定积分测试题及答案

合集下载

(必考题)高中数学高中数学选修2-2第四章《定积分》测试(含答案解析)(1)

(必考题)高中数学高中数学选修2-2第四章《定积分》测试(含答案解析)(1)

一、选择题1.给出下列函数:①()()2ln 1f x x x =+-;②()3cos f x x x =;③()xf x e x =+.0a ∃>使得()0aaf x dx -=⎰的函数是( )A .①②B .①③C .②③D .①②③2.直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为( ) A .22B .42C .2D .43.曲线y =sin x ,y =cos x 与直线x =0,x =2π所围成的平面区域的面积为( ) A .π20⎰(sin x -cos x )d x B .2π40⎰(sin x -cos x )d x C .π20⎰(cos x -sin x )d xD .2π40⎰(cos x -sin x )d x4.三棱锥D ABC -及其正视图和侧视图如图所示,且顶点,,,A B C D 均在球O 的表面上,则球O 的表面积为( )A .32πB .36πC .128πD .144π5.曲线x y e =,x y e -=和直线1x =围成的图形面积是( ) A .1e e --B .1e e -+C .12e e ---D .12e e -+-6.已知1(1)1x f x x e ++=-+,则函数()f x 在点(0,(0))f 处的切线l 与坐标轴围成的三角形的面积为 A .14 B .12C .1D .2 7.121(1)x x dx --=⎰( )A .1π+B .1π-C .πD .2π8.已知幂函数a y x =图像的一部分如下图,且过点(2,4)P ,则图中阴影部分的面积等于( )A .163B .83C .43D .239.曲线()sin 0πy x x =≤≤与直线12y =围成的封闭图形的面积是 A 3B .23C .π23-D π3310.已知函数20()cos 0x f x x x ≥⎧=⎨<⎩,则12()f x dx π-⎰的值等于( )A .1B .2C .3D .411.20sin xdx π=⎰( )A .4B .2C .-2D .012.已知11em dx x=⎰,函数()f x 的导数()()()f x a x m x a '=++,若()f x 在x a =-处取得极大值,则a 的取值范围是( ) A .1a < B .10a -<< C .1a >或0a <D .01a <<或0a <二、填空题13.曲线y=x 2与y=x 所围成的封闭图形的面积为______.14.在平面直角坐标系中,角α的始边落在x 轴的非负半轴,终边上有一点是(3-,若[)0,2απ∈,则cos xdx αα-=⎰______.15.由曲线22y x =+与3y x =,1x =,2x =所围成的平面图形的面积为________________.16.若()()4112ax x -+的展开式中2x 项的系数为4,则21ae dx x=⎰________________ 17.(12021x x dx +-=⎰________18.定积分2sin cos t tdt π=⎰________.19.π4cos xdx =⎰______.20.曲线2y x 和曲线y x =围成一个叶形图(如图所示阴影部分),其面积是________.三、解答题21.设函数()32f x x ax bx =++在点1x =处有极值2-.(1)求常数,a b 的值;(2)求曲线()y f x =与x 轴所围成的图形的面积.22.已知函数31()ln 2f x x ax x =--()a R ∈.(1)若()f x 在(1,2)上存在极值,求(1)f 的取值范围; (2)当0x >时,()0f x <恒成立,比较a e 与232a e+的大小. 23.已知函数()32f x x ax =+图像上一点()1,P b 的切线斜率为3-,()()()3261302t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[]1,4x ∈-时,求()f x 的值域;(Ⅲ)当[]1,4x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围.24.已知抛物线2:2C y x x =-+,在点(0,0)A ,(2,0)B 分别作抛物线的切线12,l l .(1)求切线1l 和2l 的方程;(2)求抛物线C 与切线1l 和2l 所围成的面积S .25.如图,在棱长为1的正方体1111ABCD A BC D -中,E 为AB 的中点.求:(1)异面直线1BD 与CE 所成角的余弦值; (2)点A 到平面1A EC 的距离.26.已知()ln f x x x mx =+,2()3g x x ax =-+-(1)若函数()f x 在(1,)+∞上为单调函数,求实数m 的取值范围;(2)若当0m =时,对任意(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】利用定义判断①②中的函数为奇函数,根据奇函数和定积分的性质,判断①②;利用反证法,结合定积分的性质,判断③. 【详解】对①,()f x 的定义域为R2212()ln(1)ln(1)ln(1)()f x x x x x x x f x --=+=+=-+=-即函数()f x 为奇函数,则0a ∃>使得()0aaf x dx -=⎰对②,()f x 的定义域为R33()cos()cos ()f x x x x x f x -=--=-=-,即函数()f x 为奇函数,则0a ∃>使得()0aaf x dx -=⎰对③,若0a ∃>,使得()0aaf x dx -=⎰成立则()2102aax x a aa a e x dx e x e e ---⎛⎫+=+- ⎪⎝==⎭⎰,解得0a =,与0a >矛盾,则③不满足 故选:A 【点睛】本题主要考查了定积分的性质以运用,属于中档题.2.D解析:D 【解析】直线4y x =与曲线3y x =的交点坐标为(0,0)和(2,8), 故直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积23242001(4)2|8444S x x dx x x ⎛⎫=⎰-=-=-= ⎪⎝⎭.故选D .3.D解析:D 【解析】π40⎰(-sin x +cos x )d x 2π4π+⎰(sin x -cos x )dx=2π40⎰(cos x -sin x )d x ,选D. 点睛:1.求曲边图形面积的方法与步骤 (1)画图,并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围,从而确定积分的上、下限; (3)确定被积函数;(4)求出各曲边梯形的面积和,即各积分的绝对值的和.2.利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的边界不同时,要分不同情况讨论.4.A解析:A 【解析】由三视图可得:DC ⊥平面ABC 且底面ABC 为正三角形,如图所示,取AC 中点F ,连BF ,则BF AC ⊥,在Rt BCF 中,2BF =,2CF =,4BC =, 在Rt BCD 中,4CD =,所以42BD =ABC 的距离为d ,因为DC ⊥平面ABC ,且底面ABC 为正三角形,所以2d =,因为ABC 的外接圆的半径为2,所以由勾股定理可得22228R d =+=,则该三棱锥外接球的半径22R =,所以三棱锥外接球的表面积是2432R ππ=,故选A .点睛:本题考查几何体的三视图,线面垂直的定义,以及几何体外接球问题,由三视图正确还原几何体、以及判断几何体位置关系是解题关键;由三视图画出几何体的直观图,由三视图判断出DC ⊥平面ABC 、求出ABC 的外接圆的半径,列出方程求出三棱锥外接球的半径,由球的表面积公式求出答案.5.D解析:D 【解析】试题分析:根据题意画出区域,作图如下,由{x xy e y e-==解得交点为(0,1),∴所求面积为:()()1101|2x x x x S e e dx e e e e --=-=+=+-⎰ 考点:定积分及其应用6.A解析:A 【解析】试题分析:由1(1)1x f x x e++=-+知()2x f x x e =-+,则()1(0)2xf x e f ''=+⇒=,而(0)1f =-,即切点坐标为()0,1-,切线斜率(0=2k f '=),则切线()():12021l y x y x --=-⇒=-,切线l 与坐标轴的交点分别为1,02⎛⎫⎪⎝⎭和()0,1-,则切线l 与坐标轴围成的三角形的面积为1111224S =⋅⋅-= 考点:函数在某点处的切线7.D解析:D 【解析】因1112111111]|2x dx x ----=+=⎰,故设sin ,[,]22x ππθθ=∈-,则12221221cos 21cos sin cos (2)2sin 2|442d d d ππππππππθπθθθθθπθ-----+====⨯+=⎰⎰⎰,应选答案D 。

(易错题)高中数学高中数学选修2-2第四章《定积分》测试(包含答案解析)

(易错题)高中数学高中数学选修2-2第四章《定积分》测试(包含答案解析)

一、选择题1.由曲线22y x =和直线4y x =-所围成的图形的面积( )A .18B .19C .20D .212.4片叶子由曲线2||y x =与曲线2||y x =围成,则每片叶子的面积为() A .16B .36C .13D .233.已知()22214a x ex dx π-=--⎰,若()201620121ax b b x b x -=++ 20162016b x ++(x R ∈),则12222b b + 201620162b ++的值为( ) A .1-B .0C .1D .e4.曲线x y e =在点(0,1)处的切线与坐标轴所围三角形的面积为( ) A .12B .1C .2D .3 5.如图,设D 是途中边长分别为1和2的矩形区域,E 是D 内位于函数1(0)y x x=>图象下方的阴影部分区域,则阴影部分E 的面积为( )A .ln 2B .1ln 2-C .2ln 2-D .1ln 2+6.设曲线e xy x =-及直线0y =所围成的封闭图形为区域D ,不等式组1102x y -≤≤⎧⎨≤≤⎩所确定的区域为E ,在区域E 内随机取一点,则该点落在区域D 内的概率为A .2e 2e 14e--B .2e 2e 4e-C .2e e 14e--D .2e 14e-7.已知函数()[](]2sin ,,01,0,1x x f x x x π⎧∈-⎪=⎨-∈⎪⎩,则()1f x dx π-=⎰( ) A .2π+ B .2πC .22π-+D .24π-8.已知320n x dx =⎰,且21001210(2)(23)n x x a a x a x a x +-=+++⋅⋅⋅+,则12310012102310a a a a a a a a +++⋅⋅⋅++++⋅⋅⋅+的值为( )A .823B .845C .965-D .8779.20sin xdx π=⎰( )A .4B .2C .-2D .010.某几何体的三视图如图所示,则该几何体的体积为( )A .4B .2C .43D .2311.计算()122x x dx -⎰的结果为( )A .0B .1C .23D .5312.由曲线4y x =,1y x=,2x =围成的封闭图形的面积为( ) A .172ln 22- B .152ln 22- C .15+2ln 22D .17+2ln 22二、填空题13.定积分121x x dx -⎰-=______.14.232319x x dx -⎫-=⎪⎪⎭⎰____________________. 15.(222sin 4x x dx --=⎰______.16.定积分121(4sin )x x dx --=⎰________.17.若二项式2651()5x x +的展开式中的常数项为m ,则21(2)d mx x x -=⎰_________.18.曲线2yx 与直线2y x =所围成的封闭图形的面积为_______________.19.已知等差数列{}n a 中, 225701a a x dx +=-⎰,则468a a a ++=__________.20.ππ(sin )d x x x -+=⎰________.三、解答题21.已知函数()ln f x x =(0)x ≠,函数⑴当0x ≠时,求函数()y g x =的表达式;⑵若0a >,函数()y g x =在(0,)+∞上的最小值是2 ,求a 的值; ⑶在⑵的条件下,求直线与函数的图象所围成图形的面积.22.已知函数()32f x x ax =+图像上一点()1,P b 的切线斜率为3-,()()()3261302t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[]1,4x ∈-时,求()f x 的值域;(Ⅲ)当[]1,4x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围. 23.已知函数2()11xf x x =++,2()e (0)ax g x x a =<. (1)求函数()f x 的单调区间.(2)若对任意1x ,2[0,2]x ∈,12()()f x g x ≥恒成立,求a 的取值范围. 24.已知函数()ln f x x a x =-, ()R a ∈. (1)讨论函数()f x 在定义域内的极值点的个数; (2)设()1a g x x+=-,若不等式()()f x g x >对任意[]1,e x ∈恒成立,求a 的取值范围. 25.已知函数()3269f x x x x =-+-.若过点()1,P m -可作曲线()y f x =的切线有三条,求实数m 的取值范围.26.如图:已知2y ax bx =+通过点(1,2),与22y x x =-+有一个交点横坐标为1x ,且0,1a a <≠-.(1)求2y ax bx =+与22y x x =-+所围的面积S 与a 的函数关系; (2)当,a b 为何值时,S 取得最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】画出两曲线的图像,求得交点坐标,由定积分求得图形的面积即可. 【详解】根据题意,画出量曲线的图像,设其交点为,A B ,如下所示:联立22y x =和4y x =-, 解得()()2,2,8,4A B -, 根据抛物线的对称性, 即可得两曲线围成的面积28222d (24)d S x x x x x =++⎰⎰23022021622d 2233x x x ⎛⎫⎰=⨯= ⎪⎝⎭ 82(24)d x x x -+⎰83222212432x x x ⎛⎫=⨯-+ ⎪⎝⎭322212884832⎛⎫=⨯⨯-⨯+⨯ ⎪⎝⎭322213822242323⎛⎫-⨯⨯-⨯+⨯= ⎪⎝⎭故所求面积为28222d (24)d x x x x x +-+⎰⎰163833=+ 18=.故选:A. 【点睛】本题考查由定积分求解曲边梯形的面积,需要注意的是,本题中需要对曲边梯形的面积进行拆分求解,这是本题的难点.2.C解析:C 【分析】先计算图像交点,再利用定积分计算面积. 【详解】 如图所示:由2y x y x ⎧=⎪⎨=⎪⎩0,0,x y =⎧⎨=⎩11x y =⎧⎨=⎩,根据图形的对称性,可得每片叶子的面积为)13023210211d 333x x x x ⎛⎫⎰=-= ⎪⎝⎭.故答案选C 【点睛】本题考查定积分的应用,考查运算求解能力3.A解析:A 【解析】因为22x -表示的是以原点为圆心、半径为2的上半圆的面积,即22πx -=,222221e d (e )|02x x x --==⎰,所以)221e d 2a x x π-==⎰,则()2016201212x b b x b x -=++ 20162016b x ++,令0x =,得01b =,令12x =,得1202022b b b =++ 201620162b ++,则12222b b + 2016201612b ++=-;故选A. 点睛:在处理二项展开式的系数问题要注意两个问题:一是要正确区分二项式系数和各项系数;二要根据具体问题合理赋值(常用赋值是1、-1、0).4.A解析:A 【解析】试题分析:'0xxy e y e x =∴=∴=时'11y k =∴=,直线方程为1y x =+,与两坐标轴交点为()()1,0,0,1-,所以三角形面积为12考点:导数的几何意义及直线方程5.D解析:D 【解析】试题分析:由题意,阴影部分E 由两部分组成,因为函数1(0),y x x=>当2y =时,1,2x =所以阴影部分E 的面积为1111221121ln |1ln 2,2dx x x ⨯+=+=+⎰故选D . 考点:利用定积分在曲边形的面积.6.D解析:D 【详解】曲线e x y x =-及直线0y =所围成封闭图形的面积()1211112x x S e x dx e x -⎛⎫=-=- ⎪-⎝⎭⎰阴影=1e e --;而不等式组1102x y -≤≤⎧⎨≤≤⎩所确定区域的面积22 4.S =⨯=所以该点落在区域D 内的概率1S 4S e e P --==阴影=2e 14e-.故选D. 【方法点睛】本题题主要考查定积分的几何意义及“面积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与体积有关的几何概型问题关鍵是计算问题题的总面积以及事件的面积积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.7.D解析:D 【解析】()102sin 1f x dx xdx x dx ππ--=+-⎰⎰⎰,0sin cos |2xd x ππ--=-=-⎰,21x dx -⎰的几何意义是以原点为圆心,半径为1的圆的面积的14,故()1211,244x dx f x dx πππ--=∴=-⎰⎰,故选D.8.A解析:A 【分析】利用微积分基本定理,可计算得329n x dx ==⎰,又210998012101210()2...10(23)27(2)(23)a a x a x a x a a x a x x x x '+++⋅⋅⋅+=+++=--+-利用赋值法,令1x =,可得解 【详解】由题意3323200|3093x n x dx ===-=⎰令1x =有:901210(21)(23)3a a a a +++⋅⋅⋅+=+-=-210998012101210()2...10(23)27(2)(23)a a x a x a x a a x a x x x x '+++⋅⋅⋅+=+++=--+-令1x =有:9812102...10(23)27(21)(23)82a a a +++=--+-=- 故12310012102310823a a a a a a a a +++⋅⋅⋅+=+++⋅⋅⋅+故选:A 【点睛】本题考查了导数、定积分和二项式定理综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题9.D解析:D 【分析】根据积分公式直接计算即可. 【详解】2200sin cos |cos 2cos0110xdx x πππ=-=-+=-+=⎰.故选:D. 【点睛】本题主要考查积分的计算,要求熟练掌握常见函数的积分公式,属于基础题.10.D解析:D 【分析】根据三视图可得到该几何体的直观图,进而可求出该几何体的体积. 【详解】根据三视图可知该几何体为四棱锥E ABCD -,四边形ABCD 是边长为1的正方形,BE ⊥平面ABCD ,2BE =,则四棱锥E ABCD -的体积为1233ABCD V S BE =⋅=. 故选D.【点睛】本题考查了三视图,考查了四锥体的体积的计算,考查了学生的空间想象能力,属于基础题.11.C解析:C 【分析】求出被积函数的原函数,然后分别代入积分上限和积分下限后作差得答案. 【详解】122312300112(2)()|11333x x dx x x -=-=-⨯=⎰, 故选C. 【点睛】该题考查的是有关定积分的运算求解问题,属于简单题目.12.B解析:B 【解析】 【分析】联立方程组,确定被积区间和被积函数,得出曲边形的面积2121(4)S x dx x=-⎰,即可求解,得到答案. 【详解】由题意,联立方程组41y xy x =⎧⎪⎨=⎪⎩,解得12x =,所以曲线4y x =,1y x=,2x =围成的封闭图形的面积为 22222112211115(4)(2ln )|(22ln 2)[2()ln ]2ln 2222S x dx x x x =-=-=⨯--⨯-=-⎰, 故选B . 【点睛】本题主要考查了利用定积分求解曲边形的面积,其中解答中根据题意求解交点的坐标,确定被积分区间和被积函数,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题13.1【分析】将定积分根据绝对值里的正负分为两部分利用定积分公式计算得到答案【详解】故答案为:【点睛】本题考查了定积分的计算意在考查学生的计算能力和转化能力解析:1 【分析】将定积分根据绝对值里的正负分为两部分,利用定积分公式计算得到答案. 【详解】()()112223203211010111113232x x dx x x dx x x dx x x x x ---⎛⎫⎛⎫⎰-=⎰--⎰-=--- ⎪ ⎪⎝⎭⎝⎭51166⎛⎫=--= ⎪⎝⎭. 故答案为:1. 【点睛】本题考查了定积分的计算,意在考查学生的计算能力和转化能力.14.【分析】利用微积分基本定理和定积分的几何意义求解即可【详解】令则表示以原点为圆心半径为的圆的上半部分则故答案为:【点睛】本题主要考查了微积分基本定理的应用及几何意义属于中档题 解析:3182π+ 【分析】利用微积分基本定理和定积分的几何意义求解即可. 【详解】33313--=⎰⎰令y =,则y =表示以原点为圆心,半径为3的圆的上半部分则2333922ππ-⨯==⎰ 3323331183x dx x --==⎰33322331931818322x dx x dx ππ---⎫∴=+=⨯+=+⎪⎪⎭⎰⎰⎰ 故答案为:3182π+ 【点睛】本题主要考查了微积分基本定理的应用及几何意义,属于中档题.15.【分析】根据定积分的四则运算和几何意义求定积分【详解】因为故答案为2π【点睛】本题考查了定积分的计算;利用定积分的几何意义分别求出两个被积函数的定积分属于基础题 解析:2π【分析】根据定积分的四则运算和几何意义求定积分. 【详解】因为(222222sin sin 022x dx xdx ππ---+=+=+=⎰⎰⎰故答案为2π.【点睛】本题考查了定积分的计算;利用定积分的几何意义分别求出两个被积函数的定积分,属于基础题.16.【解析】分析:由定积分的几何意义画出图形由面积可得定积分由奇函数在对称区间的积分知为0可得解详解:∵表示圆与x 轴围成的图形CDAB ∴又为奇函数所以∴故答案为:点睛:定积分的计算一般有三个方法:(1) 解析:233π+. 【解析】分析:由定积分的几何意义画出图形由面积可得定积分,由奇函数在对称区间的积分知为0,可得解.详解:11122111(4sin )4sin x x dx x dx xdx ----+=-+=⎰⎰⎰,∵214x dx --表示圆224x y +=与x 轴围成的图形CDAB ,OAB 1214233632OCB ODAS S S ππ=⨯⨯=+=⨯扇形,. ∴212433x dx π--= 又sin x 为奇函数,所以11sin 0xdx -=⎰,∴1212(4sin )33x x dx π--=⎰ 故答案为:233π+ 点睛:定积分的计算一般有三个方法:(1)利用微积分基本定理求原函数;(2)利用定积分的几何意义,利用面积求定积分;(3)利用奇偶性对称求定积分,奇函数在对称区间的定积分值为0.17.【解析】解答:由Tr+1=⋅⋅()r=令12−3r=0得r=4∴m=()2⋅=3则==(x3−x2)=(×33−32)−(−1)=故答案为: 解析:23【解析】解答:由T r +1=6r C⋅62x 5r -⎛⎫ ⎪ ⎪⎝⎭⋅(1x )r =6123r 65x 5r r C --⎛⎫ ⎪ ⎪⎝⎭.令12−3r =0,得r =4.∴m 2⋅46C =3. 则()212d m xx x -⎰=()3212d x x x -⎰=(13x 3−x 2)31 =(13×33−32)−(1 3−1)=2 3. 故答案为:23. 18.【解析】由解得或∴曲线及直线的交点为和因此曲线及直线所围成的封闭图形的面积是故答案为点睛:本题考查了曲线围成的图形的面积着重考查了定积分的几何意义和定积分计算公式等知识属于基础题;用定积分求平面图形解析:43【解析】由2 2y x y x⎧=⎨=⎩,解得0 0x y =⎧⎨=⎩或2 4x y =⎧⎨=⎩,∴曲线2y x =及直线2y x =的交点为()0,0O 和()2,4A 因此,曲线2y x =及直线2y x =所围成的封闭图形的面积是()222320014233S x x dx x x ⎛⎫=-=-= ⎪⎝⎭⎰,故答案为43. 点睛:本题考查了曲线围成的图形的面积,着重考查了定积分的几何意义和定积分计算公式等知识,属于基础题;用定积分求平面图形的面积的步骤:(1)根据已知条件,作出平面图形的草图;根据图形特点,恰当选取计算公式;(2)解方程组求出每两条曲线的交点,以确定积分的上、下限;(3)具体计算定积分,求出图形的面积.19.3【解析】由题意得即则解析:3【解析】由题意,得()()()()212222212*********||2x dx x dx x dx x x x x -=-+-=-+-=⎰⎰⎰,即57622a a a +==,则468633a a a a ++==.20.0【解析】试题分析:方法一:故填方法二:由于定积分性质可知对于奇函数若积分对应的区间关于原点对称那么积分的结果一定为(通过图像也可以判别)故填考点:定积分运算解析:0【解析】试题分析:方法一:()()()222sin cos |cos cos 0222x x x x x dx x ππππππππ==-⎛⎫-⎛⎫⎛⎫ ⎪+=-=----= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰,故填0. 方法二:由于定积分性质可知,对于奇函数,若积分对应的区间关于原点对称,那么积分的结果一定为0(通过图像也可以判别),故填0.考点:定积分运算.三、解答题21.(1)()a y g x x x ==+(2)=- 2ln2 +ln3 【详解】导数部分的高考题型主要表现在:利用导数研究函数的性质,高考对这一知识点考查的要求是:理解极大值、极小值、最大值、最小值的概念,并会用导数求函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.⑴∵()ln f x x =,∴当0x >时,()ln f x x =; 当x<0时,()ln()f x x =-∴当x>0时,1()f x x '=; 当0x <时,11()(1)f x x x⋅-'==- ∴当0x ≠时,函数()a y g x x x ==+⑵∵由⑴知当0x >时,()a g x x x=+, ∴当0,0a x >>时,()2g x a ≥x a =∴函数()y g x =在(0,)+∞上的最小值是2a∴依题意得22a =,∴1a =; ⑶由2736{1y x y x x =+=+解得2121322{,{51326x x y y ====∴直线2736y x =+与函数()y g x =的图象所围成图形的面积=- 2ln2 +ln322.(Ⅰ)3a=-,2b =-;(Ⅱ)[]4,16-;(Ⅲ)1234t ≤≤ 【解析】 试题分析:(Ⅰ)由导函数研究原函数切线的方法得到关于实数a,b 的方程组,求解方程组可得3a =-,2b =-;(Ⅱ)将不等式恒成立的问题分类讨论可得实数t 的取值范围是1234t ≤≤+ 试题(Ⅰ)()232f x x ax '=+ ∴()1323f a =+=-' ∴3a =- ∴()323f x x x =-因为()113f b =-= ∴2b =- (Ⅱ)由(Ⅰ)得()323f x x x =- ∴()236f x x x '=- 令()0f x '= 解得120,2x x ==()()()()14,00,24,416f f f f -=-==-=∴()f x 的值域是[]4,16- (Ⅲ)因为[]1,4x ∈时,不等式()()f x g x ≤恒成立∴()22160tx t x -++≥在[]1,4上恒成立,令()()2216h x tx t x =-++ 对称轴为1t x t +=因为0t >∴11t x t+=> ∴()21441240t t t t +⎧<⎪⎨⎪∆=+-≤⎩或()()144168160t t h t t +⎧≥⎪⎨⎪=-++≥⎩ 解得:t 的取值范围为1234t ≤≤+23.(1)单调增区间为(1,1)-,单调减区间(,1)-∞和(1,)+∞.(2)(,ln 2]-∞-.【解析】试题分析:(1)求出函数的导数()()()()22111x x f x x '-+=+,解不等式,求出函数的单调区间即可;(2)问题等价于“对于任意[]0,2x ∈,()()min max f x g x ≥恒成立”.分 10a -≤<, 1a <-讨论函数的单调性求出a 的范围即可.试题(1)()()()()()2222211111x x x f x x x -+-==+'+.令()0f x '>,则11x -<<,令()0f x '<,则1x <-或1x >.故函数()f x 的单调增区间为()1,1-,单调减区间(),1-∞和()1,+∞.(2)依题意,“对于任意1x ,[]20,2x ∈,()()12f x g x ≥恒成立”等价于“对于任意[]0,2x ∈,()()min max f x g x ≥恒成立”.由(1)知,函数()f x 在[]0,1上单调递增,在[]1,2上单调递减.∵()01f =,()22115f =+>,∴函数()f x 的最小值为()01f =, ∴()max 1g x ≤.∵()2e ax g x x =,∴()()22e ax g x ax x =+'. ∵0a <,令()0g x '=,得10x =,22x a =-. ①当22a-≥,即10a -≤<时,当[]0,2x ∈时,()0g x '≥,函数()g x 在[]0,2上单调递增,∴函数()()2max 24a g x g e ==. 由24e 1a ≤得,ln2a ≤-,∴1ln2a -≤≤-.②当202a <-<,即1a <-时,20,x a ⎡⎫∈-⎪⎢⎣⎭时()0g x '≥,2,2x a ⎛⎤∈- ⎥⎝⎦时,()0g x '<,∴函数()g x 在20,a ⎡⎫-⎪⎢⎣⎭上单调递增,在2,2a ⎛⎤- ⎥⎝⎦上单调递减, ∴()22max 24e g x g a a ⎛⎫=-= ⎪⎝⎭. 由2241e a ≤得,2ea ≤-, ∴1a <-.综上所述,a 的取值范围是(],ln2-∞-. 24.(1)见解析;(2)2e 12,e 1⎛⎫+- ⎪-⎝⎭. 【解析】试题分析:(1)求导,由导函数等于0及单调性确定极值点即可;(2)不等式()()f x g x >对任意[]1,x e ∈恒成立,即函数()1a h x x x+=+ ln a x -在[]1,e 上的最小值大于零,求导讨论函数单调性求最值即可.试题(1)()1a x a f x x x'-=-=(0x >), 当0a ≤时, ()0f x '>在()0,+∞上恒成立,函数()f x 在()0,+∞单调递增, ()f x ∴在()0,+∞上没有极值点.当0a >时, ()0f x '<得0x a <<, ()0f x '>得x a >,()f x ∴在()0,a 上递减,在(),a +∞上递增,即()f x 在x a =处有极小值,无极大值. ∴当0a ≤时, ()f x 在()0,+∞上没有极值点,当0a >时, ()f x 在()0,+∞上有一个极值点.(2)设()()()h x f x g x =- 1ln a x a x x+=+-(0x >), ()211a a h x x x +'=-- ()221x ax a x --+= ()()211x x a x⎡⎤+-+⎣⎦=, 不等式()()f x g x >对任意[]1,e x ∈恒成立,即函数()1a h x x x +=+ln a x -在[]1,e 上的最小值大于零.①当1e a +≥,即e 1a ≥-时, ()h x 在[]1,e 上单调递减.所以()h x 的最小值为()e h , 由()1e e e a h +=+ 0a ->可得2e 1e 1a +<-, 因为2e 1e 1e 1+>--,所以2e 1e 1e 1a +-≤<-. ②当11a +≤,即0a ≤时, ()h x 在[]1,e 上单调递增,所以()h x 最小值为()1h ,由()1110h a =++>可得2a >-,即20a -<≤.③当11e a <+≤,即0e 1a <≤-时,可得()h x 最小值为()1h a +,因为()0ln 11a <+<,所以()0ln 1a a a <+<,故()12h a a +=+ ()ln 12a a -+>,即0e 1a <<-. 综上所述, a 的取值范围是: 2e 12,e 1⎛⎫+- ⎪-⎝⎭.点睛:已知函数不等式恒成立求参数常用的方法和思路:直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; 分离参数法:先将参数分离,转化成函数的值域问题解决;25.1116m -<<【解析】【分析】首先写出切线方程,然后将问题转化为方程有三个实数根的问题,利用导函数研究函数的极值即可确定m 的取值范围.【详解】设过P 点的切线切曲线于点()00,x y ,则切线的斜率2003129k x x =-+-. 所以切线方程为()()20031291y x x x m =-+-++, 故()()23200000003129169y x x x m x x x =-+-++=-+-,要使过P 可作曲线()y f x =的切线有三条,则方程()()2320000003129169x x x m x x x -+-++=-+-有三解0032023129,m x x x ∴=--+()3223129g x x x x =--+令则()()()26612612g x x x x x =--=+-' 易知1,2x =-为()g x 的极值大、极小值点,又()()11,16,g x g x =-=极小极大故满足条件的m 的取值范围1116.m -<<【点睛】本题主要考查导函数研究函数的切线,导函数研究函数的极值,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.26.(1)326(1)a s a =-+;(2)3a =-,5b =. 【解析】【分析】(1)由已知可知其中一个交点是原点,把另一个交点表示出来,再利用定积分表示出来即可。

(压轴题)高中数学高中数学选修2-2第四章《定积分》测试卷(包含答案解析)(3)

(压轴题)高中数学高中数学选修2-2第四章《定积分》测试卷(包含答案解析)(3)

一、选择题1.已知函数22(1),10()1,01x x f x x x ⎧+-≤≤⎪=⎨-<≤⎪⎩则11()d f x x -=⎰( ) A .3812π- B .4312π+ C .44π+ D .4312π-+ 2.已知函数()2ln 2f x mx x x =+-在定义域内存在单调递减区间,则实数m 的取值范围是( ) A .12m ≥B .12m < C .1m ≥ D .1m < 3.若函数()31f x x ax x =++在1,2⎛⎫+∞ ⎪⎝⎭是增函数,则a 的取值范围是( ) A .1,2⎛⎫-+∞ ⎪⎝⎭ B .1,2⎡⎫-+∞⎪⎢⎣⎭ C .13,4⎛⎫+∞ ⎪⎝⎭D .13,4⎡⎫+∞⎪⎢⎣⎭ 4.若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k =( ) A .2- B .1- C .0 D .15.由23y x =-和2y x =围成的封闭图形的面积是( ) A .23 B .923- C .323 D .3536.由曲线2y x =与直线2y x =+所围成的平面图形的面积为( ) A .52 B .4 C .2 D .927.如图,设D 是途中边长分别为1和2的矩形区域,E 是D 内位于函数1(0)y x x=>图象下方的阴影部分区域,则阴影部分E 的面积为( )A .ln 2B .1ln 2-C .2ln 2-D .1ln 2+8.已知二次函数()y f x =的图像如图所示 ,则它与x 轴所围图形的面积为( )A .25π B .43C .32D .2π 9.等比数列{}n a 中,39a =前三项和为32303S x dx =⎰,则公比的值是( )A .1B .12-C .1或12-D .-1或12-10.已知函数()[](]2sin ,,01,0,1x x f x x x π⎧∈-⎪=⎨-∈⎪⎩,则()1f x dx π-=⎰( ) A .2π+ B .2πC .22π-+D .24π-11.定积分()22xex dx +⎰的值为( )A .1B .2eC .23e +D .24e +12.若函数f (x )=cos x +2xf ′π()6,则f π()3-与f π()3的大小关系是( ) A .f π()3-=f π()3B .f π()3->f π()3 C .f π()3-<f π()3D .不确定二、填空题13.已知函数()[)[)[]3,2,22,2,cos ,,2x x f x x x x x πππ⎧∈-⎪=∈⎨⎪∈⎩则()22f x dx π-=⎰___________14.()2208x x dx --=⎰______.15.由曲线x y e x =+与直线0,1,0x x y ===所围成图形的面积等于________.16.定积分12(1)x x dx --=⎰______________.17.定积分211(2)x dx x+⎰的值为_____ .18.如图所示,则阴影部分的面积是 .19.定积分()12xx e dx +=⎰__________.20.曲线与直线所围成的封闭图形的面积为____________.三、解答题21.已知函数()f x 为一次函数,若函数()f x 的图象过点()0,2,且()28f x dx =⎰.(1)求函数()f x 的表达式.(2)若函数()22g x x =+,求函数()f x 与()g x 的图象围成图形的面积.22.已知函数21()ln (1)12f x x ax a x =-+-+. (1)当1a =时,)求函数()f x 在2x =处的切线方程; (2)求函数()f x 在[]1,2x ∈时的最大值.23.已知定义域为R 的函数f (x)有一个零点为1, f (x)的导函数()12f x x '=()()2212ax a g x f x +-=+,其中a R ∈.(1)求函数f (x)的解析式; (2)求()g x 的单调区间;(3)若()g x 在[)0,+∞上存在最大值和最小值,求a 的取值范围. 24.梯形ABCD 顶点B 、C 在以AD 为直径的圆上,AD =2米,(1)如图1,若电热丝由AB ,BC ,CD 这三部分组成,在AB ,CD 上每米可辐射1单位热量,在BC 上每米可辐射2单位热量,请设计BC 的长度,使得电热丝辐射的总热量最大,并求总热量的最大值;(2)如图2,若电热丝由弧,AB CD 和弦BC 这三部分组成,在弧,AB CD 上每米可辐射1单位热量,在弦BC 上每米可辐射2单位热量,请设计BC 的长度,使得电热丝辐射的总热量最大.25.设函数()()1xf x aex =+(其中 2.71828e =⋅⋅⋅),()22g x x bx =++,已知它们在0x =处有相同的切线.(1)求函数()f x ,()g x 的解析式; (2)若函数()f x 在[],1t t +上的最小值为22e-,求实数t 的取值范围.26.如图:已知2y ax bx =+通过点(1,2),与22y x x =-+有一个交点横坐标为1x ,且0,1a a <≠-.(1)求2y ax bx =+与22y x x =-+所围的面积S 与a 的函数关系; (2)当,a b 为何值时,S 取得最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据积分的性质将所求积分化为()22111x dx x dx -++-⎰⎰,根据微积分基本定理和定积分的求法可求得结果. 【详解】()()22321100011112100101111333x dx x x dx x x x --+=++=++=++-++=---⎰⎰,201x dx -⎰表示以原点为圆心,1为半径的圆在第一象限中的部分的面积,214x dx π∴-=⎰,()()12211143113412f x dx x dx x dx ππ--+∴=++-=+=⎰⎰⎰.故选:B . 【点睛】本题考查积分的求解问题,涉及到积分的性质、微积分基本定理和定积分的求解等知识,属于基础题.2.B解析:B【解析】求导函数,可得()1'220f x mx x x=+->,,函数()2ln 2f x mx x x =+-在定义域内是增函数,所以()'0f x < 成立,即1220(0)mx x x+-<>恒成立,所以21211m x ⎛⎫->-- ⎪⎝⎭,所以21m ->-,所以12m < 时,函数()f x 在定义域内是增函数.故选B .3.D解析:D【解析】由题意得()22130f x x a x =+-≥'在1,2⎛⎫+∞ ⎪⎝⎭上恒成立,即22max 13a x x ⎛⎫≥- ⎪⎝⎭,因为2213y x x =-在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,所以2213131334,444y x a x =-<-=≥,选D. 点睛:已知函数单调性求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数单调区间取法,根据单调区间与定义区间包含关系,确定参数值或取值范围;(2)利用导数转化为导函数非正或非负恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围.4.B解析:B【解析】因为1y k x'=+,所以10,1k k +==- ,选B. 点睛:(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.5.C解析:C 【解析】试题分析:画出函数图象如下图所示,所以围成的面积为()13122333232333x x x dx x x --⎛⎫--=--= ⎪⎝⎭⎰.考点:定积分.6.D解析:D 【解析】试题分析:由定积分的几何意义得,293122122132221=-+=-+=--⎰)(])[(x x x dx x x s ,故选D 。

(压轴题)高中数学高中数学选修2-2第四章《定积分》测试题(含答案解析)

(压轴题)高中数学高中数学选修2-2第四章《定积分》测试题(含答案解析)

一、选择题1.给出下列函数:①())ln f x x =;②()3cos f x x x =;③()xf x e x =+.0a ∃>使得()0aaf x dx -=⎰的函数是( )A .①②B .①③C .②③D .①②③2.设113a x dx -=⎰,1121b x dx =-⎰,130c x dx =⎰则a ,b ,c 的大小关系( )A .a>b>cB .b>a>cC .a>c>bD .b>c>a3.若函数()31f x x ax x =++在1,2⎛⎫+∞ ⎪⎝⎭是增函数,则a 的取值范围是( ) A .1,2⎛⎫-+∞ ⎪⎝⎭ B .1,2⎡⎫-+∞⎪⎢⎣⎭ C .13,4⎛⎫+∞ ⎪⎝⎭D .13,4⎡⎫+∞⎪⎢⎣⎭ 4.由23y x =-和2y x =围成的封闭图形的面积是( ) A..9-.323 D .3535.已知1(1)1x f x x e ++=-+,则函数()f x 在点(0,(0))f 处的切线l 与坐标轴围成的三角形的面积为 A .14 B .12C .1D .2 6.一物体在力F (x )=3x 2-2x +5(力单位:N ,位移单位:m)作用力下,沿与力F (x )相同的方向由x =5 m 直线运动到x =10 m 处做的功是( ). A .925 JB .850 JC .825 JD .800 J7.由曲线1xy =,直线,3y x y ==所围成的平面图形的面积为( ) A .2ln3-B .4ln3+C .4ln3-D .3298.已知函数()[](]sin ,,00,1x x f x x π⎧∈-=∈,则()1f x dx π-=⎰( ) A .2π+ B .2πC .22π-+D .24π-9.函数0()(4)xf x t t dt =-⎰在[1,5]-上( )A .有最大值0,无最小值B .有最大值0,最小值323-C .最小值323-,无最大值 D .既无最大值,也无最小值10.10)x dx ⎰=( )A .22π+B .12π+ C .122π-D .142π- 11.下列积分值最大的是( ) A .222sin +1x x dx -⎰()B .()22cos x dx ππ--⎰C .224x dx --⎰D .11edx x12.由曲线4y x =,1y x=,2x =围成的封闭图形的面积为( ) A .172ln 22- B .152ln 22- C .15+2ln 22D .17+2ln 22二、填空题13.定积分211dx x⎰的值等于________. 14.定积分21d 1x x ⎰-的值为__________.15.已知()[](]2,0,11,1,x x f x x e x⎧∈⎪=⎨∈⎪⎩(e 为自然对数的底数),则()e 0f x dx =⎰_________.16.设函数()f x 的图象与直线,x a x b ==及x 轴所围成图形的面积称为函数()f x 在[],a b 上的面积,已知函数()sin f x nx =在0,2n π⎡⎤⎢⎥⎣⎦上的面积为1n()*n N ∈,则函数()()sin 32f x x π=-+在4,33ππ⎡⎤⎢⎥⎣⎦上的面积为__________.17.定积分2sin cos t tdt π=⎰________.18.已知平面区域(){}2,|04x y y x Ω=≤≤-,直线:2l y mx m =+和曲线2:4C y x =-有两个不同的交点,直线l 与曲线C 围成的平面区域为M ,向区域Ω内随机投一点A ,点A 落在区域M 内的概率为()P M ,若2(),12P M ππ-⎡⎤∈⎢⎥⎣⎦,则实数m 的取值范围是___________. 19.曲线与直线所围成的封闭图形的面积为____________.20.曲线2y x 和曲线y x =________.三、解答题21.已知函数2()ln f x x a x =-(a R ∈),()F x bx =(b R ∈). (1)讨论()f x 的单调性;(2)设2a =,()()()g x f x F x =+,若12,x x (120x x <<)是()g x 的两个零点,且1202x x x +=, 试问曲线()y g x =在点0x 处的切线能否与x 轴平行?请说明理由. 22.如图,函数()sin()f x x ωϕ=+(其中π0,2ωϕ>≤)的图象与坐标轴的三个交点为,,P Q R ,且π(,0)6P ,2π(,0)3Q ,M 为QR 的中点,且M 的纵坐标为34-.(1)求()f x 的解析式;(2)求线段QR 与函数()f x 图象围成的图中阴影部分的面积. 23.梯形ABCD 顶点B 、C 在以AD 为直径的圆上,AD =2米,(1)如图1,若电热丝由AB ,BC ,CD 这三部分组成,在AB ,CD 上每米可辐射1单位热量,在BC 上每米可辐射2单位热量,请设计BC 的长度,使得电热丝辐射的总热量最大,并求总热量的最大值;(2)如图2,若电热丝由弧,AB CD 和弦BC 这三部分组成,在弧,AB CD 上每米可辐射1单位热量,在弦BC 上每米可辐射2单位热量,请设计BC 的长度,使得电热丝辐射的总热量最大.24.一物体沿直线以速度()23v t t =-(t 的单位为:秒,v 的单位为:米/秒)的速度作变速直线运动,求该物体从时刻t=0秒至时刻 t=5秒间运动的路程? 25.已知函数2()ln 1a f x x x +=++,其中a ∈R. (1)当a =4时,求f (x )的极值点;(2)讨论并求出f (x )在其定义域内的单调区间.26.已知函数()xae f x x x=+.(1)若函数()f x 的图象在(1,(1))f 处的切线经过点(0,1)-,求a 的值;(2)是否存在负整数a ,使函数()f x 的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由;(3)设0a >,求证:函数()f x 既有极大值,又有极小值【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】利用定义判断①②中的函数为奇函数,根据奇函数和定积分的性质,判断①②;利用反证法,结合定积分的性质,判断③. 【详解】对①,()f x 的定义域为R1())))()f x x x x f x --===-=-即函数()f x 为奇函数,则0a ∃>使得()0aaf x dx -=⎰对②,()f x 的定义域为R33()cos()cos ()f x x x x x f x -=--=-=-,即函数()f x 为奇函数,则0a ∃>使得()0aaf x dx -=⎰对③,若0a ∃>,使得()0aaf x dx -=⎰成立则()2102aaxx a aa a e x dx e x e e ---⎛⎫+=+- ⎪⎝==⎭⎰,解得0a =,与0a >矛盾,则③不满足 故选:A 【点睛】本题主要考查了定积分的性质以运用,属于中档题.2.A解析:A 【解析】借助定积分的计算公式可算得1121330033|22a x dx x -===⎰,1131220022111|1333b x dx x =-=-=-=⎰,13410011|44c x dx x ===⎰,所以a b c >>,应选答案A 。

(北师大版)深圳市高中数学选修2-2第四章《定积分》测试(有答案解析)

(北师大版)深圳市高中数学选修2-2第四章《定积分》测试(有答案解析)

一、选择题1.222024xdx x dx +-=⎰⎰( )A .2π B .12π+ C .4π D .π2.如图,由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是( )A .1B .23C .43D .23.若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k =( ) A .2- B .1- C .0 D .14.已知1a xdx =⎰, 12b x dx =⎰, 1c xdx =⎰,则a , b , c 的大小关系是( )A .a b c <<B .a c b <<C .b a c <<D .c a b <<5.如图,矩形ABCD 的四个顶点()(0,1),(,1),(,1),0,1A B C D ππ--,正弦曲线f xsinx 和余弦曲线()g x cosx =在矩形ABCD 内交于点F ,向矩形ABCD 区域内随机投掷一点,则该点落在阴影区域内的概率是( )A .B .C .D .6.设()2012a x dx =-⎰,则二项式6212a x x ⎛⎫+ ⎪⎝⎭的常数项是( )A .240B .240-C .60-D .607.由23y x =-和2y x =围成的封闭图形的面积是( ) A .23 B .923- C .323 D .3538.等比数列{}n a 中,39a =,前3项和为3230S x dx =⎰,则公比q 的值是( )A .1B .12-C .1或12-D .1-或12-9.已知二次函数()y f x =的图像如图所示 ,则它与x 轴所围图形的面积为( )A .25π B .43C .32D .2π 10.图中阴影部分的面积用定积分表示为( )A .12d xx ⎰B .()1021d xx -⎰C .()1021d xx +⎰D .()1012d xx -⎰11.已知125113,log ,log 3,a a x dx m a n p a-====⎰,则 ( ) A .m n p << B .m p n <<C .p m n <<D .p n m <<12.由曲线1xy =,直线,3y x y ==所围成的平面图形的面积为( ) A .2ln3-B .4ln3+C .4ln3-D .329二、填空题13.计算 121dx x--⎰=_____________. 14.若2211S x dx =⎰,2211S dx x=⎰,231x S e dx =⎰,则1S ,2S ,3S 的大小关系为___.15.计算()0cos 1x dx π⎰+=_________.16.曲线2y x 与直线2y x =所围成的封闭图形的面积为_______________.17.()12111x dx ---=⎰__________.18.定积分()12xx e dx +=⎰__________.19.曲线21y x =-与直线2,0x y ==所围成的区域的面积为_______________. 20.二项式33()6a x -的展开式的第二项的系数为,则的值为______.三、解答题21.为了降低能源消耗,某冷库内部要建造可供使用20年的隔热层,每厘米厚的隔热层建造成本为4万元,又知该冷库每年的能源消耗费用c (单位:万元)与隔热层厚度x (单位:cm )满足关系()(010)25kc x x x =≤≤+,若不建隔热层,每年能源消耗为8万元.设()f x 为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及()f x 的表达式;(2)隔热层修建多厚时,总费用()f x 达到最小?并求最小值. 22.已知函数21()ln (1)12f x x ax a x =-+-+. (1)当1a =时,)求函数()f x 在2x =处的切线方程; (2)求函数()f x 在[]1,2x ∈时的最大值.23.已知函数22()2()ln 22f x x a x x ax a a =-++--+,其中0a >,设()g x 是()f x 的导函数,讨论()g x 的单调性和极值。

广州市高中数学选修2-2第四章《定积分》测试(包含答案解析)

广州市高中数学选修2-2第四章《定积分》测试(包含答案解析)

一、选择题1.计算211x dx x ⎛⎫+ ⎪⎝⎭⎰的值为( )A .34B .3ln 22+ C .55ln 22+ D .3ln 2+2.如图,由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是( )A .1B .23C .43D .23.曲线y =sin x ,y =cos x 与直线x =0,x =2π所围成的平面区域的面积为( ) A .π20⎰(sin x -cos x )d x B .2π40⎰(sin x -cos x )d x C .π20⎰(cos x -sin x )d xD .2π40⎰(cos x -sin x )d x4.已知函数()f x 的图像如图所示, ()f x '就()f x 的导函数,则下列数值排序正确的是( )A .()()()()224224f f f f <-'<'B .()()()()242242f f f f '<<-'C .()()()()222442f f f f '<<-'D .()()()()422422f f f f '<'-< 5.一物体在力(单位:N)的作用下沿与力相同的方向,从x=0处运动到(单位:)处,则力做的功为( ).A .44B .46C .48D .506.由直线,1y x y x ==-+,及x轴所围成平面图形的面积为 ( ) A .()11y y dy ⎡⎤--⎣⎦⎰B .()121x x dx ⎡⎤-+-⎣⎦⎰C .()121y y dy ⎡⎤--⎣⎦⎰D .()11x x dx ⎡⎤--+⎣⎦⎰7.曲线()sin 0πy x x =≤≤与直线12y =围成的封闭图形的面积是 A .3 B .23-C .π23-D .π33-8.若向区域(){},|0101x y x y Ω=≤≤≤≤,内投点,则该点落在由直线y x =与曲线y x =围成区域内的概率为( )A .18B .16C .13D .129.已知125113,log ,log 3,a a x dx m a n p a-====⎰,则 ( ) A .m n p << B .m p n <<C .p m n <<D .p n m <<10.已知320n x dx =⎰,且21001210(2)(23)n x x a a x a x a x +-=+++⋅⋅⋅+,则12310012102310a a a a a a a a +++⋅⋅⋅++++⋅⋅⋅+的值为( )A .823B .845C .965-D .87711.下列积分值最大的是( ) A .222sin +1x x dx -⎰()B .()22cos x dx ππ--⎰C .224x dx --⎰D .11edx x12.已知t >0,若(2x ﹣2)dx=8,则t=( ) A .1B .﹣2C .﹣2或4D .4二、填空题13.02114edx x dx x-+-=⎰⎰______________.14.由函数()ln f x x x x =-的图像在点(,())P e f e 处的切线,l 直线1x e -=直线x e =(其中e 是自然对数的底数)及曲线ln y x =所围成的曲边四边形(如图中的阴影部分)的面积S =_________.15.若()()122f x x f x dx =+⎰,则()1f x dx =⎰_______.16.设函数2y nx n =-+和1122y x n =-+(*n N ∈,2n ≥)的图像与两坐标轴围成的封闭图形的面积为n S ,则lim n n S →∞=________ 17.由曲线x y e x =+与直线0,1,0x x y ===所围成图形的面积等于________.18.已知()[](]2,0,11,1,x x f x x e x⎧∈⎪=⎨∈⎪⎩(e 为自然对数的底数),则()e0f x dx =⎰_________.19.二项式33()6a x -的展开式的第二项的系数为,则的值为______.20.2(1)x dx -=⎰________.三、解答题21.求曲线y x =2y x =-及y 轴围成的封闭图形的面积.22.已知函数()1x f x e ex =--,其中e 为自然对数的底数,函数()(2)g x e x =-. (1)求函数()()()h x f x g x =-的单调区间; (2)若函数(),,()(),f x x m F x g x x m≤⎧=⎨>⎩的值域为R ,求实数m 的取值范围.23.梯形ABCD 顶点B 、C 在以AD 为直径的圆上,AD =2米,(1)如图1,若电热丝由AB ,BC ,CD 这三部分组成,在AB ,CD 上每米可辐射1单位热量,在BC 上每米可辐射2单位热量,请设计BC 的长度,使得电热丝辐射的总热量最大,并求总热量的最大值;(2)如图2,若电热丝由弧,AB CD 和弦BC 这三部分组成,在弧,AB CD 上每米可辐射1单位热量,在弦BC 上每米可辐射2单位热量,请设计BC 的长度,使得电热丝辐射的总热量最大.24.已知函数1211()(1)x f x adt x t+=++⎰()1x >-. (1)若()f x 在1x =处有极值,问是否存在实数m ,使得不等式2214()m tm e f x ++-≤对任意[]1,x e e ∈-及[]1,1t ∈-恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.()2.71828e =;(2)若1a =,设2()()(1)F x f x x x =-+-. ①求证:当0x >时,()0F x <; ②设*111()12(1)n a n N n n n n =++⋅⋅⋅+∈++++,求证:ln 2n a > 25.为了净化广州水系,拟在小清河建一座平面图(如图所示)为矩形且面积为200 m 2的三级污水处理池,由于地形限制,长、宽都不能超过16 m ,如果池外壁建造单价为400元/m 2,中间两条隔墙建造单价为248元/m 2,池底建造单价为80元/m 2(池壁厚度忽略不计,且池无盖).(1)写出总造价y (元)与x 的函数关系式,并指出定义域;(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低,并求最低造价.26.已知函数2()ln 1a f x x x +=++,其中a ∈R. (1)当a =4时,求f (x )的极值点;(2)讨论并求出f (x )在其定义域内的单调区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据牛顿莱布尼茨公式,即可代值求解. 【详解】根据牛顿莱布尼茨公式211x dx x ⎛⎫+ ⎪⎝⎭⎰2211()2x lnx =+1142122ln ln ⎛⎫=⨯+-+ ⎪⎝⎭ 322ln =+. 故选:B. 【点睛】本题考查牛顿莱布尼茨公式的直接应用,属基础题.2.D解析:D 【解析】由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是122201(1)(1)S x dx x dx =---⎰⎰31320111281()|()|2133333x x x x -+-=+--+ 3.D解析:D 【解析】π40⎰(-sin x +cos x )d x 2π4π+⎰(sin x -cos x )dx=2π40⎰(cos x -sin x )d x ,选D.点睛:1.求曲边图形面积的方法与步骤 (1)画图,并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围,从而确定积分的上、下限; (3)确定被积函数;(4)求出各曲边梯形的面积和,即各积分的绝对值的和.2.利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的边界不同时,要分不同情况讨论.4.A解析:A【解析】解:观察所给的函数图象可知: ()()()()42'2'442f f f f -<<- ,整理可得: ()()()()224224f f f f <-'<' . 本题选择A 选项.5.B解析:B【解析】由定积分的物理意义,得,即力做的功为46.考点:定积分的物理意义.6.C解析:C 【解析】如图,由直线y=x ,y =−x+1,及x 轴围成平面图形是红色的部分,它和图中蓝色部分的面积相同,∵蓝色部分的面积()121S x x dx ⎡⎤=--⎣⎦⎰,即()121y y dy ⎡⎤--⎣⎦⎰.本题选择C 选项.7.D解析:D 【解析】曲线()sin 0πy x x =≤≤与直线12y =的两个交点坐标分别为(π6,12),(5π6,12), 则封闭图形的面积为5π5π66ππ6611πsin cos |3223x dx x x ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭⎰本题选择D 选项.点睛:(1)用微积分基本定理求定积分,关键是求出被积函数的原函数.此外,如果被积函数是绝对值函数或分段函数,那么可以利用定积分对积分区间的可加性,将积分区间分解,代入相应的解析式,分别求出积分值相加. (2)根据定积分的几何意义可利用面积求定积分. (3)若y =f (x )为奇函数,则()()0aaf x dx a ->⎰ =0.8.B解析:B 【解析】 区域(){},|01,01x y x y Ω=≤≤≤≤是正方形,面积为1,根据定积分定理可得直线y x =与曲线y =)1321200211|326x dx x x ⎛⎫=-= ⎪⎝⎭⎰,根据几何概型概率公式可得该点落在由直线y x =与曲线y =16,故选B .9.B解析:B 【解析】1235211132,log 2,log 3,12a x dx x m n p -===∴===-⎰5211log 2log ,log 31,22m n p ====m p n ∴<<故选B10.A解析:A 【分析】利用微积分基本定理,可计算得329n x dx ==⎰,又210998012101210()2...10(23)27(2)(23)a a x a x a x a a x a x x x x '+++⋅⋅⋅+=+++=--+-利用赋值法,令1x =,可得解 【详解】由题意3323200|3093x n x dx ===-=⎰ 令1x =有:901210(21)(23)3a a a a +++⋅⋅⋅+=+-=-210998012101210()2...10(23)27(2)(23)a a x a x a x a a x a x x x x '+++⋅⋅⋅+=+++=--+-令1x =有:9812102...10(23)27(21)(23)82a a a +++=--+-=-故12310012102310823a a a a a a a a +++⋅⋅⋅+=+++⋅⋅⋅+故选:A 【点睛】本题考查了导数、定积分和二项式定理综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题11.A解析:A 【分析】对各个选项计算出被积函数的原函数,再将上下限代入即可得到结果,进行比较即可得到结果. 【详解】A :22222222sin +1sin 1x x dx x xdx dx ---=+⎰⎰⎰(),函数y=2sin x x 为奇函数,故222sin 0x xdx -=⎰,2222222sin +11|2(2)4x x dx dx x ---===--=⎰⎰(),B:2222(cos )sin sin sin 222x dx x ππππππ--⎡⎤⎛⎫-=-=---=- ⎪⎢⎥⎝⎭⎣⎦⎰,C:-⎰表示以原点为圆心,以2为半径的圆的面积的14,故144ππ-=⨯⨯=⎰, D:111dx ln |ln ln11ee x e x==-=⎰, 通过比较可知选项A 的积分值最大, 故选A 【点睛】计算定积分的步骤:①先将被积函数变形为基本初等函数的和、差等形式;②根据定积分的基本性质,变形;③分别利用求导公式的逆运算,找到相应的的原函数;④利用微积分基本定理分别求出各个定积分的值,然后求代数和(差).12.D解析:D 【解析】∵(x 2﹣2x )′=2x ﹣2,∴若2(22)(2)tt x dx x x -=-⎰=t 2﹣2t=8,又t >0,解得t=4.选D.二、填空题13.【分析】根据以及定积分的几何意义可得答案【详解】因为表示的是圆在x 轴及其上方的面积所以所以=故答案为:【点睛】本题考查了定积分的计算考查了定积分的几何意义属于基础题 解析:21π+【分析】根据1(ln )x x'=以及定积分的几何意义可得答案.【详解】11edx x⎰=ln 1e x ln ln1101e =-=-=,因为2-⎰表示的是圆224x y +=在x 轴及其上方的面积,所以2-⎰21222ππ=⨯⨯=,所以11edx x ⎰2-+⎰=12π+. 故答案为:21π+.【点睛】本题考查了定积分的计算,考查了定积分的几何意义,属于基础题.14.【分析】利用导数求得切线的方程利用定积分计算出阴影部分的面积【详解】所以切线的方程为:故阴影部分面积为故答案为:【点睛】本小题主要考查切线方程的计算考查定积分计算面积属于中档题解析:2221122e e e++-【分析】利用导数求得切线l 的方程,利用定积分计算出阴影部分的面积. 【详解】()()()''ln ,ln 1,0f x x f e e f e e e ====-=,所以切线l 的方程为:y x e =-.故阴影部分面积为()2111ln ln |2e e eex x e dx x x x x ex ⎛⎫-+=--+ ⎪⎝⎭⎰2221111111ln ln 22e e e e e e e e e e e ⎡⎤⎛⎫=--⋅+---+⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦22121122e e e ⎡⎤=⋅---+⎢⎥⎣⎦2221122e e e++-=. 故答案为:2221122e e e ++-【点睛】本小题主要考查切线方程的计算,考查定积分计算面积,属于中档题.15.【分析】所以对等式在上积分得到关于的方程解得的值即可【详解】解:设则解得所以故答案为:【点睛】本题考查了定积分的应用考查了定积分的求法属于中档题解题时要注意根据题目要求灵活的在固定区间上积分进而构造解析:13-【分析】1()f x dx n =⎰,所以2()2f x x n =+,对等式在(0,1)上积分,得到关于n 的方程,解得n 的值即可. 【详解】解:设10()f x dx n =⎰,则2()2f x x n =+2311111()(2)22033f x dx n x n dx x nx n ⎛⎫∴⎰==⎰+=+=+ ⎪⎝⎭,解得13n =-, 所以101()3f x dx =⎰.故答案为:13-. 【点睛】本题考查了定积分的应用,考查了定积分的求法.属于中档题.解题时要注意根据题目要求灵活的在固定区间上积分,进而构造出需要的方程.16.【分析】联立两直线得到交点坐标当时判断出两直线与坐标轴围成的封闭区间的形状即可求出对应的面积【详解】解当时直线斜率此时直线与轴交点为当时直线斜率此时直线与轴交点为此时函数和的图象与两坐标轴围成的封闭解析:14【分析】联立两直线,得到交点坐标,当n →+∞时,判断出两直线与坐标轴围成的封闭区间的形状,即可求出对应的面积. 【详解】解,当n →+∞时,直线2y nx n =-+斜率1k →-∞,此时,直线与x 轴交点为1,02⎛⎫ ⎪⎝⎭, 当n →+∞时,直线1122y x n =-+斜率20k →,此时,直线与y 轴交点为10,2⎛⎫ ⎪⎝⎭, 此时函数2y nx n =-+和11(*,2)22y x n N n n =-+∈的图象与两坐标轴围成的封闭图形近似于边长为12的正方形, 故111lim 224n n S →∞=⨯=, 故答案为:14.【点睛】本题考查极限的计算,可以先由n →+∞,判断围成四边形的形状,再计算,属于中档题.17.【分析】根据定积分的几何意义得到积S =(ex +x)dx 由牛顿莱布尼茨公式可得到答案【详解】根据定积分的几何意义得到面积S =(ex +x)dx =故答案为【点睛】这个题目考查了定积分的几何意义以及常见函数解析:12e - 【分析】根据定积分的几何意义得到积S =10⎰(e x +x )d x ,由牛顿莱布尼茨公式可得到答案.【详解】根据定积分的几何意义得到,面积S =10⎰(e x +x )d x =210111|1.222xe x e e ⎛⎫+=+-=- ⎪⎝⎭ 故答案为1.2e - 【点睛】这个题目考查了定积分的几何意义,以及常见函数的积分值的求法.18.【解析】因为所以解析:43【解析】因为()[](]2,0,11,1,x x f x x e x⎧∈⎪=⎨∈⎪⎩,所以()e1e231e 0101114|ln |33f x dx x dx dx x x x =+=+=⎰⎰⎰ 19.或【解析】试题分析:展开后第二项系数为时时考点:1定积分;2二项式定理解析:3或73【解析】试题分析:展开后第二项系数为233122a a -=-∴=±,1a =时3121|33x -==,1a =-时 31217|33x --==考点:1.定积分;2.二项式定理20.【详解】试题分析:考点:定积分的计算【名师点睛】本题主要考查定积分的计算意在考查学生的运算求解能力属于容易题定积分的计算通常有两类基本方法:一是利用牛顿-莱布尼茨定理;二是利用定积分的几何意义求解解析:. 【详解】试题分析:222001(1)02x dx x x ⎛⎫-=-=⎪⎝⎭⎰. 考点:定积分的计算. 【名师点睛】本题主要考查定积分的计算,意在考查学生的运算求解能力,属于容易题,定积分的计算通常有两类基本方法:一是利用牛顿-莱布尼茨定理;二是利用定积分的几何意义求解.三、解答题 21.163【分析】根据定积分的几何意义,先联立直线与曲线方程,求出积分的上下限,将面积转化为定积分求解即可. 【详解】2x x =-解得:4x =,4322021216(2)288803233S x x dx x x x ⎛⎫⎛⎫=-=-+=⨯-+-= ⎪ ⎪⎝⎭⎝⎭⎰.【点睛】本题主要考查定积分的几何意义,属于中档题.22.(1)单调增区间为(ln 2,)+∞,单调减区间为(,ln 2)-∞.(2)1[0,]2e -. 【解析】试题分析:(1)求出函数的导数()2xh x e '=-,解关于导函数的不等式,求出函数的单调区间即可;(2)函数的导数,通过讨论m 的范围得到函数的值域,从而确定m 的具体范围即可. 试题(1)()()()()21,2xxh x f x g x e x h x e =-=--=-'.由()0h x '>得ln2x >,由()0h x '<得ln2x <.所以函数()h x 的单调增区间为()ln2,+∞,单调减区间为(),ln2-∞.(2)()xf x e e '=-.当1x <时,()0f x '<,所以()f x 在区间(),1-∞上单调递减; 当1x >时,()0f x '>,所以()f x 在区间()1,+∞上单调递增.1° 当1m ≤时,()f x 在(],m -∞上单调递减,值域为)1,m e em ⎡--+∞⎣,()()2g x e x =-在(),m +∞上单调递减,值域为()(),2e m -∞-,因为()F x 的值域为R ,所以()12me em e m --≤-,即210m e m --≤.(*)由(1)可知当0m <时,()()2100mh m e m h =-->=,故(*)不成立.因为()h m 在()0,ln2上单调递减,在()ln2,1上单调递增,且()()00,130h h e ==-<, 所以当01m ≤≤时,()0h m ≤恒成立,因此01m ≤≤.2° 当1m >时,()f x 在(),1-∞上单调递减,在(]1,m 上单调递增,所以函数()1xf x e ex =--在(],m -∞上的值域为())1,f ⎡+∞⎣,即[)1,-+∞.()()2g x e x =-在(m ,+∞)上单调递减,值域为()(),2e m -∞-.因为()F x 的值域为R ,所以()12e m -≤-,即112m e <≤-. 综合1°,2°可知,实数m 的取值范围是10,2e ⎡⎤⎢⎥-⎣⎦. 23.(1)应设计BC 长为74米,电热丝辐射的总热量最大,最大值为92单位.(2)应设计BC 【解析】试题分析:(1)取角为自变量: 设∠AOB =θ,分别表示AB ,BC ,CD,根据题意得函数4cos θ+4 sin2θ,利用二倍角余弦公式得关于sin 2θ二次函数 ,根据二次函数对称轴与定义区间位置关系求最值(2)取角为自变量: 设∠AOB =θ,利用弧长公式表示,AB CD ,得函数2θ+4cos θ,利用导数求函数单调性,并确定最值 试题解:(1)设∠AOB =θ,θ∈(0,)则AB =2sin ,BC =2cos θ, 总热量单位f (θ) =4cos θ+4 sin =-8(sin )2+4 sin +4,当sin =, 此时BC =2cos θ= (米),总热量最大 (单位) .答:应设计BC 长为米,电热丝辐射的总热量最大,最大值为单位. (2)总热量单位g (θ)=2θ+4cos θ,θ∈(0,)令g'(θ)=0,即2-4sin θ=0,θ=,增区间(0,),减区间(,) 当θ=,g (θ)最大,此时BC =2cos θ= (米)答:应设计BC 长为米,电热丝辐射的总热量最大.24.(1)存在,22m -≤≤;(2)①证明见解析;②证明见解析.【分析】(1)根据微积分基本定理求得()f x ,由()10f '=,求得参数a ;利用导数求函数的在区间上的最值,结合一次不等式在区间上恒成立问题,即可求得参数m 的范围; (2)①求得()F x ',利用导数求得()F x 的单调性,即可容易证明; ②由①中所求,可得12ln()11k k k +>++,利用对数运算,即可证明. 【详解】由题可知2()ln(1)(1)f x a x x =+++,∴()221af x x x '=+++. (1)由()01f '=,可得2202a++=,8a =-. 又当8a =-时,()()()2311x x f x x +'-=+,故()f x 在区间()0,1单调递减,在()1,+∞单调递增. 故函数()f x 在1x =处取得极值,所以8a =-.∵11e <-,82(1)(3)()2211x x f x x x x --+'=++=++.∴()0f x '>,当[]1,x e e ∈-时,由上述讨论可知,()f x 单调递增, 故2min ()(1)8f x f e e =-=-+不等式2214()m tm e f x ++-≤对任意[]1,x e e ∈-及[]1,1t ∈-恒成立, 即:22222min 14()148m tm e f x m tm e e ++-≤⇔++-≤-+,即:260m tm +-≤对[]1,1t ∈-恒成立,令2()6g t m mt =+-,(1)0g ⇒-≤,(1)0g ≤即260m m --≤,且260m m +-≤,整理得()()320m m -+≤,且()()320m m +-≤, 解得:22m -≤≤,即为所求.(2)①∵2()()(1)ln(1)F x f x x x x x =-+-=+-,∴()1xF x x-'=+ 当0x >时,()0F x '<,∴()F x 在(0,)+∞上单调递减,()(0)0F x F ∴<=即证.②由①可得:ln(1)(0)x x x +<> 令:11x k =+,得11ln(1)11k k +<++,即:12ln()11k k k +>++ ∴1112322ln ln ln 12(1)1221n n n n n n n n n n +++++⋅⋅⋅+>++⋅⋅⋅++++++++=ln 2 即证. 【点睛】本题考查由极值点求参数值,利用导数由恒成立问题求参数范围,以及利用导数证明不等式以及数列问题,属压轴题. 25.(1) y =800x +259200x +16 000,252≤x ≤16. (2) 当长为16 m ,宽为12.5 m 时,总造价y 最低,为45 000元. 【解析】试题分析:(1)先求面积,再乘以对应价格,求和得总造价,根据长、宽都不能超过16 m 要求确定定义域(2)利用导数可得函数为定义域上单调减函数,再根据单调性求最小值 试题解:(1)矩形平面图的两边长分别为x m , m ,根据题意,得解得≤x ≤16. y =×400+×248+16 000=800x ++16 000,≤x ≤16. (2)y ′=800-,当≤x ≤16时,y ′<0,函数在上为减函数,所以当长为16 m ,宽为12.5 m 时,总造价y 最低,为45 000元.26.(1)x =2f (x )的极大值点,x =2f (x )的极小值点;(2)详见解析. 【解析】 【分析】(1)利用导数求函数f(x)的极值点;(2)先求出()221()1(1)f x x ax x x '=-++,设g (x )=x 2-ax +1,对a 分类讨论求出函数的单调区间. 【详解】解:(1)f (x )的定义域为(0,+∞),当a =4时,f (x )=ln x +61x +, 2221641()(1)(1)x x f x x x x x -+'=-=++.令f ′(x )=0⇒x = 列表(2)()222121()1(1)(1)a f x x ax x x x x +'=-=-+++, 设g (x )=x 2-ax +1,∵x >0,∴①当a <0时,g (x )>0,f ′(x )>0在x ∈(0,+∞)上恒成立, 此时函数f (x )在区间(0,+∞)上单调递增;②当a >0时,222()1124a a g x x ax x ⎛⎫=-+=-+- ⎪⎝⎭.当1-24a ≥0,即0<a ≤2时,g (x )>0,f ′(x )>0在x ∈(0,+∞)上恒成立,此时函数f (x )在区间(0,+∞)上单调递增;当a >2时,方程g (x )=0的两根分别为12x x ==0<x 1<x 2,∴当x ∈(0,x 1)时,g (x )>0,f ′(x )>0,故函数f (x )在(0,x 1)上单调递增; 当x ∈(x 1,x 2)时,g (x )<0,f ′(x )<0,故函数f (x )在(x 1,x 2)上单调递减; 当x ∈(x 2,+∞)时,g (x )>0,f ′(x )>0,故函数f (x )在(x 2,+∞)上单调递增. 综上所述,当a ≤2时,函数f (x )的单调增区间为(0) ,+,没有减区间;当a >2时,函数f (x )的减区间为12()x x ,;增区间为(0,x 1),(x 2,+∞). 【点睛】本题主要考查利用导数求函数的极值点,考查利用导数求函数的单调区间,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.。

(必考题)高中数学高中数学选修2-2第四章《定积分》测试题(答案解析)

(必考题)高中数学高中数学选修2-2第四章《定积分》测试题(答案解析)

一、选择题1.给出下列函数:①()()2ln 1f x x x =+-;②()3cos f x x x =;③()xf x e x =+.0a ∃>使得()0aaf x dx -=⎰的函数是( )A .①②B .①③C .②③D .①②③2.已知71()x x +展开式中,5x 的系数为a ,则62axdx =⎰( )A .10B .11C .12D .133.如图,由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是( )A .1B .23C .43D .24.已知函数()2ln 2f x mx x x =+-在定义域内存在单调递减区间,则实数m 的取值范围是( ) A .12m ≥B .12m < C .1m ≥ D .1m < 5.3侧面与底面所成的角是45︒,则该正四棱锥的体积是( ) A .23B .43C .23D .236.22221231111,,,x S x dx S dx S e dx x ===⎰⎰⎰若 ,则s 1,s 2,s 3的大小关系为( )A .s 1<s 2<s 3B .s 2<s 1<s 3C .s 2<s 3<s 1D .s 3<s 2<s 17.曲线3y x =在点()1,1处的切线与x 轴、直线2x =所围成的三角形的面积为( ) A .83B .73C .53D .438.已知1(1)1x f x x e ++=-+,则函数()f x 在点(0,(0))f 处的切线l 与坐标轴围成的三角形的面积为 A .14 B .12C .1D .29.一物体在力(单位:N)的作用下沿与力相同的方向,从x=0处运动到(单位:)处,则力做的功为( ).A .44B .46C .48D .50 10.已知10(31)()0ax x b dx ,,a b ∈R ,则⋅a b 的取值范围为( )A .1,9B .1,1,9C .1,[1,)9D .()1,+∞11.定义{},,min ,,,a ab a b b a b ≤⎧=⎨>⎩设31()min ,f x x x ⎧⎫=⎨⎬⎩⎭,则由函数()f x 的图象与x 轴、直线4x =所围成的封闭图形的面积( ) A .12ln 26+ B .12ln 24+ C .1ln 24+ D .1ln 26+ 12.某几何体的三视图如图所示,则该几何体的体积为( )A .4B .2C .43D .23二、填空题13.若112lim 22n nn n n t t +-→+∞-=+ ,则实数t 的取值范围是_____________.14.曲线,,0x y e y e x ===围成的图形的面积S =______15.曲线()sin 0πy x x =≤≤与x 轴围成的封闭区域的面积为__________. 16.已知函数()323232t f x x x x t =-++在区间()0,∞+上既有极大值又有极小值,则实数t 的取值范围是__________. 17.定积分()12xx e dx +=⎰__________.18.曲线2y x =与直线230x y --=所围成的平面图形的面积为________.19.二项式33()6a x -的展开式的第二项的系数为,则的值为______.20.若,则的值是__________.三、解答题21.已知二次函数()f x 满足(0)0f =,且对任意x 恒有(1)()22f x f x x +-=+. (1)求()f x 的解析式;(2)设函数()()'()g x f x f x λ=-,其中'()f x 为()f x 的导函数.若对任意[0,1]x ∈,函数()y g x =的图象恒在x 轴上方,求实数λ的取值范围.22.为了降低能源消耗,某冷库内部要建造可供使用20年的隔热层,每厘米厚的隔热层建造成本为4万元,又知该冷库每年的能源消耗费用c (单位:万元)与隔热层厚度x (单位:cm )满足关系()(010)25kc x x x =≤≤+,若不建隔热层,每年能源消耗为8万元.设()f x 为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及()f x 的表达式;(2)隔热层修建多厚时,总费用()f x 达到最小?并求最小值. 23.已知函数()32f x x ax =+图像上一点()1,P b 的切线斜率为3-,()()()3261302t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[]1,4x ∈-时,求()f x 的值域;(Ⅲ)当[]1,4x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围. 24.计算曲线223y x x =-+与直线3y x所围图形的面积.25.在(332x x11的展开式中任取一项,设所取项为有理项的概率为α,求1x α⎰d x26.已知()ln f x x x mx =+,2()3g x x ax =-+-(1)若函数()f x 在(1,)+∞上为单调函数,求实数m 的取值范围;(2)若当0m =时,对任意(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A【分析】利用定义判断①②中的函数为奇函数,根据奇函数和定积分的性质,判断①②;利用反证法,结合定积分的性质,判断③. 【详解】对①,()f x 的定义域为R1())))()f x x x x f x --===-=-即函数()f x 为奇函数,则0a ∃>使得()0aaf x dx -=⎰对②,()f x 的定义域为R33()cos()cos ()f x x x x x f x -=--=-=-,即函数()f x 为奇函数,则0a ∃>使得()0aaf x dx -=⎰对③,若0a ∃>,使得()0aaf x dx -=⎰成立则()2102aax x a aa a e x dx e x e e ---⎛⎫+=+- ⎪⎝==⎭⎰,解得0a =,与0a >矛盾,则③不满足 故选:A 【点睛】本题主要考查了定积分的性质以运用,属于中档题.2.D解析:D 【分析】利用二项式的通项公式求得7a =,从而求得762xdx ⎰的值.【详解】在71()x x +展开式中,得二项式的通项公式7721771rr r r r r T C x C x x --+⎛⎫== ⎪⎝⎭,令725r -=,解得1r =,所以5x 的系数为177C =,即7a =.所以7267662213axdx xdx x ===⎰⎰.故选:D 【点睛】本题主要考查二项式展开式的通项公式,求展开式中某项的系数,二项式系数的性质,求定积分的值,属于中档题.3.D解析:D 【解析】由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是122201(1)(1)S x dx x dx =---⎰⎰31320111281()|()|2133333x x x x -+-=+--+ 4.B解析:B【解析】求导函数,可得()1'220f x mx x x=+->,,函数()2ln 2f x mx x x =+-在定义域内是增函数,所以()'0f x < 成立,即1220(0)mx x x+-<>恒成立,所以21211m x ⎛⎫->-- ⎪⎝⎭,所以21m ->-,所以12m < 时,函数()f x 在定义域内是增函数.故选B .5.B解析:B 【解析】设底面边长为a ,依据题设可得棱锥的高2ah =,底面中心到顶点的距离2d =,由勾股定理可得2221()()22a a +=,解之得2a =,所以正四棱锥的体积21242323V =⨯⨯=,故应选答案B .6.B解析:B 【解析】3221321322217ln |ln 2||,.11133x S x S x S e e e S S S ==<==<==-∴<<选B.考点:此题主要考查定积分、比较大小,考查逻辑推理能力.7.A解析:A 【解析】 试题分析:()'323x x=,所以切线方程为13(1),32y x y x -=-=-,所以切线与x 轴、直线2x =所围成的三角形的面积()2238323S x dx =-=⎰.考点:1、切线方程;2、定积分.【易错点晴】本题易错点有三个,一个是切线方程,错解为看成过()1,1的切线方程;第二个错误是看成与y 轴围成的面积,()()22320328103232333S x dx x dx =--+-=+=⎰⎰;第三个是没有将切线与x 轴的交点求出来,导致没有办法解决题目.切线的常见问题有两种,一种是已知切点求切线方程;另一种是已知切线过一点求切线方程,两种题目都需要我们认真掌握.8.A解析:A 【解析】试题分析:由1(1)1x f x x e ++=-+知()2x f x x e =-+,则()1(0)2x f x e f ''=+⇒=,而(0)1f =-,即切点坐标为()0,1-,切线斜率(0=2k f '=),则切线()():12021l y x y x --=-⇒=-,切线l 与坐标轴的交点分别为1,02⎛⎫⎪⎝⎭和()0,1-,则切线l 与坐标轴围成的三角形的面积为1111224S =⋅⋅-= 考点:函数在某点处的切线9.B解析:B 【解析】由定积分的物理意义,得,即力做的功为46.考点:定积分的物理意义.10.C解析:C 【分析】本题可以先根据定积分的运算法则建立a 与b 的等量关系,然后设abt ,则312t a b,再然后根据构造法得出a 、b 为方程23102t xx t 的根,最后根据判别式即可得出结果. 【详解】112(31)()(33)ax x b dx ax abx x b dx 1223331()02222abx x ab ax bx a b =+++=+++=,即3210ab a b,设ab t ,则312t a b,a 、b 为方程23102t xx t 的根,有231402t t ,解得19t 或1t ≥, 所以1,[1,)9a b ,故选C .【点睛】本题考查定积分的运算法则以及构造法,能否根据被积函数的解析式得出原函数的解析式是解决本题的关键,考查韦达定理的使用,是中档题.11.B解析:B 【解析】由31x x=,得1x =±,则图象的交点为(1,1)--,(1,1) ∵()31min ,f x x x ⎧⎫=⎨⎬⎩⎭∴根据对称性可得函数()f x 的图象与x 轴、直线4x =所围成的封闭图形的面积为143401141111|ln |ln 42ln 201444x dx dx x x x +=+=+=+⎰⎰ 故选B12.D解析:D 【分析】根据三视图可得到该几何体的直观图,进而可求出该几何体的体积. 【详解】根据三视图可知该几何体为四棱锥E ABCD -,四边形ABCD 是边长为1的正方形,BE ⊥平面ABCD ,2BE =,则四棱锥E ABCD -的体积为1233ABCD V S BE =⋅=. 故选D.【点睛】本题考查了三视图,考查了四锥体的体积的计算,考查了学生的空间想象能力,属于基础题.二、填空题13.【分析】利用数列的极限的运算法则转化求解即可【详解】解:当|t|≥2时可得可得t =﹣2当|t|<2时可得:综上可得:实数t 的取值范围是:﹣22)故答案为﹣22)【点睛】本题考查数列的极限的运算法则的 解析:[)2,2-【分析】利用数列的极限的运算法则,转化求解即可. 【详解】解:当|t |≥2时,n+1nn n-1n 2-t lim =22+t→∞,可得2n 22()11t lim 2121n t t t→∞⨯--==⎛⎫+ ⎪⎝⎭ ,可得t =﹣2. 当|t |<2时,n+1nn n-1n 2-t lim =22+t→∞可得: 22()2lim 211?()2n n tt t →∞+=+ , 综上可得:实数t 的取值范围是:[﹣2,2). 故答案为[﹣2,2). 【点睛】本题考查数列的极限的运算法则的应用,考查计算能力.14.【解析】【分析】先求出两曲线的交点再由面积与定积分的关系利用定积分即可求解【详解】由题意令解得交点坐标为所以曲线围成的图形的面积【点睛】本题主要考查了利用定积分求解曲边形的面积其中解答中根据题设中的 解析:1【解析】 【分析】先求出两曲线,x y e y e ==的交点,再由面积与定积分的关系,利用定积分即可求解. 【详解】由题意,令x y ey e=⎧⎨=⎩,解得交点坐标为(1,)e , 所以曲线,,0xy e y e x ===围成的图形的面积110()()|1x xS e e dx ex e =-=-=⎰.【点睛】本题主要考查了利用定积分求解曲边形的面积,其中解答中根据题设中的条件建立面积的积分表达式,利用定积分的计算准确求解是解答的关键,着重考查了运算与求解能力,属于基础题.15.2【解析】与轴所围成的封闭区域的面积故答案为2解析:2 【解析】sin (0π)y x x =≤≤与x 轴所围成的封闭区域的面积ππsin d cos cos πcos020S x x x==-=-+=⎰,故答案为2.16.【解析】由题意可得在有两个不等根即在有两个不等根所以解得填解析:90,8⎛⎫⎪⎝⎭【解析】2()32f x tx x -'=+,由题意可得()0f x '=在()0,+∞有两个不等根,即2320tx x -+=在()0,+∞有两个不等根,所以302980tt ⎧>⎪⎨⎪∆=->⎩,解得908t <<,填90,8⎛⎫⎪⎝⎭ 17.e 【解析】点睛:1求曲边图形面积的方法与步骤(1)画图并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围从而确定积分的上下限;(3)确定被积函数;(4)求出各曲边梯形的面积和即各积分解析:e 【解析】1212120(2)()|(1)(0)x x x e dx x e e e e +=+=+-+=⎰. 点睛:1.求曲边图形面积的方法与步骤 (1)画图,并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围,从而确定积分的上、下限; (3)确定被积函数;(4)求出各曲边梯形的面积和,即各积分的绝对值的和.2.利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的边界不同时,要分不同情况讨论.18.【解析】试题分析:联立交点所以围成的图形为直线的左上方和曲线所围成的区域面积为考点:1定积分的应用---求曲边梯形的面积;2微积分基本定理【方法点晴】求曲边梯形的步骤:①画出草图在直角坐标系中画出直 解析:323【解析】 试题分析:联立2{230y x x y =--=,交点(1,1)A -,(9,3)B ,所以围成的图形为直线的左上方和曲线所围成的区域,面积为322332111132(23)(3)|(399)(13)333S y y dy y y y --=+-=+-=+---+=⎰.考点:1.定积分的应用---求曲边梯形的面积;2.微积分基本定理.【方法点晴】求曲边梯形的步骤:①画出草图,在直角坐标系中画出直线或曲线的大致图象;②联立方程,求出交点坐标,确定积分的上、下限;③把曲边梯形的面积表示为若干个定积分的和;④计算定积分,写出答案.由于本题中,若对x 进行定积分,2,y x y x ==±,有些麻烦,这里就转化为对y 进行定积分,要容易很多.19.或【解析】试题分析:展开后第二项系数为时时考点:1定积分;2二项式定理解析:3或73【解析】试题分析:展开后第二项系数为233122a a -=-∴=±,1a =时3121|33x -==,1a =-时 31217|33x --== 考点:1.定积分;2.二项式定理20.2【解析】试题分析:∵易得故答案为考点:定积分的计算解析:2 【解析】 试题分析:∵,易得,故答案为.考点:定积分的计算.三、解答题21.(1)()2f x x x =+;(2){|0}λλ<【解析】分析:(1)设2()f x ax bx c =++,代入已知,由恒等式知识可求得,,a b c ; (2)由(1)得()g x ,题意说明()0<g x 在[0,1]x ∈上恒成立,由分离参数法得221x x x λ+<+,问题转化为求22([0,1])21x x x x +∈+的最小值. 详解:(1)设()()20f x ax bx c a =++≠,()00f =,0c ∴=. 于是()()()()22111f x f x a x b x ax bx +-=+++--222ax a b x =++=+.解得1a =,1b =.所以()2f x x x =+. (2)由已知得()()221g x x x x λ=+-+ 0>在[]0,1x ∈上恒成立. 即221x x x λ+<+在[]0,1x ∈上恒成立. 令()221x x h x x +=+,[]0,1x ∈ 可得()()()()()22222212221'02121x x x x x h x x x +-+++==>++. ∴函数()h x 在[]0,1单调递增,∴ ()()min 00h x h ==.∴ λ的取值范围是{|0}λλ<.点睛:本题考查用导数研究不等式恒成立问题,不等式恒成立问题通常伴随着考查转化与化归思想,例如常用分离参数法化为()()g h x λ≤,这样只要求得()h x 的最小值min ()h x ,然后再解min ()()g h x λ≤,即得λ范围.22.(1)800()4(010)25f x x x x =+≤≤+;(2)当隔热层修建7.5cm 厚时,总费用最小,最小费用70万元.【解析】试题分析:(I )根据c (0)=8计算k ,从而得出f (x )的解析式;(II )利用基本不等式得出f (x )的最小值及等号成立的条件.试题(1)当0x =时,()085k c ==,∴40k =. 由题意知,()4020425f x x x ⨯=++,即()()800401025f x x x x =+≤≤+. (2)∵()()800401025f x x x x =+≤≤+∴()()21600'425f x x -=++,令()'0f x =,即()242516000x +-=, ∴7.5x =. 当[)0,7.5x ∈时,()'0f x <,当(]7.5,10x ∈时,()'0f x >,当7.5x =时,()f x 取得最小值. ()min 80047.57027.55f x =⨯+=⨯+. 所以,当隔热层修建7.5cm 厚时,总费用最小,最小费用70万元. 23.(Ⅰ)3a=-,2b =-;(Ⅱ)[]4,16-;(Ⅲ)124t ≤≤ 【解析】试题分析:(Ⅰ)由导函数研究原函数切线的方法得到关于实数a,b 的方程组,求解方程组可得3a =-,2b =-;(Ⅱ)将不等式恒成立的问题分类讨论可得实数t的取值范围是124t ≤≤+ 试题(Ⅰ)()232f x x ax '=+ ∴()1323f a =+=-' ∴3a =- ∴()323f x x x =-因为()113f b =-= ∴2b =- (Ⅱ)由(Ⅰ)得()323f x x x =- ∴()236f x x x '=- 令()0f x '= 解得120,2x x ==()()()()14,00,24,416f f f f -=-==-=∴()f x 的值域是[]4,16- (Ⅲ)因为[]1,4x ∈时,不等式()()f x g x ≤恒成立∴()22160tx t x -++≥在[]1,4上恒成立,令()()2216h x tx t x =-++ 对称轴为1t x t +=因为0t >∴11t x t+=> ∴()21441240t t t t +⎧<⎪⎨⎪∆=+-≤⎩或()()144168160t t h t t +⎧≥⎪⎨⎪=-++≥⎩ 解得:t的取值范围为124t ≤≤+ 24.92. 【解析】【详解】试题分析:利用定积分计算曲线所围成面积,先画出图象,再找到图象交点的横坐标,然后写出定积分式子,注意被积函数为上方的图象对应的函数减图象在下方的函数. 试题由23{23y x y x x =+=-+解得03x x ==及.从而所求图形的面积332200[(3)(23)](3)S x x x dx x x dx =+--+=-+⎰⎰3230139=|322x x ⎛⎫-+= ⎪⎝⎭. 考点:定积分. 25.67 【分析】 先求()332x x -11展开式的通项公式,其中有2项有理项,确定概率1α6=,根据定积分的计算法则,先求出被积函数x α的原函数,再分别将积分上下限代入求差,即可求出结果.【详解】解:T r +1=11r C ·(3x )11-r ·()32x -r =11r C ·311-r ·(-2)r ·,r =0,1,…,11,共12项其中只有第4项和第10项是有理项,故所求概率为21α126==. 111716600066=|=77x dx x dx x α∴=⎰⎰ 【点睛】本题考查利用二项展开式的通项公式解决二项式展开式的特定项问题、考查古典概型的概率公式,考查定积分的计算.解题关键是熟练应用二项式展开式的通项公式,找出符合条件的项数.26.(1)1m ≤-;(2)4a ≤.【解析】试题分析:(1)求导,利用导数对t 的范围进行分类讨论求最值.(2)本小题实质是22ln 3x x x ax ≥-+-在()0,x ∈+∞上恒成立,进一步转化为3 2ln a x x x ≤++在()0,x ∈+∞上恒成立,然后构造函数()32ln (0)h x x x x x=++>利用导数研究h(x)的最小值即可.注意不要忽略x>0的条件,导致求导数的方程时产生增根. 试题(1)()f x 定义域为()0,+∞,()()ln 1f x x m '=++,因为()f x 在()1,+∞上为单调函数,则方程()ln 10x m ++=在()1,+∞上无实根. 故10m +≥,则1m ≤-.(2)22ln 3x x x ax ≥-+-,则32ln a x x x ≤++,对一切()0,x ∈+∞恒成立. 设()32ln (0)h x x x x x =++>,则()()()231'x x h x x +-=, 当()()()0,1,'0,x h x h x ∈<单调递减,当()()()1,,'0,x h x h x ∈+∞>单调递增.()h x 在()0,+∞上,有唯一极小值()1h ,即为最小值.所以()()min 14h x h ==,因为对任意()()()0,,2x f x g x ∈+∞≥恒成成立,故4a ≤.点睛:利用导数解决不等式恒成立问题的“两种”常用方法(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,f(x)≥a 恒成立,只需f(x)min≥a 即可;f(x)≤a 恒成立,只需f(x)max≤a 即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.。

深圳市桂园中学高中数学选修2-2第四章《定积分》测试卷(有答案解析)

深圳市桂园中学高中数学选修2-2第四章《定积分》测试卷(有答案解析)

一、选择题1.由曲线22y x =和直线4y x =-所围成的图形的面积( )A .18B .19C .20D .212.已知函数sin (11)()1(12)x x f x x x-≤≤⎧⎪=⎨<≤⎪⎩,则21()f x dx -=⎰( )A .ln 2B .ln 2-C .12-D .3cos 1-3.222024xdx x dx +-=⎰⎰( )A .2π B .12π+ C .4π D .π4.4片叶子由曲线2||y x =与曲线2||y x =围成,则每片叶子的面积为() A .16B .36C .13D .235.若函数()32nxf x x x =++在点()1,6M 处切线的斜率为33ln3+,则n 的值是( ) A .1 B .2 C .4 D .36.已知二次函数()y f x =的图象如图所示,则它与x 轴所围图形的面积为:A .2π5B .32C .43D .π27.曲线x y e =在点(0,1)处的切线与坐标轴所围三角形的面积为( ) A .12B .1C .2D .3 8.已知函数f(x)=x 2+1的定义域为[a,b](a<b),值域为[1,5],则在平面直角坐标系内,点(a,b)的运动轨迹与两坐标轴围成的图形的面积为( ) A .8 B .6 C .4 D .29.由直线,1y x y x ==-+,及x轴所围成平面图形的面积为 ( ) A .()11y y dy ⎡⎤--⎣⎦⎰B .()121x x dx ⎡⎤-+-⎣⎦⎰C .()121y y dy ⎡⎤--⎣⎦⎰D .()11x x dx ⎡⎤--+⎣⎦⎰10.由直线y= x - 4,曲线y =x 轴所围成的图形面积为( )A .15B .13C .252D .40311.函数()2,02x x f x x -<⎧=≤≤,则22()f x dx -⎰的值为( )A .6π+B .2π-C .2πD .812.若函数31()log ()(01)(,0)3a f x x ax a a 且在区间=->≠-内单调递增,则实数a 的取值范围是( ). A .2[,1)3B .1[,1)3C .1[,1)(1,3]3D .(1,3]二、填空题13.直线x =0、直线y =e +1与曲线y =e x +1围成的图形的面积为_____.14.质点运动的速度()2183/v t t m s =-,则质点由开始运动到停止运动所走过的路程是______. 15.已知12e a dx x=⎰,则()()41x x a ++展开式中3x 的系数为______. 16.由曲线sin .cos y x y x ==与直线0,2x x π==所围成的平面图形的面积是______.17.定积分2211x dx x +=⎰ __________.18.若二项式621x x ⎫+⎪⎪⎝⎭的展开式中的常数项为m ,则21mx dx =⎰__________. 19.已知等差数列{}n a 中, 225701a a x dx +=-⎰,则468a a a ++=__________.20.ππ(sin )d x x x -+=⎰________.三、解答题21.已知函数2()ln f x x a x =-(a R ∈),()F x bx =(b R ∈). (1)讨论()f x 的单调性;(2)设2a =,()()()g x f x F x =+,若12,x x (120x x <<)是()g x 的两个零点,且1202x x x +=,试问曲线()y g x =在点0x 处的切线能否与x 轴平行?请说明理由. 22.已知函数32()f x x mx nx =++(,m n R ∈)(1)若()f x 在1x =处取得极大值,求实数m 的取值范围;(2)若'(1)0f =,且过点(0,1)P 有且只有两条直线与曲线()y f x =相切,求实数m 的值. 23.已知()xkx bf x e +=. (Ⅰ)若()f x 在0x =处的切线方程为1y x =+,求k 与b 的值; (Ⅱ)求1x xdx e ⎰. 24.已知曲线sin y x =和直线0,x x π==及0y =所围成图形的面积为0S . (1)求0S .(2)求所围成图形绕ox 轴旋转所成旋转体的体积. 25.已知函数()121f x x x a =+--+ (1)当0a =时,解不等式()0f x ≥;(2)若二次函数2814y x x =-+-的图象在函数()y f x = 的图象下方,求a 的取值范围·26.已知()ln f x x x mx =+,2()3g x x ax =-+-(1)若函数()f x 在(1,)+∞上为单调函数,求实数m 的取值范围;(2)若当0m =时,对任意(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】画出两曲线的图像,求得交点坐标,由定积分求得图形的面积即可. 【详解】根据题意,画出量曲线的图像,设其交点为,A B ,如下所示:联立22y x =和4y x =-, 解得()()2,2,8,4A B -, 根据抛物线的对称性, 即可得两曲线围成的面积28222d (24)d S x x x x x =++⎰⎰23022021622d 2233x x x ⎛⎫⎰== ⎪⎝⎭ 82(24)d x x x +⎰83222212432x x x ⎫=-+⎪⎭322212884832⎫=⨯-⨯+⨯⎪⎭322213822242323⎫-⨯-⨯+⨯=⎪⎭故所求面积为28222d (24)d x x x x x ++⎰⎰163833=+ 18=.故选:A. 【点睛】本题考查由定积分求解曲边梯形的面积,需要注意的是,本题中需要对曲边梯形的面积进行拆分求解,这是本题的难点.2.A解析:A【分析】将所求积分分成两段来进行求解,根据积分运算法则可求得结果. 【详解】()21212111111sin cos ln cos1cos1ln 2ln1ln 2f x dx xdx dx x x x ---=+=-+=-++-=⎰⎰⎰ 故选:A 【点睛】本题考查积分的计算问题,关键是能够按照分段函数的形式将所求积分进行分段求解.3.A解析:A 【分析】分别根据积分的运算法则和几何意义求得两个积分的值,进而得到结果. 【详解】22200112xdx x ==⎰ 2224x dx -⎰表示下图所示的阴影部分的面积S2OA =,2OC =4AOC π∴∠=12221422S ππ∴=⨯-=- 2220241122x dx ππ+-∴=+-=⎰故选:A 【点睛】本题考查积分的求解问题,涉及到积分的运算法则和几何意义的应用.4.C解析:C 【分析】先计算图像交点,再利用定积分计算面积. 【详解】 如图所示:由2y x y x ⎧=⎪⎨=⎪⎩0,0,x y =⎧⎨=⎩11x y =⎧⎨=⎩, 根据图形的对称性,可得每片叶子的面积为)13023210211d 333x x x x x ⎛⎫⎰=-= ⎪⎝⎭.故答案选C 【点睛】本题考查定积分的应用,考查运算求解能力5.A解析:A【解析】由题意,得()13ln32n x f x nx-=++', ()13ln3233ln3f n =++=+',所以1n =;故选A.6.C解析:C 【解析】试题分析:由图像可知函数解析式为()21f x x =-+∴由定积分的几何意义可知面积()12311111141|113333S x dx x x --⎛⎫⎛⎫⎛⎫=-+=-+=---=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰ 考点:定积分及其几何意义7.A解析:A 【解析】试题分析:'0xxy e y e x =∴=∴=时'11y k =∴=,直线方程为1y x =+,与两坐标轴交点为()()1,0,0,1-,所以三角形面积为12考点:导数的几何意义及直线方程8.C解析:C 【解析】由函数的图像可知,需满足或,所以点的运动轨迹与两坐标轴围成的图形是边长为2的正方形,其面积为4.9.C解析:C 【解析】如图,由直线y=x ,y=−x+1,及x 轴围成平面图形是红色的部分,它和图中蓝色部分的面积相同,∵蓝色部分的面积()121S x x dx ⎡⎤=--⎣⎦⎰,即()121y y dy ⎡⎤--⎣⎦⎰.本题选择C 选项.10.D解析:D 【详解】根据题意,画出如图所示:由直线4y x =-,,曲线2y x =以及x 轴所围成的面积为:0424848221402(24)(4)042322xdx x x dx x x x x ⎰+⎰-+=+-+=.故选D.11.A解析:A 【分析】 先求出22()f x dx -=⎰2264x dx +-⎰,再求出2204x dx π-=⎰即得解.【详解】 由题得2022220222201()(2)4(2)|42f x dx x dx x dx x x x dx ---=-+-=-+-⎰⎰⎰⎰22064x dx =+-⎰,设24(02,0)y x x y =-<≤≥,所以22+4x y =,所以24(02,0)y x x y =-<≤≥表示圆22+4x y =在第一象限的部分(包含与坐标轴的交点),其面积为14=4ππ⨯⨯.所以0π=⎰.所以22()6f x dx π-=+⎰.故选:A 【点睛】本题主要考查定积分的计算,意在考查学生对这些知识的理解掌握水平.12.B解析:B 【解析】由题意得0y '≥1,03⎛⎫- ⎪⎝⎭在区间恒成立,即210(3)ln x a a ≥-1,03⎛⎫- ⎪⎝⎭在区间恒成立, 当1a > 时2min (3)0a x a <⇒≤ ,舍;当01a << 时2min 111(3)3=1933a x a a ,>⇒≥⨯∴≤< ,选B.点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间[,]a b 上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.二、填空题13.1【分析】如图所示:计算交点为计算积分得到面积【详解】依题意令e+1=ex+1得x =1所以直线x =0y =e+1与曲线y =ex+1围成的区域的面积为S 故答案为:1【点睛】本题考查了利用积分求面积意在考解析:1 【分析】如图所示:计算交点为()1,1e +计算积分()()111xe e dx ⎡⎤+-+⎣⎦⎰得到面积.【详解】依题意,令e +1=e x +1,得x =1,所以直线x =0,y =e +1与曲线y =e x +1围成的区域的面积为S ()()()1111110xx xe e dx e e dx ex e ⎡⎤=⎰+-+=⎰-=-=⎣⎦故答案为:1【点睛】本题考查了利用积分求面积,意在考查学生的计算能力.14.108m 【分析】令速度为0求出t 的值0和6求出速度函数在上的定积分即可【详解】由得或当时质点运动的路程为故答案为:108m 【点睛】本题主要考查了定积分定积分在物理中的应用属于中档题解析:108m. 【分析】令速度为0求出t 的值 0和6,求出速度函数在[0,6]上的定积分即可. 【详解】由21830t t -=,得0t =或6t =,当[0,6]t ∈时,质点运动的路程为()()662233201839696108S t t dt t t=-=-=-+⨯=⎰,故答案为:108m 【点睛】本题主要考查了定积分,定积分在物理中的应用,属于中档题.15.32【分析】由定积分求出实数的值再利用二项式展开式的通项公式求解即可【详解】解:因为==2由展开式的通项为=即展开式中的系数为+=32故答案为32【点睛】本题考查了二项式展开式的通项公式属基础题解析:32 【分析】由定积分求出实数a 的值,再利用二项式展开式的通项公式求解即可. 【详解】 解:因为12ea dx x=⎰=2ln x e 1| =2, 由()42x +展开式的通项为1r T +=r4C 42r r x - ,即()()412x x ++展开式中3x 的系数为24C 22⨯+14C 2⨯ =32,故答案为32.【点睛】本题考查了二项式展开式的通项公式,属基础题.16.【分析】三角函数的对称性可得S=2求定积分可得【详解】由三角函数的对称性和题意可得S=2=2(sinx+cosx )=2(+)﹣2(0+1)=2﹣2故答案为2﹣2【点睛】本题考查三角函数的对称性和定积 解析:222-【分析】三角函数的对称性可得S=2()4cosx sinx dx π-⎰,求定积分可得.【详解】由三角函数的对称性和题意可得S=2()4cosx sinx dx π-⎰=2(sinx+cosx )40|π=2(22+22)﹣2(0+1)=22﹣2 故答案为22﹣2【点睛】本题考查三角函数的对称性和定积分求面积,属基础题.17.【解析】分析:先化简再求定积分得解详解:由题得=所以故填点睛:本题必须要先化简再求定积分因为不化简无法找到原函数解析:3ln 22+【解析】分析:先化简2211x dx x +⎰,再求定积分得解. 详解:由题得2211x dx x +⎰=12222111111()(ln )|(ln 22)(ln11)222x dx x x x +=+=+⨯-+⨯⎰. 所以2211x dx x +⎰ 322ln =+. 故填3ln22+.点睛:本题必须要先化简再求定积分,因为不化简,无法找到原函数.18.【详解】二项式的展开式的通项为令所以常数项为二项式的展开式中的常数项为则故答案为【方法点晴】本题主要考查二项展开式定理的通项与系数属于简单题二项展开式定理的问题也是高考命题热点之一关于二项式定理的命 解析:263【详解】二项式6215x x ⎛⎫+ ⎪ ⎪⎝⎭的展开式的通项为616123r rrr T C x -+-=⎝⎭,令1234r r -⇒= 所以常数项为2642411153,5C x x ⎫⎛⎫⋅=⋅=⎪ ⎪⎪⎝⎭⎝⎭二项式621x x ⎫+⎪⎪⎝⎭的展开式中的常数项为3m =,则32233111126|33mx dx x dx x ===⎰⎰,故答案为263. 【方法点晴】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C rn r rr n T ab -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.19.3【解析】由题意得即则解析:3【解析】由题意,得()()()()21222221220101111||2x dx x dx xdx x x x x -=-+-=-+-=⎰⎰⎰,即57622a a a +==,则468633a a a a ++==.20.0【解析】试题分析:方法一:故填方法二:由于定积分性质可知对于奇函数若积分对应的区间关于原点对称那么积分的结果一定为(通过图像也可以判别)故填考点:定积分运算解析:0 【解析】试题分析:方法一:()()()222sin cos |cos cos 0222x x x x x dx x ππππππππ==-⎛⎫-⎛⎫⎛⎫ ⎪+=-=----= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰,故填0. 方法二:由于定积分性质可知,对于奇函数,若积分对应的区间关于原点对称,那么积分的结果一定为0(通过图像也可以判别),故填0. 考点:定积分运算.三、解答题21.(1)当0a ≤时,()0f x '>,()f x 在()0,+∞上单调递增,0()a f x 所以时,的单调减区间是,单调增区间是⎛⎫>+∞ ⎪ ⎪⎝⎭;(2)()y f x =在0x 处的切线不能平行于x 轴. 。

高中数学 专题1.5.3 定积分的概念测试(含解析)新人教A

高中数学 专题1.5.3 定积分的概念测试(含解析)新人教A

定积分的概念(时间:25分,满分50分)班级 姓名 得分 1.(5分)定积分ʃba f (x )d x 的大小( )A .与f (x )和积分区间[a ,b ]有关,与ξi 的取法无关B .与f (x )有关,与区间[a ,b ]以及ξi 的取法无关C .与f (x )以及ξi 的取法有关,与区间[a ,b ]无关D .与f (x )、积分区间[a ,b ]和ξi 的取法都有关 【答案】 A【解析】积分=∫f(x)df(x)=[f(x)]^2/2=[f(b)]^2/2-[f(a)]^2/2=(a^2-b^2)/2 2.(5分)下列命题不正确的是( ) A .若f (x )是连续的奇函数,则ʃa-a f (x )d x =0 B .若f (x )是连续的偶函数,则ʃa-a f (x )d x =2ʃa0f (x )d x C .若f (x )在[a ,b ]上连续且恒正,则ʃba f (x )d x >0D .若f (x ) 在[a ,b ]上连续且ʃba f (x )d x >0,则f (x )在[a ,b ]上恒正 【答案】 D3.(5分)已知()3156f x dx =⎰,则()A. ()2128f x dx =⎰ B. ()3228f x dx =⎰C.()21256f x dx =⎰D.()()231256f x dx f x dx +=⎰⎰【答案】D【解析】由y =f (x ),x =1,x =3及y =0的图象围成的曲边梯形可分拆成两个:由y =f (x ),x =1,x =2及y =0的图象围成的曲边梯形和由y =f (x ),x =2,x =3及y =0的图象围成的曲边梯形.∴()()()32311256f x dx f x dx f x dx =+=⎰⎰⎰,故选D.4.(5分)下列命题不正确的是( ) A .若f (x )是连续的奇函数,则()0aaf x dx -=⎰B .若f (x )是连续的偶函数,则()()02aaaf x dx f x dx -=⎰⎰C .若f (x )在[a ,b ]上连续且恒正,则()0baf x dx >⎰D .若f (x )在[a ,b )上连续且()0baf x dx >⎰,则f (x )在[a ,b )上恒正【答案】D5.(5分)设a =ʃ10x 13d x ,b =ʃ10x 2d x ,c =ʃ10x 3d x ,则a ,b ,c 的大小关系是( )A .c >a >bB .a >b >cC .a =b >cD .a >c >b【答案】 B【解析】 根据定积分的几何意义,易知ʃ10x 3d x <ʃ10x 2d x <ʃ10x 13d x ,a >b >c ,故选B.6.(5分)lim n →∞ln n+1n2+2n2+n n2等于( )A .ʃ21ln 2x d x B .2ʃ21ln x d x C .2ʃ21ln(1+x )d x D .ʃ21ln 2(1+x )d x【答案】 B【解析】 lim n →∞ln n1+1n21+2n2…1+n n2=lim n →∞2n ln ⎣⎢⎡⎦⎥⎤1+1n1+2n…1+n n=2lim n →∞ ∑ni =1ln 1+i n n =2ʃ21ln x d x (这里f (x )=ln x ,区间[1,2]或者2lim n →∞ ∑ni =1ln 1+in n=2ʃ10ln(1+x )d x ,区间[0,1]).7.(5分)由y =sin x ,x =0,x =-π,y =0所围成图形的面积写成定积分的形式是S =________. 【答案】 -ʃ0-πsin x d x【解析】 由定积分的意义知,由y =sin x ,x =0,x =-π,y =0围成图形的面积为S =-ʃ0-πsin x d x . 8.(5分)已知12013x dx =⎰,22173x dx =⎰,则()2201x dx +⎰=________.【答案】143【解析】∵220x dx ⎰=120x dx ⎰+221x dx ⎰=178333+=,2012dx =⎰, ∴()2201x dx +⎰=220x dx ⎰+208141233dx =+=⎰.9.(5分)用定积分的意义求下列各式的值:(1)ʃ30(2x +1)d x ;(2)⎰1-x 2d x .(2)由y =1-x 2可知,x 2+y 2=1(y ≥0)图象如图(2),由定积分的几何意义知⎰1-x 2d x 等于圆心角为120°的弓形CED 的面积与矩形ABCD 的面积之和.S 弓形=12×23π×12-12×1×1×sin 23π=π3-34,S 矩形=|AB |·|BC |=2×32×12=32,∴⎰1-x 2d x =π3-34+32=π3+34.10.(5分)弹簧在拉伸的过程中,力与伸长量成正比,即力F (x )=kx (k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所做的功.【解析】将物体用常力F 沿力的方向移动距离x ,则所做的功为W =F·x .其长度为()1i b i b bx n n n-⋅∆=-=. 把在分段0,b n ⎡⎤⎢⎥⎣⎦,2,b b n n ⎡⎤⎢⎥⎣⎦,…,()1,n b b b -⎡⎤⎢⎥⎣⎦上所做的功分别记作ΔW 1,ΔW 2,…,ΔW n . (2)近似代替: 由条件知,()()()111,2,,i i b i b b W F x k i n n n n --⎛⎫∆≈⋅∆=⋅⋅=⎪⎭⋯ ⎝. (3)求和:()()()222221111101211.22n nn i i i i b n n b kb kb kb W W k n nnn n n ==--⎛⎫≈∆=⋅⋅=++++-=⋅=-⎡⎤ ⎪⎣⎦⎝⋯⎭∑∑(4)取极限:2211lim lim lim 122nn i n n n i kb kb W W W n →+∞→+∞→+∞=⎛⎫==∆=-= ⎪⎝⎭∑. 所以得到弹簧从平衡位置拉长b 所做的功为22kb .。

(压轴题)高中数学高中数学选修2-2第四章《定积分》测试题(有答案解析)(1)

(压轴题)高中数学高中数学选修2-2第四章《定积分》测试题(有答案解析)(1)

一、选择题1.已知71()x x +展开式中,5x 的系数为a ,则62axdx =⎰( )A .10B .11C .12D .132.若函数()32nxf x x x =++在点()1,6M 处切线的斜率为33ln3+,则n 的值是( ) A .1 B .2 C .4 D .33.已知二次函数()y f x =的图象如图所示,则它与x 轴所围图形的面积为:A .2π5B .32C .43D .π24.已知函数f(x)=x 2+1的定义域为[a,b](a<b),值域为[1,5],则在平面直角坐标系内,点(a,b)的运动轨迹与两坐标轴围成的图形的面积为( ) A .8 B .6 C .4 D .25.324xdx -=⎰( )A .213 B .223 C .233 D .2536.由曲线2y x =与直线2y x =+所围成的平面图形的面积为( ) A .52 B .4 C .2 D .927.若在R 上可导,,则( )A .B .C .D .8.使函数()322912f x x x x a =-+-图象与x 轴恰有两个不同的交点,则实数a 可能的取值为( ) A .8B .6C .4D .29.设曲线e x y x =-及直线0y =所围成的封闭图形为区域D ,不等式组1102x y -≤≤⎧⎨≤≤⎩所确定的区域为E ,在区域E 内随机取一点,则该点落在区域D 内的概率为A .2e 2e 14e --B .2e 2e 4e -C .2e e 14e --D .2e 14e-10.由直线0,,2y x e y x ===及曲线2y x=所围成的封闭图形的面积为( ) A .3 B .32ln 2+C .223e -D .e11.()1211x dx --=⎰( )A .1B .4π C .2π D .π12.计算()122x x dx -⎰的结果为( )A .0B .1C .23D .53二、填空题13.()2208x x dx --=⎰______.14.由曲线2y x=,直线y =2x ,x =2所围成的封闭的图形面积为______. 15.如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为_________.16.计算由曲线22,4y x y x ==-所围成的封闭图形的面积S =__________. 17.在下列命题中 ①函数1()f x x=在定义域内为单调递减函数; ②已知定义在R 上周期为4的函数()f x 满足(2)(2)f x f x -=+,则()f x 一定为偶函数;③若()f x 为奇函数,则()2()(0)aaaf x dx f x dx a -=>⎰⎰;④已知函数32()(0)f x ax bx cx d a =+++≠,则0a b c ++=是()f x 有极值的充分不必要条件;⑤已知函数()sin f x x x =-,若0a b +>,则()()0f a f b +>. 其中正确命题的序号为___________________(写出所有正确命题的序号). 18.已知等差数列{}n a 中, 225701a a x dx +=-⎰,则468a a a ++=__________.19.()402sin cos 2x a x dx π-=-⎰,则实数a =____________. 20.曲线2y x 和曲线y x =围成一个叶形图(如图所示阴影部分),其面积是________.三、解答题21.为了降低能源消耗,某冷库内部要建造可供使用20年的隔热层,每厘米厚的隔热层建造成本为4万元,又知该冷库每年的能源消耗费用c (单位:万元)与隔热层厚度x (单位:cm )满足关系()(010)25kc x x x =≤≤+,若不建隔热层,每年能源消耗为8万元.设()f x 为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及()f x 的表达式;(2)隔热层修建多厚时,总费用()f x 达到最小?并求最小值. 22.已知2()2ln ,(0,]f x ax x x e =-∈ 其中e 是自然对数的底 . (1)若()f x 在1x = 处取得极值,求a 的值; (2)求()f x 的单调区间; 23.已知函数1()ln 2f x x x =-,(0,)x ∈+∞. (1)求函数()f x 的图象在点(2,(2))f 处的切线方程. (2)求函数()f x 的单调递增区间.24.已知函数f (x )=x 3-3ax+e ,g (x )=1-lnx ,其中e 为自然对数的底数.(I )若曲线y=f (x )在点(1,f (1))处的切线与直线l :x+2y=0垂直,求实数a 的值; (II )设函数F (x )=-x[g (x )+12x-2],若F (x )在区间(m,m+1)(m ∈Z )内存在唯一的极值点,求m 的值;(III )用max{m ,n}表示m ,n 中的较大者,记函数h (x )=max{f (x ),g (x )}(x>0). 若函数h (x )在(0,+∞)上恰有2个零点,求实数a 的取值范围. 25.已知函数()xf x xea -=-有两个零点1x , 2x .(1)求实数a 的取值范围; (2)求证: 122x x +>. 26.已知()xkx bf x e +=. (Ⅰ)若()f x 在0x =处的切线方程为1y x =+,求k 与b 的值;(Ⅱ)求1x xdx e ⎰.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用二项式的通项公式求得7a =,从而求得762xdx ⎰的值.【详解】在71()x x +展开式中,得二项式的通项公式7721771rr r r r r T C x C x x --+⎛⎫== ⎪⎝⎭, 令725r -=,解得1r =,所以5x 的系数为177C =,即7a =.所以7267662213axdx xdx x===⎰⎰.故选:D 【点睛】本题主要考查二项式展开式的通项公式,求展开式中某项的系数,二项式系数的性质,求定积分的值,属于中档题.2.A解析:A【解析】由题意,得()13ln32n x f x nx-=++', ()13ln3233ln3f n =++=+',所以1n =;故选A.3.C解析:C 【解析】试题分析:由图像可知函数解析式为()21f x x =-+∴由定积分的几何意义可知面积()12311111141|113333S x dx x x --⎛⎫⎛⎫⎛⎫=-+=-+=---=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰ 考点:定积分及其几何意义4.C解析:C 【解析】由函数的图像可知,需满足或,所以点的运动轨迹与两坐标轴围成的图形是边长为2的正方形,其面积为4.5.C解析:C【解析】试题分析:画出函数图象如下图所示,可知()()323222002882344489128333x dx x dx x dx ⎛⎫-=-+-=-+--+=⎪⎝⎭⎰⎰⎰.考点:定积分的几何意义.6.D解析:D 【解析】试题分析:由定积分的几何意义得,293122122132221=-+=-+=--⎰)(])[(x x x dx x x s ,故选D 。

(必考题)高中数学高中数学选修2-2第四章《定积分》测试题(含答案解析)

(必考题)高中数学高中数学选修2-2第四章《定积分》测试题(含答案解析)

一、选择题1.计算211x dx x ⎛⎫+ ⎪⎝⎭⎰的值为( )A .34B .3ln 22+ C .55ln 22+ D .3ln 2+2.设函数()f x 是R 上的奇函数, ()()f x f x π+=-,当02x π≤≤时,()cos 1f x x =-,则22x ππ-≤≤时, ()f x 的图象与x 轴所围成图形的面积为( )A .48π-B .24π-C .2π-D .36π-3.设若20lg ,0()3,0ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰,((1))1f f =,则a 的值是( ) A .-1 B .2 C .1 D .-24.设()2012a x dx =-⎰,则二项式6212a x x ⎛⎫+ ⎪⎝⎭的常数项是( )A .240B .240-C .60-D .605.由23y x =-和2y x =围成的封闭图形的面积是( ) A .23 B .923- C .323 D .3536.324xdx -=⎰( )A .213 B .223 C .233 D .2537.曲线3y x =在点()1,1处的切线与x 轴、直线2x =所围成的三角形的面积为( ) A .83B .73C .53D .438.若在R 上可导,,则( )A .B .C .D .9.121(1)x x dx --=⎰( )A .1π+B .1π-C .πD .2π 10.已知二次函数()y f x =的图像如图所示 ,则它与x 轴所围图形的面积为( )A .25π B .43C .32D .2π 11.已知402cos 2d t x x π=⎰,执行下面的程序框图,如果输入的,2a t b t ==,那么输出的n 的值为( )A .3B .4C .5D .612.某几何体的三视图如图所示,则该几何体的体积为( )A .4B .2C .43D .23二、填空题13.计算 121dx x--⎰=_____________. 14.由曲线2y x=与直线1y =x -及1x =所围成的封闭图形的面积为__________.15.12021sin x dx xdx π--=⎰⎰______16.曲线y=x 2与y=x 所围成的封闭图形的面积为______. 17.由3x π=-,3x π=,0y =,cos y x =四条曲线所围成的封闭图形的面积为__________.18.已知()[](]2,0,11,1,x x f x x e x⎧∈⎪=⎨∈⎪⎩(e 为自然对数的底数),则()e 0f x dx =⎰_________.19.1202x xdx -+=⎰__________20.定积分120124x x dx π⎛⎫-+- ⎪⎝⎭⎰的值______. 三、解答题21.已知函数f (x )=x 3+32x 2+mx 在x=1处有极小值, g (x )=f (x )﹣23x 3﹣34x 2+x ﹣alnx . (1)求函数f (x )的单调区间;(2)是否存在实数a ,对任意的x 1、x 2∈(0,+∞),且x 1≠x 2,有1212()()1g x g x x x ->-恒成立?若存在,求出a 的取值范围;若不存在,说明理由. 22. 求曲线2yx 和直线y x =所围成的平面图形绕x 轴旋转一周所得旋转体的体积.23.已知函数()1x f x e ex =--,其中e 为自然对数的底数,函数()(2)g x e x =-. (1)求函数()()()h x f x g x =-的单调区间;(2)若函数(),,()(),f x x m F x g x x m ≤⎧=⎨>⎩的值域为R ,求实数m 的取值范围. 24.已知函数f (x )=x 3-3ax+e ,g (x )=1-lnx ,其中e 为自然对数的底数.(I )若曲线y=f (x )在点(1,f (1))处的切线与直线l :x+2y=0垂直,求实数a 的值;(II )设函数F (x )=-x[g (x )+12x-2],若F (x )在区间(m,m+1)(m ∈Z )内存在唯一的极值点,求m 的值;(III )用max{m ,n}表示m ,n 中的较大者,记函数h (x )=max{f (x ),g (x )}(x>0). 若函数h (x )在(0,+∞)上恰有2个零点,求实数a 的取值范围. 25.已知函数()121f x x x a =+--+ (1)当0a =时,解不等式()0f x ≥;(2)若二次函数2814y x x =-+-的图象在函数()y f x = 的图象下方,求a 的取值范围·26.已知()[](]22122f x 1x 24x x x ⎧+∈-⎪=⎨+∈⎪⎩,,,,,求k 的值,使()3k40f x dx 3=⎰.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据牛顿莱布尼茨公式,即可代值求解. 【详解】根据牛顿莱布尼茨公式211x dx x ⎛⎫+ ⎪⎝⎭⎰2211()2x lnx =+1142122ln ln ⎛⎫=⨯+-+ ⎪⎝⎭ 322ln =+. 故选:B. 【点睛】本题考查牛顿莱布尼茨公式的直接应用,属基础题.2.A解析:A【解析】由题设()()()()2f x f x f x f x ππ+=-⇒+=,则函数()y f x =是周期为2π的奇函数,画出函数()[],0,2y f x x π=∈的图像,结合函数的图像可知:只要求出该函数(),0,2y f x x π⎡⎤=∈⎢⎥⎣⎦的图像与x 轴所围成的面积即可。

武汉市高中数学选修2-2第四章《定积分》测试(包含答案解析)

武汉市高中数学选修2-2第四章《定积分》测试(包含答案解析)

一、选择题1.直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为( )A.B.C .2D .42.已知)221a ex dx π-=⎰,若()201620121ax b b x b x -=++ 20162016b x ++(x R ∈),则12222b b + 201620162b ++的值为( ) A .1-B .0C .1D .e3.等比数列{}n a 中,36a =,前三项和3304S xdx =⎰,则公比q 的值为( )A .1-或12-B .1或12-C .12-D .14.曲线xy e =在点(0,1)处的切线与坐标轴所围三角形的面积为( ) A .12B .1C .2D .35.定积分2]x dx ⎰的值为( )A .24π- B .2π- C .22π- D .48π-6.)120d x x ⎰的值是( )A .π143- B .π14- C .π123- D .π12- 7.函数()325f x x x x =+-的单调递增区间为( ) A .5,3⎛⎫-∞-⎪⎝⎭和1,B .5,3⎛⎫-∞-⋃ ⎪⎝⎭1,C .(),1-∞-和5,3⎛⎫+∞ ⎪⎝⎭D .(),1-∞-⋃5,3⎛⎫+∞ ⎪⎝⎭8.设函数e ,10()1x x f x x ⎧-≤≤⎪=<≤,计算11()d f x x -⎰的值为( ) A .1e πe 4-+ B .e 1πe 4-+ C.e 1e - D .e 1πe 2-+ 9.由曲线1xy =,直线,3y x y ==所围成的平面图形的面积为( ) A .2ln3-B .4ln3+C .4ln3-D .32910.函数()22,04,02x x f x x x -<⎧⎪=⎨-≤≤⎪⎩,则22()f x dx -⎰的值为( )A .6π+B .2π-C .2πD .811.某几何体的三视图如图所示,则该几何体的体积为( )A .4B .2C .43D .2312.由曲线4y x =,1y x=,2x =围成的封闭图形的面积为( ) A .172ln 22- B .152ln 22- C .15+2ln 22D .17+2ln 22二、填空题13.已知函数()[)[)[]3,2,22,2,cos ,,2x x f x x x x x πππ⎧∈-⎪=∈⎨⎪∈⎩则()22f x dx π-=⎰___________14.由直线2y x =+与曲线2yx 围成的封闭图形的面积是__________.15.定积分21d 1x x ⎰-的值为__________.16.由曲线22y x =+与3y x =,1x =,2x =所围成的平面图形的面积为________________.17.计算由曲线22,4y x y x ==-所围成的封闭图形的面积S =__________. 18.201x dx -=⎰__________.19.定积分2sin cos t tdt π=⎰________.20.函数3y x x =-的图象与x 轴所围成的封闭图形的面积等于_______.三、解答题21.已知函数31()ln 2f x x ax x =--()a R ∈.(1)若()f x 在(1,2)上存在极值,求(1)f 的取值范围;(2)当0x >时,()0f x <恒成立,比较a e 与232a e+的大小. 22.如图所示,抛物线21y x =-与x 轴所围成的区域是一块等待开垦的土地,现计划在该区域内围出一块矩形地块ABCD 作为工业用地,其中A 、B 在抛物线上,C 、D 在x 轴上 已知工业用地每单位面积价值为3a 元()0a >,其它的三个边角地块每单位面积价值a 元.(Ⅰ)求等待开垦土地的面积;(Ⅱ)如何确定点C 的位置,才能使得整块土地总价值最大.23.如图:求曲线y =e x -1与直线x =-ln 2, y =e -1所围成的平面图形面积.24.设函数()32,0{,0x x x x f x axe x ->=≤,其中0a >.(1)若直线y m =与函数()f x 的图象在(]0,2上只有一个交点,求m 的取值范围; (2)若()f x a ≥-对x ∈R 恒成立,求实数a 的取值范围. 25.由定积分的性质和几何意义,求出下列各式的值: (1)22aa x dx --⎰;(2)()1201(1)x x dx --⎰.26.求曲线6y x =-和8y x =y =0围成图形的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】直线4y x =与曲线3y x =的交点坐标为(0,0)和(2,8), 故直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积23242001(4)2|8444S x x dx x x ⎛⎫=⎰-=-=-= ⎪⎝⎭.故选D .2.A解析:A 【解析】因为22x -表示的是以原点为圆心、半径为2的上半圆的面积,即22πx -=,222221e d (e )|02x x x --==⎰,所以)221e d 2a x x π-==⎰,则()2016201212x b b x b x -=++ 20162016b x ++,令0x =,得01b =,令12x =,得1202022b b b =++ 201620162b ++,则12222b b + 2016201612b ++=-;故选A. 点睛:在处理二项展开式的系数问题要注意两个问题:一是要正确区分二项式系数和各项系数;二要根据具体问题合理赋值(常用赋值是1、-1、0).3.B解析:B 【解析】试题分析:解:∵3304S xdx =⎰=18,,∴a 1+a 2=32a q (1+q)=12,⇒2q 2-q-1=0,⇒q=1或q=12-,故选B考点:等比数列的前n 项和, 定积分的基本运算点评:本题考查等比数列的前n 项和、定积分的基本运算,求定积分关键是找出被积函数的原函数,本题属于基础题.4.A解析:A 【解析】试题分析:'0xxy e y e x =∴=∴=时'11y k =∴=,直线方程为1y x =+,与两坐标轴交点为()()1,0,0,1-,所以三角形面积为12考点:导数的几何意义及直线方程5.B解析:B 【解析】试题分析:由定积分的几何意义有2204(2)x dx --⎰表示的是以(2,0)为圆心,半径为2的圆的14部分,而20xdx ⎰表示的是直线y x =,0,2,x x x ==轴所围成的面积,故220[4(2)]x x dx ---⎰表示的图形如下图的阴影部分,面积为221122242ππ⨯-⨯=-.故选B.考点:1.定积分的几何意义;2.方程的化简.6.A解析:A 【详解】因为定积分()()111222200011d 11)(x d x x x x dx x ⎫⎫--=---⎪⎪⎭⎭⎰⎰⎰,结合定积分的几何意义可知,原式等于圆心为(1,1),半径为1的四分之一个圆的面积减去13得到,即为143-π,选A. 7.C解析:C 【解析】由题意得,2'()325f x x x =+- ,令5'()013f x x x >⇒><-或,故选C. 8.B解析:B 【解析】因为函数2e ,10()1,01x x f x x x ⎧-≤≤⎪=⎨-<≤⎪⎩,所以102110()d e d 1d x f x x x x x --=+-⎰⎰⎰,其中01101e 1e d e e e 11e e xxx ---==-=-=-⎰,1201d x x -⎰表示圆221x y +=在第一象限的面积,即12π1d 4x x -=⎰,所以11e 1π()d e 4f x x --=+⎰,故选B .9.C解析:C 【详解】由1xy y x =⎧⎨=⎩,解得11x y =⎧⎨=⎩,13xy y =⎧⎨=⎩解得133x y ⎧=⎪⎨⎪=⎩,3y y x =⎧⎨=⎩解得33x x =⎧⎨=⎩,所围成的平面图形的面积为S ,则()()1111331131(31)323ln |2S dx x x x ⎛⎫=⨯--+-=+- ⎪⎝⎭⎰,4ln 3S =-,故选C.10.A解析:A 【分析】 先求出22()f x dx -=⎰2264x dx +-⎰,再求出2204x dx π-=⎰即得解.【详解】 由题得2022220222201()(2)4(2)|42f x dx x dx x dx x x x dx ---=-+-=-+-⎰⎰⎰⎰22064x dx =+-⎰,设24(02,0)y x x y =-<≤≥,所以22+4x y =,所以24(02,0)y x x y =-<≤≥表示圆22+4x y =在第一象限的部分(包含与坐标轴的交点),其面积为14=4ππ⨯⨯. 所以2204x dx π-=⎰.所以22()6f x dx π-=+⎰.故选:A 【点睛】本题主要考查定积分的计算,意在考查学生对这些知识的理解掌握水平.11.D解析:D 【分析】根据三视图可得到该几何体的直观图,进而可求出该几何体的体积. 【详解】根据三视图可知该几何体为四棱锥E ABCD -,四边形ABCD 是边长为1的正方形,BE ⊥平面ABCD ,2BE =,则四棱锥E ABCD -的体积为1233ABCD V S BE =⋅=. 故选D.【点睛】本题考查了三视图,考查了四锥体的体积的计算,考查了学生的空间想象能力,属于基础题.12.B解析:B 【解析】 【分析】联立方程组,确定被积区间和被积函数,得出曲边形的面积2121(4)S x dx x=-⎰,即可求解,得到答案. 【详解】由题意,联立方程组41y xy x =⎧⎪⎨=⎪⎩,解得12x =, 所以曲线4y x =,1y x=,2x =围成的封闭图形的面积为22222112211115(4)(2ln )|(22ln 2)[2()ln ]2ln 2222S x dx x x x =-=-=⨯--⨯-=-⎰, 故选B . 【点睛】本题主要考查了利用定积分求解曲边形的面积,其中解答中根据题意求解交点的坐标,确定被积分区间和被积函数,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题13.【分析】利用定积分的计算法则可得由基本初等函数的求导公式求得原函数即可求解【详解】因为函数所以故答案为:【点睛】本题考查定积分的几何意义和定积分的计算法则及基本初等函数的求导公式;属于中档题 解析:24π-【分析】利用定积分的计算法则可得()22f x dx π-=⎰223222cos x dx xdx xdx πππ-++⎰⎰⎰,由基本初等函数的求导公式求得原函数即可求解. 【详解】因为函数()[)[)[]3,2,22,2,cos ,,2x x f x x x x x πππ⎧∈-⎪=∈⎨⎪∈⎩, 所以()22f x dx π-=⎰223222cos x dx xdx xdx πππ-++⎰⎰⎰4222221sin 4x x xπππ-⎛⎫=++ ⎪⎝⎭24π=-,故答案为:24π- 【点睛】本题考查定积分的几何意义和定积分的计算法则及基本初等函数的求导公式;属于中档题.14.【解析】作出两条曲线所对应的封闭区域如图所示由得解得或则根据定积分的几何意义可知所示的封闭区域的面积故答案为解析:92【解析】作出两条曲线所对应的封闭区域,如图所示,由22y x y x=+⎧⎨=⎩,得22x x =+,解得1x =-或2x =,则根据定积分的几何意义可知所示的封闭区域的面积223212119(2)d 21322S x x x x x x -⎛⎫=+-=-++= ⎪-⎝⎭⎰,故答案为92.15.【解析】根据定积分的定义知故填解析:23【解析】根据定积分的定义知,1231111112d |3333x x x --⎛⎫==--= ⎪⎝⎭⎰,故填23.16.【解析】由题设曲线与所围成的平面图形的面积为应填答案解析:16【解析】由题设曲线22y x =+与3y x =,1x =,2x =所围成的平面图形的面积为222321131251(32)(2)|23366S x x dx x x x =--=--=-+=⎰,应填答案16。

(北师大版)北京市高中数学选修2-2第四章《定积分》测试题(答案解析)

(北师大版)北京市高中数学选修2-2第四章《定积分》测试题(答案解析)

一、选择题1.给出以下命题: (1)若()0haf x dx >⎰,则()0f x >;(2)20|sin |4x dx π=⎰;(3)()f x 的原函数为()F x ,且()F x 是以T 为周期的函数,则:()()aa TTf x dx f x dx +=⎰⎰其中正确命题的个数为( ). A .1B .2C .3D .42.已知函数sin (11)()1(12)x x f x x x-≤≤⎧⎪=⎨<≤⎪⎩,则21()f x dx -=⎰( ) A .ln 2 B .ln 2-C .12-D .3cos 1-3.已知()22214a x ex dx π-=--⎰,若()201620121ax b b x b x -=++ 20162016b x ++(x R ∈),则12222b b + 201620162b ++的值为( ) A .1-B .0C .1D .e4.由23y x =-和2y x =围成的封闭图形的面积是( ) A .23 B .923- C .323 D .3535.曲线3y x =在点()1,1处的切线与x 轴、直线2x =所围成的三角形的面积为( ) A .83B .73C .53D .436.如图,设D 是途中边长分别为1和2的矩形区域,E 是D 内位于函数1(0)y x x=>图象下方的阴影部分区域,则阴影部分E 的面积为( )A .ln 2B .1ln 2-C .2ln 2-D .1ln 2+7.曲线22y x x =-与直线11x x =-=,以及x 轴所围图形的面积为( )A .2 B.83 C .43 D .238.等比数列{}n a 中,39a =,前3项和为3230S x dx =⎰,则公比q 的值是( )A .1B .12-C .1或12-D .1-或12-9.函数()325f x x x x =+-的单调递增区间为( ) A .5,3⎛⎫-∞- ⎪⎝⎭和1,B .5,3⎛⎫-∞-⋃ ⎪⎝⎭1,C .(),1-∞-和5,3⎛⎫+∞ ⎪⎝⎭D .(),1-∞-⋃5,3⎛⎫+∞ ⎪⎝⎭10.由直线,1y x y x ==-+,及x轴所围成平面图形的面积为 ( ) A .()101y y dy ⎡⎤--⎣⎦⎰B .()1201x x dx ⎡⎤-+-⎣⎦⎰C .()121y y dy ⎡⎤--⎣⎦⎰D .()101x x dx ⎡⎤--+⎣⎦⎰11.设函数2e ,10()1,01xx f x x x ⎧-≤≤⎪=⎨-<≤⎪⎩,计算11()d f x x -⎰的值为( ) A .1e πe 4-+ B .e 1πe 4-+ C .e 12πe 4-+D .e 1πe 2-+ 12.定义{},,min ,,,a ab a b b a b ≤⎧=⎨>⎩设31()min ,f x x x ⎧⎫=⎨⎬⎩⎭,则由函数()f x 的图象与x 轴、直线4x =所围成的封闭图形的面积( )A .12ln 26+ B .12ln 24+ C .1ln 24+ D .1ln 26+ 二、填空题13.如图所示,直线y kx =分抛物线2y x x 与x 轴所围图形为面积相等的两部分,则k的值为__________.14.定积分211dx x⎰的值等于________. 15.曲线y=x 2与y=x 所围成的封闭图形的面积为______.16.在平面直角坐标系中,角α的始边落在x 轴的非负半轴,终边上有一点是()1,3-,若[)0,2απ∈,则cos xdx αα-=⎰______.17.曲线()sin 0πy x x =≤≤与x 轴围成的封闭区域的面积为__________. 18.()1||214x e x dx -+-=⎰__________________19.已知函数2()2ln f x x x =-,若方程()0f x m +=在1[,]e e内有两个不等的实数根,则实数m 的取值范围是__________.20.已知等差数列{}n a 中, 225701a a x dx +=-⎰,则468a a a ++=__________.三、解答题21.计算: (1)781010C C +; (2)222(24)x x dx -+-⎰.22.现有一个以OA 、OB 为半径的扇形池塘,在OA 、OB 上分别取点C 、D ,作DE OA 、CF OB 分别交弧AB 于点E 、F ,且BD AC =,现用渔网沿着DE 、EO 、OF 、FC 将池塘分成如图所示的养殖区域.已知1km OA =,2AOB π∠=,EOF θ∠=(02πθ<<).(1)若区域Ⅱ的总面积为21km 4,求θ的值; (2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是30万元、40万元、20万元,试问:当θ为多少时,年总收入最大?23.已知函数()3269f x x x x =-+-.若过点()1,P m -可作曲线()y f x =的切线有三条,求实数m 的取值范围.24.已知函数()121f x x x a =+--+ (1)当0a =时,解不等式()0f x ≥;(2)若二次函数2814y x x =-+-的图象在函数()y f x = 的图象下方,求a 的取值范围·25.利用定积分的定义,计算221(2)d x x x -+⎰的值,并从几何意义上解释这个值表示什么.26.设函数()ln h x x x =,()()()h x a h x f x x a+-=+,其中a 为非零实数.(1)当1a =时,求()f x 的极值;(2)是否存在a 使得()f x a ≤恒成立?若存在,求a 的取值范围,若不存在请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】(1)根据微积分基本定理,得出()()()0haf x dx F h F a =->⎰,可以看到与()f x 正负无关.(2)注意到sin x 在[]0,2π的取值符号不同,根据微积分基本运算性质,化为220|sin ||sin ||sin |x dx x dx x dx ππππ=+⎰⎰⎰求解判断即可.(3)根据微积分基本定理,两边分别求解,再结合()()F a T F a +=,()()0F T F =判定. 【详解】 (1)由()()()0haf x dx F h F a =->⎰,得()()F h F a >,未必()0f x >.(1)错误.(2)()22200|sin ||sin ||sin |sin sin x dx x dx x dx xdx x dx πππππππ=+=+-⎰⎰⎰⎰⎰()()20cos |cos |11114x x πππ=-+=--+--=,(2)正确.(3)()()0()0af x dx F a F =-⎰,()()()()()0a TTf x dx F a T F T F a F +=+-=-⎰;故()()aa T Tf x dx f x dx +=⎰⎰;(3)正确.所以正确命题的个数为2, 故选:B.【点睛】本题主要考查了命题真假的判定与定积分的计算,属于中档题.2.A解析:A 【分析】将所求积分分成两段来进行求解,根据积分运算法则可求得结果. 【详解】()21212111111sin cos ln cos1cos1ln 2ln1ln 2f x dx xdx dx x x x ---=+=-+=-++-=⎰⎰⎰ 故选:A 【点睛】本题考查积分的计算问题,关键是能够按照分段函数的形式将所求积分进行分段求解.3.A解析:A 【解析】因为22x -表示的是以原点为圆心、半径为2的上半圆的面积,即22πx -=,222221e d (e )|02x x x --==⎰,所以)221e d 2a x x π-==⎰,则()2016201212x b b x b x -=++ 20162016b x ++,令0x =,得01b =,令12x =,得1202022b b b =++ 201620162b ++,则12222b b + 2016201612b ++=-;故选A. 点睛:在处理二项展开式的系数问题要注意两个问题:一是要正确区分二项式系数和各项系数;二要根据具体问题合理赋值(常用赋值是1、-1、0).4.C解析:C 【解析】试题分析:画出函数图象如下图所示,所以围成的面积为()13122333232333x x x dx x x --⎛⎫--=--= ⎪⎝⎭⎰.考点:定积分.5.A解析:A 【解析】 试题分析:()'323x x=,所以切线方程为13(1),32y x y x -=-=-,所以切线与x 轴、直线2x =所围成的三角形的面积()2238323S x dx =-=⎰.考点:1、切线方程;2、定积分.【易错点晴】本题易错点有三个,一个是切线方程,错解为看成过()1,1的切线方程;第二个错误是看成与y 轴围成的面积,()()22320328103232333S x dx x dx =--+-=+=⎰⎰;第三个是没有将切线与x 轴的交点求出来,导致没有办法解决题目.切线的常见问题有两种,一种是已知切点求切线方程;另一种是已知切线过一点求切线方程,两种题目都需要我们认真掌握.6.D解析:D 【解析】试题分析:由题意,阴影部分E 由两部分组成,因为函数1(0),y x x=>当2y =时,1,2x =所以阴影部分E 的面积为1111221121ln |1ln 2,2dx x x ⨯+=+=+⎰故选D . 考点:利用定积分在曲边形的面积.7.A解析:A 【解析】试题分析:在抄纸上画出图像,可根据图像列出方程1221(20)(2)x x dx x x dx---+-+⎰⎰=320321111()33x x x x --+-+=110(1)(1)33---+-+=4233+=2考点:区间函数的运用8.C解析:C 【分析】先由微积分基本定理得到327S =,再由等比数列的求和公式以及通项公式,即可求出结果. 【详解】23312333133|2727003S x dx x a a a =⎰=⋅=∴++=,,即333227a a a q q ++=,解得1q =或1-2q =. 【点睛】本题主要考查定积分的就算,以及等比数列的公比,熟记微积分基本定理,以及等比数列的通项公式及前n 项和公式即可,属于常考题型.9.C解析:C 【解析】由题意得,2'()325f x x x =+- ,令5'()013f x x x >⇒><-或,故选C. 10.C解析:C 【解析】如图,由直线y=x ,y=−x+1,及x 轴围成平面图形是红色的部分,它和图中蓝色部分的面积相同,∵蓝色部分的面积()121S x x dx ⎡⎤=--⎣⎦⎰,即()121y y dy ⎡⎤--⎣⎦⎰.本题选择C 选项.11.B解析:B 【解析】因为函数2e ,10()1,01x x f x x x ⎧-≤≤⎪=⎨-<≤⎪⎩,所以102110()d e d 1d x f x x x x x --=+-⎰⎰⎰,其中01101e 1e d e e e 11e e x x x ---==-=-=-⎰,201d x x -表示圆221x y +=在第一象限的面积,即2π1d 4x x -=⎰,所以11e 1π()d e 4f x x --=+⎰,故选B .12.B解析:B 【解析】由31x x=,得1x =±,则图象的交点为(1,1)--,(1,1) ∵()31min ,f x x x ⎧⎫=⎨⎬⎩⎭∴根据对称性可得函数()f x 的图象与x 轴、直线4x =所围成的封闭图形的面积为143401141111|ln |ln 42ln 201444x dx dx x x x +=+=+=+⎰⎰ 故选B二、填空题13.【分析】根据题意求出直线与抛物线的交点横坐标再根据定积分求两部分的面积列出等式求解即可【详解】联立或由图易得由题设得即即化简得解得故答案为:【点睛】本题主要考查了定积分的运用需要根据题意求到交界处的解析:341【分析】根据题意求出直线与抛物线的交点横坐标,再根据定积分求两部分的面积,列出等式求解即可. 【详解】联立2y x x y kx⎧=-⇒⎨=⎩ 0x =或1x k =-.由图易得1,11x k k由题设得()()112212kx xkx dx x x dx ---=-⎰⎰, 即232123100111111||232223k x x kx x x -⎛⎫⎛⎫--=- ⎪ ⎪⎝⎭⎝⎭. 即()()()232111111123212k k k k -----= 化简得()3112k -=. 解得341k = 故答案为:3412- 【点睛】本题主要考查了定积分的运用,需要根据题意求到交界处的点横坐标,再根据定积分的几何意义列式求解即可.属于中档题.14.ln2【分析】直接根据定积分的计算法则计算即可【详解】故答案为:ln2【点睛】本题考查了定积分的计算关键是求出原函数属于基础题解析:ln 2【分析】直接根据定积分的计算法则计算即可. 【详解】22111|2dx lnx ln x==⎰, 故答案为:ln2. 【点睛】本题考查了定积分的计算,关键是求出原函数,属于基础题.15.【分析】首先求得两个函数交点的坐标然后利用定积分求得封闭图形的面积【详解】根据解得画出图像如下图所示封闭图像的面积为【点睛】本小题主要考查利用定积分求封闭图形的面积考查运算求解能力属于基础题解题过程解析:16【分析】首先求得两个函数交点的坐标,然后利用定积分求得封闭图形的面积. 【详解】根据2y x y x⎧=⎨=⎩解得()()0,01,1,.画出图像如下图所示,封闭图像的面积为()12x x dx -⎰2310111|23236x x ⎛⎫=-=-= ⎪⎝⎭.【点睛】本小题主要考查利用定积分求封闭图形的面积,考查运算求解能力,属于基础题.解题过程中首先求得两个函数图像的交点坐标,然后画出图像,判断出所要求面积的区域,然后利用微积分基本定理求得封闭图形的面积.16.【解析】【分析】可得再利用微积分基本定理即可得出【详解】则故答案为【点睛】本题考查了微积分基本定理三角函数求值考查了推理能力与计算能力属于基础题 3【解析】【分析】tan 3α=-,[)0,2απ∈,可得2.3πα=再利用微积分基本定理即可得出. 【详解】tan 3α=-,[)0,2απ∈,23πα∴=. 则()23232233cos sin |sin sin 33322xdx x αππαππ--⎛⎫⎛⎫==--=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎰. 故答案为3 【点睛】本题考查了微积分基本定理、三角函数求值,考查了推理能力与计算能力,属于基础题.17.2【解析】与轴所围成的封闭区域的面积故答案为2解析:2 【解析】sin (0π)y x x =≤≤与x 轴所围成的封闭区域的面积ππsin d cos cos πcos020S x x x==-=-+=⎰,故答案为2.18.【解析】由定积分的几何意义知:是如图所示的阴影部分曲边梯形的面积其中故故故故答案为 解析:22233e π+-+【解析】11221424x dx x dx --=-⎰⎰,由定积分的几何意义知:1204x dx -⎰是如图所示的阴影部分曲边梯形OABC 的面积,其中()1,3,30B BOC ∠=,故1223π-==+11101022|22xx x e dx e dx e e -===-⎰⎰,故(112223xe dx e π-=+-⎰2223e π+-19.【解析】当时在为增函数当时在为减函数当时有极大值也为最大值又因此本题正确答案是:解析:21(1,2]e +. 【解析】2(1)(1)'()x x f x x-+=,∴当1[,1)x e∈时, '()0f x >,()f x 在1[,1)e 为增函数,当(1,)x e ∈时, '()0f x <,()f x 在(1,)e 为减函数,∴当1x =时, ()f x 有极大值,也为最大值, (1)1f =-,又2211()2,()2f f e e e e=--=-, 2121m e --≤-<-, 2112m e ∴<≤+. 因此,本题正确答案是: 21(1,2]e +. 20.3【解析】由题意得即则解析:3【解析】由题意,得()()()()21222221220101111||2x dx x dx xdx x x x x -=-+-=-+-=⎰⎰⎰,即57622a a a +==,则468633a a a a ++==.三、解答题21.(1)165(2)2π 【分析】(1)直接根据组合数公式计算即可;(2)直接利用牛顿—莱布尼茨公式,定积分的几何意义计算即可. 【详解】(1)78831010111111109165321C C C C ⨯⨯===⨯⨯+=.(2)(2222222x dx xdx ---=+⎰⎰⎰,其中222222|440xdx x --==-=⎰,2-⎰表示的是半径为2的圆的面积的12,即22π-=⎰,所以(222022x dx ππ-=+=⎰.【点睛】本题考查组合数公式的计算,定积分的计算,解题的关键是理解定积分的几何意义,考查学生的运算能力,属于基础题. 22.(1)3πθ=(2)6πθ=【解析】试题分析:(1)本问考查解三角函数的实际应用,由OB OA =及BD AC =可知OD OC =,根据条件易证Rt Rt ODE OCF ≌,所以DOE COF ∠=∠= 122πθ⎛⎫- ⎪⎝⎭,由cos OC OF COF =⋅∠可以求出12COFS OC OF =⋅⋅⋅ 1sin cos 4COF θ∠=,所以区域Ⅱ的总面积为11cos 24θ=,则1cos 2θ=,可以求出θ的值;(2)本问考查函数的最值问题,区域Ⅰ的面积可以根据扇形面积公式求得,区域Ⅱ的面积第(1)问中已经求出,区域Ⅲ的面积可以用1/4圆的面积减去区域Ⅰ、Ⅱ的面积,于是得到年收入函数,利用导数求函数的最大值即可得出年收入的最大值. 试题(1)因为BD AC =,OB OA =,所以OD OC =. 因为2AOB π∠=,DE OA ,CF OB ,所以DE OB ⊥,CF OA ⊥.又因为OE OF =,所以Rt Rt ODE OCF ≌. 所以DOE COF ∠=∠= 122πθ⎛⎫- ⎪⎝⎭, 又cos OC OF COF =⋅∠ 所以12COFSOC OF =⋅⋅⋅ 1sin cos 4COF θ∠= 所以1cos 2S 区域Ⅱθ=(02πθ<<). 由11cos 24θ=得1cos 2θ=,02πθ<<,3πθ∴=. (2)因为12S θ=区域Ⅰ,所以S S S S =--=区域Ⅲ总区域Ⅰ区域Ⅱ 11cos 422πθθ--.记年总收入为y 万元, 则113040cos 22y θθ=⨯+⨯120(42πθ+⨯- 1cos )2θ- 5510cos πθθ=++(02πθ<<),所以()512sin y θ=-',令0y '=,则6πθ=.当06πθ<<时,0y '>;当62ππθ<<时,0y '<.故当6πθ=时,y 有最大值,即年总收入最大.考点:1.三角函数的实际应用;2.利用导数研究函数的最值.23.1116m -<<【解析】 【分析】首先写出切线方程,然后将问题转化为方程有三个实数根的问题,利用导函数研究函数的极值即可确定m 的取值范围. 【详解】设过P 点的切线切曲线于点()00,x y ,则切线的斜率2003129k x x =-+-.所以切线方程为()()20031291y x x x m =-+-++,故()()23200000003129169y x x xm x x x =-+-++=-+-,要使过P 可作曲线()y f x =的切线有三条,则方程()()2320000003129169x x xm x x x -+-++=-+-有三解0032023129,m x x x ∴=--+()3223129g x x x x =--+令则()()()26612612g x x x x x =--=+-'易知1,2x =-为()g x 的极值大、极小值点,又()()11,16,g x g x =-=极小极大 故满足条件的m 的取值范围1116.m -<< 【点睛】本题主要考查导函数研究函数的切线,导函数研究函数的极值,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力. 24.(1)1{x |x 3}3≤≤;(2)13a 4>. 【解析】 【分析】()1a 0=时,将不等式移项平方分解因式可解得;()2根据题意,只需要考虑x 1>时,两函数的图象位置关系,利用抛物线的切线与抛物线的位置关系做. 【详解】() 1当a 0=时,不等式()f x 0≥化为:x 12x 10+--≥,移项得x 12x 1+≥-,平方分解因式得()()3x 1x 30--≤, 解得1x 33≤≤,解集为1{x |x 3}3≤≤. ()2化简得()x 3a,x 1f x 3x 1a,1x 1x 3a,x 1-+≤-⎧⎪=-+-<≤⎨⎪-++>⎩,根据题意,只需要考虑x 1>时,两函数的图象位置关系, 当x 1>时,()f x x 3a =-++, 由2y x 8x 14=-+-得y'2x 8=-+,设二次函数与直线y x 3a =-++的切点为()00x ,y , 则02x 81-+=-,解得09x 2=,所以07y 4=, 代入()f x x 3a =-++,解得13a 4=, 所以a 的取值范围是13a 4>. 【点睛】本题主要考查了含绝对值不等式的解法,以及导数的几何意义的应用问题,其中解答中熟记含绝对值不等式的求解方法,合理分类是解答的关键,着重考查了运算与求解能力,属于中档试题.25.由直线1x =,2x =,0y =与曲线2()2f x x x =-+所围成的曲边梯形的面积. 【分析】利用定积分的定义在区间[]1,2进行分割,后近似代替、作和,取极限,可得()2212xx dx -+⎰的值,与其表示的几何意义.【详解】解:令()22f x x x =-+.(1)分割:在区间[]1,2上等间隔地插入1n -个分点,将它等分成n 个小区间()1,1,2,,n i n i i n n n +-+⎡⎤=⎢⎥⎣⎦其长度为11n i n i x n n n++-∆=-=. (2)近似代替、作和:取()11,2,,i ii n nξ=+=,则2111(1)121nn n i i i i i S f x n n n n==⎡⎤⎛⎫⎛⎫=+⋅∆=-+++⋅⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦∑∑()()()()()2223212122122n n n n n n n n ⎡⎤⎡⎤=-+++++++++++⎣⎦⎣⎦()()()()()32221411211212662n n n n n n n n n n n ⎡⎤++++++=--+⋅⎢⎥⎣⎦11111112412336n n n n n⎛⎫⎛⎫⎛⎫⎛⎫=-+++++++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.(3)取极限:()221111111122lim lim 24123363n n n x x dx S n n n n n →∞→∞⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+==-+++++++= ⎪⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎰.()221223xx dx -+=⎰的几何意义:由直线1x =,2x =,0y =与曲线()22f x x x =-+所围成的曲边梯形的面积. 【点睛】本题主要考查利用定积分的定义求定积分,并求其几何意义,属于中档题型. 26.(1)()f x 有极大值(1)ln 2f =,无极小值;(2)见解析. 【解析】试题分析:(1)由题意,利用导数法进行求解,通过导数研究函数()f x 的单调性,从而求出该函数的极值,问题得于解决;(2)由题意,可将问题转化为()max f x a ≤,利用导数法,对参数a 进行分段讨论()f x '的符号,经过逐层深入研究,由此求出函数()f x 的最大值,从而问题得于解决. 试题(1)∵()()ln ln x f x x a x x a =+-+ ()ln 1ln a x a x x a=+--+, ∴()()21'ln 1a f x x x a x a =--++ ()21ln a ax x a x x a -=-++, 当1a =时,()()2ln '01xf x x =->+ 01x ⇔<<,()'01f x x ⇔,∴()f x 有极大值()1ln2f =,无极小值;(2)当0a >时,()'001f x x >⇔<<,()'01f x x ⇔,∴()()()1ln 1f x f a ≤=+,设()()()ln 10u a a a a =+->,则()1'1011a u a a a=-=-<++, ∴()()00u a u <=,故()f x a ≤恒成立,当0a <时,()()ln 1a a xf x ln x a x x a⎛⎫=++>- ⎪+⎝⎭, 由于2ln 112a a a a e x x ⎛⎫+>⇔+> ⎪⎝⎭ 21a a x e ⇔>-,ln ln 22a x a x a x x a +>⇔<+,()*设()ln x v x x e =-,则()'e xv x ex-=, ()'00v x x e >⇔<<,()'0v x x e ⇔,∴()()0v x v e ≤=,即ln xx e≤, 则只需2x x a e +<,()*⇒成立, 而22x x a ea x e e +-⇔-,∴2ea x e ->-时,ln 2a x ax a >+, 故取02max ,21a a ea x e e ⎧⎫-⎪⎪=⎨⎬-⎪⎪-⎩⎭,显然0x a >-, 由上知当0x x >时,ln 12a a x ⎛⎫+> ⎪⎝⎭,ln 2a x ax a >+,∴()f x a >, 综上可知,当0a >时,()f x a ≤恒成立.。

上海华东政法大学附属中学高中数学选修2-2第四章《定积分》测试题(答案解析)

上海华东政法大学附属中学高中数学选修2-2第四章《定积分》测试题(答案解析)

一、选择题1.定积分= A .B .C .D .2.已知函数()f x 的图像如图所示, ()f x '就()f x 的导函数,则下列数值排序正确的是( )A .()()()()224224f f f f <-'<'B .()()()()242242f f f f '<<-'C .()()()()222442f f f f '<<-'D .()()()()422422f f f f '<'-<3.22221231111,,,x S x dx S dx S e dx x ===⎰⎰⎰若 ,则s 1,s 2,s 3的大小关系为( )A .s 1<s 2<s 3B .s 2<s 1<s 3C .s 2<s 3<s 1D .s 3<s 2<s 14.设()2012a x dx =-⎰,则二项式6212a x x ⎛⎫+ ⎪⎝⎭的常数项是( )A .240B .240-C .60-D .605.曲线xy e =在点(0,1)处的切线与坐标轴所围三角形的面积为( ) A .12B .1C .2D .3 6.已知函数f(x)=x 2+1的定义域为[a,b](a<b),值域为[1,5],则在平面直角坐标系内,点(a,b)的运动轨迹与两坐标轴围成的图形的面积为( ) A .8 B .6 C .4 D .27.曲线x y e =,x y e -=和直线1x =围成的图形面积是( ) A .1e e --B .1e e -+C .12e e ---D .12e e -+-8.已知1(1)1x f x x e ++=-+,则函数()f x 在点(0,(0))f 处的切线l 与坐标轴围成的三角形的面积为 A .14 B .12C .1D .2 9.一物体在力(单位:N)的作用下沿与力相同的方向,从x=0处运动到(单位:)处,则力做的功为( ).A .44B .46C .48D .5010.某几何体的三视图如图所示,则该几何体的体积为( )A .4B .2C .43D .2311.定积分()22xex dx +⎰的值为( )A .1B .2eC .23e +D .24e +12.若函数f (x )=cos x +2xf ′π()6,则f π()3-与f π()3的大小关系是( ) A .f π()3-=f π()3B .f π()3->f π()3 C .f π()3-<f π()3D .不确定二、填空题13.设函数2y nx n =-+和1122y x n =-+(*n N ∈,2n ≥)的图像与两坐标轴围成的封闭图形的面积为n S ,则lim n n S →∞=________ 14.质点运动的速度()2183/v t t m s =-,则质点由开始运动到停止运动所走过的路程是______. 15.由3x π=-,3x π=,0y =,cos y x =四条曲线所围成的封闭图形的面积为__________. 16.定积分121(4sin )x x dx --=⎰________.17.计算由曲线22,4y x y x ==-所围成的封闭图形的面积S =__________. 18.已知等差数列{}n a 中, 225701a a x dx +=-⎰,则468a a a ++=__________.19.若定义在R 上的函数()f x 对任意两个不等的实数12,x x 都有()()()()11221221x f x x f x x f x x f x +>+,则称函数()f x 为“z 函数”.给出下列四个定义在()0,+∞的函数:①31y x =-+;②2sinx-cosx y x =+;③,0{0,0ln x x y x ≠==;④224,0{,0x x x y x x x +≥=-+<,其中“z 函数”对应的序号为__________.20.曲线2y x 和曲线y x =围成一个叶形图(如图所示阴影部分),其面积是________.三、解答题21.已知函数32()f x x mx nx =++(,m n R ∈)(1)若()f x 在1x =处取得极大值,求实数m 的取值范围;(2)若'(1)0f =,且过点(0,1)P 有且只有两条直线与曲线()y f x =相切,求实数m 的值.22.设函数()32,0{,0xx x x f x axe x ->=≤,其中0a >. (1)若直线y m =与函数()f x 的图象在(]0,2上只有一个交点,求m 的取值范围; (2)若()f x a ≥-对x ∈R 恒成立,求实数a 的取值范围.23.在曲线2(0)y x x =≥上某一点A 处作一切线与曲线及坐标轴所围成图形的面积为112, 试求:(1)点A 的坐标; (2)过切点A 的切线方程.24.根据《山东省全民健身实施计划(2016-2020年)》,到2020年乡镇(街道)普遍建有“两个一”工程,即一个全民健身活动中心或灯光篮球场、一个多功能运动场.某市把甲、乙、丙、丁四个多功能运动场全部免费为市民开放.(1)在一次全民健身活动中,四个多功能运动场的使用场数如图,用分层抽样的方法从甲、乙、丙、丁四场馆的使用场数中依次抽取a ,b ,c ,d 共25场,在a ,b ,c ,d 中随机取两数,求这两数和ξ的分布列和数学期望;(2)设四个多功能运动场一个月内各场使用次数之和为x ,其相应维修费用为y 元,根据统计,得到如下表的y 与x 数据:x10 15 20 25 30 35 40 y23022708 2996 3219 3401 3555 3689 10013102y z e =+ 2.49 2.993.554.004.494.995.49(i )用最小二乘法求z 与x 之间的回归直线方程; (ii )40yx +叫做运动场月惠值,根据(i )的结论,试估计这四个多功能运动场月惠值最大时x 的值.参考数据和公式:4z =,()721700ii x x =-=∑,()()7170i i i x x z z =--=∑,320e =,()()()71721ˆiii ii x x z z bx x ==--=-∑∑,a y bx =-.25.已知()[](]22122f x 1x 24x x x ⎧+∈-⎪=⎨+∈⎪⎩,,,,,求k 的值,使()3k40f x dx 3=⎰. 26.计算由直线4,y x =-曲线2y x =以及x 轴所围图形的面积S 。

(必考题)高中数学高中数学选修2-2第四章《定积分》测试卷(含答案解析)(4)

(必考题)高中数学高中数学选修2-2第四章《定积分》测试卷(含答案解析)(4)

一、选择题1.已知函数sin (11)()1(12)x x f x x x-≤≤⎧⎪=⎨<≤⎪⎩,则21()f x dx -=⎰( )A .ln 2B .ln 2-C .12-D .3cos 1-2.在1100x y x y ==-=,,,围成的正方形中随机投掷10000个点,则落入曲线20x y -=,1y =和y 轴围成的区域的点的个数的估计值为( )A .5000B .6667C .7500D .78543.设11130,,a xdx b xdx c x dx ===⎰⎰⎰,则,,a b c 的大小关系为( )A .b c a >>B .b a c >>C .a c b >>D .a b c >>4.已知()22214a x ex dx π-=--⎰,若()201620121ax b b x b x -=++ 20162016b x ++(x R ∈),则12222b b + 201620162b ++的值为( ) A .1-B .0C .1D .e5.等比数列{}n a 中,36a =,前三项和3304S xdx =⎰,则公比q 的值为( )A .1-或12- B .1或12-C .12-D .16.定积分220[4(2)]x x dx ---⎰的值为( )A .24π- B .2π- C .22π- D .48π-7.121(1)x x dx --+=⎰( )A .1π+B .1π-C .πD .2π 8.等比数列{}n a 中,39a =前三项和为32303S x dx =⎰,则公比的值是( )A .1B .12-C .1或12-D .-1或12-9.一物体在力F (x )=3x 2-2x +5(力单位:N ,位移单位:m)作用力下,沿与力F (x )相同的方向由x =5 m 直线运动到x =10 m 处做的功是( ). A .925 JB .850 JC .825 JD .800 J10.由直线0,,2y x e y x ===及曲线2y x=所围成的封闭图形的面积为( ) A .3 B .32ln 2+C .223e -D .e11.曲线2y x 与直线y x =所围成的封闭图形的面积为( )A .16 B .13C .12D .5612.20sin xdx π=⎰( )A .4B .2C .-2D .0二、填空题13.由直线2x y +=,曲线2y x =所围成的图形面积是________ 14.已知函数()xxf x e =,在下列命题中,其中正确命题的序号是_________. (1)曲线()y f x =必存在一条与x 轴平行的切线; (2)函数()y f x =有且仅有一个极大值,没有极小值;(3)若方程()0f x a -=有两个不同的实根,则a 的取值范围是1()e-∞,; (4)对任意的x ∈R ,不等式1()2f x <恒成立; (5)若1(0,]2a e∈,则12,x x R +∃∈,可以使不等式()f x a ≥的解集恰为12[,]x x ; 15.若二项式2651()5x x +的展开式中的常数项为m ,则21(2)d mx x x -=⎰_________.16.曲线2yx 与直线2y x =所围成的封闭图形的面积为_______________.17.若()()4112ax x -+的展开式中2x 项的系数为4,则21ae dx x=⎰________________ 18.π4cos xdx =⎰______.19.若,则的值是__________.20.曲线2y x 和曲线y x =________.三、解答题21.已知函数2()ln f x x a x =-(a R ∈),()F x bx =(b R ∈). (1)讨论()f x 的单调性;(2)设2a =,()()()g x f x F x =+,若12,x x (120x x <<)是()g x 的两个零点,且1202x x x +=, 试问曲线()y g x =在点0x 处的切线能否与x 轴平行?请说明理由. 22.已知函数f (x )=x 3+32x 2+mx 在x=1处有极小值, g (x )=f (x )﹣23x 3﹣34x 2+x ﹣alnx . (1)求函数f (x )的单调区间;(2)是否存在实数a ,对任意的x 1、x 2∈(0,+∞),且x 1≠x 2,有1212()()1g x g x x x ->-恒成立?若存在,求出a 的取值范围;若不存在,说明理由.23.已知函数()32f x x ax =+图像上一点()1,P b 的切线斜率为3-,()()()3261302t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[]1,4x ∈-时,求()f x 的值域;(Ⅲ)当[]1,4x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围.24.某城市在发展过程中,交通状况逐渐受到有关部门的关注,据有关统计数据显示,从上午6点到中午12点,车辆通过该市某一路段的用时y (分钟)与车辆进入该路段的时刻t 之间的关系可近似地用如下函数给出:3221362936,69844159{,91084366345,1012t t t t y t t t t t --+-≤<=+≤≤-+-<≤ 求从上午6点到中午12点,通过该路段用时最多的时刻. 25.(2015秋•钦州校级期末)求曲线y=sinx 与直线,,y=0所围成的平面图形的面积.26.已知定义域为R 的函数f (x)有一个零点为1, f (x)的导函数()12f x x '=()()2212ax a g x f x +-=+,其中a R ∈.(1)求函数f (x)的解析式; (2)求()g x 的单调区间;(3)若()g x 在[)0,+∞上存在最大值和最小值,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】将所求积分分成两段来进行求解,根据积分运算法则可求得结果. 【详解】()21212111111sin cos ln cos1cos1ln 2ln1ln 2f x dx xdx dx x x x ---=+=-+=-++-=⎰⎰⎰ 故选:A 【点睛】本题考查积分的计算问题,关键是能够按照分段函数的形式将所求积分进行分段求解.2.B解析:B 【分析】应用微积分基本定理求出对应的原函数,再由定积分定义求出空白区域面积,由正方形面积减去空白区域面积即可求出阴影部分面积,结合几何概型可推导出对应区域内的点的个数 【详解】由微积分基本定理可求出2yx 的原函数为()313F x x =,空白区域面积为31101133S x ==,故阴影部分面积212133S =-=,由几何概型可知,落入阴影部分的点数估计值为21000066673⨯≈ 故选:B 【点睛】本题考查定积分与微积分的基本定理,几何概型,属于基础题3.D解析:D 【解析】根据微积分定理,3120022|33a x ⎛⎫=== ⎪⎝⎭,1210011|22b xdx x ⎛⎫=== ⎪⎝⎭⎰,13410011|44c x dx x ⎛⎫=== ⎪⎝⎭⎰,所以a b c >>,故选择D 。

成都市实验中学高中数学选修2-2第四章《定积分》测试题(答案解析)

成都市实验中学高中数学选修2-2第四章《定积分》测试题(答案解析)

一、选择题1.=( )A .12πB .128π+C .68π+ D .64π+2.设113a x dx -=⎰,1121b x dx =-⎰,130c x dx =⎰则a ,b ,c 的大小关系( )A .a>b>cB .b>a>cC .a>c>bD .b>c>a3.曲线y =sin x ,y =cos x 与直线x =0,x =2π所围成的平面区域的面积为( ) A .π20⎰(sin x -cos x )d xB .2π40⎰(sin x -cos x )d xC .π20⎰(cos x -sin x )d xD .2π40⎰(cos x -sin x )d x4.若函数()32nxf x x x =++在点()1,6M 处切线的斜率为33ln3+,则n 的值是( ) A .1 B .2 C .4 D .35.若连续可导函数()F x 的导函数()()'F x f x =,则称()F x 为()f x 的一个原函数.现给出以下函数()F x 与其导函数()f x :①()2cos F x x x =+, ()2sin f x x x =-;②()3sin F x x x =+, ()23cos f x x x =+,则以下说法不正确...的是( ) A .奇函数的导函数一定是偶函数 B .偶函数的导函数一定是奇函数 C .奇函数的原函数一定是偶函数 D .偶函数的原函数一定是奇函数6.侧面与底面所成的角是45︒,则该正四棱锥的体积是( )A .23B .43C .3D .37.如图,矩形ABCD 的四个顶点()(0,1),(,1),(,1),0,1A B C D ππ--,正弦曲线f xsinx 和余弦曲线()g x cosx =在矩形ABCD 内交于点F ,向矩形ABCD 区域内随机投掷一点,则该点落在阴影区域内的概率是( )A .B .C .D .8.设若20lg ,0()3,0ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰,((1))1f f =,则a 的值是( ) A .-1 B .2 C .1 D .-29.定积分220[4(2)]x x dx --⎰的值为( )A .24π- B .2π- C .22π- D .48π-10.曲线()sin 0πy x x =≤≤与直线12y =围成的封闭图形的面积是 A 3B .23C .π23-D π3311.曲线2y x 与直线y x =所围成的封闭图形的面积为( )A .16 B .13C .12D .5612.由曲线4y x =,1y x=,2x =围成的封闭图形的面积为( ) A .172ln 22- B .152ln 22- C .15+2ln 22D .17+2ln 22二、填空题13.由曲线sin .cos y x y x ==与直线0,2x x π==所围成的平面图形的面积是______.14.若二项式6251x x ⎫+⎪⎪⎝⎭的展开式中的常数项为m ,则21mx dx =⎰__________. 15.计算:23lim 123n n nn→+∞-=++++________16.定积分12(1)x x dx -=⎰______________.17.计算由曲线22,4y x y x ==-所围成的封闭图形的面积S =__________.18.=__________19.设函数2()f x ax b =+(0a ≠),若300()3()f x dx f x =⎰,00x >,则0x =__________.20.()40sin cos 2x a x dx π-=⎰,则实数a =____________. 三、解答题21.已知二次函数()f x 满足(0)0f =,且对任意x 恒有(1)()22f x f x x +-=+. (1)求()f x 的解析式;(2)设函数()()'()g x f x f x λ=-,其中'()f x 为()f x 的导函数.若对任意[0,1]x ∈,函数()y g x =的图象恒在x 轴上方,求实数λ的取值范围.22.为了降低能源消耗,某冷库内部要建造可供使用20年的隔热层,每厘米厚的隔热层建造成本为4万元,又知该冷库每年的能源消耗费用c (单位:万元)与隔热层厚度x (单位:cm )满足关系()(010)25kc x x x =≤≤+,若不建隔热层,每年能源消耗为8万元.设()f x 为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及()f x 的表达式;(2)隔热层修建多厚时,总费用()f x 达到最小?并求最小值.23.已知函数()21ln ,2f x x ax a R =-∈.(1)求函数()f x 的单调区间;(2)若关于x 的不等式()()11f x a x ≤--恒成立,求整数a 的最小值. 24.已知函数()32f x x ax =+图像上一点()1,P b 的切线斜率为3-,()()()3261302t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[]1,4x ∈-时,求()f x 的值域;(Ⅲ)当[]1,4x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围. 25.已知函数1()ln 2f x x x =-,(0,)x ∈+∞. (1)求函数()f x 的图象在点(2,(2))f 处的切线方程. (2)求函数()f x 的单调递增区间.26.已知函数32()f x x ax bx c =+++的图象如图,直线0y =在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为274.(1)求()f x 的解析式;(2)若常数0m >,求函数()f x 在区间[],m m -上的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】令21y x =-,则()2210x y y +=≥,点(),x y 的轨迹表示半圆,则该积分表示该半圆与y 轴,12x =,x 轴围成的曲边梯形的面积,求出面积即可. 【详解】解:令21y x =-,则()2210x y y +=≥,点(),x y 的轨迹表示半圆,12201x dx -⎰表示以原点为圆心,2为半径的圆的上半圆与y 轴,12x =,x 轴围成的曲边梯形的面积,如图:故12201131311222612OAB BOCx dx SS ππ-=+=⨯⨯⨯=+扇形. 故选:B.【点睛】本题考查定积分的几何意义,属基础题.2.A解析:A 【解析】借助定积分的计算公式可算得1121330033|22a x dx x -===⎰,1131220022111|1333b x dx x =-=-=-=⎰,13410011|44c x dx x ===⎰,所以a b c >>,应选答案A 。

深圳市新华中学高中数学选修2-2第四章《定积分》测试(答案解析)

深圳市新华中学高中数学选修2-2第四章《定积分》测试(答案解析)

一、选择题1.如图,由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是( )A .1B .23C .43D .22.若函数()32nxf x x x =++在点()1,6M 处切线的斜率为33ln3+,则n 的值是( ) A .1 B .2 C .4 D .33.若函数()31f x x ax x =++在1,2⎛⎫+∞ ⎪⎝⎭是增函数,则a 的取值范围是( ) A .1,2⎛⎫-+∞ ⎪⎝⎭ B .1,2⎡⎫-+∞⎪⎢⎣⎭ C .13,4⎛⎫+∞ ⎪⎝⎭D .13,4⎡⎫+∞⎪⎢⎣⎭ 4.22221231111,,,x S x dx S dx S e dx x ===⎰⎰⎰若 ,则s 1,s 2,s 3的大小关系为( )A .s 1<s 2<s 3B .s 2<s 1<s 3C .s 2<s 3<s 1D .s 3<s 2<s 15.等比数列{}n a 中,36a =,前三项和3304S xdx =⎰,则公比q 的值为( )A .1-或12-B .1或12-C .12-D .16.曲线xy e =在点(0,1)处的切线与坐标轴所围三角形的面积为( ) A .12B .1C .2D .3 7.由曲线2y x =与直线2y x =+所围成的平面图形的面积为( ) A .52 B .4 C .2 D .928.已知10(31)()0ax x b dx ,,a b ∈R ,则⋅a b 的取值范围为( )A .1,9B .1,1,9C .1,[1,)9D .()1,+∞9.使函数()322912f x x x x a =-+-图象与x 轴恰有两个不同的交点,则实数a 可能的取值为( ) A .8B .6C .4D .210.若向区域(){},|0101x y x y Ω=≤≤≤≤,内投点,则该点落在由直线y x =与曲线y x =围成区域内的概率为( )A .18B .16C .13D .1211.二维空间中圆的一维测度(周长)2l r π=,二维测度(面积)2S r π=,观察发现()S r l '=:三维空间中球的二维测度(表面积)24S r π=,三维测度(体积)343V r π=,观察发现()V r S '=.则由四维空间中“超球”的三维测度38V r π=,猜想其四维测度W =( ). A .224r π B .283r πC .514r πD .42r π12.已知t >0,若(2x ﹣2)dx=8,则t=( ) A .1B .﹣2C .﹣2或4D .4二、填空题13.如图所示,直线y kx =分抛物线2y x x 与x 轴所围图形为面积相等的两部分,则k的值为__________.14.设函数2y nx n =-+和1122y x n =-+(*n N ∈,2n ≥)的图像与两坐标轴围成的封闭图形的面积为n S ,则lim n n S →∞=________ 15.已知函数()()()22ln 1,0ln 1,0x x x x f x x x x x ⎧++≥⎪=⎨--+<⎪⎩,若()()()21f a f a f -+≤,则实数a 的取值范围是___________.16.定积分2211x dx x +=⎰ __________.17.定积分()12xx e dx +=⎰__________.18.计算()2224x x dx -+-⎰得__________.19.2(1)x dx -=⎰________.20.如图,两曲线2y x =,2y x 围成图面积__________.三、解答题21.已知函数1ln(1)()x f x x++=(1)求函数的定义域;(2)判定函数()f x 在(1,0)-的单调性,并证明你的结论; (3)若当0x >时,()1kf x x >+恒成立,求正整数k 的最大值. 22.求曲线y x =与直线2y x =-及y 轴围成的封闭图形的面积.23.现有一个以OA 、OB 为半径的扇形池塘,在OA 、OB 上分别取点C 、D ,作DE OA 、CF OB 分别交弧AB 于点E 、F ,且BD AC =,现用渔网沿着DE 、EO 、OF 、FC 将池塘分成如图所示的养殖区域.已知1km OA =,2AOB π∠=,EOF θ∠=(02πθ<<).(1)若区域Ⅱ的总面积为21km 4,求θ的值; (2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是30万元、40万元、20万元,试问:当θ为多少时,年总收入最大?24.设是二次函数,方程有两个相等的实根,且()22f x x =+'(1)求()y f x =的表达式;(2)求()y f x =的图像与两坐标轴所围成图形的面积25.已知曲线sin y x =和直线0,x x π==及0y =所围成图形的面积为0S . (1)求0S .(2)求所围成图形绕ox 轴旋转所成旋转体的体积. 26.(1)已知0a >,求a-⎰;(2)求证:椭圆22221(0)x y a b a b+=>>的面积为ab π.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是122201(1)(1)S x dx x dx =---⎰⎰31320111281()|()|2133333x x x x -+-=+--+ 2.A解析:A【解析】由题意,得()13ln32n x f x nx-=++', ()13ln3233ln3f n =++=+',所以1n =;故选A.3.D解析:D【解析】由题意得()22130f x x a x =+-≥'在1,2⎛⎫+∞ ⎪⎝⎭上恒成立,即22max 13a x x ⎛⎫≥- ⎪⎝⎭,因为2213y x x =-在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,所以2213131334,444y x a x =-<-=≥,选D. 点睛:已知函数单调性求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数单调区间取法,根据单调区间与定义区间包含关系,确定参数值或取值范围;(2)利用导数转化为导函数非正或非负恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围.4.B解析:B 【解析】3221321322217ln |ln 2||,.11133x S x S x S e e e S S S ==<==<==-∴<<选B.考点:此题主要考查定积分、比较大小,考查逻辑推理能力.5.B解析:B 【解析】试题分析:解:∵3304S xdx =⎰=18,,∴a 1+a 2=32a q (1+q)=12,⇒2q 2-q-1=0,⇒q=1或q=12-,故选B考点:等比数列的前n 项和, 定积分的基本运算点评:本题考查等比数列的前n 项和、定积分的基本运算,求定积分关键是找出被积函数的原函数,本题属于基础题.6.A解析:A 【解析】试题分析:'0x x y e y e x =∴=∴=时'11y k =∴=,直线方程为1y x =+,与两坐标轴交点为()()1,0,0,1-,所以三角形面积为12考点:导数的几何意义及直线方程7.D解析:D 【解析】试题分析:由定积分的几何意义得,293122122132221=-+=-+=--⎰)(])[(x x x dx x x s ,故选D 。

(常考题)北师大版高中数学高中数学选修2-2第四章《定积分》测试(答案解析)

(常考题)北师大版高中数学高中数学选修2-2第四章《定积分》测试(答案解析)

一、选择题1.已知函数22(1),10()1,01x x f x x x ⎧+-≤≤⎪=⎨-<≤⎪⎩则11()d f x x -=⎰( ) A .3812π- B .4312π+ C .44π+ D .4312π-+ 2.计算211x dx x ⎛⎫+ ⎪⎝⎭⎰的值为( )A .34B .3ln 22+C .55ln 22+ D .3ln 2+3.在1100x y x y ==-=,,,围成的正方形中随机投掷10000个点,则落入曲线20x y -=,1y =和y 轴围成的区域的点的个数的估计值为( )A .5000B .6667C .7500D .78544.若2(sin cos )2x a x dx π-=⎰,则实数a 等于( )A .1-B .1C .3-D .35.如图,矩形ABCD 的四个顶点()(0,1),(,1),(,1),0,1A B C D ππ--,正弦曲线f xsinx 和余弦曲线()g x cosx =在矩形ABCD 内交于点F ,向矩形ABCD 区域内随机投掷一点,则该点落在阴影区域内的概率是( )A .B .C .D .6.设若20lg ,0()3,0ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰,((1))1f f =,则a 的值是( )A .-1B .2C .1D .-27.等比数列{}n a 中,36a =,前三项和3304S xdx =⎰,则公比q 的值为( )A .1-或12-B .1或12-C .12-D .18.使函数()322912f x x x x a =-+-图象与x 轴恰有两个不同的交点,则实数a 可能的取值为( ) A .8B .6C .4D .29.由直线y= x - 4,曲线y =x 轴所围成的图形面积为( )A .15B .13C .252D .40310.由曲线1xy =,直线,3y x y ==所围成的平面图形的面积为( ) A .2ln3- B .4ln3+C .4ln3-D .32911.20sin xdx π=⎰( )A .4B .2C .-2D .012.已知11em dx x =⎰,函数()f x 的导数()()()f x a x m x a '=++,若()f x 在x a =-处取得极大值,则a 的取值范围是( )A .1a <B .10a -<<C .1a >或0a <D .01a <<或0a <二、填空题13.(22sin x dx -+=⎰______.14.曲线,,0x y e y e x ===围成的图形的面积S =______15.在直线0x =,1x =,0y =,1y e =+围成的区域内撒一粒豆子,则落入0x =,1y e =+,e 1x y =+围成的区域内的概率为__________.16.若二项式6215x x ⎛⎫+⎪ ⎪⎝⎭的展开式中的常数项为m ,则21mx dx =⎰__________. 17.已知()[](]21,11,1,2x f x x x ∈-=-∈⎪⎩,则()21f x dx -=⎰______.18.设函数2()f x ax b =+(0a ≠),若300()3()f x dx f x =⎰,00x >,则0x =__________.19.若()()4112ax x -+的展开式中2x 项的系数为4,则21aedx x =⎰________________20.若,则的值是__________.三、解答题21.如图所示,抛物线21y x =-与x 轴所围成的区域是一块等待开垦的土地,现计划在该区域内围出一块矩形地块ABCD 作为工业用地,其中A 、B 在抛物线上,C 、D 在x 轴上 已知工业用地每单位面积价值为3a 元()0a >,其它的三个边角地块每单位面积价值a 元.(Ⅰ)求等待开垦土地的面积;(Ⅱ)如何确定点C 的位置,才能使得整块土地总价值最大. 22.已知函数2()11xf x x =++,2()e (0)ax g x x a =<. (1)求函数()f x 的单调区间.(2)若对任意1x ,2[0,2]x ∈,12()()f x g x ≥恒成立,求a 的取值范围.23.设函数()32,0{,0xx x x f x axe x ->=≤,其中0a >. (1)若直线y m =与函数()f x 的图象在(]0,2上只有一个交点,求m 的取值范围; (2)若()f x a ≥-对x ∈R 恒成立,求实数a 的取值范围.24.已知函数()3269f x x x x =-+-.若过点()1,P m -可作曲线()y f x =的切线有三条,求实数m 的取值范围. 25.求曲线6y x =-和8y x =y =0围成图形的面积.26.计算由直线4,y x =-曲线2y x =x 轴所围图形的面积S 。

(必考题)高中数学高中数学选修2-2第四章《定积分》测试题(包含答案解析)

(必考题)高中数学高中数学选修2-2第四章《定积分》测试题(包含答案解析)

一、选择题1.一物体作变速直线运动,其v t -曲线如图所示,则该物体在1s~6s 2间的运动路程为( )m .A .1B .43C .494D .22.已知是i 虚数单位,复数()1a i z a R i -=∈-,若01||(sin )z x dx ππ=-⎰,则a =( )A .±1B .1C .1-D .12±3.曲线x y e =在点(0,1)处的切线与坐标轴所围三角形的面积为( ) A .12B .1C .2D .3 4.如图,设D 是途中边长分别为1和2的矩形区域,E 是D 内位于函数1(0)y x x=>图象下方的阴影部分区域,则阴影部分E 的面积为( )A .ln 2B .1ln 2-C .2ln 2-D .1ln 2+ 5.一物体在力(单位:N)的作用下沿与力相同的方向,从x=0处运动到(单位:)处,则力做的功为( ).A .44B .46C .48D .50 6.若在R 上可导,,则( )A .B .C .D .7.图中阴影部分的面积用定积分表示为( )A .12d xx ⎰B .()121d xx -⎰C .()1021d xx +⎰D .()112d xx -⎰8.已知幂函数a y x =图像的一部分如下图,且过点(2,4)P ,则图中阴影部分的面积等于( )A .163B .83C .43D .239.一物体在力F (x )=3x 2-2x +5(力单位:N ,位移单位:m)作用力下,沿与力F (x )相同的方向由x =5 m 直线运动到x =10 m 处做的功是( ). A .925 JB .850 JC .825 JD .800 J10.某几何体的三视图如图所示,则该几何体的体积为( )A .4B .2C .43D .2311.定积分()22xex dx +⎰的值为( )A .1B .2eC .23e +D .24e +12.若函数f (x )=cos x +2xf ′π()6,则f π()3-与f π()3的大小关系是( ) A .f π()3-=f π()3B .f π()3->f π()3 C .f π()3-<f π()3D .不确定二、填空题13.232319x x dx -⎛⎫-+= ⎪ ⎪⎝⎭⎰____________________. 14.已知曲线与直线所围图形的面积______.15.定积分211dx x⎰的值等于________. 16.由曲线2y x=,直线y =2x ,x =2所围成的封闭的图形面积为______. 17.由曲线x y e x =+与直线0,1,0x x y ===所围成图形的面积等于________. 18.曲线2yx 与直线2y x =所围成的封闭图形的面积为_______________.19.函数3y x x =-的图象与x 轴所围成的封闭图形的面积等于_______.20.从如图所示的正方形OABC 区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为__.三、解答题21.求曲线y x =2y x =-及y 轴围成的封闭图形的面积.22.已知函数()221y f x x x ==-++和()1y g x x ==-,求:由()y f x =和()y g x =围成区域的面积.23.已知曲线C :322321y x x x =--+,点1(,0)2P ,求过P 的切线l 与C 围成的图形的面积.24.设()y f x =是二次函数,方程()0f x =有两个相等的实根,且()22f x x '=+. (1)求()y f x =的表达式;(2)若直线(01)x t t =-<<把()y f x =的图象与两坐标轴所围成图形的面积二等分,求t 的值.25.在曲线2(0)y x x =≥上某一点A 处作一切线与曲线及坐标轴所围成图形的面积为112, 试求:(1)点A 的坐标; (2)过切点A 的切线方程. 26.计算由直线4,y x =-曲线y =x 轴所围图形的面积S 。

5答案定积分的计算

5答案定积分的计算

第五章 定积分的计算测试题一、选择题(7×4分)1.下列等式哪个不正确-----------------------------( C )A ⎰⎰=ba ba dt t f dx x f )()( B ⎰=xa x f dt t f dxd )()(C ⎰=b a x f dx x f dx d )()(D ⎰=ba dx x f dxd 0)( 2.设)(x f 是],[a a -上的连续函数,则⎰-=aa dx x f )(--------------( D ) A 0 B ⎰adx x f 0)(2 C ⎰-0)(2a dx x f D⎰⎰-+00)()(aadx x f dx x f3.设⎰=202sin )(x dt t x F ,则=')(x F --------------------------( C ) A 22sin x x B 2sin 2x x C 4sin 2x x D42sin x x4.⎰=-30|1|dx x --25---------------------------------------------------( C ) A 0 B 1 C25D 25.⎰--=22cos 2xdx e x ----------------------------( B ) A 0 B ⎰-20cos 22xdx ex C ⎰-1cos 42xdx ex D⎰-20cos 22xdx e x*6.下列反常积分中发散的是------------------------------------( B ) Adx x ⎰+∞1231B dx x ⎰1231C ⎰1321dx xDdx x⎰117.=⎰eedx xx f 1)(ln ----------------------------------------------( C )A⎰eedt t f 1)( B⎰-11)(dt tt f C ⎰-11)(dt t f D⎰eedt tt f 1)( 二、填空题(3×4分)1.设⎰=xx x dt t f 0cos )(,则=)(x f x s i n x x c o s - 2.⎰-=11||3dx e x x _0___ 3.⎰∞+=+0241dx x4221210ππ==∞+x a r c t a n 三、计算题(4×7分)1.⎰-πθθθ03sin sin d x sin d x sin x sin d x sin dx x cos x sin ⎰⎰⎰-==ππππ2200=-202332π)x (sin ππ223)(sin 32x=34)10(3201(32=---) 2.⎰++4122dx x x解:令 tdt dx t x t x =-==+),1(21,1222dt t tdt t t dx x x )2321(2)1(211222313124+=+-=++⎰⎰⎰313231)2361()2321(t t dt t +=+=⎰ 3173626)2361()29627(=+=+-+= 3.⎰10arctan xdx x 解:dx x x x x dx x xdx x ⎰⎰⎰+-==221022101121arctan 21.arctan 21arctan dx xx x x ⎰+-=22102121arctan 21dx x x ⎰+-+-=102211)1(211arctan 21 10)arctan (218x x --=π214)41(218-=--=πππ 4.dx x x⎰+∞12ln 解:dx xx ⎰+∞12ln dx x x x x xd ⎰⎰∞+∞++∞+-=-=12111ln 1)1(ln 1=四、(8分)设⎪⎩⎪⎨⎧≥<+=-0,0,1)(2x e x x x f x ,求⎰-31.)2(dx x f解: [][]1,13,12-∈⇒∈==-t x dtdx t x⎰⎰⎰⎰--+==-0113111)()()()2(dt t f dt t f dt t f dx x f⎰⎰--++=01102)1(dx e dt x x{10013)31(x e x x ---+=1137)1()311(0---=--⎥⎦⎤⎢⎣⎡---=e e 五、求证:⎰⎰+=+202cos sin cos cos sin sin ππdx xx x x x xdx ,并求出⎰+20cos sin sin πdx x x x 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分测试题及答案
班级:姓名:分数:
一、选择题:(每小题5分)
1. ! A-X dx 二()
A.0
B.1
C.二 D -4
2(2010
山东日照模考)a=
2
xdx

b=
2
e
X
dx

c=
sinxdx
,则
a

b

c
的大小关系是()
A. a<c<b
B. a<b<c
C. c<b<a
D. c<a<b
3.(2010山东理,
1
A.12
7)由曲线y = x2, y= x3围成的封闭图形面积为()
1 1 7
4.由三条直线x= 0、x= 2、y= 0和曲线y= x3所围成的图形的面积为()
4 18
A . 4
B.3 G5 D
.
6
5.(2010湖南师大附中)设点P在曲线y= x2上从原点到A(2,4)移动,如果把由直线OP,直线y= x2及直线x= 2所围成的面积分别记作S1,
S2.如图所示,当S i = S2时,点P的坐标是()
(4⑹ 4 16〕 2 15〕413
代3 9丿 B.i5,9 丿 C.3 7丿 D.&7丿
D.
1
6. (2010湖南省考试院调研).(sinx + 1)dx 的值为( )
A . 0
B . 2
C . 2 + 2cos1
D . 2— 2cos1
7.曲线y = cosx(0< x < 2 n 与直线y = 1所围成的图形面积是(
)
3 n
A . 2 n
B . 3 n
D . n
函数 F(x) = x t(t — 4)dt 在[—1,5]上( 丿0
10. (2010福建厦门一中)如图所示,在一个长为 n,宽为2的矩形 OABC 内,曲线y = sinx (0w x < n 与 x 轴围成如图所示的阴影部分, 向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可 能的),则所投的点落在阴影部分的概率是()
A .有最大值0,无最小值 32
B .有最大值0和最小值— 32
c.有最小值-32,无最大值
D
.既无最大值也无最小值
9. 已知等差数列{a n }的前n 项和= 2n 2+n ,函数 f (x )va 3,则x 的取值范围是( ) A. W 3 <6

B . (0, e 21
)
C . (e —
11, e) D . (0, e 11)
x + 2 — 2< x<0
11. (2010吉林质检)函数f(x)=
n
的图象与x 轴所围
2cosx0< x < ㊁)
成的图形面积S 为()
3
1 A .
2 B . 1 C . 4
D .2
12. (2010吉林省调研)已知正方形四个顶点分别为 B(1,1),C(0,1),曲线 y = x "(x >0)与 x 轴,直线 x = 构成区域M ,现将一个质点随机地投入正方形中, 则质点落在区域M 内的概率是()
二、填空题:(每小题5分)
13. 0
sinxdx
= -------
14. 物体在力F(x)=3x+4的作用下,沿着与F 相同的方向,从x=0处 运动到x=4处,力F 所做的功为 ________
2
15. ](x+g)dx= __________
1
16. __________________ 们(e x +e")dx =
1
17. (2010 芜湖十二中)已知函数 f(x) = 3x 2 + 2x +1,若.f(x)dx = 2f(a)
-1
jit

1
L
A
n
fi
1 Q
I
A.
1
c 1 J 2 B ・4 C .3 D.5
O(0,0), A(1,0),
成立,贝y a= ________ .
18. (2010安徽合肥质检)抛物线y2= ax(a>0)与直线x= 1围成的封闭
图形的面积为善,若直线I与抛物线相切且平行于直线2x-y + 6= 0, 则I的方程为_________ .
19. (2010福建福州市)已知函数f(x) = -x'+ax2+ bx(a, b€ R)的图象如图所示,它与x轴在原点处相切,且x轴与函数图象所围成区域(图
1
中阴影部分)的面积为12则a的值为__________ .
20. 如图所示,在区间[0,1]上给定曲线y = x2,试在此区间内确定t
的值,使图中阴影部分的面积S1 + 最小为___________ .
11322D电00A 4A 2+5A2 6BI6.7A 8B7.-9D或£0 A 18.1Cx-8y+|=0。

相关文档
最新文档