纤维素酶在食品发酵工业中的应用

合集下载

生物酶在食品加工中的应用

生物酶在食品加工中的应用

生物酶在食品加工中的应用食品加工是指将原始食材通过一系列加工工艺进行改造和提炼,使其具备更好的口感、保质期和营养价值。

而生物酶作为一种具有生物催化作用的物质,在食品加工中发挥着重要的作用。

本文将探讨生物酶在食品加工中的应用,并对其优势和潜力进行分析。

一、生物酶的概述生物酶是一类具有生物活性的蛋白质,它可以在特定的温度、pH值和底物条件下,加速催化生物反应的进行。

生物酶具有高效、特异性、温和等特点,因此被广泛应用于食品加工领域。

常见的食品加工中使用的生物酶有淀粉酶、蛋白酶、纤维素酶等。

二、淀粉酶在食品加工中的应用淀粉酶是一类能够水解淀粉为糖类的酶,其应用广泛。

首先,淀粉酶常用于制作面包和糕点中。

在面点制作过程中,淀粉酶可以将淀粉分解为可用于发酵的糖类,提高面团的酵母活性和发酵效果。

其次,淀粉酶也可用于制作啤酒和酿造过程中。

通过添加淀粉酶,可以促进酿酒中的淀粉转化为可发酵的糖类,提高发酵效率。

此外,在糖果、果汁和饮料等食品中,淀粉酶也可以用于调控糖化反应,增加甜味。

三、蛋白酶在食品加工中的应用蛋白酶是一类能够水解蛋白质为氨基酸的酶,其应用范围广泛。

在面点制作过程中,蛋白酶可以使面团具有更好的延展性和弹性,提高面团的加工性能。

此外,蛋白酶还可以用于酱油、味精等发酵食品中。

在这些食品的发酵过程中,蛋白酶可以降解蛋白质,产生各种氨基酸和肽类,提高食品的鲜味和营养价值。

同时,蛋白酶也可以用于奶制品加工中,通过水解蛋白质,改善乳制品的质构和口感。

四、纤维素酶在食品加工中的应用纤维素酶是一类能够降解纤维素为糖类的酶,其应用潜力巨大。

首先,纤维素酶可以用于果汁和蔬菜汁的榨取中。

通过添加纤维素酶,可以有效降解果蔬中的纤维素,提高果汁和蔬菜汁的浓缩度和营养价值。

其次,纤维素酶也可用于制作酿造食品中,如葡萄酒和啤酒。

通过添加纤维素酶,可以使葡萄和麦芽中的纤维素转化为可发酵的糖类,提高酿酒效率。

此外,纤维素酶还可以用于植物蛋白饲料的生产中,通过降解植物细胞壁中的纤维素,提高饲料的可利用率。

酶工程在农产品加工上的应用

酶工程在农产品加工上的应用

酶工程在农产品加工上的应用
酶工程在农产品加工上具有广泛的应用。

以下是其中一些常见的应用领域:
1. 食品加工:酶工程在食品加工领域广泛应用,例如在面包制作中使用面团酶来改善面团的膨胀性能和延长面包的保鲜期;利用纤维素酶来提高果汁的浸出率和果汁的澄清度;应用酶解蛋白酶来改善肉制品嫩化和口感等。

2. 酿酒业:酶工程在酿酒业中被广泛应用,如利用酶解淀粉酶将淀粉转化为可发酵的糖;应用葡萄糖氧化酶和葡萄糖酶来调节酒的甜度和酒精含量;使用β-葡萄糖苷酶来提高红葡萄酒中花青素的释放等。

3. 果蔬加工:酶工程在果蔬加工中具有重要应用价值,例如利用果胶酶来改善果蔬汁的澄清度和稳定性;应用纤维素酶来降低果蔬浆果浆的黏稠度;使用脂肪酶来提取油脂和蛋白质等。

4. 饲料工业:酶工程在饲料工业中被广泛应用,例如用淀粉酶来降解饲料中的淀粉,提高饲料的能量利用率;应用纤维素酶来降低饲料中纤维素的含量,增加饲料的消化率;使用蛋白酶来改善蛋白质的可利用性和饲料的营养价值等。

总之,酶工程在农产品加工上的应用能够提高产品的品质、增加生产效率、节约能源和原料、降低生产成本等,具有重要的经济和社会价值。

纤维素酶的生产方法及在食品行业的应用

纤维素酶的生产方法及在食品行业的应用

纤维素酶的生产方法及在食品行业的应用纤维素酶(cellulase)是降解纤维素生成葡萄糖的一组酶的总称,它不是单成分酶,而是由多个酶起协同作用的多酶体系。

纤维素酶在扩大食品工业原料和植物原料的综合利用,提高原料利用率,净化环境和开辟新能源等方面具有十分重要的意义。

编号:EC 321.4。

由多种水解酶组成的一个复杂酶系,自然界中很多真菌都能分泌纤维素酶。

习惯上,将纤维素酶分成三类:C1酶、Cx酶和B葡糖苷酶。

C1酶是对纤维素最初起作用的酶,破坏纤维素链的结晶结构。

Cx酶是作用于经C1酶活化的纤维素、分解3-1 ,4-糖苷键的纤维素酶。

3葡糖苷酶可以将纤维二糖、纤维三糖及其他低分子纤维糊精分解为葡萄糖。

纤维素酶是一种重要的酶产品,是一种复合酶,主要由外切3■葡聚糖酶、内切3■葡聚糖酶和3■葡萄糖苷酶等组成,还有很高活力的木聚糖酶活力。

由于纤维素酶在饲料、酒精、纺织和食品等领域具有巨大的市场潜力,已被国内外业内人士看好,将是继糖化酶、淀粉酶和蛋白酶之后的第四大工业酶种,甚至在中国完全有可能成为第一大酶种,因此纤维素酶是酶制剂工业中的一个新的增长点纤维素酶的来源纤维素酶的来源非常广泛,昆虫、微生物、细菌、放线菌、真菌、动物体内等都能产生纤维素酶。

目前,用于生产纤维素酶的微生物菌种较多的是丝真菌,其中酶活力较强的菌种为木霉属(Trichoderma )、曲霉属(As?pergillus )和青霉属(Penicillium ),特别是绿色木霉(Trichoderma virde )及其近缘菌株等较为典型,是目前公认的较好的纤维素酶生产菌。

现已制成制剂的有绿色木霉、黑曲霉、镰刀霉等纤维素酶。

同时,反刍动物依靠瘤胃微生物可消化纤维素,因此可以利用瘤胃液获得纤维酶的粗酶制剂。

另外,也可利用组织培养法获得所需要的微生物。

纤维素酶广泛存在于自然界的生物体中。

细菌、真菌、动物体内等都能产生纤维素酶。

一般用于生产的纤维素酶来自于真菌,比较典型的有木酶属(Trichoderma)、曲霉属 (Aspergillus )和青霉属(Penicillium )。

纤维素酶的生产与应用研究进展

纤维素酶的生产与应用研究进展

纤维素酶的生产与应用研究进展纤维素酶是一种能够降解纤维素的酶类,具有重要的生产与应用价值。

纤维素作为植物细胞壁的主要组成部分,具有丰富的资源,但其结构复杂,难以降解。

纤维素酶的生产与应用研究为利用纤维素资源、提高生物质酶解效率开辟了新途径。

纤维素酶的生产主要有两种方法:微生物发酵和基因工程技术。

微生物发酵是利用能够产生纤维素酶的微生物进行培养,通过调节培养条件、选用优良菌株等方式来提高酶的产量和活力。

近年来,采用转基因技术制备纤维素酶的研究也取得了突破性进展。

通过将纤维素酶基因导入高效酶产生菌株,可以大幅提高纤维素酶的产量。

纤维素酶的应用涉及生物质能源、饲料行业、食品工业等多个领域。

在生物质能源领域,纤维素酶可以将纤维素有效降解成可发酵的糖类,进一步转化为乙醇、柴油等可再生能源,用于替代传统石化能源。

饲料行业利用纤维素酶可以提高动物对纤维素的消化吸收率,增加饲料的利用效率,减少饲料浪费,降低养殖成本。

食品工业中,纤维素酶可以用于果汁澄清、酒精酿造、食品加工等环节,提高产品质量,降低生产成本。

纤维素酶的研究还涉及酶学性质、结构功能等方面。

研究发现,纤维素酶的降解效果与其结构与功能密切相关。

通过对纤维素酶的分子结构进行改造,可以提高其活性和稳定性。

同时,研究人员还通过对不同纤维素酶家族成员的研究,发现其在降解机制、底物特异性等方面存在差异,为深入理解纤维素降解过程提供了基础。

虽然纤维素酶在生产与应用方面取得了不容忽视的进展,但仍存在一些挑战。

纤维素酶的生产成本较高,限制了其在工业中的广泛应用。

此外,纤维素酶的稳定性和活性也需要进一步提高,以满足不同行业的需求。

因此,在纤维素酶的研究和应用过程中,需要不断进行技术创新和优化,以进一步提高其产量和效能。

纤维素酶的生产与应用研究是一项具有重要意义的工作。

随着对纤维素资源的深入开发和利用,纤维素酶的研究和应用前景广阔。

未来,随着技术的不断进步和深入研究,纤维素酶的生产与应用将迎来更加广阔的发展空间,为推动绿色可持续发展做出更大的贡献。

工业发酵主要类型及主要控制参数(精)

工业发酵主要类型及主要控制参数(精)

工业发酵主要类型及主要控制参数工业发酵是指利用微生物在一定条件下进行代谢反应,从而合成生物大分子,以达到工业生产目的的过程。

目前,工业发酵已经广泛应用于食品、医药、化工等领域。

发酵类型根据发酵生产的目的、生物种类和发酵的过程条件不同,可将工业发酵分为以下类型:食品发酵主要应用于食品加工领域。

其生物种类多为乳酸菌、酵母菌、霉菌等,包括酸奶、豆腐、酱油、味噌等。

医药发酵主要应用于药物、生物制品等的生产。

其生物种类多为细菌、真菌等微生物,包括青霉素、链霉素、胰岛素等。

纤维素酶生产发酵主要应用于制浆造纸、纤维素制品等领域。

其生物种类多为产纤维素酶的微生物,包括三级结构的真菌和细菌。

主要控制参数在工业发酵过程中,为确保发酵过程高效、稳定,需要对发酵过程中的主要参数进行精确控制。

主要参数包括:温度温度对于微生物的生长和代谢有着十分重要的影响。

在不同的发酵过程中,需要控制的最佳温度略有区别,一般在 25-45℃之间。

pH 值不同的微生物要求不同的pH 值范围,有些是弱酸耐受菌,有些是弱碱耐受菌,pH 对于发酵菌株的代谢产物的调节、酶活性等也有着重要的影响。

氧气气体浓度氧气是微生物生长和代谢过程中必须的成分,但不同的微生物对氧气的需求是不同的。

有些是厌氧生长菌,有些是需氧生长菌,而有些微生物在低氧或高氧浓度下生长更快。

因此,控制好氧气气体浓度对于发酵过程的效率和生产质量也有着重要的影响。

搅拌速度搅拌速度对于微生物的生长和代谢也有着重要的影响。

不同的发酵过程要求不同的搅拌速度,有的要求慢速、均匀搅拌,有的要求高速、强烈搅拌。

工业发酵主要类型及主要控制参数是工业发酵生产中的重要内容。

精确定义好发酵类型和控制参数,能够大幅提高生产效率,保证生产质量。

纤维素酶及其在发酵食品工业中的应用

纤维素酶及其在发酵食品工业中的应用
A b tac : s p p ri to uc st e n t e, rg n, r d c in meh d a d m e ha im fc lu a e s r t Thi a e nr d e h aur o ii p o u to to n c ns o el l s .Me n ie,h p a whl t e a —
作者简介 : 李西腾( 99一) 男, 16 , 江苏赣榆县人 , 讲师 , 硕士 , 究方向: 品生物技术。 研 食
3 ・ 3

《 江苏调味 副食  ̄) 0 9年 第 2 ) 0 2 6卷
第 4期 ( 总第 18 ) 1期
源 的纤维 素酶 其结 构 和 功能 相 差很 大 , 源 于真 来
将 其分 解 。如果 用纤 维素 酶将纤 维素 转化 为葡 萄 糖 , 给人类 提供 新 的资源 , 将 同时也解 决 了纤维 素
收 稿 日期 : 09— 6—1 20 0 8
量少 , 同时 , 生 的酶属 胞 内酶或 者吸 附于细胞 壁 产 上, 故很 少用 细菌做 纤维 素酶 的生 产菌种 。 同来 不
李西腾
纤维素酶及 其在 发酵食品工业 中的应用
文 章 编 号 :0 6—8 8 (0 9 0 10 4 1 20 )4—0 3 0 0 3— 4
纤 酶在食业 应 维及 发 品中用 素 其 酵 工 的
李西腾
( 苏食 品职 业技 术 学院 , 苏 淮安 江 江 23 0 ) 2 03
摘 要 :为了充分利 用纤维素, 介绍 了纤维素酶的性质 、 来源 、 生产 方法及作 用机理 。同时 , 阐述 了纤维素酶 在酱油酿造、 酒类 生产 、 食醋酿造和单细胞蛋 白生产等发酵食品工业 中的应用概况 以及前景展 望。 关键 词 : 维素酶 ; 纤 发酵食品 ; 用 应

酶在食品工业中的应用

酶在食品工业中的应用

酶在食品工业中的应用一、酶制剂应用于果蔬加工1.提高果桨出汁率。

在提高果蔬出汁率方面应用最广泛的酶是果胶酶,其次是纤维素酶。

果浆榨汁前添加一定量果胶酶可以有效地分解果肉组织中的果胶物质,使果汁粘度降低,容易榨汁、过滤,从而提高出汁率。

纤维素酶可以使果蔬中大分子纤维素降解成分子量较小的纤维二糖和葡萄糖分子,破坏植物细胞壁,使细胞内溶物充分释放,提高出汁率。

并提高可溶性固形物含量。

2.澄清果蔬汁。

果浆经榨汁、筛滤后,果汁中仍存在一些非常细小却能导致果蔬汁产生混浊的聚合物和固体颗粒。

如果胶物质、淀粉、其他多糖类物质等,它们是引起果蔬汁混浊和褐变的主要原因。

如果在新鲜果蔬汁(或经杀菌后的果蔬汁)中加入果胶酶、纤维素酶、α―淀粉酶、木瓜蛋白酶(可视混浊成分选择一种或几种),可将上述物质大部分降解为半乳糖醛酸、葡萄糖、氨基酸和其他产物,使果蔬汁澄清,同时可明显提高澄清汁的营养成分和稳定性。

3.增香、除异味。

果蔬汁在加工过程中,咸味物质损失,但风味前体物质仍然存在。

研究表明,单萜类化合物是嗅觉最为敏感的芳香物质。

果蔬中大多数单萜物质均以吡喃、呋喃糖以键合态形式存在,并且在果蔬成熟后仍有大量这种键合态的萜类未被水解。

通过添加β―葡萄糖苷酶可释放果蔬汁中的萜烯醇,增加香气。

有实验证明。

α―L―吡喃李耱苷酶或o―L―呋喃阿拉伯糖苷酶可释放水果中的沉香醇和香叶醇,使果汁增香。

酶制剂在柑桔果汁中可除去由柚皮苷和柠檬苦素类似物而引起的苦味。

如添加柚皮苷酶可使柚皮苷水解成野黑樱素和鼠李糖;加入柠檬营素脱氢酶可把柠檬酸苦素氧化成柠檬苦素环内酷。

从而达到脱苦降苦的目的。

二、酶制剂应用于焙烤食品</p>1.淀粉酶在面包中的应用。

在面包粉中添加适量的。

α―淀粉酶,可使面包体积较空白面包提高10%左右,这是因为烘烤面包时,α―淀粉酶水解部分淀粉。

生成糊精和糖,降低了面团粘度,导致面团膨胀率提高,焙烤后面包体积增大,面包心柔软度变好。

纤维素酶及其应用

纤维素酶及其应用
系” 。内切葡聚糖酶作用在纤维素分子内部的非结
2 1 年第 2 01 期
6月 出版
杜翠娇 , : 等 纤维素酶及其应用

晶区域 ,随机切割纤维素多糖链 1 一糖苷键 ,产 ,4 生不同长度的有非还原末端 的小分子纤维素;外切
先使用适 当的纤维素酶处理后再干燥脱水 ,可以避 免 因热烫 、酸碱处理 等造成 的营养 物质损失 。另


介绍 了纤维素酶的来源、组成功能、作用机理及其在食品等各个领域的应 用研究,并展 望其发展
纤维 素酶 ;应 用 ;食 品加 工
前景。
关键 词
Abs r t Th e o r e , c mp st n f ci n , r a t n me h n s t ac ersu c s o o i o un to s i e c i c a ims, a d isa l ai n i hef o r c s i o n t pp i t n t o d p o e sng c o
3 纤维素酶的应 用
目 ,纤维素酶已经被广泛地应用于多个领 前 域 ,主要有食品、酿酒、环保 、饲料加工、纺织 、 农业、 日 化等方面。
31 水 果 和蔬 菜 加工 . 由于植 物 细胞 壁 的 主要 成分 是 果胶 、纤 维素 和
的得率 ,同时还可保持茶叶原有的色香味。
34 活性 物质 的提取 .
物 ,如淀粉 、蛋 白质 、脂肪 白酒 及其 酒精 生产 .
以纤维素为原料发酵生产酒精 ,使用 的是二段 法,即先用纤维素酶将纤维素糖化 , 再经酵母发酵成 酒精。若在发酵过程中同时接人酒精发酵的酵母,酵 母会将产生的葡萄糖立刻发酵成酒精 ,从而消除了葡 萄糖对纤维素酶的抑制作用 ,此称为一步法 ( 同 或称

纤维素酶作用

纤维素酶作用

纤维素酶作用纤维素是植物细胞壁的主要成分之一,它由纤维素分子组成,这些分子之间通过氢键相互连接形成纤维状结构。

纤维素酶是一类能够降解纤维素的酶类,它在植物生物质转化和生物质能源利用中具有重要的作用。

纤维素酶主要包括β-1,4-葡聚糖酶、β-1,4-葡聚糖微晶酶和纤维素酶混合体等,它们通过切断纤维素分子的β-1,4-葡聚糖链来分解纤维素。

纤维素酶的作用过程可以分为两个步骤,即纤维素的固定和纤维素链的水解。

在固定步骤中,纤维素酶通过识别并结合纤维素分子,将其固定在酶的活性位点上。

这一过程是通过纤维素酶的结构域实现的,它们与纤维素分子的结合点之间存在各种非共价键,如氢键、疏水相互作用和静电相互作用等。

通过这些键的形成,纤维素酶能够与纤维素分子形成特异的结合,从而实现纤维素的固定。

在水解步骤中,纤维素酶通过切断纤维素分子的β-1,4-葡聚糖链来分解纤维素。

这一过程是通过纤维素酶的催化作用实现的,它们能够使水分子攻击纤维素分子的β-1,4-葡聚糖链,并将其水解成低聚糖。

纤维素酶的催化作用包括两个关键步骤,即切断和再结合。

在切断步骤中,纤维素酶将水分子引入纤维素链的内部,并切断β-1,4-葡聚糖链的连接。

在再结合步骤中,纤维素酶将切断的β-1,4-葡聚糖链与水分子重新结合,形成低聚糖。

纤维素酶的作用可以应用于多个领域。

首先,纤维素酶能够提高生物质的降解效率,促进植物生物质转化为生物能源的过程。

这对于生物质能源的利用具有重要的意义,可以减少对化石燃料的依赖,降低温室气体的排放。

其次,纤维素酶可以应用于食品工业,用于酿造和发酵等过程中的纤维素去除。

此外,纤维素酶还可以用于纸浆和纤维素制品的生产,提高纤维素材料的可加工性和品质。

纤维素酶的研究和应用正处于快速发展的阶段。

随着对生物质能源需求的不断增加和生物技术的进步,纤维素酶的性能和应用领域将得到更多的拓展。

通过对纤维素酶的深入研究,可以提高其催化效率和稳定性,提高纤维素的降解效率,促进生物质能源的可持续利用。

纤维素酶在食品工业中的应用

纤维素酶在食品工业中的应用

纤维素酶在食品工业中的应用唐津评(重庆文理学院,重庆永川)摘要: 介绍纤维素酶的来源、制备方法。

重点论述纤维素酶在食品加工、发酵,以及其他的方面的应用。

关键词:纤维素酶;食品加工;应用Cellulose application in food industryTang jinping(Chongqing university of arts and sciences,Chongqing.yongchuan,china) Abstract:The sources and preparation methods cellulose were described in this article;the application of cellulose in the food processing,fermentation and other aspects were summarized in detail.Key words:cellulose;food industry;application引言自1906年从蜗牛的消化道中发现纤维素酶以来,陆续报导了细菌、真菌、放线菌、少数酵母等许多微生物中纤维素酶的存在。

然而,纤维素酶也不是微生物“独家经营”的产品,某些昆虫,软体动物和其他低等动物也能产生纤维素酶。

不过,用低等动物提取酶没有实用价值,而微生物能在短期内大量培养,是工业生产纤维素酶的主要来源。

纤维素酶的组分纤维素酶的3种主要酶组分是:1、内切β-1,4-葡聚糖酶(EC3.2.1.4.)(Cx酶,英文简称EG);2、外切葡聚糖酶(EC3.2.1.91)(C1酶,也称微晶纤维素酶,英文简称CBH);3、β-葡萄糖苷酶(EC3.2.1.21,简称BG)。

大分子首先在EG酶和CBH酶的作用下逐步降解成纤维素二糖,再由BG酶水解成2个葡萄糖。

纤维素酶的来源生产纤维素酶的代表性菌种有木霉、青和曲霉等,里氏木霉是生产纤维素酶的优良菌株。

纤维素和半纤维素酶在食品加工中的应用

纤维素和半纤维素酶在食品加工中的应用

天津科技大学课程《食品酶学》本科生论文纤维素和半纤维素酶在食品加工中的应用Cellulose and hemicellulose enzyme application in food industry姓名:学号:专业:指导教师:摘要本文介绍了,纤维素酶和半纤维素酶的在食品加工中的作用,以及其作用的相关机理,纤维素酶和半纤维素酶的具体构成,还有这两种酶在食品加工中应用现状,以及根据这两种酶当然的发展趋势做出对其发展的见解。

关键词:纤维素酶、半纤维素酶、食品加工。

ABSTRACTThis paper introduces and hemicellulose, cellulose enzyme of enzyme in food processing, and the role of the role of relevant mechanism, cellulase and half cellulase concrete structure, and the two enzymes in food processing in application status, and based on the two enzymes of course the trends of its development views.Key words:Cellulose enzyme, half cellulose enzyme, food processing.目录1 前言 (4)2纤维素酶和半纤维素酶的作用机理 (5)3纤维素酶和半纤维素酶在食品加工中的应用 (7)3.1 在果实和蔬菜加工中的应用 (7)3.2 在大豆加工中的应用 (7)3.3 在茶叶加工中的应用 (8)3.4 在罐头工业上的应用 (8)3.5 在烟草改良中的应用 (8)3.6 在酿酒方面中的应用 (8)3.7 在饮料行业中的应用 (9)3.8 在二次提油方面的中应用 (9)3.9 在啤酒加工中的应用 (9)3.10 在酿造酱油方面中的应用 (10)3.11 在咖啡和面包加工中的应用 (10)3.12 在饲料生产中的应用 (10)4 纤维素酶和半纤维素酶发展的前景 (11)5 参考文献 (12)前言纤维素类物质是地球上产量巨大而又未得到充分利用的可再生资源。

纤维素酶发酵工艺与应用

纤维素酶发酵工艺与应用

固体发酵 概述 工艺流程 工艺条件
液体深层发酵 概述
工艺流程 工艺条件
纤维素酶发酵生产的重点之一是将2种以上产酶微生物一起接种进行混合发酵, 利用它们所产各纤维素酶系的互补作用,生产出优质高效的混合纤维素酶。
纤维素酶发酵工艺与应用
3.1固体发酵工艺
• 固体发酵法又称麸曲培养法,是以秸秆粉、废纸、 玉米秸秆粉为主要原料,拌入种曲后,装入盘或帘 子上,摊成薄层 (厚约 1 cm) ,在培养室一定温度 和湿度 (RH 90% ~100% ) 下进行发酵。产生的酶 系更全,有利于降解天然纤维素,且投资低、能耗 低、产量高、操作简易、回收率高、无泡沫、需控 参数少、环境污染小等。但固体发酵法易被杂菌污 染,生产的纤维素酶分离纯化较难,且色素不易去 除。
Thank You!
纤维素酶发酵工艺与应用
纤维素酶发酵工艺与应用
食品发酵工艺 食品发酵工业是纤维 素酶应用最广泛的一
个部门。
生产葡萄糖和单细胞蛋白
农副产品和城市废料中的纤 维素,通过纤维素酶转化为葡 萄糖和单细胞蛋白,对人类
有着十分重要的意义。
纤维素酶
饲料工业
纤维素酶和纤维素酶产生菌能转 化粗饲料如麦桔、麦糠、稻草、 玉米芯等,把其中一部分纤维素转 化为糖、菌体蛋白、脂肪等,降 低饲料中粗纤维含量提高粗饲料
纤维素酶发酵工艺与应用
3.2.1液态深层发酵工艺流程
纤维素酶发酵工艺与应用
3.2.2液态深层发酵工艺条件
液体发酵时间约为70h
pH 培养基初始pH为5~6
时间
影响因素 接种量
温度低于60°C,最适培养温度为 28°C
温度
接种量明显低于固态发酵,接种度为 2%~10%
纤维素酶发酵工艺与应用

酶在食品领域的应用

酶在食品领域的应用

酶在食品领域的应用【摘要】酶是一种高效的生物催化剂,具有催化高效性、专一性等显著特点。

文章介绍了果胶酶、脂肪酶、纤维素酶在食品领域的应用。

【关键词】果胶酶;脂肪酶;纤维素酶;食品工业;应用(一)前言酶是一种生物催化剂,鲜明的体现了生物识别、催化、调节等奇妙功能。

将酶加工成不同纯度和剂型(包括固定化酶和固定化细胞)的生物制剂即为酶制剂。

动、植物和微生物产生的许多酶都能制成酶制剂。

近年来,酶的生产普遍引起各国重视,并且酶已广泛应用到食品生产中。

(二)食品工业中常用酶1、果胶酶果胶酶(pectolytic enzyme or pectinase)是指能够分解果胶物质的多种酶的总称【1】。

果胶酶广泛分布于高等植物和微生物中,在某些原生动物和昆虫中也有发现。

在微生物中,细菌、放线菌、酵母和霉菌都能代谢合成果胶酶【2】。

果胶酶一般分为原果胶酶、果胶水解酶(pectin hydrolases)、果胶裂解酶(pentin lyases,PL)和果胶酯酶(pectin esterases,PE)等。

果胶酶在食品工业的应用有果汁澄清、提高果蔬汁的出汁率、提取生物活性功能成分、改善酒的品质等。

1.1果汁澄清工业上果汁的澄清一般包括酶催化脱果胶作用和澄清剂加果胶酶、明胶、硅溶胶和(或)膨润土来分别完成果胶的降解及非溶物质的物理化学沉淀【3】。

果胶酶澄清的实质包括果胶的酶促水解和非酶的静电絮凝两部分;当果汁中的果胶在果胶酶作用下部分水解后,原来被包裹在内的部分带正电荷的蛋白质颗粒就暴露出来,与其他带负电荷的粒子相撞,从而导致絮凝的发生,絮凝物在沉降过程中,吸附、缠绕果汁中的其他悬浮粒子,通过离心、过滤可将其除去,从而达到澄清目的【4】。

1.2提高果蔬汁的出汁率果蔬的细胞壁中含有大量的果胶质、纤维素、淀粉、蛋白质、木质素等物质,使得破碎后的果浆比较黏稠,压榨取汁非常困难且出汁率很低。

果胶酶不但能催化果胶降解为半乳糖醛酸,破坏了果胶的黏着性及稳定悬浮微粒的特性,有效降低黏度、改善压榨性能,提高出汁率和可溶性固形物含量,而且能增加果汁中的芳香成分,减少果渣产生,同时有利于后续的澄清、过滤和浓缩工序。

纤维素的酶解过程及其应用

纤维素的酶解过程及其应用

纤维素的酶解过程及其应用纤维素是地球上最丰富的有机化合物之一,广泛存在于植物细胞壁中。

然而,由于其复杂的结构,直接利用纤维素存在一定的困难。

酶解作为一种温和、高效且环保的方法,在将纤维素转化为有用产物方面发挥着重要作用。

一、纤维素的结构要理解纤维素的酶解过程,首先需要了解纤维素的结构。

纤维素是由βD葡萄糖通过β-1,4-糖苷键连接而成的线性大分子。

这些链相互平行排列,形成了微纤维,再进一步组成了纤维素纤维。

这种高度有序的结构使得纤维素具有很强的稳定性和抗降解性。

二、纤维素酶的种类实现纤维素的酶解,离不开纤维素酶的参与。

纤维素酶是一类能够水解纤维素的酶的总称,通常包括以下三种主要类型:1、内切葡聚糖酶(Endoglucanase,EG):这类酶随机作用于纤维素内部的无定形区,切断β-1,4-糖苷键,产生不同长度的纤维素链片段。

2、外切葡聚糖酶(Exoglucanase,CBH):又分为 CBHⅠ和CBHⅡ两种。

CBHⅠ从纤维素链的非还原端依次切下纤维二糖;CBHⅡ则从纤维素链的还原端进行切割。

3、β葡萄糖苷酶(βGlucosidase,BG):将纤维二糖和短链的纤维寡糖水解为葡萄糖。

这三种酶协同作用,共同完成纤维素的酶解过程。

三、纤维素的酶解过程纤维素的酶解是一个多步骤的复杂过程:首先,内切葡聚糖酶作用于纤维素的无定形区,打破纤维素的长链结构,增加纤维素的可及性。

然后,外切葡聚糖酶从纤维素链的两端进行切割,产生纤维二糖和短链的纤维寡糖。

最后,β葡萄糖苷酶将纤维二糖和短链的纤维寡糖水解为葡萄糖。

在这个过程中,酶与底物的结合、酶的催化活性以及酶之间的协同作用都对酶解效率产生重要影响。

四、影响纤维素酶解的因素1、底物特性:包括纤维素的结晶度、聚合度、木质素含量等。

结晶度高、聚合度大以及木质素含量高的纤维素,酶解难度较大。

2、酶的性质:酶的活性、稳定性、最适反应条件(如温度、pH 值等)都会影响酶解效果。

纤维素酶用途

纤维素酶用途

纤维素酶用途纤维素酶是一种催化剂,它能够降解纤维素,将其转化为可利用的糖类物质。

纤维素酶在许多领域中有着广泛的应用,尤其在生物能源、食品工业和纸浆工业中发挥着重要的作用。

纤维素酶在生物能源领域中被广泛应用。

纤维素是植物细胞壁的主要组成部分,它是一种复杂的碳水化合物,含有大量的葡萄糖分子。

然而,由于纤维素的结构复杂且难以降解,导致其在生物能源利用中的利用率较低。

而纤维素酶能够分解纤维素分子,将其转化为可发酵的糖类物质,如葡萄糖和木糖。

这些糖类物质可以被微生物进一步利用,产生生物能源,如生物乙醇和生物气体。

因此,纤维素酶在生物能源生产中起着至关重要的作用。

在食品工业中,纤维素酶也有着重要的应用。

纤维素是植物食物中的主要成分之一,它存在于许多植物中,如谷物、蔬菜和水果。

然而,纤维素在人体消化系统中难以降解,对人体消化吸收有一定的影响。

而纤维素酶能够降解食物中的纤维素,将其转化为可消化吸收的糖类物质,提高食物的可利用性。

此外,纤维素酶还可以被用于食品加工中,如面包、饼干和酿造过程中,改善食品的口感和品质。

因此,纤维素酶在食品工业中起着重要的作用。

在纸浆工业中,纤维素酶也是非常重要的。

纸浆是由植物纤维制成的,其中纤维素是纸浆的主要成分。

然而,纤维素的高度结晶性和纤维束的紧密结合使纸浆的纤维难以分散并进行有效的纤维分解。

而纤维素酶能够降解纤维素分子,破坏纤维束的结构,使纤维素分散并易于处理。

此外,纤维素酶还可以改善纸浆的流动性和过滤性能,提高纸浆的质量和生产效率。

因此,纤维素酶在纸浆工业中具有重要的应用价值。

纤维素酶在生物能源、食品工业和纸浆工业中具有广泛的应用。

它能够降解纤维素,将其转化为可利用的糖类物质,提高生物能源的利用效率,改善食品的口感和品质,以及提高纸浆的质量和生产效率。

随着科学技术的不断发展,纤维素酶在未来的应用前景将更加广阔。

纤维素酶的研究现状及应用前景

纤维素酶的研究现状及应用前景

纤维素酶的研究现状及应用前景刘晓晶,李田,翟增强(中国矿业大学化工学院,江苏徐州221116)摘要 纤维素酶可以使构成植物细胞壁等不易利用的植物纤维分解成葡萄糖,从而提高玉米等秸秆的利用率,推动纤维素酶及燃料乙醇的工业发展及推广。

主要阐述了纤维素的结构和纤维素酶的作用机理,并详细介绍了纤维素酶的发展与应用前景。

关键词 纤维素;纤维素酶;作用机理;生产;应用中图分类号 S 183 文献标识码 A 文章编号 0517-6611(2011)04-01920-02The Status Quo and Applicati on Prospect of Cell u l ase LI U X i ao -ji ng et al (Che m i cal Eng i neer i ng Instit ute ,Ch i na M i ni ng U ni versity ,Xuz hou ,Ji angs u 221168)Abstract Cellul ase can made plant fi bre wha t consti tuted pl ant cell w alls ,etc .resolved i nt o gl ucose ,thereby ,t he utili zati on rate o f ma i ze straw ,et c .was m i proved ,and t he i ndustri a l deve l op ment and generali zati on of ce ll ulase and f uel e t hano lwere promoted .This articlem ai n l y dis -cussed t he structure o f cellul ose and the m echan i s m of t he cellul ase ,and t he develop ment and t he applicati on pros pects of ce ll ulase were i ntro -duced detail edl y .K ey words Cell ulose ;Cell u l ase ;M echanis m;P roducti on ;Appli cation基金项目 中国矿业大学大学生实践创新训练计划项目(2010093)。

纤维素酶在乳酸发酵工艺中的应用研究

纤维素酶在乳酸发酵工艺中的应用研究
第3 9卷 第 3期
2l年7 00 月
发 酵 科 技 通 讯
纤 维 素 酶在 乳 酸发 酵 工 艺 中的应 用研 究
宋 磊 刘 冰 王 德 培 高年 发
( 工业 微生 物 教育部 重点 实验 室 天津 科技 大学 生物 工程 学 院 天 津 3 0 5 ) 0 4 7
米糖 化液 还原 糖得 率 , 是 发酵 工程 主攻 的课题 。 仍 本文 利用 在糖 化 阶段加 入进 口纤 维素 酶 的糖化 制 作工 艺来 提高 还原 糖 的得率 ,经 过在乳 酸 发酵小 试 中应用 实验 表 明 , 工艺 可 以降低生 产成 本 , 此 生 产效 率 明显提 高 。
1 . 测 定 方 法 .3 2
时 ( 、 h
图 1 纤 维素酶 对糖 化 的协 同作 用
F g1Th y r itcr a to fBG ngy ai n i. es ne gsi e ci no i l c to
22 纤 维 素酶最 适 温度 以及 作用 时问 的确定 . 此 次 试 验 中所 用 纤 维 素酶 适 用 范 围为 温 度
第3 卷 9
米 淀粉的分子结构有关 。 葡萄糖淀粉酶是一种外酶 ,
水 解淀粉 或糊精 时 ,是从非还原末端 的 d 1 一, 4糖苷
键 开始 , 使一个 葡萄糖单位分离 , 水解产物只有 葡萄 糖, 葡萄糖淀粉酶作用于长链 比短链活性大 。 随着水 解 的进行 , 糊精链会越来越小 , 从而导致水解速 度变 慢 。另外 , 葡萄糖淀粉酶虽然能水解 0 1 糖苷键 , 【, 一6 但 水解速 度很慢 。玉米淀粉 中支链 淀粉 的含量达 7 %, 0 因此 , 支链 淀粉 中 o 1 糖 苷键的存在也是导 【, 一6 致玉米淀粉糖化后期速度变慢的原 因。考虑到整个 生产过程的成本 , 选择糖化时间 5 h 4 为宜 。

纤维素酶的研究现状及应用前景

纤维素酶的研究现状及应用前景

一、纤维素酶的应用现状
1、生物能源领域
纤维素酶在生物能源领域的应用主要表现在将纤维素转化为葡萄糖,进而转 化为乙醇或其他生物燃料。这种转化过程不仅可以提高能源的产量,而且可以降 低生产过程中的碳排放。目前,许多国家和公司都在积极研究利用纤维素酶生产 生物能源的工艺和技术。
2、生物材料领域
纤维素酶在生物材料领域的应用主要体现在将纤维素转化为生物可降解材料。 这些新材料可以替代传统的塑料制品,如包装材料、一次性餐具等。由于这些生 物材料具有良好的环保性能,因此在医疗、农业、餐饮等多个领域都具有广泛的 应用前景。
三、结语
纤维素酶作为自然界中一类重要的生物酶,具有广泛的应用前景。未来,随 着科学技术的发展和进步,纤维素酶将在各个领域发挥更大的作用,为人类的生 产和生活带来更多的便利和效益。我们应该纤维素酶的研究和应用进展,以便更 好地利用这一神奇的自然资源,为人类创造更多的价值。
谢谢观看
在研究过程中,研究者们也取得了一系列成果。例如,通过诱变育种和基因 工程等方法,提高了纤维素酶的产量和活性;同时,对纤维素酶的催化机制和晶 体结构等方面也有了更深入的了解。然而,尽管取得了一定的成果,纤维素酶研 究仍存在一些不足之处,如上文所述,包括酶的活性低、稳定性差、提取成本高 等。
应用领域、市场和发展趋势
而纤维二糖酶则将纤维二糖分解为葡萄糖。研究纤维素酶的意义在于它能够 为实现生物能源、生物材料等领域的可持续发展提供技术支持。
研究方法、成果和不足
目前,纤维素酶的研究方法主要包括微生物发酵法、化学合成法和基因工程 法等。这些方法各有优劣,微生物发酵法成本较低,但受菌种和生产条件的影响 较大;化学合成法可以在一定程度上满足工业化需求,但合成过程中成本较高且 产物稳定性较差;基因工程法则具有高效率和高产量的优势,但需要解决好基因 来源和克隆表达等问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纤维素酶在食品发酵工业中的应用
1 纤维素酶在白酒生产中的应用
在白酒的传统酿造工业中,一般使用淀粉和其它糖类的物质如玉米、高粱、大麦等作为原料,结合稻壳、谷糠、高粱壳等辅料可以保持酒醅的松软度,在此基础上再添加一定量的糖化剂,使原料可以被酵母所利用。

糖化剂在酿酒工艺中被称为曲或酒曲,曲是一种培养基,可以培养多种霉菌,累积不同的粗制酶类,如淀粉酶、磷酸化酶、脱羧酶等,白酒生产中最常用的曲为麸曲。

之后再细致的将原料粉碎成末,将配料与之混合后,蒸煮至糊化后冷却,经历拌醅后便可入窖发酵,发酵一定时间后进行蒸酒便可以获得传统酿造的白酒[1]。

在白酒发酵生产中应用纤维素酶,可以有效提高原料的利用率及白酒的出酒率,其原因可能是有以下三方面:一是纤维素酶对纤维素类物质具有降解作用,例如其可以降解植物细胞壁的结构,使细胞内部所含有的淀粉类物质得到释放,利于糖化酶作用,提高了原料中可利用的淀粉含量,起到了节约原料的作用;其二薯干等淀粉质原料中含有1%-3%的纤维素和半纤维素,故在纤维素酶的作用下淀粉质原料可以分解生成可发酵的糖类,原料中碳源的含量的上升,白酒的出酒率也将得到提高;此外,纤维素酶还在白酒生产中的蒸煮过程与糖化过程中有效的降低了醪液的粘度,这有利于醪液的发酵,并且对醪液的运输提供了便利[2,3]。

将纤维素酶应用于酿酒中,生产时每使用10kg的原料,可在原有酿造基础上增加1-1.5kg的酒量,节约原料20%,其生产出的酒杂醇油含量比较低,而杂醇造成是白酒中苦涩味的主要来源,其减少将会使酒味更加醇香。

在白酒酿造中,原料中含有的纤维素类物质较多,使用纤维素酶后,部分纤维素会降解生成葡萄糖,这些葡萄糖会与淀粉产生的糖类一起经由酵母分解而绝大部分转化为酒精,提高出酒率3%-6%,而纤维素和淀粉的利用率也将提高到90%[2,3]。

以大曲酒为例,李旭晖等[4-6]的研究发现,在大曲酒的固态发酵中添加适量的纤维素酶后,以相同工艺为标准发酵27天后,每100kg原料大约可以增加出酒量6kg-15kg,出酒率可提高1.6倍。

尽管目前在白酒生产上纤维素酶的应用还没有得到大规模的工业化,但纤维素酶能明显的使发酵时间缩短并且可以提高白酒发酵率,纤维素酶在白酒生产上的应用仍具有良好的发展前景与巨大的应用潜力。

2 纤维素酶在葡萄酒生产中的应用
葡萄酒是经由葡萄发酵酿造而成的含较低浓度酒精的饮品,其主要工艺是利用酵母对葡萄汁进行发酵,故人们为了提高葡萄酒的生产,把提高酵母细胞生产能力与利用高效外源微生物酶催化作为生产重点,果胶酶、半纤维素酶、β-葡聚糖酶和β-葡萄糖苷酶是最常用的外源微生物酶。

在葡萄酒生产中利用外源微生物酶的主要优点包括其可以破坏植物的细胞壁结构,利于葡萄果皮浸润分解并且可以增加色素的提取量,特别是纤维素酶还能对葡萄酒中存在的糖基化前体物质进行修饰,进而有效增加葡萄酒的香味[7]。

此外,生物酶还可以水解酵母的葡聚糖,去除酵母葡聚糖在葡萄酒过滤过程中产生的不利影响,有利于葡萄酒过滤和澄清,提高葡萄酒的质量和稳定性。

Galante等[3,7-9]研究发现将多种外源微生物酶混合,则可以在原有基础上进一步提高葡萄的压榨能力、沉淀速度和果汁得率。

参考文献
[1]余乾伟, 曾祖训. 传统白酒酿造技术[M]. 北京: 中国轻工业出版社, 2010.
[2]阎训友, 刘志敏, 史振霞, 等. 纤维素酶在食品工业中的应用进展[J]. 食品工业科技, 2004, 25(10): 140-142.
[3]姜淑荣. 浅谈纤维素酶在酒类生产中的应用[J]. 中国酿造, 2008(9): 12-15.
[4]李旭晖, 吴生文, 张志刚. 纤维素酶对大曲酒风味物质影响的探讨[J]. 中国酿造, 2011, 231(6): 80-83.
[5]Yuki Matano, Tomohisa Hasunuma, Akihiko Kondo. Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass[J]. Bioresource Technology, 2012, 108: 128–133.
[6]邵学良, 刘志伟. 纤维素酶的性质及其在食品工业中的应用[J]. 中国食物与营养, 2009(8): 34-36.
[7]Galante YM, Monteverdi R, Inama S, et al. New applications of enzymes in wine making and olive oil production[J]. Italian Biochem Soc Trans, 1993, 4: 34.
[8]L. Viikari, J. Vehmaanpera, A. Koivula. Lignocellulosic ethanol: From science to industry[J]. biomass and bioenergy, 2012, 46: 13-24.
[9]刘翔, 何国庆. 纤维素酶及相关酶在食品生物技术中的应用[J]. 粮油加工与食品机械, 2003(6): 61-63.。

相关文档
最新文档