常用小波函数及Matlab常用指令
常用小波函数及Matlab常用指令
THR=wbmpen(C,L,SIGMA,ALPHA)使用penalization方法为降噪返回全局门槛THR.
STDC=wnoisest(C,L,S)返回[C,L]在尺度S上的细节系数的标准差估计
[THR,NKEEP]=wdcbm(C,L,ALPHA,M)返回各尺度上的相应门槛,存放于THR向量中,降噪一般将ALPHA设为3
y=upcoef('O',x,'wname',N) 用于一维小波分析,计算向量x向上N步的重构小波系数,N为正整数。如 果O=a,对低频系数进行重构;如果O=d,对高频系数进行重构。
[thr,sorh,keepapp]=ddencmp('den','wv',x)产生信号全局默认阈值,然后利用wdencmp函数进行消除噪 声的处理,thr = sqrt(2*log(n)) * s
THR=thselect(X,TPTR)使用由TPTR指定的算法计算与X相适应的门槛
D=detcoef(c,l,N) 提取N尺度的高频系数。
[nc,nl,ca]=upwlev(c,l,'wname')对小波分解结构[c,l]进行单尺度重构,返回上一尺度的分解结构并提 取最后一尺度的低频分量。
x=wrcoef('type',c,l,'wname',N)对一维信号的分解结构[c,l]用指定的小波函数进行重构,当'type=a' 时对信号的低频部分进行重构,此时N可以为0.当'type=d'时,对信号 的高频部分进行重构,此时N为正整数。
五种常见小波基函数及其matlab实现
与标准的傅里叶变换相比,小波分析中使用到的小波函数具有不唯一性,即小波函数 具有多样性。
小波分析在工程应用中,一个十分重要的问题就是最优小波基的选择问题,因为用不同的小波基分析同一个问题会产生不同的结果。
目前我们主要是通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,由此决定小波基。
常用小波基有Haar 小波、Daubechies(dbN)小波、Mexican Hat(mexh)小波、Morlet 小波、Meyer 小波等。
Haar 小波Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简单的一个小波函数,它是支撑域在[0,1]∈t 围的单个矩形波。
Haar函数的定义如下:1021121(t)-10t t ≤≤≤≤ψ=⎧⎪⎨⎪⎩其他Haar 小波在时域上是不连续的,所以作为根本小波性能不是特别好。
但它也有自己的优点:1. 计算简单。
2.(t)ψ不但与j (t)[j z]2ψ∈正交,而且与自己的整数位移正交,因此,在2j a=的多分辨率系统中,Haar 小波构成一组最简单的正交归一的小波族。
()t ψ的傅里叶变换是:2/24=sin ()j e aψ-ΩΩΩΩ()jHaar 小波的时域和频域波形title('haar 时域'); g2=fft(g1); g3=abs(g2); subplot(2,1,2);plot(g3,'LineWidth',2); xlabel('f') title('haar 频域')Daubechies(dbN)小波Daubechies 小波是世界著名的小波分析学者Inrid ·Daubechies 构造的小波函数,简写为dbN ,N 是小波的阶数。
小波(t)ψ和尺度函数(t)φ中的支撑区为12-N ,(t)ψ的消失矩为N 。
除1=N 〔Harr 小波〕外,dbN 不具有对称性〔即非线性相位〕。
MATLAB小波变换指令及其功能介绍(超级有用).
MATLAB 小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1 dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname'[cA,cD]=dwt(X,Lo_D,Hi_D别可以实现一维、二维和 N 维 DFT说明:[cA,cD]=dwt(X,'wname' 使用指定的小波基函数 'wname' 对信号X 进行分解,cA 、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2 idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname'X=idwt(cA,cD,Lo_R,Hi_RX=idwt(cA,cD,'wname',L函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L说明:X=idwt(cA,cD,'wname' 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,'wname',L 和 X=idwt(cA,cD,Lo_R,Hi_R,L 指定返回信号 X 中心附近的 L 个点。
2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能--------------------------------------------------- dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换 -----------------------------------------------------------(1 wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOLY=wcodemat(X,NB,OPTY=wcodemat(X,NBY=wcodemat(X说明:Y=wcodemat(X,NB,OPT,ABSOL 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB ,缺省值 NB=16; OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分 ABSOL 是函数的控制参数(缺省值为 '1'),即: ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X1. 离散傅立叶变换的 Matlab实现(2 dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname'[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D说明:[cA,cH,cV,cD]=dwt2(X,'wname'使用指定的小波基函数 'wname' 对二维信号 X 进行二维离散小波变幻;cA ,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D 使用指定的分解低通和高通滤波器 Lo_D 和Hi_D 分解信号 X 。
MATLAB小波变换指令及其功能介绍(超级有用)
MATLAB小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1) dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname'对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。
2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换----------------------------------------------------------- (1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的 Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
五种常见小波基函数及其matlab实现
五种常见小波基函数及其matlab实现Haar 小波Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简单的一个小波函数,它是支撑域在[0,1]∈t 范围内的单个矩形波。
Haar函数的定义如下:1021121(t)-10t t ≤≤≤≤ψ=其他Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。
但它也有自己的优点:1. 计算简单。
2.(t)ψ不但与j (t)[j z]2ψ∈正交,而且与自己的整数位移正交,因此,在2j a=的多分辨率系统中,Haar 小波构成一组最简单的正交归一的小波族。
()t ψ的傅里叶变换是:2/24=sin ()j e aψ-ΩΩΩΩ()jHaar 小波的时域和频域波形[phi,g1,xval] = wavefun('haar',20); subplot(2,1,1);plot(xval,g1,'LineWidth',2); xlabel('t') title('haar 时域'); g2=fft(g1); g3=abs(g2); subplot(2,1,2); plot(g3,'LineWidth',2);xlabel('f') title('haar 频域')Daubechies(dbN)小波Daubechies 小波是世界著名的小波分析学者Inrid ·Daubechies 构造的小波函数,简写为dbN ,N 是小波的阶数。
小波(t)ψ和尺度函数(t)φ中的支撑区为12-N ,(t)ψ的消失矩为N 。
除1=N (Harr 小波)外,dbN 不具有对称性(即非线性相位)。
除1=N(Harr 小波)外,dbN 没有明确的表达式,但转换函数h 的平方模是明确的:令kN k kN kyp C∑-=+=11-(y),其中C kN k+1-为二项式的系数,则有)2)p(sin2(cos)(2220ωωω=m其中:e h jk N k kωω-12021)(m ∑-==Daubechies 小波具有以下特点:1. 在时域是有限支撑的,即(t)ψ长度有限。
MATLAB小波变换指令及其功能介绍(超级有用)(可编辑修改word版)
MATLAB 小波变换指令及其功能介绍1一维小波变换的 Matlab 实现(1)dwt 函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname'对信号 X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2)idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。
2二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换(1)wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即: ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的 Matlab 实现(2)dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
五种常见小波基函数及其matlab实现精编版
与标准的傅里叶变换相比,小波分析中使用到的小波函数具有不唯一性,即小波函数 具有多样性。
小波分析在工程应用中,一个十分重要的问题就是最优小波基的选择问题,因为用不同的小波基分析同一个问题会产生不同的结果。
目前我们主要是通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,由此决定小波基。
常用小波基有Haar 小波、Daubechies(dbN)小波、Mexican Hat(mexh)小波、Morlet 小波、Meyer 小波等。
Haar 小波Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简单的一个小波函数,它是支撑域在[0,1]∈t 范围内的单个矩形波。
Haar函数的定义如下:1021121(t)-10t t ≤≤≤≤ψ=⎧⎪⎨⎪⎩其他Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。
但它也有自己的优点:1. 计算简单。
2.(t)ψ不但与j (t)[j z]2ψ∈正交,而且与自己的整数位移正交,因此,在2j a=的多分辨率系统中,Haar 小波构成一组最简单的正交归一的小波族。
()t ψ的傅里叶变换是:2/24=sin ()j e aψ-ΩΩΩΩ()jDaubechies(dbN)小波Daubechies 小波是世界著名的小波分析学者Inrid ·Daubechies 构造的小波函数,简写为dbN ,N 是小波的阶数。
小波(t)ψ和尺度函数(t)φ中的支撑区为12-N ,(t)ψ的消失矩为N 。
除1=N (Harr 小波)外,dbN 不具有对称性(即非线性相位)。
除1=N(Harr 小波)外,dbN 没有明确的表达式,但转换函数h 的平方模是明确的:令kN k kN kyp C∑-=+=11-(y),其中C kN k+1-为二项式的系数,则有)2)p(sin2(cos)(2220ωωω=m其中:e h jk N k kωω-12021)(m ∑-==Daubechies 小波具有以下特点:1. 在时域是有限支撑的,即(t)ψ长度有限。
matlab小波函数
Matlab小波函数一、Matlab小波去噪基本原理1、带噪声的信号一般是由含有噪声的高频信号和原始信号所在的低频信号。
利用多层小波,将高频噪声信号从混合信号中分解出来。
2、选择合适的阈值对图像的高频信号进行量化处理3、重构小波图像:依据图像小波分解的低频信号与处理之后的高频信号来重构图像的信息。
二、第二代小波变换1、构造方法特点:(1)继承了第一代小波的多分辨率的特性。
(2)不依赖fourior变换,直接在时域完成小波变换。
(3)变换之后的系数可以是整数。
(4)图像恢复质量与变换是边界采用何种延拓方式无关。
2、优点:算法简单,速度快,适合并行处理。
对存需求量小,便于DSP芯片实现、可用于本位操作运算。
3、提升原理:构造紧支集双正交小波(1)步骤:分裂—预测—更新(2)分解与重构三、matlab小波函数库1、matlab小波通用函数:(1)wavemngr函数【小波管理器(用于小波管理,添加、删除、储存、读取小波)】wavemngr(‘add’,FN,FSN,WT,NUMS,FILE)wavemngr(‘add’,FN,FSN,WT,NUMS,FILE,B)% 添加小波函数,FN为family name,FSN为family short name WT为小波类型:WT=1表示正交小波,=2表示非正交小波,=3表示带尺度函数的小波,=4表示无尺度函数的小波,=5表示无尺度函数的复小波。
小波族只有一个小波,则NUMS=“,否则NUMS表示小波参数的字符串FILE表示文件名B=[lb ub]指定小波有效支撑的上下界wavemngr(‘del’,N) %删除小波wavemngr(‘restore’)/ wavemngr(‘restore’,IN2) %保存原始小波OUT1= wavemngr(‘read’) %返回小波族的名称OUT1= wavemngr(‘read’,IN2) %返回所有小波的名称OUT1= wavemngr(‘read_asc’)%读取wavelets.asc文件并返回小波信息(2)scal2frq函数【尺度转换频率】F=scal2frq(A,’wname’,DELTA)%返回由尺度A,小波函数“wname”和采样周期DELTA决定的准频率。
总结MATLAB中涉及到的小波函数
X = iswt(SWC,'wname')
X = iswt(SWA,SWD,'wname')
X = iswt(SWC,Lo_R,Hi_R)
X = iswt(SWA,SWD,Lo_R,Hi_R)
(5)upcoef函数:一维小波分解系数的直接重构
用法:
Y = upcoef(O,X,'wname',N)
收集和总结MATLAB中涉及到的小波函数
(1)plot函数:绘制向量或矩阵的图形
用法:
plot(Y)
plot(X1,Y1,...)
plot(X1,Y1,LineSpec,...)
plot(...,'PropertyName',PropertyValue,...)
plot(axes_handle,...)
[XD,TREED,PERF0,PERFL2] =
wpdencmp(TREE,SORH,CRIT,PAR,KEEPAPP)
(11)wpfun函数:小波包函数
[用法:
WPWS,X] = wpfun('wname',NUM,PREC)
[WPWS,X] = wpfun('wname',NUM)
(12)wpjoin函数:重组小波包
(2)cwt函数:实现一维连续小波变换的函数。
用法:
COEFS=cwt(S, SCALES, 'wname')
COEFS=cwt(S, SCALES, 'wname', 'plot')
COEFS=cwt(S, SCALES, 'wname', 'PLOTMODE')
MATLAB小波变换指令及其功能介绍(超级有用)
MATLAB小波变换指令及其功能介绍1一维小波变换的Matlab实现(1)dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和N维DFT说明:[cA,cD]=dwt(X,'wname')使用指定的小波基函数'wname'对信号X进行分解,cA、cD分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D)使用指定的滤波器组Lo_D、Hi_D对信号进行分解。
(2)idwt函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数fft、fft2和fftn分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname')由近似分量cA和细节分量cD经小波反变换重构原始信号X。
'wname'为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R)用指定的重构滤波器Lo_R和Hi_R经小波反变换重构原始信号X。
X=idwt(cA,cD,'wname',L)和X=idwt(cA,cD,Lo_R,Hi_R,L)指定返回信号X中心附近的L个点。
2二维小波变换的Matlab实现二维小波变换的函数别可以实现一维、二维和N维DFT函数名函数功能---------------------------------------------------dwt2二维离散小波变换wavedec2二维信号的多层小波分解idwt2二维离散小波反变换waverec2二维信号的多层小波重构wrcoef2由多层小波分解重构某一层的分解信号upcoef2由多层小波分解重构近似分量或细节分量detcoef2提取二维信号小波分解的细节分量appcoef2提取二维信号小波分解的近似分量upwlev2二维小波分解的单层重构dwtpet2二维周期小波变换idwtper2二维周期小波反变换-----------------------------------------------------------(1)wcodemat函数功能:对数据矩阵进行伪彩色编码函数fft、fft2和fftn分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL)返回数据矩阵X的编码矩阵Y;NB伪编码的最大值,即编码范围为0~NB,缺省值NB=16;OPT指定了编码的方式(缺省值为'mat'),即:别可以实现一维、二维和N维DFTOPT='row',按行编码OPT='col',按列编码OPT='mat',按整个矩阵编码函数fft、fft2和fftn分ABSOL是函数的控制参数(缺省值为'1'),即:ABSOL=0时,返回编码矩阵ABSOL=1时,返回数据矩阵的绝对值ABS(X)1.离散傅立叶变换的Matlab实现(2)dwt2函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname'对二维信号X进行二维离散小波变幻;cA,cH,cV,cD分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)使用指定的分解低通和高通滤波器Lo_D和Hi_D分解信号X。
五种常见小波基函数及其matlab实现精编版
与标准的傅里叶变换相比,小波分析中使用到的小波函数具有不唯一性,即小波函数 具有多样性。
小波分析在工程应用中,一个十分重要的问题就是最优小波基的选择问题,因为用不同的小波基分析同一个问题会产生不同的结果。
目前我们主要是通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,由此决定小波基。
常用小波基有Haar 小波、Daubechies(dbN)小波、Mexican Hat(mexh)小波、Morlet 小波、Meyer 小波等。
Haar 小波Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简单的一个小波函数,它是支撑域在[0,1]∈t 范围内的单个矩形波。
Haar函数的定义如下:1021121(t)-10t t ≤≤≤≤ψ=⎧⎪⎨⎪⎩其他Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。
但它也有自己的优点:1. 计算简单。
2.(t)ψ不但与j (t)[j z]2ψ∈正交,而且与自己的整数位移正交,因此,在2j a=的多分辨率系统中,Haar 小波构成一组最简单的正交归一的小波族。
()t ψ的傅里叶变换是:2/24=sin ()j e aψ-ΩΩΩΩ()jDaubechies(dbN)小波Daubechies 小波是世界著名的小波分析学者Inrid ·Daubechies 构造的小波函数,简写为dbN ,N 是小波的阶数。
小波(t)ψ和尺度函数(t)φ中的支撑区为12-N ,(t)ψ的消失矩为N 。
除1=N (Harr 小波)外,dbN 不具有对称性(即非线性相位)。
除1=N(Harr 小波)外,dbN 没有明确的表达式,但转换函数h 的平方模是明确的:令kN k kN kyp C∑-=+=11-(y),其中C kN k+1-为二项式的系数,则有)2)p(sin2(cos)(2220ωωω=m其中:e h jk N k kωω-12021)(m ∑-==Daubechies 小波具有以下特点:1. 在时域是有限支撑的,即(t)ψ长度有限。
MATLAB 小波变换 指令及其功能介绍
MATLAB 小波变换指令及其功能介绍3. 图像小波变换的 Matlab 实现函数 fft、fft2 和 fftn 分析3.1 一维小波变换的 Matlab 实现(1) dwt 函数 Matlab功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维 DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname' 对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。
1. 离散傅立叶变换的 Matlab实现3.2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT-------------------------------------------------函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换 Matlabwaverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量1. 离散傅立叶变换的Matlab实现detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构1. 离散傅立叶变换的 Matlab实现dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换-------------------------------------------------------------函数 fft、fft2 和 fftn 分(1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数 'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
(完整word版)MATLAB小波变换指令及其功能介绍(超级有用)
MATLAB小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1) dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname'对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。
2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换----------------------------------------------------------- (1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的 Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
MATLAB小波分析工具箱常用函数
MATLAB小波分析工具箱常用函数matlab小波分析工具箱常用函数1.Cwt :一维连续小波变换格式:coefs=cwt(s,scales,'wavename')coefs=cwt(s,scales,'wavename','plot')scales:尺度向量,可以为离散值,表示为[a1,a2,a3……],也可为连续值,表示为[amin:step:amax]2.dwt:单尺度一维离散小波变换格式:[ca,cd]=dwt(x,'wavename')[ca,cd]=dwt(x,lo-d,hi-d)先利用小波滤波器指令wfilters求取分解用低通滤波器lo-d和高通滤波器hi-d。
[lo-d,hi-d]=wfilters('haar','d');[ca,cd]=dwt(s,lo-d,hi-d)3.idwt:单尺度一维离散小波逆变换4.wfilters格式:[lo-d,hi-d,lo-r,hi-r]=wfilters('wname')[f1,f2]=wfilters('wname','type')type=d(分解滤波器)、R(重构滤波器)、l(低通滤波器)、h(高通滤波器)5.dwtmode 离散小波变换模式格式:dwtmodedwtmode('mode')mode:zdp补零模式,sym对称延拓模式,spd平滑模式6.wavedec多尺度一维小波分解格式:[c,l]=wavedec(x,n,'wname')[c,l]=wavedec(x,n,lo-d,hi-d)7.appcoef 提取一维小波变换低频系数格式:A=appcoef(c,l,'wavename',N)A=appcoef(c,l,lo-d,hi-d,N) N是尺度,可省略例:load leleccum;s=leleccum(1:2000)subplot(421)plot(s);title('原始信号')[c,l]=wavedec(s,3,'db1');ca1=appcoef(c,l,'db1',1);subplot(445)plot(ca1);ylabel('ca1');ca2=appcoef(c,l,'db1',2);subplot(4,8,17)plot(ca2);ylabel('ca2');8.detcoef 提取一维小波变换高频系数格式:d=detcoef(c,l,N),N尺度的高频系数。
常用小波函数及Matlab常用指令
Orthogonal yes Biorthogonal yes Compact support yes DWT possible CWT possible Support width 2N-1 Filters length 2N Regularity about 0.2 N for large N Symmetry far from Number of vanishing moments for psi N
常用小波函数及Matlab常用指令
●一 、常用小波函数
与标准傅立叶变换相比,小波分析中用到的小 波函数没有唯一性,小波函数 ( x) 具有多样性。 由此而带来的问题是使用不同的小波基分析同一 个问题会产生不同的结果,没有一个选择最优小 波基的统一方法。目前主要是通过用小波分析方 法处理信号的结果与理论分析结果的误差莱判定 小波基的好坏,并由此选定小波基。
bior 3.1 bior 3.3 bior 3.5 bior 3.7 bior 3.9 bior 4.4 bior 5.5 bior 6.8
4 8 12 16 20 9 9 17
4 4 4 4 4 7 11 11
Regularity for psi rec. Nr-1 and Nr-2 at the knots Symmetry yes Number of vanishing moments for psi dec. Nr Remark: bior 4.4 , 5.5 and 6.8 are such that reconstruction and decomposition functions and filters are close in value.
Orthogonal Biorthogonal Compact support ble
MATLAB小波函数总结
MATLAB小波函数总结在MATLAB中,小波函数是一种弧形函数,广泛应用于信号处理中的压缩,降噪和特征提取等领域。
小波函数具有局部化特性,能够在时频域上同时分析信号的瞬时特征和频率信息。
本文将总结MATLAB中常用的小波函数及其应用。
一、小波函数的基本概念小波变换是一种时间-频率分析方法,通过将信号与一组基函数进行卷积得到小波系数,从而实现信号的时频分析。
小波函数具有紧致性,能够在时域和频域具有局域性。
MATLAB提供了一系列的小波函数,用于不同的应用场景。
1. Haar小波函数Haar小波函数是最简单的一类小波函数,它是一种基于矩阵变换的正交小波函数。
具体而言,Haar小波函数形式如下:ψ(x)=1(0≤x<1/2)-1(1/2≤x<1)0(其他)Haar小波函数的最大优点是构造简单,仅由两个基本函数构成,且可以有效地表示信号的边缘和跳变。
2. Daubechies小波函数Daubechies小波函数是一类紧支小波函数,能够在时域和频域上实现精确的表示。
MATLAB提供了多个Daubechies小波函数,如db1、db2、db3等,其选择取决于所需的时频分析精度。
3. Symlets小波函数Symlets小波函数是Daubechies小波函数的一种变形,它在保持带通特性的基础上增加了支持系数的数量,提高了时频分析的精度。
MATLAB 提供了多个Symlets小波函数,如sym2、sym3、sym4等。
4. Coiflets小波函数Coiflets小波函数是一种具有对称性和紧支特性的小波函数,可用于信号压缩和降噪等应用。
MATLAB提供了多个Coiflets小波函数,如coif1、coif2、coif3等。
二、小波函数的应用小波函数广泛应用于信号处理中的各个领域,包括信号压缩、降噪、图像处理和模式识别等。
下面将重点介绍小波函数在这些领域的应用。
1.信号压缩小波函数可以通过选择合适的小波基函数和阈值策略来实现信号的压缩。
MATLAB小波分析工具箱常用函数
MATLAB小波分析工具箱常用函数1. wfilters 函数:用于生成小波滤波器和尺度函数,可以根据指定的小波和尺度类型生成小波滤波器系数。
2. wavedec 函数:用于将信号进行小波分解,将输入信号分解为多个尺度系数和小波系数。
3. waverec 函数:用于将小波系数和尺度系数进行重构,将小波分解后的系数重构为信号。
4. cwt 函数:用于进行连续小波变换,可以获得信号在不同尺度上的时频信息。
5. icwt 函数:用于进行连续小波反变换,可以将连续小波变换的结果重构为原始信号。
6. cmorlet 函数:用于生成复数 Morlet 小波。
Morlet 小波是一种基于高斯调制正弦波的小波函数。
7. modwt 函数:用于进行无偏快速小波变换,可以获取多个尺度下的小波系数。
8. imodwt 函数:用于进行无偏快速小波反变换,可以将无偏快速小波变换的结果重构为原始信号。
9. wdenoise 函数:用于对信号进行去噪处理,可以去除信号中的噪声。
10. wavethresh 函数:用于对小波系数进行阈值处理,可以实现信号压缩。
11. wenergy 函数:用于计算小波系数的能量,可用于分析小波系数的频谱特性。
12. wscalogram 函数:用于绘制小波系数的时频谱图,可以直观地显示信号的时频信息。
13. wpdec 函数:用于进行小波包分解,可以将输入信号分解为多个尺度系数和小波系数。
14. wprec 函数:用于将小波包系数和尺度系数进行重构,将小波包分解后的系数重构为信号。
15. wptree 函数:用于提取小波包树的信息,可以获得小波包树的结构和节点信息。
这些函数可以实现小波分析中主要的操作和功能。
通过使用这些函数,你可以进行小波分析、信号去噪、信号压缩等应用。
同时,你也可以根据具体的需求使用这些函数进行函数的扩展和自定义。
小波函数及Matlab常用指令
小波包分析能够更全面地揭示信号的细节特征,对于非平稳信号的处理效果尤为突出。此 外,小波包分析还可以根据实际需求选择合适的小波基函数,从而更好地满足信号处理的 需求。
小波包分析的应用
小波包分析在信号处理、图像处理、语音识别等领域有着广泛的应用。例如,在信号处理 中,小波包分析可以用于信号去噪、特征提取、故障诊断等;在图像处理中,小波包分析 可以用于图像压缩、图像增强、图像恢复等。
信号的小波重构是将小波分解后的系数重新组合成原始信号的 过程。
02
在Matlab中,可以使用`waverec`函数对小波系数进行重构,该
函数可以根据小波分解的层次和系数重建原始信号。
小波重构的结果可以用于验证小波分解的正确性和完整性,以
03
及评估去噪等处理的效果。
信号的小波去噪
信号的小波去噪是一种利用小波 变换去除信号中噪声的方法。
小波函数及Matlab常用指 令
• 小波函数简介 • Matlab中小波函数的常用指令 • Matlab中信号的小波分析 • Matlab中小波变换的应用实例 • Matlab中小波函数的进阶使用
01
小波函数简介
小波函数的定义
小波函数是一种特殊的函数,其时间频率窗口均有限,具有良好的局部化 特性。
金融数据分类与聚类
利用小波变换的特征提取能力,可以对金融数据进行分类或聚类, 用于市场趋势预测等。
05
Matlab中小波函数的进阶使用
小波包分析
小波包分析
小波包分析是一种更为精细的信号分析方法,它不仅对信号进行频域分析,还对信号进行 时频分析。通过小波包分析,可以更准确地提取信号中的特征信息,为信号处理提供更全 面的数据支持。
THANKS
五种常见小波基函数及其matlab实现-文档
与标准的傅里叶变换相比,小波分析中使用到的小波函数具有不唯一性,即小波函数 具有多样性。
小波分析在工程应用中,一个十分重要的问题就是最优小波基的选择问题,因为用不同的小波基分析同一个问题会产生不同的结果。
目前我们主要是通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,由此决定小波基。
常用小波基有Haar 小波、Daubechies(dbN)小波、Mexican Hat(mexh)小波、Morlet 小波、Meyer 小波等。
Haar 小波Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最Haar 函数的定义如下:Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。
但它也有自己的优点:1. 计算简单。
2.而且与自己的整数位移正交,因此,Haar 小波构成一组最简单的正交归一的小波族。
Haar 小波的时域和频域波形Daubechies(dbN)小波Daubechies小波是世界著名的小波分析学者Inrid·Daubechies构造的小波函数,简写为dbN,NHarr小波)外,dbN不具有对称性(即非线性相位)Harr小波)外,dbN没有明确的表达式,但转换函数h的平方模是明确的:其中:Daubechies 小波具有以下特点:1.2.N 阶零点。
3.4.db4的时域和频域波形:Daubechies小波常用来分解和重构信号,作为滤波器使用:Mexican Hat(mexh)小波Mexican Hat函数为Gauss函数的二阶导数:因为它的形状像墨西哥帽的截面,所以也称为墨西哥帽函数。
Mexihat小波的时域和频域波形:Mexihat小波的特点:1.2.不存在尺度函数,所以Mexihat小波函数不具有正交性。
Morlet小波它是高斯包络下的单频率副正弦函数:其中C是重构时的归一化常数。
Morlet小波没有尺度函数,而且是非正交分解。
Morlet小波的时域和频域波形图:Meyer小波1.Meyer小波不是紧支撑的,但它收敛的速度很快2.Meyer小波的时域和频域波形图:友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
●一 、常用小波函数
与标准傅立叶变换相比,小波分析中用到的小 波函数没有唯一性,小波函数 ( x) 具有多样性。 由此而带来的问题是使用不同的小波基分析同一 个问题会产生不同的结果,没有一个选择最优小 波基的统一方法。目前主要是通过用小波分析方 法处理信号的结果与g function phi = 1 on [0 1] and 0 otherwise. wavelet function psi = 1 on [0 0.5[, = -1 on [0.5 1] and 0 otherwise.
Family Short name Examples Haar haar haar is the same as db1
Family Short name Order Nr,Nd r for reconstruction d for decomposition
Biorthogonal bior Nr = 1 , Nd = 1, 3, 5 Nr = 2 , Nd = 2, 4, 6, 8 Nr = 3 , Nd = 1, 3, 5, 7, 9 Nr = 4 , Nd = 4 Nr = 5 , Nd = 5 Nr = 6 , Nd = 8
图:
在命令窗口输入waveinfo('haar')
2、db系列小波
DBINFO Information on Daubechies wavelets. Daubechies Wavelets General characteristics: Compactly supported wavelets with extremal phase and highest number of vanishing moments for a given support width. Associated scaling filters are minimum-phase filters. Family Daubechies Short name db Order N N strictly positive integer Examples db1 or haar, db4, db15
Examples bior3.1, bior5.5 Orthogonal(正交) no Biorthogonal(双正交的) yes Compact support yes DWT possible CWT possible Support width 2Nr+1 for rec., 2Nd+1 for dec. Filters length max(2Nr,2Nd)+2 but essentially
1、Haar 小波
1 0 x 1/ 2 H 1 1/ 2 x 1 0 其他
waveinfo('haar') HAARINFO Information on Haar wavelet. Haar Wavelet General characteristics: Compactly supported wavelet, the oldest and the simplest wavelet.
bior Nr.Nd
bior 1.1 bior 1.3 bior 1.5 bior 2.2 bior 2.4 bior 2.6 bior 2.8
ld effective length of Lo_D 2 6 10 5 9 13 17
lr effective length of Hi_D 2 2 2 3 3 3 3
bior 3.1 bior 3.3 bior 3.5 bior 3.7 bior 3.9 bior 4.4 bior 5.5 bior 6.8
Orthogonal Biorthogonal Compact support DWT CWT
yes yes yes possible possible
Support width 1 Filters length 2 Regularity haar is not continuous Symmetry yes Number of vanishing moments for psi 1
Orthogonal yes Biorthogonal yes Compact support yes DWT possible CWT possible Support width 2N-1 Filters length 2N Regularity about 0.2 N for large N Symmetry far from Number of vanishing moments for psi N
图:
3、Biorthogonal(biorNr.Nd)小波系
主要特点体现在具有线性相位型,主要应用于信
号和图象的重构中。通常表示为biorNr.Nd形式。
Nr=1
Nd=1,3,5;
Nr=2
Nd=2,4,6,8
Nr=3
Nr=5
Nd=1,3,5,7,9; Nr=4
Nd=5; Nr=6
Nd=4
Nd=8
常用的指导性选择标准有:
(1) 度;
、 、、
^
^
的支撑长度。即当时间或频
率趋于无穷大时,上述各量从有限值收敛到0的速
(2) 对称型。它在图象处理中对于避免移相非常有用;
(3) 和 (若存在)的消失矩阶数。对于压缩非常 有用;
(4)正则性。对信号或图象的重构获得较好的平滑效 果非常有用。
General characteristics: Compactly supported biorthogonal spline wavelets for which symmetry and exact reconstruction are possible with FIR filters (in orthogonal case it is impossible except for Haar).