高中会考数学试卷(标准的)
高三数学会考试卷及答案
一、选择题(本大题共12小题,每小题5分,共60分)1. 下列各式中,不是等差数列的是()A. 1, 4, 7, 10, ...B. 3, 6, 9, 12, ...C. 2, 4, 8, 16, ...D. 1, 3, 5, 7, ...2. 已知函数f(x) = x^2 - 4x + 4,则f(x)的图像的对称轴是()A. x = 2B. y = 2C. x = 0D. y = 03. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点在复平面上的轨迹是()A. 一条直线B. 一个圆C. 一条射线D. 两个点4. 已知向量a = (2, 3),向量b = (-1, 2),则向量a和向量b的夹角θ的余弦值是()A. 1/5B. 2/5C. 3/5D. 4/55. 下列各函数中,在其定义域内单调递减的是()A. y = x^2B. y = 2^xC. y = log2(x)D. y = x^36. 已知数列{an}的通项公式an = 2n - 1,则数列的前n项和S_n是()A. n^2B. n^2 - nC. n^2 + nD. n^2 + 2n7. 若函数f(x) = ax^2 + bx + c在x = 1时取得极值,则a + b + c的值是()A. 0B. 1C. -1D. 28. 在三角形ABC中,若∠A = 60°,∠B = 45°,则∠C的大小是()A. 75°B. 105°C. 120°D. 135°9. 已知等比数列{an}的前三项分别是1,-2,4,则该数列的公比q是()A. -1/2B. 1/2C. -2D. 210. 若函数y = ax^2 + bx + c的图像开口向上,且顶点坐标为(1, 2),则a、b、c的符号分别为()A. a > 0, b > 0, c > 0B. a > 0, b < 0, c > 0C. a < 0, b < 0, c < 0D. a < 0, b > 0, c < 011. 若复数z满足|z - 1| = |z + 1|,且z在复平面上的实部为2,则复数z是()A. 2 + iB. 2 - iC. 1 + iD. 1 - i12. 在直角坐标系中,若点P(2, 3)关于直线y = x的对称点为P',则点P'的坐标是()A. (2, 3)B. (3, 2)C. (3, -2)D. (-2, 3)二、填空题(本大题共8小题,每小题5分,共40分)13. 函数y = 3x^2 - 6x + 5的顶点坐标是______。
高中会考数学试题及答案
高中会考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 函数y=x^2+2x+1的图像是:A. 抛物线B. 直线C. 双曲线D. 圆答案:A3. 以下哪个选项是等比数列?A. 2, 4, 6, 8B. 1, 2, 4, 8C. 3, 6, 9, 12D. 5, 10, 15, 20答案:B4. 已知a=3,b=4,求a^2+b^2的值。
A. 25B. 29C. 37D. 415. 一个圆的半径为5,求该圆的面积。
A. 25πB. 50πC. 75πD. 100π答案:B6. 以下哪个函数是奇函数?A. y=x^2B. y=x^3C. y=x^4D. y=x答案:D7. 以下哪个选项是不等式x+2>3的解集?A. x>1B. x<1C. x>-1D. x<-1答案:A8. 一个等差数列的首项是2,公差是3,求第5项的值。
A. 17B. 14C. 11D. 8答案:A9. 以下哪个选项是方程2x-3=7的解?B. x=3C. x=1D. x=-1答案:A10. 以下哪个选项是函数y=2sin(x)的图像?A. 正弦波形B. 余弦波形C. 正切波形D. 直线答案:A二、填空题(每题4分,共20分)11. 计算(3+4i)(2-i)的结果为______。
答案:8+5i12. 已知等差数列的第3项是7,第5项是11,求公差d。
答案:213. 计算极限lim(x→0) (sin(x)/x)的值为______。
答案:114. 已知函数f(x)=x^2-4x+3,求f(2)的值。
答案:-115. 计算定积分∫(0 to 1) x^2 dx的结果为______。
答案:1/3三、解答题(每题10分,共50分)16. 求函数y=x^3-3x^2+2x的导数。
答案:y'=3x^2-6x+217. 证明函数f(x)=x^2在(0, +∞)上是增函数。
2023年福建高中数学会考试卷
2023年福建高中数学会考试卷一、选择题(每题5分,共20题)1. 下列函数中,是奇函数的是()A. f(x) = x^3 - 3xB. f(x) = x^2 + 4x - 2C. f(x) = sin(x)D. f(x) = ln(x)2. 已知等差数列{an}满足a1 = 2,an+1 = 3an - 2,那么a10的值是()A. 2B. 4C. 8D. 163. 三角形ABC中,已知∠A = 30°,BC = 4,AC = 6,那么三角形ABC的面积是()A. 4B. 6C. 8D. 124. 若函数f(x) = 2x^2 - 3x - 2的图像与x轴相交的点为P和Q,那么PQ的长度是()A. 2B. 3C. 4D. 55. 已知函数f(x) = 2x^3 - 5x^2 + 3x - 1,那么f(-1)的值是()A. -11B. 1C. 3D. 56. 一辆汽车从A地出发,经过一段直路行驶8 km,然后转弯行驶6 km到达B 地。
已知AB的夹角为60°,那么从A地到B地的直线距离是()A. 8 kmB. 10 kmC. 14 kmD. 20 km7. 若函数f(x) = log2(x + 1),g(x) = 2^x,那么f(g(2))的值是()A. 1B. 2C. 3D. 48. 一圆锥的底半径为2 cm,母线长为6 cm,那么这个圆锥的体积是()A. 4π cm^3B. 8π cm^3C. 12π cm^3D. 16π cm^39. 在△ABC中,已知∠A = 60°,∠B = 80°,那么∠C的度数是()A. 20°B. 40°C. 60°D. 80°10. 一只小船从A地出发,沿一条直线航行到B地,然后沿另一条直线航行到C地,BC = 5 km,AC = 13 km,∠BAC = 90°,那么从A地到C地的直线距离是()A. 5 kmB. 12 kmC. 13 kmD. 17 km11. 设a、b为正整数,a^b = 2^8,那么a的值是()A. 2B. 4C. 8D. 1612. 已知函数f(x) = 2x^2 + 3x - 4的图像与y轴相交于点A,那么点A的坐标是()A. (-2, 0)B. (0, 0)C. (0, 2)D. (2, 0)13. 一枝花的高度为10 cm,经过一段时间后,高度变为原来的一半。
人教版a高中数学会考试题及答案
人教版a高中数学会考试题及答案一、选择题(每题4分,共40分)1. 函数y=x^2-4x+3的零点个数是()A. 0个B. 1个C. 2个D. 3个答案:C2. 已知函数f(x)=2x+3,g(x)=x^2-4x+5,求f[g(x)]的解析式()A. 2x^2-5x+11B. 2x^2-8x+13C. 2x^2-4x+11D. 2x^2-4x+13答案:A3. 已知等差数列{an}的首项a1=1,公差d=3,求a5的值()A. 13B. 16C. 19D. 22答案:A4. 已知双曲线C:x^2/a^2 - y^2/b^2 = 1(a>0,b>0),若点(2,1)在双曲线上,则a的取值范围是()A. 0<a<√5B. √5<a<2√5C. 2√5<a<5D. a>5答案:B5. 已知向量a=(2,-1),b=(1,3),求向量a+2b的坐标()A. (4,5)B. (5,4)C. (4,-1)D. (5,-1)答案:A6. 已知函数f(x)=x^3-3x^2+2,求f'(x)的解析式()A. 3x^2-6xB. 3x^2-6x+2C. x^2-6x+2D. x^3-6x^2+2答案:A7. 已知函数f(x)=x^2-4x+3,求f(x)的单调递增区间()A. (-∞,2)B. (2,+∞)C. (-∞,1)∪(3,+∞)D. (1,3)答案:B8. 已知函数f(x)=x^3-3x^2+2,求f(x)的极值点()A. x=1B. x=2C. x=-1D. x=0答案:B9. 已知等比数列{bn}的首项b1=2,公比q=2,求b4的值()A. 16B. 32C. 64D. 128答案:A10. 已知向量a=(3,2),b=(1,-1),求向量a·b的值()A. 1B. 2C. 3D. 4答案:A二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,求f(1)的值。
2020年福建普通高中会考数学真题及答案(完整版)
2020年福建普通高中会考数学真题及答案(考试时间:90分钟;满分:100分)参考公式:样本数据x1,x2,…,x. 标准差其中为样本平均数 s =x 锥体体积公式V=Sh ,其中S 为底面面积,h 为高13球 表面积公式S=4πR 2,球 体积公式V=,其中R 为球 半径43πR 3柱体体积公式V=Sh ,其中S 为底面面积,h 为高 台体体积公式,其中S ',S 分别为上、下底面面积,h 为高V =13(S '+S 'S +S )h 第Ⅰ卷 (选择题45)一、选择题(本大题有15小题,每小题3分,共45分.每小题只有一个选项符合题意) 1.已知集合A={3},B={1,2,3},则A ∩B=A.{1,2,3}B.{1,3}C.{3}D. φ2.右图是某圆锥 三视图,则该圆锥底面圆 半径长是 A.1 B.2 C.3 D.103.若三个数1,3,a 成等比数列,则实数a= A.1 B.3 C.5 D.9 4.一组数据3,4,4,4,5,6 众数为 A.3 B.4 C.5 D.65.如图,在正方形上随机撒一粒黄豆,则它落到阴影部分 概率为A. B. C. D.1 14 12 346.函数y=cosx 最小正周期为 A.B. C. D. π2 π3π22π7.函数y= 定义域为1X -2A.(-∞,2)B.(2,+∞)C.(-∞,2)U(2,+∞)D. R 8.不等式2x+y-4≤0表示 平面区域是9.已知直线l 1:y=x-2,l 2:y=kx ,若l 1∥l 2,则实数k= A.-2 B.-1 C.0 D.1 10.化简+ +=MN MP QP A. B. C. D. MP NQ MQ PM 10.不等式(x+2)(x-3)<0 解集是 A.{x | x <-2,或x >3} B. {x|-2<x<3} C.< x <} {-12 13D. {x|x <,或x > -121312.化简tan(+α)=πA. sin α B.cos α C. –sin α D.tan α 13.下列函数中,在(0,+∞)上单调递减 是 A. y=x-3 B.y= C.y=x 2 D.y=2x2x14.已知a=40.5,b=42,c=log 40.5,则a ,b ,c 大小关系是 Aa < b<c B .c<b<a Cc<a < b D a<c< b 15.函数y=图象大致为 {1, |x |<2,log 2|x |, |x|≥2第Ⅱ卷 (非选择题55分)二、填空题(本大题有5小题,每小题3分,共15分)16.已知向量a=(0,2),则2a= . 17.阅读右边 程序框图,运行相应 程序,若输入 x 值为-4,则输出相应 y 值是 . 18.函数f(x)=x 2 + x 零点个数为 . 19.在△ABC 中,若AB=1,BC=2,B=60°, 则AC= .20.函数f(x)=x + (x >0) 最小值为 .1x三、解答题(本大题有5小题,共40分,解答应写出文字说明,证明过程或演算步骤) 21.(本小题满分6分)已知角α 顶点与坐标原点O 重合,始边与x 轴 非负半轴重合,在α 终边上任取点P(x ,y),它与原点 距离>0,定义:sin α = ,cos α =, tan α = (x ≠0).如r =x 2+y 2y r x r yx图,P(,)为角a 终边上g 点.22(1)求sin α,cos α 值;(2)求sin α = 值. a +π422.(本小题满分8分)如图,四棱锥P-ABCD中,底面ABCD是矩形,PD⊥平面ABCD,且AD=3,PD=CD=2.(1)求四棱锥P-ABCD 体积;(2)若E,F分别是棱PC,AB 中点,则EF与平面PAD 位置关系是 ,在下面三个选项中选取一个正确序号填写在横线上,并说明理由.①EF平面PAD②EF∥平面PAD③EF与平面PAD相交.23.如图,某报告厅座位是这样排列:第一排有9个座位,从第二排起每一排都比前一排多2个座位,共有10排座位.(1)求第六排座位数;(2)某会议根据疫情防控需要,要求:同排两个人至少要间隔一个座位就坐,且前后排要错位就坐.那么该报告厅里最多可安排多少人同时参加会议?(提示:每一排从左到右都按第一、三、五、……座位就坐,其余座位不能就坐,就可保证安排参会人数最多)24.(本小题满分8分)已知圆C 方程为(x-2)2+(y-1)2=5.(1)写出圆心C 坐标与半径长;(2)若直线l过点P(0,1),试判断与圆C 位置关系,并说明理由.25.(本小题满分10分)某车间为了规定工时定额,需要确定加工零件所花费时间,为此进行了5次试验,得到零件数x i(单位:件)与加工时间y i(单位:小时) 部分数据,整理如下表根据表中数据:(1)求x3和y4值;(2)画出散点图;(3)求回归方程;并预测,加工100件零件所需要 时间是多少? y =bx +a附:①符号“∑”表示“求和”②对于一组数据(x 1,Y 1),(x 2,y 2),……,(x n ,y n ),其回归方程 斜率和截距y =bx +a 最小二乘估计分别为b =n∑i =1xi-nx·yn∑i =1x2i-nx 2,a =y -bx 。
高中数学会考试卷
高中数学会考试卷第一卷(选择题共60 分)一、选择题:本大题共14 小题:第( 1)—( 10)题每小题 4 分,第( 11) - ( 14)题每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={0, 1, 2,3, 4} ,B={0, 2,4, 8} ,那么 A∩ B 子集的个数是:()A、6个B、7个C、8 个D、9个(2)式子 4· 5的值为:()A、 4/5B、5/4C、 20 D 、1/20(3)已知 sin θ =3/5,sin2θ<0,则tg(θ /2)的值是:()A、-1/2 B 、1/2 C 、1/3 D 、3(4)若 log a (a 2 +1)<log a 2a<0,则 a 的取值范围是:()A、( 0,1) B 、 (1/2,1) C、(0,1/2) D、(1,+∞)(5)函数 f(x)= π/2+arcsin2x 的反函数是()A、 f -1 (x)=1/2sinx,x ∈ [0, π] B 、 f -1 (x)=-1/2sinx,x ∈ [0, π ]C 、 f -1 (x)=-1/2cosx,x ∈ [0, π ]D 、 f -1 (x)=1/2cosx,x ∈ [0, π](6)复数 z=(+ i) 4 (-7-7i) 的辐角主值是:()A、π/ 12 B 、 11π/12 C 、19π /12 D 、 23π /12(7)正数等比数列a1 ,a 2 ,a 8的公比 q≠ 1, 则有:()A、 a1+a8 >a4 +a5 B 、 a1 +a8<a4 +a5 C、 a1+a8=a4 +a5 D、 a1+a8与 a4+a5大小不确定2 2(8)已知 a、 b∈R,条件 P: a +b ≥ 2ab、条件 Q:,则条件P 是条件 Q 的()D 、既不充分也不必要条件(9)椭圆的左焦点F1,点 P 在椭圆上,如果线段PF1的中点 M在 Y 轴上,那么 P 点到右焦点F2的距离为:()A、 34/5B、 16/5C、 34/25D、16/25(10)已知直线l 1与平面α成π /6 角,直线l 2与 l 1成π /3 角,则 l 2与平面α所成角的范围是:()A、 [0 ,π /3]B、[π/3,π/2] C[π /6,π /2]、D、[0,π/2](11)已知,b为常数,则a 的取值范围是:()A、 |a|>1B、a∈R且a≠1C、-1<a≤1D、a=0或a=1(12)如图,液体从一球形漏斗漏入一圆柱形烧杯中,开始时漏斗盛满液体,经过 3 分钟漏完。
数学高中会考试题及答案
数学高中会考试题及答案一、选择题(每题3分,共30分)1. 若函数f(x) = 2x^2 - 4x + 3,下列哪个选项是f(x)的对称轴?A. x = 1B. x = -1C. x = 2D. x = 0答案:A2. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B。
A. {1, 2}B. {1, 3}C. {2, 3}D. {3, 4}答案:C3. 若复数z = 1 + i,求|z|。
A. 1B. √2C. 2D. √3答案:B4. 已知等差数列{an}的首项a1 = 2,公差d = 3,求a5。
A. 11B. 14C. 17D. 20答案:B5. 函数y = sin(x) + cos(x)的值域是?A. [-1, 1]B. [-√2, √2]C. [0, 2]D. [1, 2]答案:B6. 若直线l:y = 2x + 1与x轴交于点A,与y轴交于点B,求|AB|。
A. √5B. √10C. 2√5D. 5答案:A7. 已知双曲线C:x^2/a^2 - y^2/b^2 = 1(a > 0,b > 0),若其渐近线方程为y = ±(√2)x,求b/a的值。
A. √2B. √3C. 2D. 3答案:A8. 已知抛物线y^2 = 4x的焦点F,点P(1, 2)在抛物线上,求|PF|。
A. 1B. 2C. 3D. 4答案:C9. 已知向量a = (3, -2),b = (1, 2),求a·b。
A. -1B. 2C. 4D. -4答案:D10. 若函数f(x) = x^3 - 3x^2 + 2在x = 1处取得极值,求该极值。
A. 0B. 1C. -1D. 2答案:B二、填空题(每题4分,共20分)11. 已知等比数列{bn}的首项b1 = 2,公比q = 3,求b3。
答案:1812. 已知圆C:(x - 1)^2 + (y + 2)^2 = 9,求圆心坐标和半径。
2023年高中数学会考试卷
2023年高中数学会考试卷第一部分:选择题1. 下列哪个数是一个无理数?A) √4B) πC) 3/4D) 0.252. 已知函数 f(x) = 2x^2 - 3x + 1,求 f(2) 的值是多少?A) 4B) 5C) 6D) 73. 在三角形 ABC 中,∠B = 60°,BC = 8,AC = 10,求 AB 的长度。
A) 2B) 4C) 6D) 84. 一辆汽车以每小时60 公里的速度行驶,行驶3 小时后,行驶的距离是多少?A) 120 公里B) 160 公里C) 180 公里D) 240 公里5. 若 3x - 2y = 4,5x + 2y = 7,则 x 的值是多少?A) 1B) 2C) 3D) 46. 一个边长为 3 的正方形内接于一个圆,这个圆的直径是多少?A) 1B) 2C) 3D) 47. 一根长 20 厘米的杆子,被 3 个点分成 4 个部分,其中相邻两部分的长度比是 2:3:4,求最长的部分的长度。
A) 4 厘米B) 6 厘米C) 8 厘米D) 10 厘米8. 已知 a, b, c 为实数,且a ≠ 0,若方程 ax^2 + bx + c = 0 有两个相等的根,则b 的值是多少?A) 0B) 1C) -1D) 2第二部分:填空题1. 已知函数 f(x) = 2x^2 - 3x + 1,求 f(0) 的值是多少?2. 解方程 2x + 5 = 15 的解是多少?3. 已知等差数列的首项是 2,公差是 3,求第 5 项的值。
4. 一条直线通过点 (2, 4) 和 (5, 10),求这条直线的斜率。
5. 解方程 4x^2 - 16 = 0 的解是多少?6. 一个 45°-45°-90°的直角三角形的斜边长是 8,求直角边的长度。
7. 一辆汽车以每小时 80 公里的速度行驶,行驶 2.5 小时后,行驶的距离是多少?8. 已知 2x - 3y = 7 和 3x + 4y = 5,求 x 和 y 的值。
安徽普通高中会考数学真题及答案
2024年安徽普通高中会考数学真题及答案2024年安徽普通高中会考数学真题及答案一、真题部分1、在等差数列${ a_{n}}$中,已知$a_{3} + a_{7} = 22$,那么$a_{5} =$() A.$10$ B.$9$ C.$8$ D.$7$2、已知复数$z = \frac{1 + i}{1 - i}$,则$|z| =$()A.$1$B.$\sqrt{2}$C.$2$D.$2\sqrt{2}$3、已知向量$\overset{\longrightarrow}{a} = (1,2)$,$\overset{\longrightarrow}{b} = (x,y)$,且$\overset{\longrightarrow}{a} \perp\overset{\longrightarrow}{b}$,则$xy$的值为()A.$2$B.$3$C.$4$D.$5$二、答案部分1、正确答案是:A. $10$ 在等差数列${ a_{n}}$中,因为$a_{3} + a_{7} = 22$,所以$a_{5} = \frac{a_{3} + a_{7}}{2} = 10$。
因此,答案为A。
2、正确答案是:B. $\sqrt{2}$ 复数$z = \frac{1 + i}{1 - i} = \frac{(1 + i)^{2}}{(1 - i)(1 + i)} = i$,因此$|z| = 1$. 所以正确答案为B。
3、正确答案是:C.$4$ 向量$\overset{\longrightarrow}{a} = (1,2)$,$\overset{\longrightarrow}{b} = (x,y)$,且$\overset{\longrightarrow}{a} \perp\overset{\longrightarrow}{b}$,所以$\overset{\longrightarrow}{a} \cdot\overset{\longrightarrow}{b} = x + 2y = 0$,解得$xy = 4$. 因此,正确答案为C。
高中数学会考试卷
高中数学会考试卷第一卷(选择题共60分)一、选择题:本大题共14小题:第(1)—(10)题每小题4分,第(11)-(14)题每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={0,1,2,3,4},B={0,2,4,8},那么A∩B子集的个数是:()A、6个B、7个C、8个D、9个(2)式子4·5的值为:()A、4/5????B、5/4??? C、20?? D、1/20(3)已知sinθ=3/5,sin2θ<0,则tg(θ/2)的值是:()A、-1/2B、1/2C、1/3D、3(4)若log a(a2+1)<log a2a<0,则a的取值范围是:()A、(0,1)B、(1/2,1)C、(0,1/2)D、(1,+∞)(5)函数f(x)=π/2+arcsin2x的反函数是()A、f-1(x)=1/2sinx,x∈[0,π]?B、f-1(x)=-1/2sinx,x∈[0,π]??? C、f-1(x)=-1/2cosx,x∈[0,π] D、f-1(x)=1/2cosx,x∈[0,π](6)复数z=(+i)4(-7-7i)的辐角主值是:()A、π/12B、11π/12C、19π/12D、23π/12(7)正数等比数列a1,a2,a8的公比q≠1,则有:()A、a1+a8>a4+a5B、a1+a8<a4+a5C、a1+a8=a4+a5D、a1+a8与a4+a5大小不确定(8)已知a、b∈R,条件P:a2+b2≥2ab、条件Q:,则条件P是条件Q的()A、充要条件B、充分不必要条件C、必要不充分条件D、既不充分也不必要条件(9)椭圆的左焦点F1,点P在椭圆上,如果线段PF1的中点M在Y轴上,那么P点到右焦点F2的距离为:()A、34/5B、16/5C、34/25D、16/25(10)已知直线l1与平面α成π/6角,直线l2与l1成π/3角,则l2与平面α所成角的范围是:()A、[0,π/3]B、[π/3,π/2] C[π/6,π/2]、D、[0,π/2](11)已知,b为常数,则a的取值范围是:()A、|a|>1B、a∈R且a≠1C、-1<a≤1D、a=0或a=1(12)如图,液体从一球形漏斗漏入一圆柱形烧杯中,开始时漏斗盛满液体,经过3分钟漏完。
高中会考试题数学及答案
高中会考试题数学及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5答案:B2. 已知集合A={1, 2, 3},集合B={2, 3, 4},则A∩B等于:A. {1, 2, 3}B. {2, 3}C. {2, 4}D. {1, 4}答案:B3. 若直线方程为y = 2x + 3,则该直线的斜率是:A. 1/2B. 2C. 3D. -2答案:B4. 计算下列极限:\[\lim_{x \to 0} \frac{\sin x}{x}\]A. 0B. 1C. -1D. ∞答案:B5. 已知函数f(x) = 2x - 1,求f(3)的值:A. 4B. 5C. 6D. 7答案:B6. 计算下列定积分:\[\int_{0}^{1} x^2 dx\]A. 1/3B. 1/2C. 2/3D. 1答案:A7. 已知向量a = (3, -2),向量b = (-1, 4),则向量a与向量b的点积为:A. -5B. -2C. -10D. 10答案:B8. 计算下列二项式展开式的第三项:\[(1 + x)^5\]A. 5x^3B. 10x^2C. 10x^3D. 5x^2答案:C9. 已知矩阵A和B,且AB = BA,下列哪个矩阵是A和B的乘积?A. ABB. BAC. A + BD. A - B答案:A10. 计算下列方程的解:\[2x^2 - 5x + 2 = 0\]A. x = 1/2 或 x = 2B. x = 1 或 x = 2C. x = 1/2 或 x = 1D. x = 2 或 x = 4答案:A二、填空题(每题4分,共20分)11. 已知函数f(x) = x^2 - 4x + 3,求该函数的顶点坐标。
答案:(2, -1)12. 计算下列三角函数值:\[\sin(30^\circ)\]答案:1/213. 已知等差数列的首项a1 = 3,公差d = 2,求第5项的值。
(完整word版)高中会考试卷数学试题(word文档良心出品)
高中会考试卷数学试题一、选择题(本题有22小题,每小题2分,共44分.选出各题中一个符合题意的正确选项,不选、多选、错选都不给分)1.数轴上两点A ,B 的坐标分别为2,-1,则有向线段AB 的数量是}}}8.底面半径为3,母线长为4的圆锥侧面积是(A)6π (B)12π (C)15π (D)24π9.下列函数中,在定义域内是增函数的是(A)y =(21)x (B)y =1x(C)y =x 2 (D)y =lg x10.在平行四边形ABCD 中,AB AD +u u u r u u u r 等于11.若一个圆的圆心在直线2y x =上,在y 轴上截得的弦的长度等于2,且与直线0x y -+=相切,则这个圆的方程可能是12.在ΔABC 中,如果sin A cos A =-513,那么ΔABC 的形状是 (D)3a-1,y =(A)向左平移4π个单位(B)向右平移4π个单位 (C)向左平移2π个单位(D)向右平移2π个单位18.已知函数y =f (x )的反函数为y =()1f x -,若f (3)=2,则()12f -为(A)3 (B)31 (C)2(D)21 19.如果函数y =log a x (a >0且a ≠1)在[1,3]上的最大值与最小值的差为2,则满足条件的a 值的集合是(A){3} (B){33}(C){3,33}(D){3,3}20.已知直线m ⊥平面α.直线n 平面β,则下列命题正确(A)α⊥β⇒m ⊥n (B)α⊥β⇒m ∥n (C)m ⊥n ⇒α∥β(D)m ∥n ⇒α⊥β21.一个正方体的表面展开图如图所示,图中的AB ,CD 在原正方体中是两条(A)平行直线 (B)相交直线(C)异面直线且成60°角 (D)异面直线且互相垂直22.已知数列{a n }的前n 项和Sn =q n -1(q >0且q 为常数),某同学研究此数列后,得知如下三个结论:①{a n }的通项公式是a n =(q -1)q n -1;②{a n }是等比数列;③当q ≠1时,221n n n S S S ++•<.其中结论正确的个数有(A)0个 (B)1个 (C)2个(D)3个二、填空题(本题有6小题,每小题3分,共18分) 23.计算:已知向量a r 、b r ,2a =r ,(3,4)b =r ,a r 与b r 夹角等于30︒,则a b⋅r r 等于.24.计算sin 240︒的值为。
高二数学会考试卷和答案
高二数学会考试卷和答案### 一、选择题(每题3分,共30分)### 1. 下列函数中,哪一个是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = x^2 + 1 \)D. \( f(x) = \frac{1}{x} \)**答案:B**### 2. 已知集合A={1, 2, 3},B={2, 3, 4},则A∩B等于?A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3, 4}**答案:B**### 3. 直线 \( y = 2x + 3 \) 与x轴的交点坐标是?A. (0, 3)B. (-3/2, 0)C. (3/2, 0)D. (0, -3)**答案:C**### 4. 函数 \( f(x) = \sin(x) \) 在区间[0, π]上的值域是?A. [-1, 1]B. [0, 1]C. [-1, 0]D. [0, π]**答案:B**### 5. 已知等比数列的首项为2,公比为3,其第五项的值是?A. 486B. 81C. 243D. 729**答案:D**### 6. 圆 \( x^2 + y^2 = 9 \) 与直线 \( y = x \) 的交点个数是?A. 0B. 1C. 2D. 3**答案:C**### 7. 函数 \( f(x) = x^2 - 4x + 4 \) 的最小值是?A. 0B. 1C. 4D. -4**答案:A**### 8. 已知 \( \cos(\theta) = \frac{3}{5} \),且 \( \theta \) 在第一象限,求 \( \sin(\theta) \) 的值?A. \(\frac{4}{5}\)B. \(\frac{3}{5}\)C. \(-\frac{4}{5}\)D. \(-\frac{3}{5}\)**答案:A**### 9. 已知 \( a \) 和 \( b \) 是两个不同的正数,若 \( \log_a b = \frac{1}{2} \),则 \( a \) 和 \( b \) 的关系是?A. \( a = \sqrt{b} \)B. \( a = b^2 \)C. \( b = a^2 \)D. \( b = \sqrt{a} \)**答案:C**### 10. 已知 \( \tan(\alpha) = 2 \),求 \( \sin(\alpha) \) 的值?A. \(\frac{2\sqrt{5}}{5}\)B. \(\frac{\sqrt{5}}{5}\)C. \(\frac{2}{\sqrt{5}}\)D. \(\frac{1}{\sqrt{5}}\)**答案:A**## 二、填空题(每题4分,共20分)### 11. 已知 \( \sin(\alpha) = \frac{1}{2} \),且 \( \alpha \) 在第二象限,求 \( \cos(\alpha) \) 的值。
【高中会考】2020年6月-高中数学会考标准试卷(含答案)
第 1 页 共 9 页2020 年 6 月 高中数学会考标准试卷满分 100 分,考试时间 120 分钟) 2020.6考 生 须 知 1. 考生要认真填写学校、班级、姓名、考试编号。
2. 本试卷共 6 页,分两部分。
第一部分选择题, 大题,共 7 个小题。
20 个小题;第二部分非选择题,包括两道3.试题所有答案必须填涂或书写在答题卡上,在试卷上做答无效。
4. 考试结束后,考生应将试卷答题卡放在桌面上, 待监考老师收回。
参考公式: 圆锥的侧面积公式 S 圆锥侧Rl ,其中 R 是圆锥的底面半径, l 是圆锥的母线长.圆锥的体积公式V圆锥 1 S h , 其中 S是圆锥的底面面积, h 是圆锥的高.3第Ⅰ卷 (机读卷 60 分)一、选择题: (共 20个小题,每小题 3分,共 60 分)在每个小题给出的四个备选答案中,只有一个是符 合题目要求的,请把所选答案前的字母按规定要求涂抹在“机读答题卡”第 1—20 题的相应位置上。
1. 已知全集 U={1,2,3,4,5}, 且 A={2,3,4},B={1,2}, 则 A ∩(? U B )等于( )A.{2}B.{5}C.{3,4}D.{2,3,4,5} 2. 在等差数列 {a n } 中,a 1=2,a 3 +a 5 =10,则 a 7=(7. 下列四个命题中正确命题的个数为( )22① 若 a>|b|, 则 a >b ; ②若 a>b,c>d, 则 a-c>b-d;cc③若 a>b,c>d, 则 ac>bd; ④若 a>b>0, 则 > .abA.3B.2C.1D.0A.5B.8C.10D.143. 在区间(0, +∞ )上不是增函数的函数是( )A.y=2x +1B.y=3x 2+1C.y=D.y=2x +x +14 25 4.sin · cos ·tan 5 的值是( )36 4A.- 3B. 3C.- 34445.在△ ABC 中,若 sin AcosB ,则∠B的值为(ab6. 设{a n }是公比为正数的等比数列,若 a 1=1,a 5=16,则数列 {a n } 前 7 项的和为(A .63B .64C . 127D . 128 A.30°B.45 °C.60°D.90°4第 2 页 共 9 页9.已知y=f(x) 是定义在R 上的奇函数,当x>0 时,f(x)=x-2 ,那么不等式 f(x)<0.5 的解集是( )A.{x|0 ≤x<2.5} C.{x| - 1.5<x<0 ,或 x>2.5}B.{x| -1.5<x ≤0} D.{x|x< - 1.5 或 0≤ x<2.5} 10. 下列关于互不相同的直线 ,m , A.C. n 和平面α,β,γ的命题,其中为真命题的是( )B. D. 111. 函数 f(x)=x + (x<0) 的值域为( )A .(- ∞,0)B .(- ∞,-2]C .[2 ,+∞)D .(- ∞,+∞)12. 甲乙两名学生六次数学测验成绩 (百分制) 如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数; ② 甲同学的平均分比乙同学高; ③ 甲同学的平均分比乙同学低;④ 甲同学成绩的方差小于乙同学成绩的方差. 面说法正确的是 ( ) A.③④B.①②④C.②④D.①③13.化简 1[ 1 (2a 8b )(4a 2b)] 的结果是 ()32A. 2a bB. 2b aC. b aD. a b14. 已知 sin α- cos5 α =- ,则 sin 2α的值等于( )477 9 9 A. B .- C .-D. 16 16 16161,球心 O 到平面α的距离为 2,则此球的体积为(C .4 6πD .6 3πy 1 16. 若变量 x ,y 满足约束条件x y0 ,则 z =x - 2y 的最大值为(xy2 08.设函数 ,则 f[f[-2]]A.5B.4的值为(C.3D.215. 平面α截球 O 的球面所得圆的半径为A. 6π B .4 3πA.4B.3C.2D.1第3 页共9 页第 4 页 共 9 页17. 若直线 3x +4y +k=0 与圆 x 2+y 2-6x +5=0 相切,则 k 的值等于( )B 、10 或 -1C 、-1 或-19D 、-1 或 1918. 已知 a=(3,4),b=(2,-1) 且 (a+xb) ⊥ (a-b), 则 x 等于( )A.23B.11.5C.D.19. 函数 f(x)=Acos( ωx +φ )(A>0 ,ω >0,-π <φ<0)的部分图象如图所示,为了得到B .向左平移 1π2个单位长度C .向右平移 π6 个单位长度D .向右平移 1π2个单位长度20.某公司一种型号的产品近期销售情况如下表:根据上表可得到回归直线方程y ^=0.75x +a ^,据此估计,该公司 7 月份这种型号产品的销售额约为( )A .19. 5万元B . 19. 25 万元C . 19. 15 万元D . 19. 05 万元第Ⅱ卷 (非机读卷 共 40 分)、填空题: (本大题共 4 小题,每小题 3 分,共 12 分.把答案填在题中横线上)21. 某棉纺厂为了解一批棉花的质量 ,从中随机抽测了 100 根棉花纤维的长度 (棉花纤维的长度是棉花质量的 重要指标). 所得数据均在区间 [5,40] 中,其频率分布直方图如图所示 ,则在抽测的 100根中,有 _________ 根棉花纤维的长度小于 20mm.22. 函数 y log a (x 3) 3(a 0且 a 1)恒过定点 23.从 2,3,8,9中任取两个不同的数字,分别记为A 、1或-19g(x)=Asin ωx 的图A .向左平移 π6 个单位长度第 5 页 共 9 页a ,b ,则 log a b 为整数的概率是 _____ .24. 经过点( -4,3), 且斜率为-3 的直线方程为 _ .三、解答题:(本大题共 3 小题,共 28分.解答应写出文字说明,证明过程或演算步骤) 25. 如图,在直三棱柱 ABC-A 1B 1C 1中,D,E 分别为 AB,BC 的中点,点 F 在侧棱 B 1B 上,且 B 1D ⊥A 1F,A1C 1⊥A 1B 1.求证: (1) 直线 DE ∥平面 A 1C 1F; (2) 平面 B 1DE ⊥平面 A 1C 1F.26. 在△ ABC 中, 内角 A ,B ,C 所对的边分别为 a,b,c, 已知 .(1)求角 B 的大小; (2)若 , 求△ ABC 的周长的取值范围.第 6 页 共 9 页S nn (n ∈N *) 均在函数 y=3x-2 的图象上.(1) 求数列{a n } 的通项公式;3(2) 设 b n = ,求数列{b n }的前 n 项和 T n .a n a n +127.设数列{a n }的前 n 项和为 S n ,点n ,≤-2第 7 页 共 9 页参考答案1. 解析:选 C.? U B={3,4,5} ,∴A ∩(? U B)={3,4} .2. 答案为: B ; 解析:设出等差数列的公差求解或利用等差数列的性质求解. 方法一:设等差数列的公差为 d ,则 a 3+a 5=2a 1+ 6d=4+ 6d=10,所以 d=1,a 7=a 1+ 6d=2+ 6=8.方法二:由等差数列的性质可得 a 1+a 7=a 3+a 5=10,又 a 1=2,所以 a 7=8. 3. C. 4. A5. 答案为:B6. 答案为: C ;解析:设数列 {a n } 的公比为 q(q >0) ,则有 a 5=a 1q 4=16, 所以 q=2,数列的前 7 项和为 S 7=a1(1-q) =1-2=127.1-q1-27. 答案为: C ; 解析:易知①正确 ; ②错误, 如 3>2,-1>-3, 而 3-(-1)=4<2-(-3)=5;1 1c c③错误,如 3>1,-2>-3, 而 3×(-2)<1 ×(-3); ④若 a>b>0,则 < ,当 c>0时, < , a b a b故④错误. ∴正确的命题只有 1 个. 8. A. 9. D10. 答案:D 解题思路:12.答案为: A ;11.答案为: B ;解析: f(x)=-1-x· =-2 ,当且仅当 -x=1 1 ,即 x=-1 时,等号成立. -x第 8 页 共 9 页解析:13. B14. 答案为: C.5 2 25 解析:由 sin α-cos α=- ,(sin α- cos α)=1-2sin αcos α=1-sin 2α= ,4 169所以 sin 2α =- 9 .1617. A ;18. 答案为: C ; 19. 答案为:B ;故将函数 y=f(x) 的图象向左平移 π 个单位长度可得到 g(x) 的图象. 1220. 答案为:D1解析:由表可知 x = ×(2 +3+4+5+6)=4,51y = ×(15.1+16.3+17+17.2+18.4)=16.8,则样本中心点 (4 ,16.8)在线性回归直线上,故 516.8=0.75×4+a ^,得a ^=13. 8.故当 x=7 时,y ^=0.75×7+13. 8=19. 05.故选 D .21. 答案为:30 ; 解析:由题意知 ,棉花纤维的长度小于 20mm 的频率为 (0.01+0.01+0.04)×5=0.3, 故抽测的 100 根中, 棉花纤维的长度小于 20mm 的有 0.3×100=30(根). 22. 答案为: (4,3)15.答案为: B ;解析:设球的半径R ,由球的截面性质得R= 2 +1= 3,所以球的体积 4V= πR 316. 答案为: B ; 解析:如图,画出约束条件表示的可行域,当目标函数 的交点 A(1,-1) 时,取到最大值 3,故选 B. z=x - 2y 经过 x + y=0 与 x - y - 2=0解析:由题图知 A=2,T =π 23∴ω =2, ∴ f(x)=2cos(2x+φ), π3,2代入得 cos23 +φ =1,∵-π <φ<0,∴- π 2π 2π< +φ< 3 3 32π 3φ =0,∴φ =- 2π2x -2π x -π 3 =2sin 2 12 .2 ∴ f(x)=2cos123.答案为:;6 解析:所有的基本事件有(2 ,3),(2 ,8),(2 ,9),(3 ,2),(3 ,8),(3 ,9),(8 ,2),(8 ,3),(8,9),(9,2),(9,3),(9,8),共 12个,记“ log a b 为整数”为事件 A, 21 则事件 A包含的基本事件有(2,8),(3,9),共 2 个,∴ P(A)= = .12 624.答案为: 3x+y+9=025.证明: (1) 在直三棱柱 ABC-A1B1C1中,A1C1∥AC. 在△ABC中,因为 D,E 分别为 AB,BC的中点,所以 DE∥AC,于是 DE∥A1C1. 又因为 DE? 平面 A1C1F,A1C1? 平面 A1C1F, 所以直线 DE∥平面 A1C1F.(2) 在直三棱柱 ABC-A1B1C1 中,A 1A⊥平面 A1B1C1. 因为 A1C1? 平面 A1B1C1, 所以 A1A⊥A1C1.又因为 A1C1⊥A1B1,A 1A? 平面 ABB1A1,A1B1? 平面 ABB1A1,A 1A∩A1B1=A1, 所以 A1C1⊥平面ABB1A1. 因为 B1D? 平面 ABB1A1, 所以 A1C1⊥B1D.又因为 B1D⊥A1F,A 1C1? 平面 A1C1F,A1F? 平面 A1C1F,A 1C1∩A1F=A1, 所以 B1D⊥平面 A1C1F. 因为直线 B1D? 平面 B1DE,所以平面 B1DE⊥平面 A1C1F.26.解:第9 页共9 页27.解:S n(1) 依题意,得S =3n-2,即 S n=3n2-2n. n当 n≥2时,a n=S n-S n-1 =(3n 2-2n)-2 [3(n-1) 2-2(n-1)]=6n-5 ;当 n=1 时,a1=1 也适合.即 a n =6n-5.第10 页共9。
2023年高中数学会考试卷
高中数学会考试卷一、单选题1.复数满足(12)3z i i -=-,则z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限2.“1<x <2”是“x <2”成立的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.某学校党支部评选了5份优秀学习报告心得体会(其中教师2份,学生3份),现从中随机抽选2份参展,则参展的优秀学习报告心得体会中,学生、教师各一份的概率是( )A .120B .35C .310D .9104.袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是( )A .16B .13C .34D .565.已知集合{}3,1,0,2,3,4A =--,{|0R B x x =≤或3}x >,则A B =( )A.∅B.{}3,1,0,4--C.{}2,3D.{}0,2,36.若命题甲:10x -=,命题乙:2lg lg 0x x -=,则命题甲是命题乙的( )A .充分非必要条件B .必要非充分条件C .充要条件D .非充分也非必要条件7.下列计算正确的是A.()22x y x y +=+B.()2222x y x xy y -=-- C.()()2111x x x +-=- D.()2211x x -=-8.在△ABC中,角A,B,C的对边分别为a,b,c,若a=3,b=5,c=2acosA,则cosA=()A.13 B.24 C.33 D.639.已知函数()11f x xx=-,在下列区间中,包含()f x零点的区间是()A.14,12⎛⎫⎪⎝⎭B.12,1⎛⎫⎪⎝⎭C.(1,2)D.(2,3)10.已知函数()2,01ln,0x xf xxx-⎧≤⎪=⎨>⎪⎩,()()g x f x x a=--.若()g x有2个零点,则实数a的取值范围是()A.[)1,0- B.[)0,∞+ C.[)1,-+∞ D.[)1,+∞11.2020年,一场突如其来的“肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[9,11)的学生人数为25,则n的值为()A.40 B.50 C.80 D.10012.已知角α的顶点与原点重合,始边与x轴的非负半轴重合,终边在直线3y x=上,则sin4πα⎛⎫+=⎪⎝⎭()A.25255D.5二、填空题 13.25(0),()8(0).x x f x x x ⎧+≤⎪=⎨+>⎪⎩14.正方体的棱长扩大到原来的倍,其表面积扩大到原来的( )倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中会考数学试卷(标准的)-CAL-FENGHAI.-(YICAI)-Company One1高中会考数学试卷(满分100分,考试时间120分钟)参考公式: 圆锥的侧面积公式Rl S π=圆锥侧,其中R 是圆锥的底面半径,l 是圆锥的母线长. 圆锥的体积公式S 31V =圆锥h , 其中S 是圆锥的底面面积,h 是圆锥的高. 第Ⅰ卷 (机读卷60分)一、选择题:(共20个小题,每小题3分,共60分)在每个小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案前 的字母按规定要求涂抹在“机读答题卡”第1—20题的相应位置上。
1. 设全集I {0,1,2,3}=,集合{0,1,2}M =,{0,2,3}N =,则=N C M I ( )A .{1}B .{2,3}C .{0,1,2}D .∅2. 在等比数列}{n a 中,,8,1685=-=a a 则=11a ( ) A. 4- B. 4± C. 2- D. 2±3. 下列四个函数中,在区间(0,)+∞上是减函数的是 ( )A .3log y x =B .3xy = C .12y x =D .1y x=4. 若54sin =α,且α为锐角,则αtan 的值等于 ( )A .53B .53-C .34D .34-5.在ABC ∆中,,4,2,2π=∠==A b a 则=∠B ( )A.3π B. 6π C. 6π或65π D. 3π或32π6. 等差数列{}n a 中,若99=S ,则=+65a a ( ) A.0 B.1 C.2 D.37. 若b a c b a >∈,R 、、,则下列不等式成立的是 ( )A.b a 11<B.22b a >C.1122+>+c bc a D.||||c b c a > 8. 已知二次函数2()(2)1f x x =-+,那么 ( )A .(2)(3)(0)f f f <<B .(0)(2)(3)f f f <<C .(0)(3)(2)f f f <<D .(2)(0)(3)f f f <<9.若函数()35191x x f x x x +≤⎧=⎨-+>⎩,则()f x 的最大值为 ( )A .9B .8C .7D .610.在下列命题中,正确的是 ( )A .垂直于同一个平面的两个平面互相平行B .垂直于同一个平面的两条直线互相平行C .平行于同一个平面的两条直线互相平行D .平行于同一条直线的两个平面互相平行11.已知0x >,函数xx y 1+=的最小值是 ( ) A.1 B. 2 C. 3 D.4 12. 随机调查某校50个学生在“六一”儿童节的午餐费,结果如下表:这50个学生“六一”节午餐费的平均值和方差分别是 ( ) A.2.4,56.0 B.2.4,56.0 C.4,6.0 D.4,6.013. 下列命题中正确命题个数为 ( )○1⋅=⋅a b b a ○20,,⋅=≠⇒00a b a b = ○3⋅=⋅a b b c 且,,≠≠00a b 则=a c ○4,,,≠≠≠000a b c 则()()⋅⋅=⋅⋅a b c a b c A.0 B.1 C.2 D.314.函数x x y 2cos 2sin =是 ( )A .周期为2π的奇函数 B .周期为2π的偶函数俯视图C .周期为π的奇函数D .周期为π的偶函数15. 如图,一个空几何体的正视图(或称主视图)与侧视图(或称左视图)为全等的等边三角形,俯视图为一个半径为1的圆,那么这个几何体的全面积为( )A .πB .3πC .2πD .π16.已知y x ,满足⎪⎩⎪⎨⎧≤-+≥≥.022,0,0y x y x 则y x z +=的最大值是 ( ) A.1 B. 1 C. 2 D.317.以点(2,-1)为圆心且与直线0543=+-y x 相切的圆的方程为 ( )A.3)1()2(22=++-y xB.3)1()2(22=-++y xC.9)1()2(22=++-y xD.9)1()2(22=-++y x 18. 已知()3,4=a ,()2,1=-b 且()()x +⊥-a b a b ,则x 等于 ( )A.23B.232 C.233 D.23419. 要得到函数)42sin(π-=x y 的图象,只要将函数x y 2sin =的图象 ( )A .向左平移4π个单位; B . 向右平移4π个单位;C .向左平移8π个单位; D .向右平移8π个单位。
20. 猜商品的价格游戏, 观众甲:2000! 主持人:高了!观众甲:1000! 主持人:低了! 观众甲:1500! 主持人:高了! 观众甲:1250! 主持人:低了! 观众甲:1375! 主持人:低了!则此商品价格所在的区间是 ( )A .(1000,1250)B .(1250,1375)C .(1375,1500)D .(1500,2000)第Ⅱ卷 (非机读卷 共40分)二、填空题:(本大题共4小题,每小题3分,共12分.把答案填在题中横线上) 21. 某个容量为100的样本的频率分布直方图如下,则在区间[4,5)上的数据的频数..为 . 22. 函数()()2log 1a f x x =-的定义域为___________.23. 一个骰子连续投2次,点数和为4的概率24. 阅读程序框图,若输入的n 是100,则输出的变量S= ;T= 。
三、解答题:(本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤) 25.(本小题满分8分)如图,在正四棱柱1111ABCD A B C D -中,AC 为底面ABCD 的对角线,E 为D D 1的中点 (Ⅰ)求证:1D B AC ⊥; (Ⅱ)求证:1//D B AEC 平面.输入 n S=0,T=0n<2S=S+n n=n-1T=T+n n=n-1输出S,T结束是否开 始E B1A1CD26.(本小题满分10分)在ABC ∆中,,,A B C 为三个内角,2()4sin sin sin 212Bf B B B =++. (Ⅰ)若()2f B =,求角B ;(Ⅱ)若()2f B m -<恒成立,求实数m 的取值范围.27.(本小题满分10分)已知函数()y f x =,*x ∈N ,*y ∈N ,满足:① 对任意a ,*b ∈N ,a b ≠,都有()()()()af a bf b af b bf a +>+; ② 对任意*n ∈N 都有()3f f n n ⎡⎤=⎣⎦. (Ⅰ)试证明:()f x 为*N 上的单调增函数; (Ⅱ)求()()()1628f f f ++; (Ⅲ)令()3n n a f =,*n ∈N ,试证明:4111121<+++n a a a .参考答案1---20AADCB CCABB BABAB CCCDC 21、30;22、(-1,1);23、121;24、2550,2500。
25、 证明:(Ⅰ)连结BD在正四棱柱1111D C B A ABCD -中 ,ABCD 1平面⊥DD 是正方形ABCDBDAC ABCD AC DD AC DD ⊥∴⊥∴⊂⊥是正方形平面平面 11ABCD ,ABCDBD AC DB D B D DB D AC D DD BD BD AC AC DD 111111,,⊥∴⊂⊥∴=⊥⊥平面平面(Ⅱ)设OE O,AC 连结= BDAEC//AEC EO ,AEC B D EO//EO D D E DO BO ABCD 11111平面平面平面的中位线是的中点是是正方形B D B D DB D ∴⊂⊄∴∆∴=∴26、解:(Ⅰ) f 2(B)= ∴21sin =B π<<B 0 656ππ或=∴B (Ⅱ) f (B)-m<2恒成立 恒成立m 12sinB <-∴ π<<B 0 ()1112sinB ,-∈-∴ 1m >∴27、解:(I )由①知,对任意*,,a b a b ∈<N ,都有0))()()((>--b f a f b a ,由于0<-b a ,从而)()(b f a f <,所以函数)(x f 为*N 上的单调增函数.(II )令a f =)1(,则1a ,显然1≠a ,否则1)1())1((==f f f ,与3))1((=f f 矛盾.从而1>a ,而由3))1((=f f ,即得3)(=a f . 又由(I )知a f a f =>)1()(,即3<a .于是得31<<a ,又*a ∈N ,从而2=a ,即2)1(=f . 进而由3)(=a f 知,3)2(=f .于是623))2(()3(=⨯==f f f ,933))3(()6(=⨯==f f f , 1863))6(()9(=⨯==f f f , 2793))9(()18(=⨯==f f f , 54183))18(()27(=⨯==f f f , 81273))27(()54(=⨯==f f f ,由于5427815427-=-=,而且由(I )知,函数)(x f 为单调增函数,因此55154)28(=+=f . 从而(1)(6)(28)295566f f f ++=++=. (III )1333))3(()(+=⨯==n n n n f f a f ,n n n n a a f f f a 3))(()3(11===++,6)3(1==f a .即数列}{n a 是以6为首项, 以3为公比的等比数列 . ∴ 16323(1,2,3)n n n a n -=⨯=⨯=.于是21211(1)111111111133()(1)1233324313n n nn a a a -+++=+++=⨯=--, 显然41)311(41<-n ,综上所述,4111121<+++n a a a。