有局部收敛性。
此定理的条件是______。
A .必要条件 B. 充分条件 C. 充要条件 5. 若)(x f 是n 次多项式,则],,,,[10n x x x x f 是x 的 。
A .n 次多项式 B. n +1次多项式 C. 0 6. 牛顿下山法:)()('1k k k k x f x f x x λ-=+中,λ的取值范是_____。
A .λ< 0 B. 0<λ< 1 C. 10≤<λ D. λ<1 7. 分段插值方法的提出是要避免 。
A. Runge 现象发生B. 不能高次插值C. 收敛速度太慢D. 不收敛 8. 一个数值计算方法是稳定的是指:若该方法在节点n x 处的数值解n y 有n δ扰动,而在以后各节点的近似值记为m y (n m >)上产生的扰动m δ有下面的关系A. m δ≤n δB.n m δδ< C. n m δδ≤ D. n m δδ>9. 在线性方程组AX=b 中,若__ _,则雅可比迭代收敛。
A .A 对角占优 B. A 严格对角占优 C. A 为任意n 阶方阵 10. 设A 为n 阶非奇异矩阵,)(A Cond 为条件数,则判别方程组b Ax =是病态的依据是 。
数值分析试题及答案汇总
数值分析试题及答案汇总一、单项选择题(每题5分,共20分)1. 在数值分析中,下列哪个方法用于求解线性方程组?A. 牛顿法B. 插值法C. 迭代法D. 泰勒展开法答案:C2. 以下哪个选项是数值分析中用于求解非线性方程的迭代方法?A. 高斯消元法B. 牛顿法C. 多项式插值D. 辛普森积分法答案:B3. 以下哪个选项是数值分析中用于数值积分的方法?A. 牛顿法B. 辛普森积分法C. 牛顿-拉弗森迭代D. 拉格朗日插值答案:B4. 在数值分析中,下列哪个方法用于求解常微分方程的初值问题?A. 欧拉法B. 牛顿法C. 辛普森积分法D. 高斯消元法答案:A二、填空题(每题5分,共20分)1. 插值法中,拉格朗日插值法的插值多项式的阶数是______。
答案:n2. 泰勒展开法中,如果将函数展开到第三阶,那么得到的多项式是______阶多项式。
答案:三3. 在数值分析中,牛顿法求解非线性方程的迭代公式为______。
答案:x_{n+1} = x_n - f(x_n) / f'(x_n)4. 辛普森积分法是将积分区间分为______等分进行近似计算。
答案:偶数三、简答题(每题10分,共30分)1. 请简述数值分析中插值法的基本原理。
答案:插值法的基本原理是根据一组已知的数据点,构造一个多项式函数,使得该函数在给定的数据点上与数据值相等,以此来估计未知数据点的值。
2. 解释数值分析中误差的概念,并说明它们是如何影响数值计算结果的。
答案:数值分析中的误差是指由于计算方法或计算工具的限制,导致计算结果与真实值之间的差异。
误差可以分为舍入误差和截断误差。
舍入误差是由于计算机表示数值的限制而产生的,而截断误差是由于计算方法的近似性质而产生的。
这些误差会影响数值计算结果的准确性和稳定性。
3. 请说明在数值分析中,为什么需要使用迭代法求解线性方程组。
答案:在数值分析中,迭代法用于求解线性方程组是因为对于大规模的方程组,直接方法(如高斯消元法)的计算成本很高,而迭代法可以在较少的计算步骤内得到近似解,并且对于稀疏矩阵特别有效。
数值分析整理版试题和答案
例1、 已知函数表求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。
解:(1)插值基函数分别为()()()()()()()()()()1200102121()1211126x x x x x x l x x x x x x x ----===--------()()()()()()()()()()021*******()1211122x x x x x x l x x x x x x x --+-===-+---+-()()()()()()()()()()0122021111()1121213x x x x x x l x x x x x x x --+-===-+--+-故所求二次拉格朗日插值多项式为()()()()()()()()()()()2202()11131201241162314121123537623k k k L x y l x x x x x x x x x x x x x ==⎡⎤=-⨯--+⨯-+-+⨯+-⎢⎥⎣⎦=---++-=+-∑(2)一阶均差、二阶均差分别为[]()()[]()()[][][]010*********011201202303,11204,41234,,52,,126f x f x f x x x x f x f x f x x x x f x x f x x f x x x x x ---===-----===----===---均差表为故所求Newton 二次插值多项式为()()[]()[]()()()()()20010012012,,,35311126537623P x f x f x x x x f x x x x x x x x x x x x =+-+--=-++++-=+-例2、 设2()32f x xx =++.[0,1]x ∈.试求()f x 在[0, 1]上关于()1x ρ=.{}span 1,x Φ=的最佳平方逼近多项式。
数值分析习题与答案
第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。
解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知的相对误差满足,而,故即2.有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。
(1)(2)4.近似数x*=0.0310,是 3 位有数数字。
5.计算取,利用:式计算误差最小。
1. 给定的数值表解:计(误差限,因误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知由式由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里8.使,显然,再令由9. 令称为第二类的表达式,并证明是[]上带权解:因10. 用最小二乘法求一个形如的经验公式,使它拟合下列数据,并计算均方误差.解:本题给出拟合曲线,即,故法方程系数解得最小二乘拟合曲线为11.满足条件的插值多项式(2) ,).设为互异节点,=( ),=( ).(4) 设是区间[0,1]上权函数为ρ(x)=x的最高项系数为1的正交多项式序列,其中,则=( ),=( )答:(1)(2)(3)(4)习题1.解 6.13)对)求出,按式()求得2. 用由(6.8)式估计误差,因,故3. 确定下列求积公式中的待定参数,使其代数精确度尽量高,并指明求积公式所具有的代数精确度.(1)(2)(3)解:本题直接利用求积公式精确度定义,则可突出求积公式的参数。
(完整)数值分析题库及答案,推荐文档
模拟试卷(一)一、填空题(每小题3分,共30分)y f (X y)5.解初始值问题的改进的Euler 方法是 ________ 阶方法;y(X o ) y o5x-| 3X 2 0.1x 3 36 .求解线性代数方程组2x , 6X 2 0.7X 3 2的高斯一塞德尔迭代公式为X 1 2X 2 3.5x 3 1若取 X (0) (1. 1.1).则 X ⑴ ______________7.求方程Xf (X)根的牛顿迭代格式是 _______________ .&丨o (x). h(x).L . l n (X)是以整数点X o . X 1.L . X n .为节点的Lagrange 插值基函数,则nxj j (X k )= ----------------- .k 09.解方程组Ax b 的简单迭代格式X (k 1} Bx (k) g 收敛的充要条件是 ___________________ .10 .设f (-1)1. f (0)0. f (1) 1. f (2)5 ,则f (x)的三次牛顿插值多项式为 ___________________ ,其误差估计式为 _________________________ .二、综合题(每题10分,共60分)1. 求一次数不超过 4次的多项式p(x)满足:p(1) 15,p(1) 20 , p (1) 30p(2) 57 , p(2) 72.112.构造代数精度最高的形式为 °xf(x)dx A )f (3)Af(1)的求积公式,并求出1 5 232.设A2 1 0 , x 41422,贝V A =——.,X 广 ----------- 3.已知y=f(x)的均差14flX 0.X 1.X 2]— , flX 1.X 2.X 3]3^5 , flX 2.X 3.X 4]39115,8Hx o .X 2.X 3]- 3,那么均差 f [X 4,X 2, X 3]=4.已知n=4时Newton — Cotes 求积公式的系数分别是:C 04)-,C i (4)9016C (4) .C 2 451有3个不同节点的高斯求积公式的代数精度是次的.(差商)其代数精度.x k x k 13.用Newt on 法求方程x In x 2在区间(2,)内的根,要求 --------------- ----- 10X k25.用矩阵的直接三角分解法解方程组1 02 0X15 0 1 0 1 X 2 3 1 2 4 3 X 317 . 0 1 03 X 476试用数值积分法建立求解初值问题y f (: x ,y)的如下数值求解公式y(0) y o1 32 1 ⑷10. -x x -x, f ()( )(x 1)x(x 1)(x 2)/24( 1,2)6 6二、综合题y n 1y n 1hi (fn1 4fnf n 1),其中f i f (x, %), i n 1, n, n 1.三、证明题(10分) 设对任意的x ,函数f (x)的导数f (x)都存在且0f (x) M ,对于满足0 —的任意,迭代格式X k 1 X k f (xj 均收敛于f (x) 0的根x *.M参考答案一、填空题91, 16 1. 5 ; 2. 8, 9 ; 3.; 4.1545才1)(3 3x 2k) 0.1x 3k))/5 6. x 2k1)(2 2x (k1) 0.7x 3k))/6 , x 3k1)(1 才1) 2x 2k ")*2/75.(0.02 , 0.22, 0.1543)7. x k 1X kX k f(X k ) . 8 1 f (X k )'X j . 9.(B) 1.p(x) 1520( x 1) 15(x 1)2 7(x 1)3 (x 1)3(x 2) 5 4x 3x 2 2x 3 x 4其他方法: 设 p(x) 15 20(x 1) 15(x 1)2 7(x 1)3 (x 1)3(ax b)令 p(2)57 , p (2)72,求出 a 和 b.2•取f(x) 1,x ,令公式准确成立,得:5•解设1 02 0 11 020 1 0 1 l 21 1u22u 23 u 24 1 2 4 3l31 l321u33u340 1 0 3l 41l42 l 43 1u 44由矩阵乘法可求出U jj 和l ij1 1A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武理数值分析考试试题纸(A 卷)
课程名称 数值分析 专业年纪 一、计算题(本题满分100分,共5小题,每小题20分) 1. 已知函数表
(1) 求f(x)的三次Lagrange 型插值多项式及其插值余项(要求化成最简形式). (2) 求f(x)的Newton 插值多项式(要求化成最简形式). 2. 已知A=[212
013612
],求‖A ‖1,‖A ‖∞,A 的LU 分解.
3. 叙述m 阶代数精度的定义,写出求∫f (x )dx b
a 的Simpson 公式,并验证Simpson 公式的代数精度为3阶.
4. 设矩阵A=012
α11,求当α为何值时,解线性方程组Ax=b 的Gauss-Seidel 迭代法收敛.
5. 叙述最小二乘法的基本原理,并举例说明其应用.
参考答案
一、计算题
1、
解:(1)L 3(x )=l 0(x )y 0+l 1(x )y 0+l 2(x )y 2+l 3(x )y 3
=
(x−0)(x−2)(x−2)(−1−0)(−1−1)(−1−2
)
×0+(x+1)(x−1)(x−2)(
0+1)(0−1)(0−2)
×(−1)+
(x+1)(x−0)(x−2)(
1+1)(1−0)(1−2)
×2+(x+1)(x−0)(x−1)(2+1)(2−0)(2−1)
×15
=
x 3+2x 2−1
R 3(x )
=f (x )−L 3(x )=f (4)(ε)4!
ω4(x )
(2) 均差表如下:
N (x )=f (x 0)+f ,x 0,x 1-(x −x 0)+f ,x 0,x 1,x 2-(x −x 0)(x −x 1)
+f ,x 0,x 1,x 2,x 3-(x −x 0)(x −x 1)(x −x 2)
=0+(−1)(x +1)+2×(x +1)(x −0)+1×(x +1)(x −0)(x −1) =x 3+x 2−1
2、 解: ‖A ‖1
=max 1≤j≤3∑|a ij |3i=1=2+0+6=8
‖A ‖∞=max 1≤i≤3∑|a ij |3j=1=6+1+2=9
A =LU =[1
l 21
1l 31
l 32
1][
u 11
u 12
u 13u 22
u 23u 33]=[212013612
] 由u 11
=2 u 12=1 u 13=2
l 21=0 u 22=1 u 23=3 l 31=3 l 32=−2 u 33=2
所以 A =LU =[1
01
3−2
1
][2
121
32
] 3. 解:定义:如果某个求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次的多项式就不准确成立,则称该求积公式具有m 次代数精度。
∫f (x )dx b
a 的Simpson 公式: S =
b−a 6
0f (a )+4f.
a+b 2
/+f (b )1
验证代数精度: 当f (x )=1时,
左边积分=∫1dx b
a =
b −a ,右边S =b−a 6
,1+4+1-=b −a =左边
当f (x )=x 时,
左边积分∫xdx b
a =1
2(b 2−a 2)右边S =b−a 6
0a +4×
a+b 2
+b1=1
2(b 2−a 2)=左边
当f (x )=x 2时,
左边积分∫x 2dx b
a =1
3(b 3−a 3)右边S =
b−a 6
[a 2+4×.
a+b 2
/2+b 2]=1
3(b 3−a 3)=左边
当f (x )=x 3时,
左边积分∫x 3dx
b
a =1
4
(b 4
−a 4)
右边S =
b−a 6
[a 3
+4×.
a+b 2
/3+b 3]=1
4(b 4−a 4)=左边
当f (x )=x 4时,
左边积分∫x 4dx b
a =1
4(b 5−a 5)右边S =
b−a 6
[a 4+4×.
a+b 2
/4+b 4]≠左边
故Simpson 公式对次数不超过三次的多项式均能准确成立,而对四次多项式不成立,所以Simpson 公式具有三次代数精度。
4. 解; Ax=b ⇔ {x 1+2x 2=b 1
2x 1+x 2=b 2
其Gauss-Seidel 迭代格式为 {x 1
(k+1)
=b 1−2x 2(k )
x 2
(
k+1)
=b 2−
2x 1
(k ) (k =0,1,2…)
∴ 迭代矩阵 B =00−2
−20
1
该迭代发收敛的充要条件是矩阵B 的谱半径ρ(B )<1 |λI −B |=|λ2
2λ|=λ2−2λ=0, 特征根λ1,2=±√2α
∴ ρ(B )=√2α>1⇒α>1
2
∴ 当α>1
2
时,解线性方程组Ax=b 的Gauss-Seidel 迭代法收敛。
5. 答: 在函数的最佳平方逼近中f (x )∈C ,a,b -,如果f (x )只在一组离散点集 {x i ,i =0,1,…,m}上给定,这就是科学实验中经常见到的实验数据{(x i ,y i ),i =0,1,…,m}的曲线拟合,这里y i =f (x i ),i =0,1,…,m ,要求一个函数y =S ∗(x )与所给数据{(x i ,y i ),i =0,1,…,m}拟合,若记φ0(x ), φ1(x ),…,φn (x )是C ,a,b -上线性无关函数族,在φ=span *φ0(x ),φ1(x ),…,φn (x )+中找一函数S ∗(x ),使误差平方和
‖δ‖22=∑δi 2=m i=0∑,S ∗(x i )−y i -2m i=0=min S (x )∈φ∑,S (x i )−y i -2m i=0
这里 S (x )
=a 0φ0(x )+a 1φ1(x )+⋯+a n φn (x ) (n <m ).
这就是一般的最小二乘逼近,用几何语言说,就成为曲线拟合的最小二乘法。
举例说明:
测得铜导线在温度(℃)时的电阻
如表6-1,求电阻R 与温度 T 的近
i 0(℃)
19.1
76.30解 画出散点图如下图所示,可见测得的数据接近一条直线,
故取n=1,拟合函数为
列表如下
19.176.30364.811457.330
650.0
245.3
正规方程组为
解方程组得
故得R与T的拟合直线为
利用上述关系式,可以预测不同温度时铜导线的电阻值。
例如,由R=0得T=-242.5,
即预测温度T=-242.5℃时,铜导线无电阻。