遗传学数量性状遗传分析
第十二章 数量性状遗传分析
• 如果F1有n对杂合基因时,F2代的基因型频率应为:
• (1/2R+1/2r)2 n展开式中各项的系数, • 或为: (1/4RR+2/4Rr+1/4rr)n展开式中各项的系数。
随后美国学者Edward进 行了关于烟草(Nicotiana longiflore)花冠长度的遗 传学研究。他将花冠的平 均长度为40.5 mm和93.3 mm的纯系亲本进行杂交, F1呈中等长度,如所预期 的一致,但长度稍有变异, 这是由环境的变化所引起 的。 花冠长度的遗传若由4对 基因控制,则预期F2中落 在每一亲本类型中的植株 的表型频率为(1/2)8= 1/256
• B 第二种杂交组合(两亲本间只有两对等位基因差别),
• P 中深红色籽粒 白色籽粒 • (R1R1R2R2r3r3) (r1r1r2r2r3r3) • 中红色 • F1 (R1r1R2r2r3r3) • 自交 中深红 深红 中红 淡红 白色
(R1R1R2R2r3r3) 2(R1R1R2r2r3r3) 1( R1R1r2r2r3r3) 2(R1r1r2r2r3r3) 1(r1r1r2r2r3r3) 2(R1r1R2R2r3r3) 4(R1r1R2r2r3r3) 2(r1r1R2r2r3r3) 1(r1r1R2R2r3r3)
第二节 数量性状的多基因遗传
一、数量性状的多基因学说
(1)实验依据 1909年,瑞典遗传学家Nilsson-Ehle对小麦和 燕麦中籽粒颜色的遗传进行了研究,他发现在若干个红粒与 白粒的杂交组合中有如下A、B、C 3种情况:
他研究后进一步发现: ①在小麦和燕麦中,有3对与种皮颜色有关的、种类不同但 作用相同的基因,这3对基因中的任何一对在单独分离时都出 现3/4:1/4的比率,而3对基因同时分离时,则产生63/64:1 /64的比率。 ②上述的杂交在F2的红色籽粒中又呈现各种程度的差异, 按红色的程度又可人为地分为: 在A中:1/4 红粒:2/4 中等红:1/4 白色; 在B中:1/16深红:4/16红:6/16中等红:4/16淡红: 1/16白色; 在C中:1/64极深红:6/64深红:15/64次深红: 20/64中等红:15/64中淡红:6/64淡红:1/64白色 ③红色籽粒深浅程度的差异与所具有的决定“红色”的基 因数目有关,而与基因的种类无关。设:R1R2R3及r1r2r3为3对 决定种皮颜色的基因,大写字母表示“增加”红色,小写字母 表示“不增加”红色,R与r不存在显隐性关系。
11-1 数量遗传学的基础 - 第三节 数量性状遗传分析的统计学方法
5、互作效应(interaction effect)
• 主要是显性互补,指一切基因之间的相互作 用之总称
1.累加作用(additive effect):
等位基因之间无显隐性之差别,只有有效与无效之分, 性状的数量效应由有效基因个数累加而积累, 例,松树的针叶长度 最长的为16cm
最短的为4cm 若两对基因控制 A1A1A2A2=16cm a1a1a2a2=4cm 基因A作用值: A=(16-4)/4=3cm A1A1a2a2=a1a1A2A2=A1a1A2a2=3×2+4=10cm A1a1a2a2=1×3+4=7cm. 后代是常态分布。
特殊环境效应又称暂时性的环境效应, 只影响个体某个阶段的表型值。
这样
P= G + E = A+D+I+Eg+Es =A+R
P:表型值 A:育种值 R:剩余值
二、数量性状基因作用方式
• 数量性状的遗传基因——多因子假说,基本上阐明 了多因子的作用方式,即,它的无显隐性微效等 效性和累加性,然而事实上,数量性状的多基因 绝非千篇一律是这样的,有许多数量性状则明显 有显性效应,甚至超显性效应等,下边仍就一简 单模式,归纳起来,基因有如下几种作用方式:
μ+m=41.8+150=191.8 (kg)
(2) p=0.1, q=0.9时,
μ= α(p-q)+2pqd=-38.2 (kg)
数量性状的遗传分析
表10-2 玉米穗长度的遗传
图10-2 玉米穗长度的遗传
短
长
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
F1
穗长
8 9 10 11 12 13 14 15 16
穗长
F2
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
阈性状
有一类特殊的生物性状,不完全等同于数量性状或质量性状,其 表现呈非连续变异,与质量性状类似,但是又不服从孟德尔遗传 规律。一般认为这类性状具有一个潜在的连续型变量分布,其遗 传基础是多基因控制的,与数量性状类似。即由微效多基因控制 的,呈现不连续变异的性状。通常称这类性状为阈性状 (threshold character)。
单击此处添加副标题
10 数量性状的遗传分析
Genitics of Quantitative Character
单林娜 制作
1
上次课中所讲的性状差异,大多是明显的不连续差异。例如
豌豆种子的圆与皱,子叶的黄与绿
水稻的粳与糯
鸡羽的芦花斑纹和非芦花斑纹
这类性状在表面上都显示质的差别,所以叫做质量性状 (qualitative character)。质量性状的遗传可以比较容易地由分 离定律和连锁定律来分析。
10.3.1 广义遗传力(heritability in the broad sense) 的估算方法
因为方差可用来测量变异的程度,所以各种变异都可 用方差来表示,这样,
P = G + E 就可表示为:
VP = VG + VE 遗传方差;VE:环境方差)
(VP:表型方差;VG:
我们把遗传方差占总方差的比值称为广义遗传力
普通遗传学第十二章 数量性状的遗传分析 自出试题及答案详解第一套
数量性状的遗传分析一、名词解释:1.数量性状与质量性状2.数量性状的多基因假说3.方差4.标准差5.遗传率6.近亲繁殖7.杂种优势8.轮回亲本9.主基因(major gene):10.微效多基因(minorgene):11.修饰基因(modifying gene):12.超亲遗传(transgressive inheritance):13.近亲系数(F):14.轮回亲本15.数量性状基因座(quantitative trait locus,QTL):16.QTL定位(QTL mapping)17.广义遗传率:通常定义为总的遗传方差占表现型方差的比率。
18.狭义遗传率:通常定义为加性遗传方差占表现型方差的比率。
19.共祖系数:个体的近交系数等于双亲的共祖系数。
20.数量性状基因位点:即QTL,指控制数量性状表现的数量基因在连锁群中的位置21.表现型值:是指基因型值与非遗传随机误差的总和即性状测定值。
22.基因型与环境互作:数量基因对环境比较敏感,其表达容易受到环境条件的影响。
因此,基因型与环境互作是基因型在不同环境条件下表现出的不同反应和对遗传主效应的离差。
二、填空题:1.根据生物性状表现的性质和特点,我们把生物的性状分成两大类。
一类叫( ),它是由( )所控制的;另一类称( ),它是由( )所决定。
2.遗传方差占总方差的比重愈大,求得的遗传率数值愈(),说明这个性状受环境的影响()。
3.数量性状一向被认为是由()控制的,由于基因数量(),每个基因对表现型影响(),所以不能把它们个别的作用区别开来。
4.遗传方差的组成可分为( )和( )两个主要成分,而狭义遗传力是指 ( )占( )的百分数。
5.二对独立遗传的基因Aa和Bb,以累加效应的方式决定植株的高度,纯合子AABB高10. 一个有3对杂合基因的个体,自交5代,其后代群体中基因的纯合率为()。
6. 杂合体通过自交可以导致后代群体中遗传组成迅速趋于纯合化,纯合体增加的速度,则与⑴()⑵()有关。
实验十六数量性状的遗传学分析:人类指纹分析
稳定性
指纹在个体发育过程中相 对稳定,不会因外部环境 或生长发育而发生显著变 化。
指纹类型的遗传学解释
皮纹分类
根据指纹的形态特征,可以将人 类指纹分为斗形纹、箕形纹和弓 形纹三大类,每类又可细分为不 同的亚型。
遗传学分析
通过遗传学分析,可以确定不同 指纹类型之间的遗传关系,以及 不同特征之间的连锁关系。
准备显微镜、放大镜、记录本、相机等观察和记录工具,确保实验过程的顺利进 行。
指纹观察与记录
观察指纹特征
使用显微镜或放大镜仔细观察每个指 纹的特征,包括纹路走向、纹路密度、 纹路类型等。
记录数据
详细记录每个指纹的特征,并拍照或 扫描进行存档,确保数据的准确性和 可追溯性。
数据处理与分析
数据整理
将观察和记录的数据进行整理,建立数据库或数据表格, 便于后续的数据处理和分析。
作用。
数量性状在群体中呈连续变异, 受多个基因和环境因子影响,遗
传力较高。
数量性状遗传学在农业、医学和 生物多样性保护等领域具有广泛
应用。
人类指纹分析的意义
个体识别
指纹具有高度的个体特异性, 可用于身份识别和犯罪侦查。
遗传疾病研究
指纹与遗传疾病之间可能存在 关联,通过指纹分析有助于研 究遗传疾病的发病机制。
遗传学研究
指纹的遗传规律有助于理解人 类遗传学的基本原理,为多基 因遗传病的研究提供线索。
生物多样性保护
指纹分析在生物多样性保护领 域可用于物种鉴定和种群遗传
结构研究。
02 人类指纹的遗传基础
指纹的遗传特性
01
02
03
遗传性
指纹的形态和结构特征是 由基因决定的,具有明显 的遗传性。
数量性状遗传分析报告
总结: 红色素合成的深浅是基因剂量控制,即由R或C的
数目决定,每增加一个大写基因籽粒颜色更深一些.
R或C,红色增效基因(贡献等位基因) . R或C的效应可以累加. R的等位基因为r, r为减效基因(非贡献 等位基因).
红粒 × 白粒 ↓
F1 浅红粒 ↓
F2 红:白= 15:1
1/16深红;4/16大红;6/16中红;4/16淡红;(1/16 白)
深红 大红 中红 浅红 白色
表型比 1 : 4 : 6 : 4 : 1
R或C数目 4 3
210
• 实验结果的表型比例1:4:6:4:1和(a+b)4的 各项系数相同.
性状由n对独立基因决定时
则F2的表现型频率为:
( ½ R+ ½ r)2n
n = 2时 ( ½ R+ ½ r)2×2 =1/16+4/16+6/16+4/16+1/16 4R 3R 2R 1R 0R
n = 3时 ( ½ R+ ½ r)2×3 =1/64+6/64+15/64+20/64+15/64+6/64+1/64 6R 5R 4R 3R 2R 1R 0R
所以, H2=(VF2-VE)/VF2×100% = { VF2-1/3(VP1+VP2+VF1) }/VF2
例:玉米穗长遗传率 H2
• VF2=5.072 VF1=2.307 VP1=0.666 VP2=3.561 • VE=1/3(0.666+3.561+2.307)=2.088
=1/4×0.666+2/4×2.307+1/4×3.561=2.075 H2% =(VF2-VE)/VF2×
实验七数量性状的遗传分析
• 电子计算器
五、实验步骤 分析数量性状遗传重点常常通过考查基
因的显性程度、控制该数量性状的最小基因
数以及遗传率等指标来描述。
• 1、基本参数的计算
• (1)计算各世代的平均数( x )、方差
(V)及标准差(S) • (2)计算环境方差(VE)
1 VE3(VP1VP2VF1)(水稻自花授粉作物 )
• 假定基因型与环境之间没有相关和互作,则: • VP VGVE • 因为基因型方差是由加性方差(Vd),显性
方差(Vh)和非等位基因间的上位性方差(Vi) 所组成,故上式可进一步列为:
V PV dV hV iV E
根据F2、B1(F1×P1)、B2(F1×P2)
群体的方差组成分析为:
VF2 12D14HVE
X 理论值
fx
fx2
AA
1/4
d
1/4d 1/4d2
Aa
1/2
h
1/2h 1/2h2
aa
1/4
-d
-1/4d 1/4d2
合计
n=1
V F 2
f2 x ( f)x 2/n1d 2 1h 2
n
24
如这性状受K对基因控制,并假定它们的 作用相等,累加的,无连锁、互作,那末F2 的遗传方差为:
VF2
• 三、实验材料
• 水稻不同穗长品种间杂交组合的亲本P1与P2, F1,F2回交子代B1和(F1×P1)和B2(F1×P2) 的试验考种资料(数据附后)(水稻穗长 这性状是由多基因控制数量性状。分析数 量性状的遗传点常常通过考查基因的显性 程度,控制该数量性状的最小基因数以及 遗传率等指标来描述。
(1)
VB1VB212D12H2VE (2)
第十章 数量性状遗传分析
AABB AABb AaBB
2+4×18=74(cm) 2+3×18=56(cm)
AAbb
Aabb
aaBB
aaBb
AaBb
2+2×18=38(cm)
2+1×18=20(cm)
Aabb
2+0×18= 2(cm)
几何级数累加
F1代的表型理论值= √甲亲本表型值×乙亲本表型值 累加值=√F1代表型值/基本值
⑤研究方法:质量性状用遗传学三大规律去研究;数量性状
的研究方法一般采用生物统计学的方法。
第二节 数量性状遗传分析的统计学基础
一、平均数 是某一性状全部观察数(表现型值)的平均。通过 把全部资料中各个观察的数据总加起来,然后用 观察总个数除之。 公式如下:
n x1 x 2 x n 1 x xi n n i 1
2
第三节 数量性状的遗传率
一、数量性状表型值及其方差的分量
(一)数量性状表型值及其剖分
(二)表型方差分量
(一)数量性状表型值及其剖分
1、表型值的效应分解
任何数量性状的表现都是遗传和环境共同作用的结果,所
以性状的表型值首先可以剖分为遗传和环境两个组成部分:
P = G + E
P 为性状表现型值(也即性状观察值); G 为性状基因型(效应)值,也称遗传效应值; E 为环境效应值,当无基因型与环境互作时,E=e为随机误 差。
d=0时,
d=a时,
无显隐性关系
A对a是完全显性关系
d=-a时,
a对A是完全显性关系
2、F2代的表型方差
F2群体的方差(遗传方差)为:
F2代的表型方差可以分为遗传方差和环
遗传学-数量性状的遗传分析
三、微效基因表型值的推算
累加作用(每个显性基因的作用以一定的数值与纯隐性亲本 的表型值相加) 纯显性亲本表型值=每个显性基因表型值X纯显性亲本基因数+ 纯隐性亲本表型值 如短穗玉米x=6.6,长穗玉米x=16.8,F2中长、短穗各占群体 的1/16 4n=16,n=2 控制长穗玉米穗长的显性基因为2对(4个). 每个显性基因表型值=纯显亲本表型值-纯隐亲本表型值/纯显 亲本基因数=16.8-6.6/4=2.55 所以,含一个显性基因的玉米穗长:6.6+2.55=9.15cm 含2个显性基因的玉米穗长:6.6+(2×2.55)=11.7cm 依此类推。
狭义遗传率
计算基因的相加效应的方差VA在总的表型方差中所占的百分率。
Aa同AA回交的子代个体为B1,同aa回交的子代个体为B2。 B1的遗传方差的计算 f x fx fx2 AA 1/2 a 1/2a 1/2a2 Aa 1/2 d 1/2d 1/2d2 合计 1 1/2(a+d) 1/2(a2+d2) B1的遗传方差:VB1=1/2(a2+d2) -1/4(a+d)2=1/4(a-d)2 B2的遗传方差的计算 f x fx fx2 Aa 1/2 d 1/2d 1/2d2 aa 1/2 -a -1/2a 1/2a2 合计 1 1/2(d-a) 1/2(a2+d2) B2的遗传方差:VB2=1/2(a2+d2)- 1/4(d-a)2=1/4(a+d)2
例如小麦籽粒颜色两对基因控制的遗传动态 P 红R1R1R2R2 白r1r1r2r2 R1r1R2r2 红 1 4 6 4
F1
F2
1
4R
深红
3R
中深红
遗传学——数量性状的遗传
即 VF2 = VG + VF1 代入公式: H广
2=
∴ VG = VF2 - VF1
VG VF2 - VF1 = ×100% VG + V E VF2
例:测量矮脚母鸡与芦花公鸡和它们的 杂种的体重,得到下列的平均体重和表 型方差:
矮脚鸡 芦花鸡 F1 F2 B1 B2 平 均 1.4斤 6.6 3.4 3.6 2.5 4.8 方 差 0.1 0.5 0.3 1.2 0.8 1.0
如: 一对基因差别 3:1 两对基因差别 15:1
(2) 由于杂交亲本之间相差的基因对数不同:
如植株高度为数量性状,但孟德尔的豌豆杂 交实验中高植株和矮植株,也表现为质量性状 的遗传方式。 如: 水稻株高的遗传
(2) 水稻株高的遗传
相差三对基因的亲本杂交: P: T1T1T2T2T3T3 × t1t1t2t2t3t3 ↓ F1: T1t1T2t2T3t3
2)穗长与大写字 母数目成正相关 (累加) 。
数量性状和质量性状的区别
基因 控制 数量 性状 质量 性状 多 基因 单 基因 变异 分布 正态 分布 二项 分布 表型 受环境 遗传 分布 影响 规律 连续 分散 大 小 性状 特点 研究 对象 群体 个体和 群体
非孟德 易 尔遗传 度量 孟德尔 不易 度量 遗传
(3). 阈性状(threshold character): 性状达到某一特定值表现为正 常,达不到则为不正常,如血压, 血糖含量等。
1.2 数量性状与质量性状
(1) 由于区分性状的方法不同: 如小麦粒色遗传,如果采用非红 即白的区分方法,则表现为质量性状; 如果再加以细分,就表现为数量性状的 特点。
回交一代平均表型方差: 1/2(VB1 +VB2) = ¼ VA + ¼ VD +VE ∵ VF2= ½ VA + ¼ VD+ VE ∴ VF2 - 1/2(VB1 +VB2) = 1/4VA (加性的遗传方差) 或: 2VF2 - (VB1 +VB2) = ½VA 令: a2 = VA d2 = VD
数量性状的遗传
数量性状的遗传数量性状指的是一个生物体的某种性状具有连续性质,在一个种群中表现出一定的变异程度,且受多种基因和环境因素的影响。
例如人体身高、体重等就是数量性状。
数量性状由多个基因的作用所决定,被称为多基因性状。
与单基因性状不同的是,多基因性状不符合孟德尔遗传定律。
数量性状的遗传规律经过长时间的探究,现已初步得出。
从基因层面探究数量性状的遗传数量性状的基因型及其表现形式比较复杂,同一基因型的个体之间也会存在表现形式的差异。
基因由两条相同或不同的基因座构成,分别来自父母亲。
在数量性状的遗传中,每个基因座所对应的基因影响数量性状的大小和表现型。
同时,多个基因座共同作用于数量性状,这种作用关系被称为加性效应(additive effect)。
数量性状的遗传规律主要有:性状值=基因值+环境值,基因型对数量性状的影响呈现正态分布,且受到染色体上多个基因的影响。
数量性状的遗传模式数量性状的遗传规律有三种模式:常染色体显性遗传、常染色体隐形遗传以及性联遗传。
常染色体显性遗传的表现形式是当一个自由基因突变,双等位基因后者扰动的时候,显性基因造成的表现现象。
例如,人体的眼睛颜色就是常染色体显性遗传的一种表现。
常染色体隐性遗传与常染色体显性遗传类似,不同的是表现基因是一种隐性基因。
这种遗传模式表现突变基因表现在两条染色体上都具有相同的表现现象。
例如,某些人患有系统性红狼疮就是常染色体隐性遗传的一种表现。
性联遗传指由X和Y染色体来遗传。
X染色体上的基因对于女性来说是双等位基因,由于女性有两个X染色体,所以会出现多种表现型。
而男性由于只有一个X 染色体,所以表型变化更加显著和恒定。
例如,红绿色盲就是一种典型的性连锁遗传疾病。
数量性状的计算分析数量性状的遗传变异分析可以通过基因型频度分析、亲权分析和遗传连锁分析来进行。
(1)基因型频度分析:由于每个基因座共有两个等位基因,因此可将一个种群中某一基因座的等位基因频率进行 PA+Pa=1,其中PA为某一基因座等位基因A 的频率,Pa为某一基因座等位基因a的频率。
(整理)数量性状的遗传分析
第七章数量性状的遗传分析以前所学性状如水稻的梗与糯,豌豆种子的圆与皱等。
相对性状差异明显,一般没有过渡类型,这种变异为不连续变异,呈不连续变异的性状叫质量性状。
通常把差异不明显的变异叫连续变异,呈连续变异的性状叫数量性状。
如作物的产量、成熟期,棉花的纤维长度等。
数量性状的遗传要比质量性状复杂得多,它是由多对基因控制的,而且它们的表现容易受环境的影响(则受遗传因素的影响较小),同一品种在不同环境条件下,数量性状的表现会有很大的差别。
因此,研究数量性状的遗传时,往往要分析多对基因的遗传表现,并要特别注意环境条件的影响。
第一节数量性状的遗传分析一数量性状的遗传特点艾默森(R.A Emerson),伊斯特(R.A East)用短穗玉米P1和长穗玉米P2杂交,结果如下:1、特点:第一是连续变异,数字表示第二表型易受到环境影响P 1 P2、F1每个群体所有个体基因型都相同但个体有差异,如F19—15cm,F2群体个体基因型不同,变异是由基因型和环境共同作用结果。
2、数量性状的表型在统计学上的特征(1)两个纯合亲本杂交,F1往往表现为中间类型;(2)F1和F2的平均表现接近,但F2的变异程度大于F1;(3)数量性状的表型特征体现在群体而不是个体;(4)表型变化服从于正态分布。
二、数量性状遗传的多基因假说(一)小麦粒色杂交1909年尼尔森(Nilsson)实验:小麦子粒颜色硬质多为红粒,粉质多为白粒。
红粒×白粒红粒红粒(浅红,最浅红):白=3:1红粒×白粒红粒红粒(深红,中红,浅红,最浅红):白=15:1 红粒×白粒红粒红粒(最深红,暗红,深红,中红,浅红,最浅红):白=63:1解释:用R1r1,R2r2,R3r3表示小麦红粒白粒。
假设R为控制红色素形成的基因,r为不能控制红色素形成的基因。
R1R2R3为非等位基因,其对红色素的合成效应相同,且为累加效应。
(1)红粒r1 r1r2r2R3R3×白粒r1r1r2r2r3r3红粒r1r1r2r2R3r32R 1R1r 2r浅红最浅红白(3种)(2)红粒r1 r1R2R2R3R3×白粒r1r1r2r2r3r3红粒r1r1R2r2R3r34R 3R1r 2R2r 1R3r 4r深红中红浅红最浅红白(5种)(3)红粒R1 R1R2R2R3R3×白粒r1r1r2r2r3r3红粒R1r1R2r2R3r36R 5R1r 4R2r 3R3r 2R4r 1R5r 6r最深红暗红深红中红浅红最浅红白(7种)F2表型的类型:2N+1种,频率(1/2R+1/2r)2n展开后各项系数(二)多基因假说:(1)数量性状是由多对基因控制的,每个基因对表型的影响或作用微小,把这些控制数量性状作用微小的基因叫微效基因。
第十二章 数量性状的遗传分析
第十二章数量性状的遗传分析畜禽的大多数经济性状属于数量性状。
掌握数量性状的遗传规律和遗传参数对种畜生产中种畜群的生产性能的保持、对地方品种经济性能的提高、对新品种新品系的培育等工作都是十分必要的。
数量性状的遗传是有规律所循的,虽然在不同群体、在不同条件下、因估计方法不同,得到的参数有所变化,但遗传参数反映的数量性状的基本遗传规律的趋势是一定的。
数量性状的遗传基础质量性状的变异一般遵从孟德尔遗传规律,但数量性状的遗传规律与质量性状的遗传规律有一定区别。
数量性状是由大量的、效应微小而类似的、可加的基因控制,呈现连续变异,数量性状的表现还受到大量复杂环境因素的影响。
Nilsson-Ehle假说及其发展生物的性状按照其表现和对其研究的方式,可大致分为质量性状、数量性状和阈性状。
质量性状的变异通常可以区分为几种明显不同的类型,遵从孟德尔遗传规律。
畜禽重要质量性状的遗传规律已经在上一章中进行了阐述。
在动物生产中所关注的绝大多数经济性状呈连续性变异,其在个体间表现的差异只能用数量来区分,这类性状称为数量性状,如奶牛的产奶量、鸡的产蛋量、肉用家畜的日增重、饲料转化率、羊的产毛量等。
与质量性状相比较,数量性状主要有以下特点:①性状变异程度可以用度量衡度量;②性状表现为连续性分布;③性状的表现易受到环境的影响;④控制性状的遗传基础为多基因系统。
遗传基础为多基因控制,而表现为非连续性变异的性状称为阈性状。
如羊的产羔数、肉质的分类、对疾病抗性的有无等。
严格说来,鸡的产蛋数、猪的窝产仔数等也属于这一类性状,但其表型状态过多,作为阈性状分析过于复杂,通常近似的将其作为数量性状来看待。
数量性状在畜牧生产中占有非常重要的地位。
但是,到目前为止,对数量性状的遗传基础的解释主要还是基于Yule(1902,1906)首次提出、由Nilsson-Ehle(1908)总结完善、并由Johannsen(1909)和East(1910)等补充发展的多因子假说,也称为多基因假说或Nilsson-Ehle假说。
数量性状遗传分析
A组——一对基因单独分离; B组——两对基因分离;
C组——三对基因同时分离
②F2中籽粒颜色可细分:
A组——1/4红;1/4中红;(1/4 白);
B组——1/16深红;4/16次深红;6/16中红;4/16淡红;(1/16 白) C组——1/64极深红;6/64深红;15/64;20/64;15/64;6/64; (1/64 白)
群体发 病率 阈值
第二节 数量性状遗传分析的统计学基础
一、平均数(average): 1.算术平均数 n xi 表示观察样本的集中程度: x i 1 n 公式: X, μ 2.加权平均数 利用样本中随机变量的分布频率表示平均数: 公式:
二、方差(variance)与标准差(standard eviation): 表示偏离平均数的变异程度. 1.方差: 样本方差: S2 总体方差: σ2
r1r2 R1r1R2r2 R1r1r2r2 r1r1R2r2 r1r1r2r2
返回
表型比:1R(4): 4R(3): 6R(2): 4R(1): 1R(0) 深红: 次深红:中红: 浅红: 白色
基因型相同时变异由环境决定
归纳上述实验结果:
符合二项展开式(杨辉三角) A组——(1/2R+1/2r)2, 一对基因控制 B组——(1/2R+1/2r)4, 两对基因控制 C组——(1/2R+1/2r)6, 三对基因控制
2.标准差: s σ
方差 s 2 n 2 ( xi x ) i 1 n 1 方差 s2
标准差 s
例题:57个玉米穗
长度(cm, x ) 5 6 7 观察数(个 ) 4 21 24 平均数 5x4+6x21+7x24+8x8 57 =6.63 8 8
数量性状的遗传1ppt课件
而是对双亲基因型平均值的离差。 (Ⅰ) a(p-q)表示纯合体的累加效应; (Ⅱ) 2pqd表示杂合体的显性效应,d=0表示无显性效应. (Ⅲ)若p=q=1/2,且d=0, μ=0 (Ⅳ)n个基因座的联合效应
10/12/2024
16
第一节 数量性状的遗传学分析
上面两个杂交试验都表明,当基因的作 用为累加时,即每增加一个红粒有效基 因(R),子粒的颜色就要更红一些。由于 各个基因型所含的红粒有效基因数的不 同,就形成红色程度不同的许多中间类 型籽粒。
10/12/2024
17
第一节 数量性状的遗传学分析
基因控制 变异分布 表型 受环境 遗传 性状 研究 分布 影响 规律 特点 对象
————————————————————————————— 数量性状 多基因 正态分布 连续 大 非孟德 易度量 群体
尔遗传 质量性状 单基因 二项分布 分散 小 孟德尔 不易 个体
遗传 度量 和群体
—————————————————————————————
常归于环境效应. 用剩余值(R)表示: R=E+D+I, ∴P=A+R
2.表型方差及分量 VP=VG+VE ①G和E相关:VP=VG+VE+2covGE ②G和E无相关:VP=VG+VE=VA+VD+VI+VE
其中VA加性方差——可稳定遗传; VD显性方差,VI互作方差——不能稳定遗传。
10/12/2024
按照他的解释,数量性状是许多彼此独立的基因 作用的结果,每个基因对性状表现的效果较微, 但其遗传方式仍然服从孟德尔的遗传规律。而且 还假定:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因此,每用一个a基因替换一个A基因,穗长将减少1cm
忽略环境效应的影响,下列杂交试验的结果将是:
三 阈性状及其特性
阈性状:遗传基础是微效多基因、表型是非连续变异的一类性状。
表示发生率为20%的一 个阈性状的两种分布
1.基本物质处于某一特定范围内, 表现为正常,如果超出某一阈 值,表型就不正常。
2.基本物质受多基因控制,但性 状的改变仅发生在基本物质达 到或者超过某一阈值时才发生。
数量性状的连续性特点:
第一,一种基因型影响一组表型的表现。其结果模糊 了基因型所决定的不同表型之间的差异,因而不能将一个 特定的表型归属于一个特定的基因型。
第二,许多不同基因座的等位基因都能使某一种被观 察的表型发生改变。
2. 数量性状的特点: 1)数量性状是可以度量的; 2)数量性状呈连续性的变异; 3)数量性状的表现容易受到环境的影响; 4)控制数量性状的遗传基础是多基因系统
Johannsen提出数量性状同时受到基因型和环境的作用, 而且数量性状的表现对环境相当敏感。
多基因学说的要点:
1)数量性状由多对微效基因或多基因控制; 2)多基因中的每一对基因对性状的效应是微小的; 3)微效基因的效应相等,而且相互累加; 4)微效基因之间一般不存在显隐性关系; 5)微效基因对环境敏感; 6)多基因往往有多效性; 7)多基因及主效基因都位于染色体上,具有分离、重组、 连锁的性质。
设:R1 r1及R2 r2 为两对决定种皮颜 色的基因,大写字 母表示增效基因 (“增加”红色), 小写字母表示减效 基因(“不增加” 红色),R与r不存 在显隐性关系。
Nilsson-Ehle 根据小麦籽粒颜色遗传研究提出假说:
主要论点:数量性状是由大量的、数量微小而类似的、 并且可以相加的基因控制,这些基因在世代相传中服从 经典遗传学规律,这些基因一般没有显隐性区别。
数量性状的遗传在本质上与孟德尔式的遗传完 全一样,只是需要用多基因理论来解释。
二 数量性状遗传的多基因假说
1909年,瑞典遗传学家Nilsson-Ehle对小麦和燕麦中 籽粒颜色的遗传进行了研究,发现在若干个红粒与白粒的 杂交组合中有如下A、B、C 3种情况:
在小麦和燕麦中,有3对基因与种皮颜色有关; 1对基因:F2表型3:1分离; 2对基因:F2表型15:1分离; 3对基因:F2表型63:1分离
F2的红色籽粒中呈现各种程度的差异,按红色程度可分为: A组:1/4红粒:2/4中等红:1/4白粒; B组:1/16深红:4/16红:6/16中等红:4/16淡红:1/16白色; C组:1/64极深红:6/64深红:15/64次深红:20/64中等红:
15/64中淡红:6/64淡红:1/64白色
红色籽粒的颜色变异程度与决定“红色”的基因数目有 关,而与基因的种类无关。以B组为例:
数量性状:性状之间呈连续变异状态,界限不清楚,用数 字描述的性状。如人的身高、体重,作物的产量,棉花的 纤维长度等
质量性状和数量性状的区别
质量性状
①.变异类型
种类上的变化 (如红、白花)
②.表现型分布
不连续
③.基因数目
一个或少数几个
④.对环境的敏感性 不敏感
⑤.研究方法
系谱和概率分析
数量性状 数量上的变化 (如高度) 连续 微效多基因 敏感 统计分析
A1A1A2A2A3A3 ×a1a1a2a2a3a3 ↓
A1a1A2a2A3a3 ↓
F2: 6A: 5A1a:4A2a:3A3a:2A4a: 1A5a:6a 频率:1/64: 6/64: 15/64: 20/64: 15/64: 6/64: 1/64
穗长: 18 17 16 15 (cm)
14 13 12
第一节 数量性状及其特性
一 数量性状遗传的概念
所有能够度量的性状都可称为数量性状 (quantitative character或quantitative trait, QT)
连续:数量性状 生物遗传性状变异
不连续:质量性状
1. 质量性状与数量性状
质量性状:表型之间截然不同,具有质的差别,用文字描 述的性状称为质量性状。如水稻的糯与粳,人的A、B、O 血型等。
以假定的玉米穗长的遗传模式来直观地说明这一假说:
(1)如果两亲本相差一对基因:
P aa(6cm) × AA(18cm)
↓
F1
Aa(12cm)
↓自交
F2 1aa 2Aa
1AA
频率 1/4 2/4
1/4
增加一个A,就相当于在短穗亲本的基础上增加 6 cm
(2)假设该性状由三对等位基因(A1a1,A2a2和A3a3)控制,依 据多基因假说,等位基因间无显性效应,非等位基因间无上位 效应,基因的效应应相同且可加
将F2的各基因频率作一曲线图:
F2表型类别数 一对等位基因 三对等位基因
基因数+1 2写字母仅仅保持一个基数,叫做无效等位
无效等位基因:
不能产生野生型表 型,完全失去活性 的突变基因。
基因(null alleles),大写字母基因具有使 数 量增加的效应,每增加一个,效应加1份, 基因数目越多,每份的效应越小。大写字母 基因叫做有效等位基因(active alleles)
数量性状在研究方法的特点:
1)在杂交后代中,个别或少数后裔所能提供的信息量很少。 研究的单位必须扩大到群体和许多世系才可能获得对其 遗传规律和动态变化的认识;
2)对个体的性状进行测量;
3)利用生物统计学的方法,计算性状的表型参数:平均数、 方差(或标准差)、变异系数,以及遗传参数:遗传率、 遗传相关系数等。
数量性状包括两大类:
一 是表型为严格的连续变异的性状,如牛的泌乳 量,羊毛的长度等等;
二 是表型呈非连续变异,而遗传物质的数量呈 潜在的连续变异的性状,即只有超越某一遗传阈值时 才出现的性状,如抗病、死亡率以及单胎动物的产仔 数等性状,称为阈性状(threshold character或 threshold trait)。