动点问题解题总结

合集下载

初一动点问题解题技巧

初一动点问题解题技巧

初一动点问题解题技巧摘要:一、动点问题概述二、初一动点问题解题技巧1.分类讨论解决动点问题2.化动为静,寻找破题点3.建立等量代数式4.动点问题定点化三、学习数学的方法和建议正文:初一动点问题解题技巧初一动点问题主要涉及到几何、代数等方面的知识,要求学生具备一定的逻辑思维和分析能力。

在解决动点问题时,可以运用以下解题技巧:一、动点问题概述动点问题是指在平面或空间中,某个点或线段随着某个条件的改变而运动的问题。

这类问题具有较强的综合性,需要运用几何、代数、三角等方面的知识进行求解。

二、初一动点问题解题技巧1.分类讨论解决动点问题在解决动点问题时,首先要对问题进行分类讨论。

根据题目的条件,分析动点可能存在的位置和运动轨迹,从而确定解题思路。

2.化动为静,寻找破题点将动点问题转化为静止点问题,关键在于寻找破题点。

这需要观察题目中给出的条件,如边长、动点速度、角度等,寻找能建立等量关系的关键信息。

3.建立等量代数式根据题目条件和分类讨论的结果,建立所求的等量代数式。

这有助于将问题转化为数学方程,便于求解。

4.动点问题定点化动点问题定点化是解决动点问题的主要思想。

通过分析动点在运动过程中的规律,将其转化为静止点问题,从而简化问题求解过程。

三、学习数学的方法和建议1.课前预习,认真听讲在学习数学时,首先要做好课前预习,提前了解知识点,以便在课堂上更好地消化吸收。

上课时要认真听讲,弄懂老师讲解的内容。

2.掌握数学公式,灵活运用熟练掌握数学公式,并能推导出其由来。

在解决问题时,要善于运用公式,灵活变形,举一反三。

3.注重理解,培养数学思维数学学习重在理解,要弄懂知识的来龙去脉。

在解题过程中,要学会分析问题,培养自己的数学思维能力。

4.脚踏实地,持之以恒学好数学需要沉下心来,不能浮躁。

踏实做题,积累经验,不断提高自己的解题能力。

5.勇于挑战,克服困难遇到难题时,不要退缩,要勇于挑战。

通过研究难题,提高自己的数学素养。

二次函数动点问题的解题技巧

二次函数动点问题的解题技巧

二次函数动点问题的解题技巧
以下是 8 条关于二次函数动点问题的解题技巧:
1. 大胆设未知数呀!比如在一个直角坐标系里,有个二次函数图像上有个动点 P,那咱就大大方方设它的坐标为(x,y),这样不就能更好地分析啦!就像给这个动点取了个名字,好指挥它呀!
2. 把条件都用上呀!可别漏了,像找到某个线段长度与动点坐标的关系,哎呀呀,这可是关键呢!比如已知一个线段的长度是 5,和动点 P 的横坐标有关,那可不能放过这个线索,得好好挖掘挖掘!
3. 找等量关系呀!这就好比寻宝,到处去找那些能关联起来的等量哦。

比如说一个三角形面积和另一个图形面积相等,这不就找到宝贝线索啦!
4. 注意特殊位置呀!嘿,动点有时候会跑到一些特殊的点呢,那可有意思啦。

比如它跑到对称轴上时,那说不定会有惊喜发现呢!像突然发现一些对称关系,多神奇呀!
5. 画画图呀!通过图形能更直观地看到动点的运动呀,这就像给你一双眼睛看着它怎么跑。

看看它跑到不同地方时整个图形发生的变化,多好玩呀!
6. 多试试分类讨论呀!有时候动点的情况不唯一呢,那咱就别怕麻烦,一种一种来。

难道还能被它难住不成?像动点在不同区间时可能有不同的结果,咱就一个个算清楚嘛!
7. 利用函数解析式呀!这可是个好宝贝,通过它能知道很多信息呢。

比如知道了二次函数的解析式,那动点在上面的一些性质不就清楚啦?
8. 要敢想敢做呀!别犹豫,大胆去尝试各种方法。

不试试看怎么知道行不行呢?就像冒险一样,多刺激呀!
总之,面对二次函数动点问题,别怕!勇敢地去探索,一定能找到答案的!。

中考动点问题的解题技巧

中考动点问题的解题技巧

在中考数学中,动点问题是一个比较常见的题型。

这类问题通常需要学生结合图形的运动和变化,利用函数、方程等知识解决。

以下是一些解题技巧:
1.建立模型:首先需要明确题目中的已知条件和未知条件,并建立相应的数学模型。

对于动点问题,可以通过建立坐标系来描述点的位置和运动轨迹。

2.转化问题:动点问题往往涉及到数量关系和位置关系的变化,因此需要将问题转化为数学问题。

比如,可以建立方程或不等式来描述点的位置和运动轨迹。

3.寻找规律:动点问题中往往有一些规律性的东西,比如点的运动轨迹是按照一定规律变化的。

因此,需要认真观察、分析,找到这些规律,以便更好地解决问题。

4.分类讨论:在解决动点问题时,有时需要考虑到不同的情况,比如点的位置、运动速度、运动方向等。

因此,需要进行分类讨论,逐一解决不同情况下的数学问题。

5.综合分析:动点问题往往涉及到多个知识点,比如函数、方程、不等式等。

因此,在解决问题时,需要综合分析各个知识点之间的关系,以便更好地解决问题。

6.熟练掌握相关知识点:解决动点问题需要熟练掌握相关知识点,比如函数的性质、方程的解法、不等式的解法等。

因此,在平时的学习中,需要加强这些知识点的学习和训练。

7.注意细节:在解决动点问题时,需要注意细节,比如点的坐标、单位等。

如果这些细节处理不当,可能会导致解题错误。

总之,解决动点问题需要学生熟练掌握相关知识点,建立正确的数学模型,通过转化问题、寻找规律、分类讨论、综合分析等方法来解决。

同时,也需要注意细节处理。

七年级数学数轴动点问题解题技巧

七年级数学数轴动点问题解题技巧

七年级数学数轴动点问题解题技巧一、数轴动点问题解题技巧。

1. 用字母表示动点。

- 在数轴上,设动点表示的数为x,如果已知动点的运动速度v和运动时间t,则经过t时间后,动点表示的数为初始位置加上运动的距离。

如果向左运动,距离为-vt;如果向右运动,距离为vt。

2. 表示两点间的距离。

- 数轴上两点A、B,若A表示的数为a,B表示的数为b,则AB=| a - b|。

3. 分析运动过程中的等量关系。

- 例如相遇问题,两个动点运动的路程之和等于两点间的初始距离;追及问题,快的动点比慢的动点多运动的路程等于两点间的初始距离。

二、题目及解析。

1. 已知数轴上A点表示的数为-5,B点表示的数为3,点P从A点出发,以每秒2个单位长度的速度沿数轴向右运动,同时点Q从B点出发,以每秒1个单位长度的速度沿数轴向左运动,设运动时间为t秒。

- 求t秒后点P表示的数。

- 解:点P从A点出发,A点表示的数为-5,向右运动速度为每秒2个单位长度,经过t秒后,运动的距离为2t,所以点P表示的数为-5 + 2t。

- 求t秒后点Q表示的数。

- 解:点Q从B点出发,B点表示的数为3,向左运动速度为每秒1个单位长度,经过t秒后,运动的距离为-t,所以点Q表示的数为3-t。

- 求t秒后PQ的距离。

- 解:t秒后点P表示的数为-5 + 2t,点Q表示的数为3 - t,则PQ=|(-5 +2t)-(3 - t)|=|-5 + 2t - 3+t|=|3t - 8|。

2. 数轴上点A表示的数为1,点B表示的数为-3,点C在点A右侧,且AC = 5。

点M从A点出发,以每秒1个单位长度的速度沿数轴向右运动,点N从B点出发,以每秒2个单位长度的速度沿数轴向右运动,设运动时间为t秒。

- 求点C表示的数。

- 解:因为点A表示的数为1,AC = 5,且C在A右侧,所以点C表示的数为1+5 = 6。

- 求t秒后点M表示的数。

- 解:点M从A点出发,A点表示的数为1,向右运动速度为每秒1个单位长度,经过t秒后,运动的距离为t,所以点M表示的数为1+t。

动点问题所有题型解题技巧

动点问题所有题型解题技巧

动点问题所有题型解题技巧摘要:1.动点问题概述2.动点问题分类与解题思路a.直线动点问题b.圆动点问题c.曲线动点问题3.解题技巧总结4.动点问题应用实例解析5.动点问题练习与解答正文:动点问题是指在数学中,涉及点到点之间运动的问题。

它具有一定的复杂性和挑战性,需要掌握一定的解题技巧。

本文将为大家介绍动点问题的解题技巧,以及如何应对不同类型的动点问题。

一、动点问题概述动点问题涉及几何、函数、方程等多个方面的知识。

一般来说,动点问题有以下几个特点:1.题目中存在一个或多个点在运动。

2.运动过程中,点与直线、曲线之间存在一定的关系。

3.求解问题时,需要运用数学知识进行分析。

二、动点问题分类与解题思路1.直线动点问题直线动点问题主要涉及点到直线的距离、角度等关系。

解题思路如下:(1)找出关键信息,如直线的方程、点的坐标等。

(2)根据题目条件,建立点到直线的距离或角度的方程。

(3)求解方程,得到点的坐标或位置。

2.圆动点问题圆动点问题主要涉及点到圆心、圆上的点等关系。

解题思路如下:(1)找出关键信息,如圆的方程、点的坐标等。

(2)根据题目条件,建立点到圆心距离、圆上的角度等方程。

(3)求解方程,得到点的坐标或位置。

3.曲线动点问题曲线动点问题涉及点到曲线的关系。

解题思路如下:(1)找出关键信息,如曲线的方程、点的坐标等。

(2)根据题目条件,建立点到曲线的关系方程。

(3)求解方程,得到点的坐标或位置。

三、解题技巧总结1.熟练掌握几何知识,如直线、圆的方程,以及点到直线、圆的距离公式。

2.灵活运用函数、方程的知识,建立动点问题的关系方程。

3.利用数学方法求解方程,如代数法、几何法等。

四、动点问题应用实例解析以下为一个动点问题的实例:已知直线l的方程为2x+3y-1=0,点P在直线l上,且满足PA=PB,其中A、B为圆O的两点,圆O的方程为x^2+y^2=4。

求点P的坐标。

解:根据题意,先求出点A、B的坐标,然后根据PA=PB建立方程,最后求解得到点P的坐标。

几何动点问题解题技巧

几何动点问题解题技巧

几何动点问题是在几何学中,点的位置随时间变化的问题。

解决这类问题时,可以采用一些基本的技巧和方法。

以下是一些建议:1. **引入坐标系:** 通过引入坐标系,可以更清晰地描述动点的位置。

选择一个适当的坐标系有助于简化问题,使得计算更加方便。

2. **参数表示法:** 使用参数表示法是解决几何动点问题的一种常见方法。

通常,可以用一个或多个参数表示动点的坐标,然后通过参数的变化来描述动点的运动轨迹。

3. **列方程:** 根据几何关系,列出方程。

这可能涉及到距离、角度、斜率等几何性质。

通过分析几何特征,可以建立与动点位置相关的方程。

4. **运用几何性质:** 利用几何图形的对称性、相似性、垂直关系等性质,简化问题或找到额外的几何信息。

5. **使用矢量:** 如果问题涉及到向量,可以使用矢量的性质进行分析。

矢量表示法在描述动点的位移和速度等方面很有优势。

6. **微积分方法:** 如果问题涉及到动点的速度、加速度等变化率,可以考虑使用微积分的方法。

通过对位置函数进行微分或积分,可以得到速度和加速度的表达式。

7. **利用已知几何定理:** 利用已知的几何定理和性质,可以更容易地解决动点问题。

这包括三角形的性质、圆的性质等。

8. **画图辅助理解:** 在解决问题的过程中,画图是一个非常重要的辅助手段。

通过绘制动点在不同时间的位置,可以更好地理解问题,并找到解决问题的线索。

9. **考虑特殊情况:** 对于复杂的问题,可以考虑一些特殊情况,以简化问题或获得一些有用的信息。

10. **检查解的合理性:** 解决问题后,检查得到的解是否符合几何直觉和常识。

确保解决方案在几何上是合理的。

总体而言,解决几何动点问题需要一定的创造性和灵活性。

通过深入理解几何性质,巧妙地运用数学工具,可以更轻松地解决这类问题。

七年级数学动点题解题技巧

七年级数学动点题解题技巧

七年级数学动点题解题技巧
动点问题在七年级数学中是一个相对较难的部分,但掌握了一些技巧后,可以更有效地解决这类问题。

以下是一些解题技巧:
1. 理解题意:首先,要确保完全理解题目的要求和条件。

如果有不明白的地方,应该重新阅读题目,或者请求老师和同学的帮助。

2. 设定变量和方程:对于涉及动点的问题,通常需要设定一些变量来表示动点的位置。

然后,根据题目描述,建立这些变量之间的关系方程。

3. 数形结合:利用数形结合的方法,将问题转化为图形或图表,这样可以帮助更好地理解问题,并找出解决问题的线索。

4. 找出关键点:在解决动点问题时,找出关键点(如速度、时间等)是非常重要的。

这些关键点可以帮助确定动点的移动路径和方向。

5. 建立数学模型:根据题目的描述和已知条件,建立数学模型。

这可能涉及到代数、几何等知识。

6. 求解方程:一旦建立了数学模型,就可以开始求解方程了。

这可能涉及到一些复杂的计算,所以需要细心和耐心。

7. 检查结果:最后,检查结果是否符合题目的要求和条件。

如果有任何不一致的地方,需要重新检查解题过程。

通过以上步骤,可以更有效地解决七年级数学中的动点问题。

当然,这需要大量的练习和经验积累,才能真正掌握这些技巧。

初中动点问题的方法归纳

初中动点问题的方法归纳

初中动点问题的方法归纳动点问题是初中生物学习中非常重要的一部分,掌握动点问题的方法对于学生来说至关重要。

本文将从解决动点问题的基本概念、解题思路、解题技巧和例题练习等方面进行详细分析和总结,帮助初中生更好地掌握解决动点问题的方法。

一、基本概念1.动点问题是什么?动点问题是初中生物中常见的解题形式,是通过观察和实验结果,找出对应动物行为的体内或体外的生理机制,然后用生理学的方法来解释它。

通俗地说,就是通过实验结果来推测动物的生理机制。

2.解决动点问题的重要性掌握解决动点问题的方法不仅可以帮助学生更好地理解生物知识,还能培养学生分析问题和解决问题的能力,激发学生对生物学习的兴趣和潜力。

二、解题思路1.动点问题的解题思路-理解问题:经过对题目的仔细阅读,理解问题的要求和背景知识。

-分析问题:根据题目给出的实验结果,分析动物行为的生理机制。

-推理论证:根据所学的生物知识,进行推理和论证,找出合理的解释和答案。

-解决问题:将分析的结果转化为语言或图表形式进行表述,给出最终的解决方案。

2.解题思路的应用在解动点问题时,学生应该根据所学的知识进行逻辑论证,提出自己的见解,并用实验结果和生物学原理来论证。

在阅读题目时要认真,要有一种“挑刺”的意识,弄清楚题干的要求和意图,不要随意陷入死胡同。

三、解题技巧1.掌握生物知识解动点问题需要学生掌握一定的生物知识,比如动物的神经系统、激素调节、行为模式等方面的知识。

熟练掌握生物知识是解决动点问题的基础,只有对这些知识了如指掌,才能更好地理解和解决动点问题。

2.利用实验结果在解动点问题时,学生可以根据实验结果,尤其是对照组和实验组的结果进行分析,找出其规律性和联系,从而揭示动物行为的生理机制。

3.运用逻辑推理解动点问题时,需要运用逻辑推理的方法,通过分析实验结果,对比生物学知识,进行合理的推理和论证,找出最终的解决方案。

四、例题练习1. “试验表明,鸟类每天的觅食时间在整个白天内保持着一定的规律性。

动点问题解题技巧总结

动点问题解题技巧总结

动点问题解题技巧总结一、 动点选择题(中考选择最后一道)1排除法:(1)首先看趋势,排除明显不可能的(2)看图像上面的特殊点,算出特殊点的横纵坐标,排除错误的选项(3)求解析式:如果选项出现二次函数的图像,特别需要确定开口方向,有时候可以不用完全算出解析式,确定了开口方向就可以确定正确选项(4)如果解析式不好求,可以取分段函数的每一段的中点,如果这一段的端点坐标是()()1122,,x y x y , 确定纵坐标比122y y +大还是小 中考再现1.(2017•天水)如图,在等腰△ABC 中,AB=AC=4cm ,∠B=30°,点P 从点B 出发,以cm/s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发,以1cm/s 的速度沿BA ﹣AC 方向运动到点C 停止,若△BPQ 的面积为y (cm 2),运动时间为x (s ),则下列最能反映y 与x 之间函数关系的图象是( )A .B .C .D .【分析】第一步看趋势,四个选项都是先增大后减小,均符合第二步,看特殊点,四个选项特殊点一样,不能排除,第三步,取区间中点,选项中出现了两个区间,04x <<和48x <<,区间中点=2x 和=6x ,=2x 时43223,132BQ BP Q BP y ===<,过作的垂线,垂线段长, 则易得答案为D .2.(2017•铁岭)如图,在射线AB 上顺次取两点C ,D ,使AC=CD=1,以CD 为边作矩形CDEF ,DE=2,将射线AB 绕点A 沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF 的边CF ,DE 于点G ,H .若CG=x ,EH=y ,则下列函数图象中,能反映y 与x 之间关系的是( )A. B. C. D.【分析】第一步看趋势,均符合第二步,看特殊点,A,B选项是过(2,0),C,D选项是过(1,0),当x=1时,由矩形知CF∥DE,∴△ACG∽△ADH,∴,∵AC=CD=1,∴AD=2,当x=1时,即GC=1,求出DH=2,EH=y=0,排除A,B,由0°<α<45°不含等号,所以不能取到(1,0),因此是D选项3.(2017•葫芦岛)如图,菱形ABCD的边长为2,∠A=60°,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.【分析】第一步看趋势,A,B,C都是增大,只有D是先增大后减小,随着P,Q向。

七年级数学动点问题解题技巧及例题

七年级数学动点问题解题技巧及例题

七年级数学动点问题解题技巧及例题数学动点问题是指涉及到物体在一定时间内移动的问题。

解决这类问题的关键在于确定物体的起始位置、移动方向和速度,并根据给定条件进行计算。

解题技巧如下:1.确定起始位置:问题中通常会给出物体的初始位置,它可以是一个坐标点、一个地点或一个数值。

根据这个起始位置,你可以得到物体的初始状态,是静止还是运动。

2.确定移动方向和速度:问题中通常会给出物体的移动方向和速度。

移动方向可以用箭头表示,速度可以用数值表示。

确定物体的移动方向和速度是解决问题的关键,它们决定了物体在一段时间内的位移。

3.确定时间:问题中通常会给出物体移动的时间。

根据给定时间,你可以计算物体在这段时间内的位移。

如果问题中没有给出时间,你可以根据已知信息推测出时间,或者假设一个时间进行计算。

4.计算位移:根据物体的起始位置、移动方向和速度,以及给定的时间,你可以计算出物体在这段时间内的位移。

根据问题的要求,你可能需要计算出位移的具体数值,或者判断位移的方向。

5.计算最终位置:根据物体的起始位置和位移,你可以计算出物体在给定时间后的最终位置。

最终位置可以是一个坐标点、一个地点或一个数值。

下面是一个例题:例题:小明从家里出发,以每小时5公里的速度往学校走去,如果学校距离他家10公里,请问他需要走多长时间才能到达学校?解析:根据题目给出的信息,小明的起始位置是家里,物体的移动方向是往学校走,速度是每小时5公里。

我们需要计算的是小明走到学校需要的时间。

解答:设小明走到学校需要的时间为t小时。

根据速度的定义,我们可以得到下面的等式:速度=路程/时间其中,速度是每小时5公里,路程是10公里,时间是t小时。

将这些已知信息代入等式中,我们可以得到:5 = 10/t解这个方程可以得到小明走到学校需要的时间:t = 10/5 = 2所以,小明需要走2小时才能到达学校。

总结:解决数学动点问题的关键是确定物体的起始位置、移动方向和速度,并根据给定条件进行计算。

动点问题解题技巧总结

动点问题解题技巧总结

动点问题解题技巧总结一、 动点选择题(中考选择最后一道) 1排除法:(1)首先看趋势,排除明显不可能的(2)看图像上面的特殊点,算出特殊点的横纵坐标,排除错误的选项(3)求解析式:如果选项出现二次函数的图像,特别需要确定开口方向,有时候可以不用完全算出解析式,确定了开口方向就可以确定正确选项(4)如果解析式不好求,可以取分段函数的每一段的中点,如果这一段的端点坐标是,x y x y ,,1122)()( 确定纵坐标比+y y 212大还是小 中考再现1.(2017•天水)如图,在等腰△ABC 中,AB=AC=4cm ,∠B=30°,点P 从点B 出发,以cm/s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发,以1cm/s 的速度沿BA ﹣AC 方向运动到点C 停止,若△BPQ 的面积为y (cm 2),运动时间为x (s ),则下列最能反映y 与x 之间函数关系的图象是( )A .B .C .D .【分析】第一步看趋势,四个选项都是先增大后减小,均符合 第二步,看特殊点,四个选项特殊点一样,不能排除,第三步,取区间中点,选项中出现了两个区间,<<x 04和<<x 48,区间中点x =2和x =6,x =2时,长段线垂,线垂的作过,===<BQ BP Q BP y 2223,1343则易得答案为D .2.(2017•铁岭)如图,在射线AB 上顺次取两点C ,D ,使AC=CD=1,以CD 为边作矩形CDEF ,DE=2,将射线AB 绕点A 沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF 的边CF ,DE 于点G ,H .若CG=x ,EH=y ,则下列函数图象中,能反映y 与x 之间关系的是( )A. B. C. D.【分析】第一步看趋势,均符合第二步,看特殊点,A,B选项是过(2,0),C,D选项是过(1,0),当x=1时,由矩形知CF∥DE,∴△ACG∽△ADH,∴,∵AC=CD=1,∴AD=2,当x=1时,即GC=1,求出DH=2,EH=y=0,排除A,B,由0°<α<45°不含等号,所以不能取到(1,0),因此是D选项3.(2017•葫芦岛)如图,菱形ABCD的边长为2,∠A=60°,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.【分析】第一步看趋势,A,B,C都是增大,只有D是先增大后减小,随着P,Q向右运动面积一直增大,所以排除D 选项第二步,看特殊点,A,B,C 三个选项特殊点一样,不能排除,第三步,取区间中点,选项中出现了一个区间,<<x 02,区间中点x =1,x =1时,,长段,线垂,线垂的作过,====<S CQ BQ BH H BP 14823 1.5,33333则易得答案为A .二、 动点解答题几何图形动点问题(包括三角形,四边形,圆):此类问题动点是有运动速度和运动路径的,解决问题的步骤如下:第一步,确定动点运动的阶段(如果是在折线上面运动,每一个线段是一个阶段)为了方便理解,每一个阶段都任意画出动点的一个可能位置(动点解答题的解题关键是化动为静,这个“为静”指的是在每一个阶段里任意选一个位置,用t 把相关线段表示出来,这样运动的点在这个阶段内就是“静止”的了),画出对应的图第二步,根据路程=速度⨯时间把动点运动的路程表示出来,进而将每一个阶段涉及到的线段表示出来第三步,根据具体问题列出等量关系式,例如:涉及到面积问题,用21底⨯高表示出面积,根据题目条件列出等量关系式 中考再现1.(2015江苏省)如图所示,在中,,,,点从点出发沿边向点以的速度移动,点从点出发沿边向点以的速度移动,若、同时出发:(1)几秒钟后,可使?(2)几秒钟后,可使四边形的面积占的面积三分之二?1. 【分析】(1)第一步:确定分段,本题两个动点都只在一条线段移动,因此不用分段第二步,根据路程=速度 时间把动点运动的路程表示出来,设运动时间为t秒,P点从A出发,沿着AC运动,运动路程是AP= t,Q点从C出发,沿着CB运动,运动路程是CQ=2t ,第三步,根据具体问题列出等量关系式,即 AC-AP=CQ,即解得,,则秒钟后,.(2)第二问因为前两步已经在第一问解决,直接进入第三步的面积为:,四边形的面积占的面积三分之二,的面积占的面积三分之一,,解得,,,答:秒或秒钟后,可使四边形的面积占的面积三分之二.2. (2015湖北省)如图,在矩形中,,E 是AD 的中点.动点从A 点出发,沿路线以秒的速度运动,运动的时间为秒.将以EP 为折痕折叠,点A 的对应点记为. 当点在边AB 上,且点在边BC 上时,求运动时间;【分析】第一步:确定分段,本题只有一个动点P ,P 在线段AB 运动,不用分段 第二步,根据路程=速度⨯时间把动点运动的路程表示出来,运动时间为t 秒,P 点从A 出发,沿着AB 运动,运动路程是AP= t ,第三步,根据具体问题列出等量关系式当点在边AB 上,且点在边BC 上时,根据折叠不变性,为因又,,。

初中数学动点问题总结(5篇)

初中数学动点问题总结(5篇)

初中数学动点问题总结第1篇在鼓励教师创造性地工作的同时,也不放松对教学常规的指导和监督,我组加强了教学工作各个环节的管理。

根据学校的工作计划,结合本组的特点,经过全组教师的热烈讨论,制定了工作目标和具体计划。

坚持每周进行教案检查,发现问题当面指出,共同讨论研究解决。

坚持两周一次的作业检查。

在发挥教师各自教学特色和风格的基础上,积极规范教师的教案书写和课堂教学行为。

定期开展教研活动,相互听课和研究备课。

教研组活动有主题、有内容,有组织人和执行人,有及时的详细的记录。

教研活动中老教师无私传授,新教师虚心好学。

本组教师听课都在20节以上。

中年教师x xx、xxx、xxx有实干精神,年轻教师范莉、xxx积极好学。

我们初中数学组的全体教师决心认真研究新形势下的教育教学工作,转变教育教学观念,将更加团结协作,真抓实干。

本组教师在课堂上认真上好每一节课,在课堂教学中积极落实素质教育,在教学过程中都时时考虑对学生进行学习指导,本学期重点是学习方法的指导,指导的要点是怎样听课、怎样做作业和怎样复习,为了能更好地体现学生的主体地位,教师引导学生参与教学活动,给学生自主参与活动的时间和空间,教学中做到以人为本、关爱学生。

教师在精选习题的基础上,认真做好作业批改工作,力求做到及时反馈矫正,讲求实效,各年级都本着因材施教的原则,进行分层教学,培优补差。

初一抓好起始阶段数学学习习惯的养成;初二抓好基础教学,培养数学素质;初三多角度训练学生的思维品质,提高数学解题能力。

坚持每周进行教研活动,每次教研活动事先都经过精心准备,定内容、定时间、定教师,多次组织学习教育理论和本学科的教学经验,充实教师的现代教育理论和学科知识。

认真安排新教师xxx的合格课,耐心指导她参加青年教师的赛课活动,精心安排中年教师的示范课,对公开课严格把关,要求每一节公开课前都经过老师认真备课,每堂公开课后,全组的老师都要进行认真的评课,我们组的老师对评课向来非常认真,从不避丑,不走过场,不管你的资格有多老,你有多年轻,大家能本着对事不对人的原则,对有研究性的问题、有争议的问题都能畅所欲言,尽管有时争论的很激烈,但道理是越辩越明的,大家通过争议都很有收获,同时也对本组教师的教学有帮助。

初中动点问题的方法归纳

初中动点问题的方法归纳

初中动点问题的方法归纳初中物理中的动点问题是指通过描述物体在运动过程中的位置、速度和加速度等信息,来研究物体在空间中的运动规律。

动点问题是初中物理学习的一个重要部分,也是学生们比较关注的内容之一。

下面将针对初中物理中动点问题的方法进行归纳总结,包括常见的求解方法和解题步骤等方面。

一、动点问题的基本概念在学习动点问题之前,首先需要了解一些基本概念,包括位移、速度和加速度等内容。

在物理学中,位移是指物体从一个位置移动到另一个位置的矢量性质,通常用Δx表示。

速度是指单位时间内物体位置变化的快慢,通常用v表示,其大小等于位移与时间的比值,即v=Δx/Δt。

加速度是指单位时间内速度变化的快慢,通常用a表示,其大小等于速度变化量与时间的比值,即a=Δv/Δt。

二、动点问题的求解方法1.利用速度公式求解最基本的方法是利用速度公式进行求解。

速度公式可以用来计算物体在运动过程中的速度,其中包括匀速直线运动的速度公式v=Δx/Δt和变速直线运动的速度公式v=v0+at等。

通过这些公式,我们可以根据已知的量求解未知的量,例如通过已知的位移和时间来求解速度,或者通过已知的初速度、加速度和时间来求解位移等。

2.利用位移公式求解除了速度公式外,位移公式也是解决动点问题的重要方法。

位移公式用于计算物体在运动过程中的位移,其中包括匀速直线运动的位移公式Δx=vΔt和变速直线运动的位移公式Δx=v0Δt+1/2at^2等。

通过这些公式,我们可以根据已知的量求解未知的量,例如通过已知的速度和时间来求解位移,或者通过已知的初速度、加速度和时间来求解位移等。

3.利用加速度公式求解在一些情况下,我们也可以利用加速度公式进行求解。

加速度公式用于计算物体在运动过程中的加速度,其中包括v=v0+at和Δx=v0t+1/2at^2等。

通过这些公式,我们可以根据已知的量求解未知的量,例如通过已知的位移和时间来求解速度,或者通过已知的初速度、位移和时间来求解加速度等。

坐标动点问题的解题技巧

坐标动点问题的解题技巧

坐标动点问题的解题技巧
以下是 8 条关于坐标动点问题的解题技巧:
1. 要特别留意动点的运动轨迹呀!就好比你要追一个到处乱跑的小朋友,你得清楚他可能往哪儿跑。

比如这个点在直线上运动,那你就得关注它的起始位置和运动速度喽!
2. 把已知条件都挖掘出来呀,这可太重要啦!就像找宝藏一样,把那些藏起来的线索都揪出来。

比如说给了你一些线段长度,那不是能推出好多关系嘛!
3. 建立合适的坐标系呀!这就像是给动点搭了个舞台,你能更清楚地看清它的表演。

像有个点在正方形里乱动,你把正方形放坐标系里不就好研究多啦!
4. 时刻记住动点的特殊性呀!它可不是普通的点呢。

哎呀,好比有个点总是沿着某条特殊曲线运动,那你就得抓住这个特点来解题呀!
5. 画图可别偷懒呀!把动点的运动过程画出来,不就跟看动画片似的,一目了然嘛。

比如有两个动点互相追,那你画出来不就清楚它们啥时候能追到啦?
6. 大胆设未知数呀!别怕,设出来就能找到更多关系啦。

好比你不知道动点的速度,那就设一个呗,然后根据条件去求解呀!
7. 多从不同角度思考呀!别在一棵树上吊死。

就像走迷宫,你得试着换几条路走。

比如说一个动点问题,从几何角度想不通,那试试代数方法呀!
8. 多做练习题呀,实践出真知呀!做的多了,啥动点都不怕啦。

就如同你打游戏,打得多了自然就厉害了。

总之,解决坐标动点问题就是要细心、大胆、多思考、多练习!只要你用心,这些动点都逃不出你的手掌心!。

做动点问题的解题技巧

做动点问题的解题技巧

做动点问题的解题技巧
动点问题是数学中常见的问题,通常涉及到在给定图形中,一个或多个点在某些条件下移动,并求出某些量(如距离、角度等)的变化。

解决这类问题需要一定的技巧和策略。

解题技巧:
1. 确定动点的轨迹:首先需要确定动点的移动轨迹,是直线、圆、抛物线还是其他曲线。

2. 找出动点的移动规律:如果动点的移动有特定的规律(如匀速、匀加速等),需要找出这个规律。

3. 运用数学模型:根据动点的轨迹和移动规律,建立数学模型,如方程、不等式或函数等。

4. 利用几何性质:在解决与图形相关的问题时,要充分利用几何性质,如勾股定理、相似三角形等。

5. 数形结合:将数学模型与图形结合起来,通过直观的图形来理解问题,有助于找到解题思路。

6. 分类讨论:对于涉及多种情况的问题,需要进行分类讨论,逐一解决。

7. 检验答案:得出答案后,需要进行检验,确保答案符合题目的要求和条件。

解题步骤:
1. 读懂题目:仔细阅读题目,理解题目的要求和条件。

2. 分析问题:分析问题涉及的数学概念和知识点,确定解题思路。

3. 建立模型:根据题目的要求和条件,建立数学模型。

4. 求解模型:利用数学知识和技巧求解模型,得出答案。

5. 检验答案:对答案进行检验,确保其正确性和合理性。

通过掌握这些技巧和步骤,可以更好地解决动点问题。

初一动点问题的解题技巧

初一动点问题的解题技巧

初一动点问题的解题技巧初一动点问题指的是在坐标平面上给出一些点,然后需要求解这些点之间的距离、中点、斜率等问题。

这类问题在初一数学中属于基础内容,求解这类问题的技巧也是很重要的。

以下是初一解决动点问题的一些常用解题技巧:1.距离的计算:计算两个点之间的距离是初一动点问题的基础,也是最简单的。

根据两点的坐标(x1, y1)和(x2, y2),可以利用勾股定理公式d=√((x2-x1)²+(y2-y1)²)来计算两个点之间的距离。

这个公式可以通过平方差公式推导得出。

2.中点的计算:中点是指两个点连线的中点,计算中点的坐标是初一动点问题中的常见情况。

假设两个点的坐标分别为(x1, y1)和(x2, y2),则中点的坐标可以通过以下公式计算得出:x=(x1+x2)/2,y=(y1+y2)/2。

这个公式可以根据平均数的性质得出。

3.斜率的计算:斜率是指两个点之间连线的斜率,计算斜率可以通过坐标的变化量来计算。

假设两个点分别为(x1, y1)和(x2, y2),则斜率可以通过公式k=(y2-y1)/(x2-x1)来计算得出。

需要注意的是,当两个点的x坐标相等时,斜率不存在。

在计算斜率时,还需要注意判断分子为零的情况。

4.平行线和垂直线的性质:初一动点问题中经常涉及到平行线和垂直线的性质。

平行线特点是斜率相等,垂直线特点是斜率的乘积为-1。

利用这些性质,可以判断两条直线是否平行或垂直。

对于两个已知点分别求出它们所在直线的斜率,然后判断斜率是否相等或乘积为-1即可。

5.三角形的性质:初一动点问题中经常涉及到三角形的性质。

根据两点间的距离能够判断出三角形是否为等边三角形:当三边相等时,三角形为等边三角形。

通过计算两边的距离判断三角形的形状也是很常见的方法:当两边距离相等时,三角形为等腰三角形;当两边的距离之和大于第三边的距离时,三角形存在;当两边的距离之和等于第三边的距离时,三角形为直角三角形。

动点题的解题技巧

动点题的解题技巧

动点题的解题技巧动点题是数学中常见的一种题型,主要考察学生的空间思维能力和问题解决能力。

解决动点问题需要一定的技巧和策略,以下是一些解题技巧:1. 建立坐标系:首先,为方便分析,我们通常会建立一个坐标系。

根据题目的描述,选择一个合适的点作为原点,确定x轴、y轴的方向。

2. 标记关键点:在动点运动路径上,标记关键的点,如起点、终点、转折点等。

这些关键点在解题过程中可能会起到重要的作用。

3. 找出变量和参数:明确题目中的变量和参数,理解它们之间的关系和变化规律。

这些变量和参数通常与动点的位置、速度、加速度等有关。

4. 运用函数思想:在许多动点问题中,我们需要运用函数的思想来描述和解决。

例如,可以用一次函数、二次函数、三角函数等来表示动点的运动规律。

5. 运用几何知识:动点问题常常涉及到几何图形的形状、大小、位置关系等。

因此,我们需要运用几何知识来分析问题,如平行线、垂直线、角相等、距离相等等等。

6. 寻找等量关系:在解决动点问题时,我们需要寻找等量关系,如时间相等、距离相等、角度相等等等。

这些等量关系可以帮助我们建立方程或方程组。

7. 数形结合:数形结合是解决动点问题的重要方法之一。

通过将数学表达式与几何图形相结合,我们可以更直观地理解问题,找到解题的突破口。

8. 分类讨论:对于一些复杂的动点问题,我们需要进行分类讨论。

根据不同的条件或情况,将问题分解成若干个子问题,然后分别解决。

9. 检验答案:在解决问题后,我们需要对答案进行检验。

检查答案是否符合题目的要求,是否符合实际情况等等。

通过掌握这些解题技巧,我们可以更好地解决动点问题,提高数学思维能力。

初一动点问题的解题技巧

初一动点问题的解题技巧

初一动点问题的解题技巧初一动点问题是物理学中的一个重要概念,涉及到物体在力的作用下的平衡和运动。

解决动点问题需要掌握一些基本的技巧和方法。

以下是初一动点问题的解题技巧:1.张力分析法:对于绳子或索具等可以看作质点的物体,可以使用张力分析法来解决问题。

首先,确定绳子两端的张力大小和方向,然后根据平衡条件或牛顿第二定律,列出关于物体的平衡方程或运动方程,最后求解未知量。

2.力矩平衡法:对于旋转的物体,可以使用力矩平衡法来解决问题。

首先,选择合适的转轴,并确定与转轴相交的力臂长度和力的大小,然后根据力矩平衡条件,列出关于物体的力矩平衡方程,最后求解未知量。

3.平衡条件的应用:对于静止的物体,可以利用平衡条件来解决问题。

平衡条件包括物体受力合力为零和受力矩和力矩为零。

通过分析物体所受的各个力以及力的作用点和力的方向,可以确定平衡条件,并进一步求解未知量。

4.牛顿第二定律的应用:对于运动的物体,可以利用牛顿第二定律来解决问题。

牛顿第二定律表明,物体所受合力等于质量乘以加速度。

通过分析物体所受的各个力以及力的作用点和力的方向,可以列出关于物体的运动方程,并进一步求解未知量。

5.动量守恒定律的应用:对于碰撞或爆炸等动态过程,可以利用动量守恒定律来解决问题。

动量守恒定律表明,在没有外力作用的情况下,物体的总动量保持不变。

通过分析物体的初始动量和最终动量,可以列出动量守恒方程,并进一步求解未知量。

6.能量守恒定律的应用:对于机械能守恒的系统,可以利用能量守恒定律来解决问题。

能量守恒定律表明,在没有能量转化和能量损失的情况下,系统的总能量保持不变。

通过分析物体的初始能量和最终能量,可以列出能量守恒方程,并进一步求解未知量。

7.角动量守恒定律的应用:对于旋转系统,可以利用角动量守恒定律来解决问题。

角动量守恒定律表明,在没有外力矩作用的情况下,系统的总角动量保持不变。

通过分析物体的初始角动量和最终角动量,可以列出角动量守恒方程,并进一步求解未知量。

八年级数学动点问题解题技巧

八年级数学动点问题解题技巧

八年级数学动点问题解题技巧
动点问题是初中数学中常见的问题,这类问题通常涉及到图形和点的运动,需要我们运用几何和代数知识来解决。

以下是一些解决动点问题的基本技巧:
1.建立坐标系:对于涉及运动的点,一个有效的方法是使用坐标系
来表示它们的位置。

这有助于将问题转化为数学表达式,从而更容易地找到解决方案。

2.确定关键点:在解决动点问题时,确定关键点(如起点、终点、
转折点等)的位置非常重要。

这些点的位置通常决定了整个问题的解决方向。

3.运用速度、时间、距离关系:在动点问题中,速度、时间和距离
之间的关系是非常重要的。

这些关系可以帮助我们理解点的运动轨迹和方向。

4.运用函数关系:在许多情况下,点的运动可以用函数来表示,如
一次函数、二次函数等。

这有助于我们预测点的未来位置和运动轨迹。

5.运用几何知识:解决动点问题时,几何知识如平行线、垂直线、
角等是非常有用的。

这些知识可以帮助我们理解点的运动规律和轨迹。

6.逻辑推理:在解决动点问题时,逻辑推理是非常重要的。

我们需
要根据已知条件和信息,推断出未知的信息和结果。

7.数形结合:数形结合是解决动点问题的常用方法。

通过将数学表
达式和图形结合起来,我们可以更直观地理解问题的本质和解决方案。

8.反复练习:解决动点问题需要大量的练习和经验积累。

只有通过
反复练习,我们才能熟练掌握解决这类问题的方法和技巧。

以上是解决八年级数学动点问题的一些基本技巧。

希望对你有所帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解题关键是动中求静
一.建立动点问题的函数解析式(特点:动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?)
1.应用勾股定理建立函数解析式
2.应用比例式子建立函数解析式
3.应用求图形面积的方法建立函数关系式
二.动态几何型压轴题(特点:问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性,如特殊角、特殊图形的性质、图形的特殊位置。

动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

)此类题型一般考察点动问题、线动问题、面动问题。

解题方法:1、特殊探路,一般推证。

2、动手实践,操作确认。

3、建立联系,计算说明。

三.双动点问题。

点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力。

主要分一下四种。

1.以双动点为载体,探求函数图像问题
2.以双动点为载体,探求结论开放性问题
3.以双动点为载体,探求存在性问题
4.以双动点为载体,探求函数最值问题
四.函数中因动点产生的相似三角形问题
五. 以圆为载体的动点问题。

相关文档
最新文档