开关电源中光耦隔离的几种典型接法对比

合集下载

光耦合器在开关电源中的作用

光耦合器在开关电源中的作用

光耦合器在开关电源中的作用
光耦合器在开关电源中的作用主要是隔离、提供反馈信号和开关。

1. 隔离作用:光耦合器能很好地隔离输入信号和输出信号,使其不受彼此的干扰。

在单片开关电源中,应用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,以实现精密稳压。

2. 提供反馈信号:光耦合器在开关电源中还可以为各种电路提供反馈信号。

当输出电压低于齐纳管电压时,光耦会打开,增加占空比以增加输出电压;反之,当输出电压过高时,光耦会关闭,降低占空比,导致输出电压下降。

3. 开关作用:在开关电源电路中,光耦的电源由高频变压器的二次电压提供。

当高频变压器二次负载过载或开关电路故障时,没有光耦电源,光耦控制开关电路不振动,以保护开关管不被烧毁。

此外,光耦合器还具有单向传输、抗干扰能力强、工作稳定、无触点、应用寿命长和传输效率高等优点。

光耦反馈常见几种连接方式及其工作原理

光耦反馈常见几种连接方式及其工作原理

光耦反馈常见几种连接方式及其工作原理来源:互联网•作者:佚名• 2017-11-07 14:12 • 23793次阅读在一般的隔离电源中,光耦隔离反馈是一种简单、低成本的方式。

但对于光耦反馈的各种连接方式及其区别,目前尚未见到比较深入的研究。

而且在很多场合下,由于对光耦的工作原理理解不够深入,光耦接法混乱,往往导致电路不能正常工作。

本研究将详细分析光耦工作原理,并针对光耦反馈的几种典型接法加以对比研究。

1、常见的几种连接方式及其工作原理常用于反馈的光耦型号有TLP521、PC817等。

这里以TLP521为例,介绍这类光耦的特性。

TLP521的原边相当于一个发光二极管,原边电流If越大,光强越强,副边三极管的电流Ic越大。

副边三极管电流Ic与原边二极管电流If的比值称为光耦的电流放大系数,该系数随温度变化而变化,且受温度影响较大。

作反馈用的光耦正是利用“原边电流变化将导致副边电流变化”来实现反馈,因此在环境温度变化剧烈的场合,由于放大系数的温漂比较大,应尽量不通过光耦实现反馈。

此外,使用这类光耦必须注意设计外围参数,使其工作在比较宽的线性带内,否则电路对运行参数的敏感度太强,不利于电路的稳定工作。

通常选择TL431结合TLP521进行反馈。

这时,TL431的工作原理相当于一个内部基准为2.5V的电压误差放大器,所以在其1脚与3脚之间,要接补偿网络。

常见的光耦反馈第1种接法,如图1所示。

图中,Vo为输出电压,Vd为芯片的供电电压。

com信号接芯片的误差放大器输出脚,或者把PWM芯片(如UC3525)的内部电压误差放大器接成同相放大器形式,com信号则接到其对应的同相端引脚。

注意左边的地为输出电压地,右边的地为芯片供电电压地,两者之间用光耦隔离。

图1所示接法的工作原理如下:当输出电压升高时,TL431的1脚(相当于电压误差放大器的反向输入端)电压上升,3脚(相当于电压误差放大器的输出脚)电压下降,光耦TLP521的原边电流If增大,光耦的另一端输出电流Ic增大,电阻R4上的电压降增大,com引脚电压下降,占空比减小,输出电压减小;反之,当输出电压降低时,调节过程类似。

光耦在开关电源中的作用有哪些

光耦在开关电源中的作用有哪些

光耦在开关电源中的作用有哪些
在现代电子设备中,开关电源作为一种高效、轻巧的电源供应方案,被广泛应用于各种电子产品中,如手机充电器、电脑电源等。

而光耦作为开关电源中的一个重要元件,发挥着关键的作用。

本文将探讨光耦在开关电源中的作用,以及它的原理和应用。

首先,光耦是一种将输入端和输出端通过光学耦合隔离的元件,主要由发光二极管和光敏三极管组成。

在开关电源中,光耦扮演着信号隔离和传递的关键角色。

当输入端施加电压时,发光二极管产生光信号,经过光传感器后转换为电信号输出到开关电源的控制电路中。

这种光电耦合的设计能够有效地隔离输入和输出端,提高了系统的安全性和稳定性。

其次,光耦在开关电源中还可以实现开关控制信号的隔离和传递。

在开关电源中,控制信号经过光耦隔离后,可以有效地防止输入端噪声和干扰信号对输出端的影响,保证电路的稳定性和可靠性。

同时,光耦还可以实现不同电路之间的隔离,防止电压和电流的干扰,提高系统的抗干扰能力。

此外,光耦还可以实现电流限制和过载保护功能。

在开关电源中,通过控制光耦的工作状态,可以实现对输出电流的限制和监测,保护电路不受过载损坏。

一旦输出电流超过设定值,控制电路会自动切断光耦,实现对电路的保护,避免电子设备的损坏。

总的来说,光耦作为开关电源中的重要元件,具有信号隔离、传递、控制和保护等多种功能。

它不仅可以提高系统的稳定性和安全性,还可以实现电路之间的隔离和互联。

在现代电子设备中,光耦在开关电源中的作用日益重要,为电子设备的高效、稳定运行提供了重要保障。

1。

光耦的作用及工作原理

光耦的作用及工作原理

光耦的作用及工作原理光耦合器(optical coupler,英文缩写为OC)亦称光电隔离器,简称光耦。

光耦合器以光为媒介传输电信号。

它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。

目前它已成为种类最多、用途最广的光电器件之一。

光耦合器一般由三部分组成:光的发射、光的接收及信号放大。

输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。

这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。

由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。

又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。

所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。

在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。

光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。

光耦合器是70年代发展起来的新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。

在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。

学习笔记:光耦的主要作用就是隔离作用,如信号隔离或光电的隔离。

隔离能起到保护的作用,如一边是微处理器控制电路,另一边是高电压执行端,如市电启动的电机,电灯等等,就可以用光耦隔离开。

当两个不同型号的光耦只有负载电流不同时,可以用大负载电流的光耦代替小负载电流的光耦。

以六脚光耦TLP641J为例,说明其原理。

一个光控晶闸管(photo-thyristor)耦合(couple to)一个砷化镓(gallium arsenide)红外发光二极管(diode)组成。

光耦pc817与P521光耦的应用

光耦pc817与P521光耦的应用

光耦pc817应用电路pc817是常用的线性光藕,在各种要求比较精密的功能电路中常常被当作耦合器件,具有上下级电路完全隔离的作用,相互不产生影响。

<光耦pc817应用电路图>当输入端加电信号时,发光器发出光线,照射在受光器上,受光器接受光线后导通,产生光电流从输出端输出,从而实现了“电-光-电”的转换。

普通光电耦合器只能传输数字信号(开关信号),不适合传输模拟信号。

线性光电耦合器是一种新型的光电隔离器件,能够传输连续变化的模拟电压或电流信号,这样随着输入信号的强弱变化会产生相应的光信号,从而使光敏晶体管的导通程度也不同,输出的电压或电流也随之不同。

PC817光电耦合器不但可以起到反馈作用还可以起到隔离作用。

\\当输入端加电信号时,发光器发出光线,照射在受光器上,受光器接受光线后导通,产生光电流从输出端输出,从而实现了“电-光-电”的转换。

普通光电耦合器只能传输数字信号(开关信号),不适合传输模拟信号。

线性光电耦合器是一种新型的光电隔离器件,能够传输连续变化的模拟电压或电流信号,这样随着输入信号的强弱变化会产生相应的光信号,从而使光敏晶体管的导通程度也不同,输出的电压或电流也随之不同。

PC817光电耦合器不但可以起到反馈作用还可以起到隔离作用。

光耦的测量:用数字表测二极管的方法分别测试两边的两组引脚,其中仅且仅有一次导通的,红表笔接的为阳极,黑表笔接的为阴极(指针表相反)。

且这两脚为低压端,也就是反馈信号引入端。

在正向测试低压端时,再用另一块万用表测试另外高压端两只脚,接通时,红表笔所接为C极,黑表笔接为E极。

当断开低压端的表笔时,高压端的所接万用表读数应为无穷大。

同理:只要在反馈端加一定的电压,高压端就应能导通,反之,该器件应为损坏。

光耦能否代用,主要看其CTR参数值是否接近。

测量的实质就是:就是分别去测发光二极管和3极管的好坏。

另外一种测量说法:用两个万用表就可以测了。

光电耦合器由发光二极管和受光三极管封装组成。

光耦隔离的原理及其使用技巧

光耦隔离的原理及其使用技巧

光耦使用技巧光电耦合器(简称光耦),是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。

光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。

目前应用最广的是发光二极管和光敏三极管组合成的光电耦合器,其内部结构如图1 a所示。

光耦以光信号为媒介来实现电信号的耦合与传递,输入与输出在电气上完全隔离,具有抗干扰性能强的特点。

对于既包括弱电控制部分,又包括强电控制部分的工业应用测控系统,采用光耦隔离可以很好地实现弱电和强电的隔离,达到抗干扰目的。

但是,使用光耦隔离需要考虑以下几个问题:①光耦直接用于隔离传输模拟量时,要考虑光耦的非线性问题;②光耦隔离传输数字量时,要考虑光耦的响应速度问题;③如果输出有功率要求的话,还得考虑光耦的功率接口设计问题。

1 光电耦合器非线性的克服光电耦合器的输入端是发光二极管,因此,它的输入特性可用发光二极管的伏安特性来表示,如图1b所示;输出端是光敏三极管,因此光敏三极管的伏安特性就是它的输出特性,如图1c所示。

由图可见,光电耦合器存在着非线性工作区域,直接用来传输模拟量时精度较差。

图1 光电耦合器结构及输入、输出特性解决方法之一,利用2个具有相同非线性传输特性的光电耦合器,T1和T2,以及2个射极跟随器A1和A2组成,如图2所示。

如果T1和T2是同型号同批次的光电耦合器,可以认为他们的非线性传输特性是完全一致的,即K1(I1)=K2 (I1),则放大器的电压增益G=Uo/U1=I3R3/I2R2=(R3/R2)[K1(I1)/K2(I1)]=R3/R 2。

由此可见,利用T1和T2电流传输特性的对称性,利用反馈原理,可以很好的补偿他们原来的非线性。

图2 光电耦合线性电路另一种模拟量传输的解决方法,就是采用VFC(电压频率转换)方式,如图3所示。

现场变送器输出模拟量信号(假设电压信号),电压频率转换器将变送器送来的电压信号转换成脉冲序列,通过光耦隔离后送出。

光耦反隔离反馈的几种典型接法

光耦反隔离反馈的几种典型接法

光耦反隔离反馈的几种典型接法在一般的隔离电源中,光耦隔离反馈是一种简单、低成本的方式。

但对于光耦反馈的各种连接方式及其区别,目前尚未见到比较深入的研究。

而且在很多场合下,由于对光耦的工作原理理解不够深入,光耦接法混乱,往往导致电路不能正常工作。

本研究将详细分析光耦工作原理,并针对光耦反馈的几种典型接法加以对比研究。

1 常见的几种连接方式及其工作原理常用于反馈的光耦型号有TLP521、PC817等。

这里以TLP521为例,介绍这类光耦的特性。

TLP521的原边相当于一个发光二极管,原边电流If越大,光强越强,副边三极管的电流Ic越大。

副边三极管电流Ic与原边二极管电流If的比值称为光耦的电流放大系数,该系数随温度变化而变化,且受温度影响较大。

作反馈用的光耦正是利用“原边电流变化将导致副边电流变化”来实现反馈,因此在环境温度变化剧烈的场合,由于放大系数的温漂比较大,应尽量不通过光耦实现反馈。

此外,使用这类光耦必须注意设计外围参数,使其工作在比较宽的线性带内,否则电路对运行参数的敏感度太强,不利于电路的稳定工作。

通常选择TL431结合TLP521进行反馈。

这时,TL431的工作原理相当于一个内部基准为2.5 V的电压误差放大器,所以在其1脚与3脚之间,要接补偿网络。

常见的光耦反馈第1种接法,如图1所示。

图中,Vo为输出电压,Vd为芯片的供电电压。

com信号接芯片的误差放大器输出脚,或者把PWM 芯片(如UC3525)的内部电压误差放大器接成同相放大器形式,com信号则接到其对应的同相端引脚。

注意左边的地为输出电压地,右边的地为芯片供电电压地,两者之间用光耦隔离。

图1所示接法的工作原理如下:当输出电压升高时,TL431的1脚(相当于电压误差放大器的反向输入端)电压上升,3脚(相当于电压误差放大器的输出脚)电压下降,光耦TLP521的原边电流If增大,光耦的另一端输出电流Ic增大,电阻R4上的电压降增大,com引脚电压下降,占空比减小,输出电压减小;反之,当输出电压降低时,调节过程类似。

光耦在开关电源中的应用

光耦在开关电源中的应用

光耦在开关电源中的应用开关电源作为电子设备中常见的一种电源供应方式,具有效率高、功率密度大、体积小等优点,在现代电子设备中得到了广泛的应用。

而光耦作为一种重要的电子元件,也在开关电源中扮演着关键的角色。

1. 光耦的工作原理光耦是由发光元件(一般为发光二极管)和光敏元件(一般为光电晶体管或光电三极管)组成的一种集成元件。

光耦的工作原理是利用发光二极管发出的光信号来控制光电晶体管或光电三极管的导通,从而实现输入与输出之间的电气隔离。

在开关电源中,光耦通常被用于隔离输入端的控制信号和输出端的功率电路,起到传递信号、隔离高低压等作用,保证电路的安全稳定运行。

2. 光耦在开关电源中的应用2.1 控制信号隔离开关电源通常需要接收外部的控制信号,如开关机信号、调节电压等。

通过光耦将控制信号隔离,可以有效地防止输入信号对输出电路造成干扰,提高系统的稳定性和可靠性。

2.2 输出反馈隔离在开关电源中,输出端往往需要进行电压、电流等参数的反馈控制,以实现稳定的输出。

光耦可以将输出端的反馈信号传递到控制电路中,同时实现输入输出之间的隔离,避免输出端信号对控制电路造成影响。

2.3 过载保护开关电源在工作过程中,可能会遇到过载等异常情况,为了保护电路和设备,需要及时切断输出电源。

光耦可以作为过载保护的触发器,当检测到输出端过载信号时,通过光耦控制开关电源的关闭,实现对电路的保护。

3. 结语光耦作为一种重要的电子元件,在开关电源中发挥着关键的作用,通过信号隔离、输出反馈和过载保护等功能,保障了开关电源系统的稳定性和可靠性。

未来随着电子技术的不断发展,光耦在开关电源中的应用将会更加广泛,为电子设备的性能提升和安全保障提供更好的支持。

开关电源中的光耦的作用

开关电源中的光耦的作用

开关电源中的光耦的作用开关电源的光耦主要是隔离、提供反馈信号和开关作用。

开关电源电路中光耦的电源是从高频变压器次级电压提供的,当输出电压低于稳压管电压是给信号光耦接通,加大占空比,使得输出电压升高;反之则关断光耦减小占空比,使得输出电压降低。

旦高频变压器次级负载超载或开关电路有故障,就没有光耦电源提供,光耦就控制着开关电路不能起振,从而保护开关管不至被击穿烧毁。

通常光耦与TL431 一起使用。

下面是led 电源驱动芯片(开关电源芯片)TMG0321/TMG0165/TMG0265/TMG03655 的部分电路。

两电阻串联取样到431R 端与内部比较器进行比较.然后根据比出的信号再控制431K 端(阳极接光耦那一端)对地的电阻,然后达到控制光耦内部发光二极管的亮度.(光耦内部一边是一发光二极管,一边是一光敏三极管)通过发光的强度.控制另一端三极管的CE 端的电阻也就是改变了led 电源驱动芯片(开关电源芯片)TMG0321/TMG0165/TMG0265/TMG0365 检测脚的电流(1 脚:电压反馈引脚,通过连接光耦到地来调整占控比).根据电流的大小,led 电源驱动芯片(开关电源芯片)TMG0321/TMG0165/TMG0265/TMG0365 就会自动调整输出信号的占空比,达到稳压的目的。

TMG0321/TMG0165/TMG0265/TMG0365 芯片是一款高集成度、高性能的PWM+MOSFET 管二合一的电流型离线式开关电源控制器。

适用于充电器、电源适配器、LED 驱动电源等各类小功率的开关电源。

采用DIP8 封装,无需加散热器可输出0~36W 的功率(加散热可以做到更大)。

电路结构简单,成本低。

具有完善的保护功能,包括过压、欠压、过温、过载及短路等保护。

固。

P521光耦详细解答

P521光耦详细解答

光耦pc817应用电路pc817是常用的线性光藕,在各种要求比较精密的功能电路中常常被当作耦合器件,具有上下级电路完全隔离的作用,相互不产生影响。

<光耦pc817应用电路图>当输入端加电信号时,发光器发出光线,照射在受光器上,受光器接受光线后导通,产生光电流从输出端输出,从而实现了“电-光-电”的转换。

普通光电耦合器只能传输数字信号(开关信号),不适合传输模拟信号。

线性光电耦合器是一种新型的光电隔离器件,能够传输连续变化的模拟电压或电流信号,这样随着输入信号的强弱变化会产生相应的光信号,从而使光敏晶体管的导通程度也不同,输出的电压或电流也随之不同。

PC817光电耦合器不但可以起到反馈作用还可以起到隔离作用。

\\当输入端加电信号时,发光器发出光线,照射在受光器上,受光器接受光线后导通,产生光电流从输出端输出,从而实现了“电-光-电”的转换。

普通光电耦合器只能传输数字信号(开关信号),不适合传输模拟信号。

线性光电耦合器是一种新型的光电隔离器件,能够传输连续变化的模拟电压或电流信号,这样随着输入信号的强弱变化会产生相应的光信号,从而使光敏晶体管的导通程度也不同,输出的电压或电流也随之不同。

PC817光电耦合器不但可以起到反馈作用还可以起到隔离作用。

光耦的测量:用数字表测二极管的方法分别测试两边的两组引脚,其中仅且仅有一次导通的,红表笔接的为阳极,黑表笔接的为阴极(指针表相反)。

且这两脚为低压端,也就是反馈信号引入端。

在正向测试低压端时,再用另一块万用表测试另外高压端两只脚,接通时,红表笔所接为C极,黑表笔接为E极。

当断开低压端的表笔时,高压端的所接万用表读数应为无穷大。

同理:只要在反馈端加一定的电压,高压端就应能导通,反之,该器件应为损坏。

光耦能否代用,主要看其CTR参数值是否接近。

测量的实质就是:就是分别去测发光二极管和3极管的好坏。

另外一种测量说法:用两个万用表就可以测了。

光电耦合器由发光二极管和受光三极管封装组成。

光电耦合器的应用与使用注意事项

光电耦合器的应用与使用注意事项

虑的一个参数V ( 。。如表2 ,使用时工 )
— _一
I g 重 寻殪品畦苍 2 1. w e p t m.r l 4 0 1 w w.e w.o Cl 4
更 大 的 进 步 。露
1同 一 系 列 的 光 耦 有 不 同 的子 系 . 列 ,其 对 应 的 C R 电 流 传 输 比 ) 不 T ( 是 同 的 ( 表 1 ,我 们 在 选 择 时 ,需 要 如 )
根 据 自己 的 电 路 要 求 选 择 型号 :分 类
表 电流 传 输 比如 表 1 示 。 所 2输 出 侧 的 极 限 耐 压 值 是 需 要 考

— —
/ l [ [ l ≤ _ l
3ቤተ መጻሕፍቲ ባይዱ






A K C E
芷冉 皂凌 I 日 ) f(
图 5 正 向 电 流与 C TR的 关系
用双向光耦 。
4C R 电流传输比) .T ( 是受 到I ( F输
入 端 正 向 电 流 ) 响 的 ,如 图5 影 。要 想
很 多 更 新 更 好 用 的 光 耦 ,如 双 向 光
光耦使用注意事项
为 了 用 好 光 耦 , 需 要 注 意 一 些
细 节 问 题 ,以 我 们 使 用 较 多 的 光 耦
P 87 例介绍 。 C 1举
表 2 P 光 耦绝 对 最 大 额 定 值 C81 7
耦 、 固态 继 电器 等 等 。未 来 ,也 必 定 将 有 更 完 美 的 光 耦 为 我 们 的 设 计 带来
同 电源 。
光 耦 的 优 良特性 为 我 们 的设
表 1 C81 不 同系 列 对 应 的 CTR P 7

开关电源中光耦的工作原理是什么呢

开关电源中光耦的工作原理是什么呢

开关电源中光耦的工作原理是什么呢在开关电源中,光耦扮演着至关重要的角色,其工作原理在整个系统中起着连接和隔离的作用。

光耦是光电器件的一种,由发光二极管(LED)和光敏三极管(光电晶体管)组成。

而在开关电源中,光耦主要用于实现输入端和输出端之间的隔离,以确保电气信号在高效且安全的条件下传输。

光耦的工作原理可以简单概括为:当输入信号加到LED上时,LED会发光,其光线照射到光敏三极管上,导致光敏三极管发生光电效应,从而在输出端产生电信号。

这一过程实现了输入端和输出端之间的电气隔离,有效地防止了输入端的干扰信号对输出端的影响。

在开关电源中,光耦通常被用于隔离高压和低压部分,以确保高压部分的安全性。

当开关电源的输入端传入交流电信号时,经过整流等处理后会被转换成直流电压,然后通过开关器件(如MOS管)进行控制,最终输出恒定的直流电压。

而光耦的作用就是在控制信号传输时,将输入端高压信号隔离,通过光电转换实现对输出端的控制。

另外,光耦在开关电源中还常用于反馈回路中,以实现对输出电压和输出电流的监测和调节。

通过监测输出端的电压和电流信号,可以实现开关电源的稳定性和效率的控制,并在需要时进行保护性控制。

这种反馈回路的设计使得开关电源在不同负载情况下能够自动调整工作状态,提高整个系统的稳定性和可靠性。

综上所述,光耦在开关电源中作为一种重要的隔离器件,通过光电转换实现了输入端和输出端之间的电气隔离,保证了系统的稳定性和安全性。

同时,光耦在反馈回路中的运用也为开关电源的控制和调节提供了有效的手段,使整个系统更加智能化和高效化。

在未来的开关电源设计中,光耦将继续扮演着重要的角色,为电源系统的可靠性和性能提升发挥着重要作用。

1。

10种开关电源电路的接法,你常用那种?

10种开关电源电路的接法,你常用那种?

10种开关电源电路的接法,你常用那种?开关电源电路的接法一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC输入整流滤波电路原理:①、防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。

②、输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③、整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、DC输入滤波电路原理:①、输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4为安规电容,L2、L3为差模电感。

②、R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

开关电源中光耦的作用及工作原理

开关电源中光耦的作用及工作原理

开关电源中光耦的作用及工作原理在开关电源中,光耦是一个非常重要的元件,它扮演着传递信号和隔离电气的关键角色。

光耦是由一个发光二极管和一个光敏三极管组成的器件,能够将输入端的电信号转换成输出端的光信号进行隔离传输,从而实现输入和输出端的电气隔离。

下面将详细介绍光耦在开关电源中的作用及工作原理。

首先,光耦在开关电源中的作用主要有两个方面。

其一是实现信号的隔离传输。

在开关电源中,通常存在输入端和输出端之间的电气隔离要求,这时就可以使用光耦来将输入信号转换成光信号进行传输,避免了信号干扰和电气冲击。

其二是实现开关控制的电气隔离。

通过光耦,可以实现对开关电源的控制信号进行隔离传输,避免了开关控制电路与被控电路之间的相互影响,提高了系统的稳定性和可靠性。

其次,光耦的工作原理可以简要描述如下。

当输入端的电信号加到发光二极管上时,发光二极管就会发出光信号,这个光信号照射到光敏三极管上,使光敏三极管产生电压和电流变化,从而在输出端得到与输入信号对应的输出信号。

通过这种光电转换的方式,实现了输入和输出端的电气隔离,同时保障信号的传输质量和稳定性。

在开关电源中使用光耦时,需要注意以下几点。

首先,要选择适合的光耦型号和工作参数,确保其满足系统的电气隔离和信号传输需求。

其次,要合理设计光耦的电路连接方式和工作环境,避免电磁干扰和温度影响导致光耦性能不稳定。

最后,要定期检测和维护光耦元件,保证其正常工作和有效隔离传输。

总之,光耦作为开关电源中的重要元件,扮演着信号隔离和传输的关键角色。

通过光电转换的方式,实现了输入和输出端的电气隔离,提高了系统的稳定性和可靠性。

在应用光耦时,需要充分理解其工作原理和注意事项,确保其正常工作和良好的隔离效果,从而为开关电源系统的稳定运行提供保障。

1。

开关电源短路光耦检修法

开关电源短路光耦检修法

开关电源短路光耦检修法
开关电源短路光耦检修法是一种常用的开关电源故障排查和修复方法,光耦是开关电源中用于隔离输入和输出信号电路的元件之一。

以下是开关电源短路光耦检修的步骤:
1. 确认短路故障:首先需要确认开关电源的输出是否短路。

可以使用万用表或欧姆表来测量开关电源的输出端口之间的电阻,如果读数接近于零,说明存在短路故障。

2. 定位光耦位置:根据开关电源的电路原理图和布局图,找到光耦所在位置。

光耦通常是一个小型元件,有两个引脚,一个用于输入光信号,一个用于输出电信号。

3. 检查光耦引脚连接:使用万用表或欧姆表来测量光耦的两个引脚之间的电阻。

如果读数接近于无穷大或无穷大,说明光耦引脚连接正常。

如果读数接近于零或很小,说明光耦引脚可能短路。

4. 取下光耦:如果发现光耦引脚短路,需要将其取下。

首先断开开关电源的电源线,然后小心地取下光耦,注意不要损坏其他电路或元件。

5. 替换光耦:根据光耦的型号,购买一个相同型号的新光耦。

然后将新光耦安装到开关电源的光耦位置上,确保引脚连接正确。

6. 测试开关电源:重新连接开关电源的电源线,然后打开开关
电源。

使用数字万用表或示波器来测量开关电源的输出电压和波形,确保故障修复。

需要注意的是,在进行开关电源短路光耦检修时,应该先断开开关电源的电源线,以确保安全。

如果不熟悉电路维修和检修操作,建议寻求专业人士的帮助或咨询。

光耦的作用及工作原理

光耦的作用及工作原理

光耦的作用及工作原理光耦合器(optical coupler,英文缩写为OC)亦称光电隔离器,简称光耦。

光耦合器以光为媒介传输电信号。

它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。

目前它已成为种类最多、用途最广的光电器件之一。

光耦合器一般由三部分组成:光的发射、光的接收及信号放大。

输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出.这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。

由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。

又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力.所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。

在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。

光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。

光耦合器是70年代发展起来的新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。

在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。

学习笔记:光耦的主要作用就是隔离作用,如信号隔离或光电的隔离。

隔离能起到保护的作用,如一边是微处理器控制电路,另一边是高电压执行端,如市电启动的电机,电灯等等,就可以用光耦隔离开。

当两个不同型号的光耦只有负载电流不同时,可以用大负载电流的光耦代替小负载电流的光耦.以六脚光耦TLP641J为例,说明其原理.一个光控晶闸管(photo-thyristor)耦合(couple to)一个砷化镓(gallium arsenide)红外发光二极管(diode)组成。

光电耦合器电路图大全(可控硅稳压电路隔离耦合电路详解)

光电耦合器电路图大全(可控硅稳压电路隔离耦合电路详解)

光电耦合器电路图大全(可控硅稳压电路隔离耦合电路详解)光电耦合器的工作原理光电耦合器是一种把红外光发射器件和红外光接受器件以及信号处理电路等封装在同一管座内的器件。

当输入电信号加到输入端发光器件LED上,LED发光,光接受器件接受光信号并转换成电信号,然后将电信号直接输出,或者将电信号放大处理成标准数字电平输出,这样就实现了“电-光-电”的转换及传输,光是传输的媒介,因而输入端与输出端在电气上是绝缘的,也称为电隔离。

光电耦合器,是近几年发展起来的一种半导体光电器件,由于它具有体积小、寿命长、抗干扰能力强、工作温度宽及无触点输入与输出在电气上完全隔离等特点,被广泛地应用在电子技术领域及工业自动控制领域中,它可以代替继电器、变压器、斩波器等,而用于隔离电路、开关电路、数模转换、逻辑电路、过流保护、长线传输、高压控制及电平匹配等。

光电耦合器电路图(一)开关电路对于开关电路,往往要求控制电路和开关电路之间要有很好的电隔离,这对于一般的电子开关来说是很难做到的,但采用光电耦合器就很容易实现了。

图中(a)所示电路就是用光电耦合器组成的简单开关电路。

在图中,当无脉冲信号输入时,三极管BG处于截止状态,发光二极管无电流流过不发光,则a、b两端电阻非常大,相当于开关“断开”。

当输入端加有脉冲信号时,BG导通,发光二极管发光,则a、b两端电阻变得很小,相当于开关“接通”。

故称无信号时开关不通,为常开状态。

图46—4中(b)所示电路则为“带闭”状态,因为无信号输入时,虽BG截止,但发光二极管有电流通过而发光,使a、b图46-4两端处于导通状态,相当于开关“接通”。

当有信号输入时,BG 导通,由于BG的集电结压降在0.3V以下,远小于发光二极管的正向导通电压,所以发光二极管无电流流过不发光,则a、b两端电阻极大,相当于开关“断开”,故称“常闭”式。

可见,开关a、b端在电路中不受电位高低的限制,但在使用中应满足a端电位为正,b端为负,并使Uab>3V为好,同时还应注意Uab应小于光电三极管的BVceo。

开关电源中光耦隔离的几种典型接法对比

开关电源中光耦隔离的几种典型接法对比

开关电源中光耦隔离的几种典型接法对比在一般的隔离电源中,光耦隔离反馈是一种简单、低成本的方式。

但对于光耦反馈的各种连接方式及其区别,目前尚未见到比较深入的研究。

而且在很多场合下,由于对光耦的工作原理理解不够深入,光耦接法混乱,往往导致电路不能正常工作。

本研究将详细分析光耦工作原理,并针对光耦反馈的几种典型接法加以对比研究。

1、常见的几种连接方式及其工作原理常用于反馈的光耦型号有TLP521、PC817等。

这里以TLP521为例,介绍这类光耦的特性。

TLP521的原边相当于一个发光二极管,原边电流If越大,光强越强,副边三极管的电流Ic越大。

副边三极管电流Ic与原边二极管电流If的比值称为光耦的电流放大系数,该系数随温度变化而变化,且受温度影响较大。

作反馈用的光耦正是利用“原边电流变化将导致副边电流变化”来实现反馈,因此在环境温度变化剧烈的场合,由于放大系数的温漂比较大,应尽量不通过光耦实现反馈。

此外,使用这类光耦必须注意设计外围参数,使其工作在比较宽的线性带内,否则电路对运行参数的敏感度太强,不利于电路的稳定工作。

通常选择TL431结合TLP521进行反馈。

这时,TL431的工作原理相当于一个内部基准为2.5V的电压误差放大器,所以在其1脚与3脚之间,要接补偿网络。

常见的光耦反馈第1种接法,如图1所示。

图中,Vo为输出电压,Vd为芯片的供电电压。

com信号接芯片的误差放大器输出脚,或者把PWM芯片(如UC3525)的内部电压误差放大器接成同相放大器形式,com信号则接到其对应的同相端引脚。

注意左边的地为输出电压地,右边的地为芯片供电电压地,两者之间用光耦隔离。

图1所示接法的工作原理如下:当输出电压升高时,TL431的1脚(相当于电压误差放大器的反向输入端)电压上升,3脚(相当于电压误差放大器的输出脚)电压下降,光耦TLP521的原边电流If增大,光耦的另一端输出电流Ic增大,电阻R4上的电压降增大,com引脚电压下降,占空比减小,输出电压减小;反之,当输出电压降低时,调节过程类似。

光耦隔离的原理及其使用技巧

光耦隔离的原理及其使用技巧

光耦使用技巧光电耦合器(简称光耦),是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。

光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。

目前应用最广的是发光二极管和光敏三极管组合成的光电耦合器,其内部结构如图1 a所示。

光耦以光信号为媒介来实现电信号的耦合与传递,输入与输出在电气上完全隔离,具有抗干扰性能强的特点。

对于既包括弱电控制部分,又包括强电控制部分的工业应用测控系统,采用光耦隔离可以很好地实现弱电和强电的隔离,达到抗干扰目的。

但是,使用光耦隔离需要考虑以下几个问题:①光耦直接用于隔离传输模拟量时,要考虑光耦的非线性问题;②光耦隔离传输数字量时,要考虑光耦的响应速度问题;③如果输出有功率要求的话,还得考虑光耦的功率接口设计问题。

1 光电耦合器非线性的克服光电耦合器的输入端是发光二极管,因此,它的输入特性可用发光二极管的伏安特性来表示,如图1b所示;输出端是光敏三极管,因此光敏三极管的伏安特性就是它的输出特性,如图1c所示。

由图可见,光电耦合器存在着非线性工作区域,直接用来传输模拟量时精度较差。

图1 光电耦合器结构及输入、输出特性解决方法之一,利用2个具有相同非线性传输特性的光电耦合器,T1和T2,以及2个射极跟随器A1和A2组成,如图2所示。

如果T1和T2是同型号同批次的光电耦合器,可以认为他们的非线性传输特性是完全一致的,即K1(I1)=K2 (I1),则放大器的电压增益G=Uo/U1=I3R3/I2R2=(R3/R2)[K1(I1)/K2(I1)]=R3/R 2。

由此可见,利用T1和T2电流传输特性的对称性,利用反馈原理,可以很好的补偿他们原来的非线性。

图2 光电耦合线性电路另一种模拟量传输的解决方法,就是采用VFC(电压频率转换)方式,如图3所示。

现场变送器输出模拟量信号(假设电压信号),电压频率转换器将变送器送来的电压信号转换成脉冲序列,通过光耦隔离后送出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关键字:开关电源光耦隔离
在一般的隔离电源中,光耦隔离反馈是一种简单、低成本的方式。

但对于光耦反馈的各种连接方式及其区别,目前尚未见到比较深入的研究。

而且在很多场合下,由于对光耦的工作原理理解不够深入,光耦接法混乱,往往导致电路不能正常工作。

本研究将详细分析光耦工作原理,并针对光耦反馈的几种典型接法加以对比研究。

1 常见的几种连接方式及其工作原理
常用于反馈的光耦型号有TLP521、PC817等。

这里以TLP521为例,介绍这类光耦的特性。

TLP521的原边相当于一个发光二极管,原边电流If越大,光强越强,副边三极管的电流Ic越大。

副边三极管电流Ic与原边二极管电流If的比值称为光耦的电流放大系数,该系数随温度变化而变化,且受温度影响较大。

作反馈用的光耦正是利用“原边电流变化将导致副边电流变化”来实现反馈,因此在环境温度变化剧烈的场合,由于放大系数的温漂比较大,应尽量不通过光耦实现反馈。

此外,使用这类光耦必须注意设计外围参数,使其工作在比较宽的线性带内,否则电路对运行参数的敏感度太强,不利于电路的稳定工作。

通常选择TL431结合TLP521进行反馈。

这时,TL431的工作原理相当于一个内部基准为2.5 V的电压误差放大器,所以在其1脚与3脚之间,要接补偿网络。

常见的光耦反馈第1种接法,如图1所示。

图中,Vo为输出电压,Vd为芯片的供电电压。

com信号接芯片的误差放大器输出脚,或者把PWM 芯片(如UC3525)的内部电压误差放大器接成同相放大器形式,com信号则接到其对应的同相端引脚。

注意左边的地为输出电压地,右边的地为芯片供电电压地,两者之间用光耦隔离。

图1所示接法的工作原理如下:当输出电压升高时,TL431的1脚(相当于电压误差放大器的反向输入端)电压上升,3脚(相当于电压误差放大器的输出脚)电压下降,光耦TLP521的原边电流If增大,光耦的另一端输出电流Ic增大,电阻R4上的电压降增大,com 引脚电压下降,占空比减小,输出电压减小;反之,当输出电压降低时,调节过程类似。

常见的第2种接法,如图2所示。

与第1种接法不同的是,该接法中光耦的第4脚直接接到芯片的误差放大器输出端,而芯片内部的电压误差放大器必须接成同相端电位高于反相端电位的形式,利用运放的一种特性——当运放输出电流过大(超过运放电流输出能力)时,运放的输出电压值将下降,输出电流越大,输出电压下降越多。

因此,采用这种接法的电路,一定要把PWM 芯片的误差放大器的两个输入引脚接到固定电位上,且必须是同向端电位高于反向端电位,使误差放大器初始输出电压为高。

图2所示接法的工作原理是:当输出电压升高时,原边电流If增大,输出电流Ic增大,由于Ic已经超过了电压误差放大器的电流输出能力,com脚电压下降,占空比减小,输出电压减小;反之,当输出电压下降时,调节过程类似。

常见的第3种接法,如图3所示。

与图1基本相似,不同之处在于图3中多了一个电阻
R6,该电阻的作用是对TL431额外注入一个电流,避免TL431因注入电流过小而不能正常工作。

实际上如适当选取电阻值R3,电阻R6可以省略。

调节过程基本上同图1接法一致。

常见的第4种接法,如图4所示。

该接法与第2种接法类似,区别在于com端与光耦第4脚之间多接了一个电阻R4,其作用与第3种接法中的R6一致,其工作原理基本同接法2。

2 各种接法的比较
在比较之前,需要对实际的光耦TLP521的几个特性曲线作一下分析。

首先是Ic-Vce
曲线,如图5,图6所示。

由图5、图6可知,当If小于5 mA时,If的微小变化都将引起Ic与Vce的剧烈变化,光耦的输出特性曲线平缓。

这时如果将光耦作为电源反馈网络的一部分,其传递函数增益非常大。

对于整个系统来说,一个非常高的增益容易引起系统不稳定,所以将光耦的静态工作点设置在电流If小于5 mA是不恰当的,设置为5~10 mA较恰当。

此外,还需要分析光耦的Ic-If曲线,如图7所示。

由图7可以看出,在电流If小于10 mA 时,Ic-If基本不变,而在电流If大于10 mA 之后,光耦开始趋向饱和,Ic-If的值随着If的增大而减小。

对于一个电源系统来说,如果环路的增益是变化的,则将可能导致不稳定,所以将静态工作点设置在If过大处(从而输出特性容易饱和),也是不合理的。

需要说明的是,Ic-If曲线是随温度变化的,但是温度变化所影响的是在某一固定If值下的Ic值,对Ic-If比值基本无影响,曲线形状仍然同图7,只是温度升高,曲线整体下移,这个特性从Ic-Ta曲线(如图8所示)中可以看出。

由图8可以看出,在If大于5 mA时,Ic-Ta曲线基本上是互相平行的。

根据上述分析,以下针对不同的典型接法,对比其特性以及适用范围。

本研究以实际的隔离半桥辅助电源及反激式电源为例说明。

第1种接法中,接到电压误差放大器输出端的电压是外部电压经电阻R4降压之后得到,不受电压误差放大器电流输出能力影响,光耦的工作点选取可以通过其外接电阻随意调节。

按照前面的分析,令电流If的静态工作点值大约为10 mA,对应的光耦工作温度在0~100℃变化,值在20~15 mA之间。

一般PWM芯片的三角波幅值大小不超过3 V,由此选定电阻R4的大小为670Ω,并同时确定TL431的3脚电压的静态工作点值为12 V,那么可以选定电阻R3的值为560Ω。

电阻R1与R2的值容易选取,这里取为27 k与4.7 k。

电阻
R5与电容C1为PI补偿,这里取为3 k与10 nF。

实验中,半桥辅助电源输出负载为控制板上的各类控制芯片,加上多路输出中各路的死负载,最后的实际功率大约为30 w。

实际测得的光耦4脚电压(此电压与芯片三角波相比较,从而决定驱动占空比)波形,如图9所示。

对应的驱动信号波形,如图10所示。

图10的驱动波形有负电压部分,是由于上、下管的驱动绕在一个驱动磁环上的缘故。

可以看出,驱动信号的占空比比较大,大约为0.7。

对于第2种接法,一般芯片内部的电压误差放大器,其最大电流输出能力为3 mA左右,超过这个电流值,误差放大器输出的最高电压将下降。

所以,该接法中,如果电源稳态占空比较大,那么电流Ic比较小,其值可能仅略大于3 mA,对应图7,Ib为2 mA左右。

由图6可知,Ib值较小时,微小的Ib变化将引起Ic剧烈变化,光耦的增益非常大,这将导致闭环网络不容易稳定。

而如果电源稳态占空比比较小,光耦的4脚电压比较小,对应电压误差放大器的输出电流较大,也就是Ic比较大(远大于3 mA),则对应的Ib也比较大,同样
对应于图6,当Ib值较大时,对应的光耦增益比较适中,闭环网络比较容易稳定。

同样,对于上面的半桥辅助电源电路,用接法2代替接法1,闭环不稳定,用示波器观察光耦4脚电压波形,有明显的振荡。

光耦的4脚输出电压(对应于UC3525的误差放大器输出脚电压),波形如图11所示,可发现明显的振荡。

这是由于这个半桥电源稳态占空比比较大,按接法2则光耦增益大,系统不稳定而出现振荡。

实际上,第2种接法在反激电路中比较常见,这是由于反激电路一般都出于效率考虑,电路通常工作于断续模式,驱动占空比比较小,对应光耦电流Ic比较大,参考以上分析可知,闭环环路也比较容易稳定。

以下是另外一个实验反激电路,工作在断续模式,实际测得其光耦4脚电压波形,如图12所示。

实际测得的驱动信号波形,如图13所示,占空比约为0.2。

因此,在光耦反馈设计中,除了要根据光耦的特性参数来设置其外围参数外,还应该知道,不同占空比下对反馈方式的选取也是有限制的。

反馈方式1、3适用于任何占空比情况,而反馈方式2、4比较适合于在占空比比较小的场合使用。

3 结束语
本研究列举了4种典型光耦反馈接法,分析了各种接法下光耦反馈的原理以及各种限制因素,对比了各种接法的不同点。

通过实际半桥和反激电路测试,验证了电路工作的占空比对反馈方式选取的限制。

最后对光耦反馈进行总结,对今后的光耦反馈设计具有一定的参考价值。

分享到:。

相关文档
最新文档