二次微分方程的通解
二阶微分方程解法
第六节二阶常系数齐次线性微分方程之袁州冬雪创作讲授目标:使学生掌握二阶常系数齐次线性微分方程的解法,懂得二阶常系数非齐次线性微分方程的解法讲授重点:二阶常系数齐次线性微分方程的解法讲授过程:一、二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程:方程y+py+qy=0称为二阶常系数齐次线性微分方程,其中p、q均为常数.如果y1、y2是二阶常系数齐次线性微分方程的两个线性无关解,那末y=C1y1+C2y2就是它的通解.我们看看, 可否适当选取r,使y=e rx知足二阶常系数齐次线性微分方程,为此将y=e rx代入方程y+py+qy=0得(r2+pr+q)e rx=0.由此可见,只要r知足代数方程r2+pr+q=0,函数y=e rx就是微分方程的解.特征方程:方程r2+pr+q=0叫做微分方程y+py+qy=0的特征方程.特征方程的两个根r1、r2可用公式求出.特征方程的根与通解的关系:(1)特征方程有两个不相等的实根r 1、r 2时,函数x r e y 11=、x r e y 22=是方程的两个线性无关的解.这是因为,函数xr e y 11=、xr e y 22=是方程的解,又xr r xr x r ee e y y )(212121-==不是常数. 因此方程的通解为x r x r e C e C y 2121+=.(2)特征方程有两个相等的实根r 1=r 2时,函数xr e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解.这是因为,x r e y 11=是方程的解,又0)()2(121111=++++=q pr r xe p r e x r x r ,所以x r xe y 12=也是方程的解,且x exe y y xr xr ==1112不是常数.因此方程的通解为x r x r xe C e C y 1121+=.(3)特征方程有一对共轭复根r 1, 2=a ib 时,函数y =e (a +ib )x 、y =e (aib )x是微分方程的两个线性无关的复数形式的解.函数y =e ax cos bx 、y =e ax sin bx 是微分方程的两个线性无关的实数形式的解. 函数y 1e (a +ib )x 和y 2e (aib )x都是方程的解 而由欧拉公式得y 1e (a +ib )x e x (cos x i sin x ) y 2e (aib )xe x (cos x i sin x )y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 22ie x sin x)(21sin 21y y ix e x -=βα故e axcos bx 、y 2=e axsin bx 也是方程解.可以验证,y 1=e axcos bx 、y 2=e axsin bx 是方程的线性无关解. 因此方程的通解为y =e ax (C 1cos bx +C 2sin bx ).求二阶常系数齐次线性微分方程y +py+qy =0的通解的步调为:第一步 写出微分方程的特征方程r 2+pr +q =0第二步 求出特征方程的两个根r 1、r 2.第三步 根据特征方程的两个根的分歧情况,写出微分方程的通解.例1 求微分方程y-2y-3y =0的通解.解所给微分方程的特征方程为r 2-2r -3=0,即(r 1)(r 3)0其根r 1=-1,r 2=3是两个不相等的实根,因此所求通解为y =C 1e -x +C 2e 3x .例 2 求方程y+2y+y=0知足初始条件y|x=0=4、y|x=0=-2的特解.解所给方程的特征方程为r2+2r+1=0,即(r1)20其根r1=r2=1是两个相等的实根,因此所给微分方程的通解为y=(C1+C2x)e-x.将条件y|x=0=4代入通解,得C1=4,从而y=(4+C2x)e-x.将上式对x求导,得y=(C2-4-C2x)e-x.再把条件y|x=0=-2代入上式,得C2=2.于是所求特解为x=(4+2x)e-x.例 3 求微分方程y-2y+5y= 0的通解.解所给方程的特征方程为r2-2r+5=0特征方程的根为r1=12i r2=12i是一对共轭复根因此所求通解为y=e x(C1cos2x+C2sin2x).n阶常系数齐次线性微分方程:方程y(n) +p1y(n-1)+p2 y(n-2) ++p n-1y+p n y=0,称为n阶常系数齐次线性微分方程,其中p1,p2 ,,p n-1,p n都是常数.二阶常系数齐次线性微分方程所用的方法以及方程的通解形式,可推广到n阶常系数齐次线性微分方程上去.引入微分算子D及微分算子的n次多项式L(D)=D n+p1D n-1+p2 D n-2 ++p n-1D+p n则n阶常系数齐次线性微分方程可记作(D n+p1D n-1+p2 D n-2 ++p n-1D+p n)y=0或L(D)y0注D叫做微分算子D0y y D y y D2y y D3y y D n yy(n)分析令y e rx则L(D)y L(D)e rx(r n+p1r n-1+p2 r n-2 ++p n-1r+p n)e rx=L(r)e rx 因此如果r是多项式L(r)的根则y e rx是微分方程L(D)y0的解n阶常系数齐次线性微分方程的特征方程L(r)r n+p1r n-1+p2 r n-2 ++p n-1r+p n0称为微分方程L(D)y0的特征方程特征方程的根与通解中项的对应:单实根r对应于一项:Ce rx;一对单复根r1,2=a ib对应于两项:e ax(C1cos bx+C2sin bx);k重实根r对应于k项:e rx(C1+C2x++C k x k-1);一对k 重复根r 1,2=a ib 对应于2k 项: e ax [(C 1+C 2x ++C k x k -1)cos bx +(D 1+D 2x ++D k x k -1)sin bx ].例4 求方程y (4)-2y +5y =0 的通解.解 这里的特征方程为r 4-2r 3+5r 2=0,即r 2(r 2-2r +5)=0,它的根是r 1=r 2=0和r 3,4=12i .因此所给微分方程的通解为y =C 1+C 2x +e x (C 3cos2x +C 4sin2x ).例5 求方程y (4)+b 4y =0的通解,其中b 0.解 这里的特征方程为r 4+b 4=0.它的根为)1(22,1i r ±=β,)1(24,3i r ±-=β.因此所给微分方程的通解为)2sin2cos(212x C x C ey xβββ+=)2sin2cos(432x C x C exβββ++-.二、二阶常系数非齐次线性微分方程简介二阶常系数非齐次线性微分方程:方程y +py +qy =f (x )称为二阶常系数非齐次线性微分方程,其中p 、q 是常数. 二阶常系数非齐次线性微分方程的通解是对应的齐次方程 的通解y =Y (x )与非齐次方程自己的一个特解y =y *(x )之和:y =Y (x )+ y *(x ).当f(x)为两种特殊形式时,方程的特解的求法:一、f(x)=P m(x)e lx型当f(x)=P m(x)e lx时,可以猜测,方程的特解也应具有这种形式.因此,设特解形式为y*=Q(x)e lx,将其代入方程,得等式Q(x)+(2l+p)Q(x)+(l2+pl+q)Q(x)=P m(x).(1)如果l不是特征方程r2+pr+q=0 的根,则l2+pl+q0.要使上式成立,Q(x)应设为m次多项式:Q m(x)=b0x m+b1x m-1++b m-1x+b m,通过比较等式双方同次项系数,可确定b0,b1,,b m,并得所求特解y*=Q m(x)e lx.(2)如果l是特征方程r2+pr+q=0 的单根,则l2+pl+q=0,但2l+p0,要使等式Q(x)+(2l+p)Q(x)+(l2+pl+q)Q(x)=P m(x).成立,Q(x)应设为m+1 次多项式:Q(x)=xQ m(x),Q m(x)=b0x m+b1x m-1++b m-1x+b m,通过比较等式双方同次项系数,可确定b0,b1,,b m,并得所求特解y*=xQ m(x)e lx.(3)如果l是特征方程r2+pr+q=0的二重根,则l2+pl+q=0,2l+p=0,要使等式Q(x)+(2l+p)Q(x)+(l2+pl+q)Q(x)=P m(x).成立,Q(x)应设为m+2次多项式:Q(x)=x2Q m(x),Q m(x)=b0x m+b1x m-1++b m-1x+b m,通过比较等式双方同次项系数,可确定b0,b1,,b m,并得所求特解y*=x2Q m(x)e lx.综上所述,我们有如下结论:如果f(x)=P m(x)e lx,则二阶常系数非齐次线性微分方程y+py+qy=f(x)有形如y*=x k Q m(x)e lx的特解,其中Q m(x)是与P m(x)同次的多项式,而k按l不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2.例1求微分方程y-2y-3y=3x+1的一个特解.解这是二阶常系数非齐次线性微分方程,且函数f(x)是P m(x)e lx型(其中P m(x)=3x+1,l=0).与所给方程对应的齐次方程为y-2y-3y=0,它的特征方程为r2-2r-3=0.由于这里l =0不是特征方程的根,所以应设特解为y *=b 0x +b 1.把它代入所给方程,得 -3b 0x -2b 0-3b 1=3x +1,比较两头x 同次幂的系数,得⎩⎨⎧=--=-13233100b b b -3b 0=3,-2b 0-3b 1=1.由此求得b 0=-1,311=b .于是求得所给方程的一个特解为31*+-=x y .例2求微分方程y -5y +6y =xe 2x的通解.解所给方程是二阶常系数非齐次线性微分方程,且f (x )是P m (x )e lx 型(其中P m (x )=x ,l =2).与所给方程对应的齐次方程为y -5y +6y =0,它的特征方程为r 2-5r +6=0.特征方程有两个实根r 1=2,r 2=3.于是所给方程对应的齐次方程的通解为Y =C 1e 2x +C 2e 3x .由于l =2是特征方程的单根,所以应设方程的特解为y *=x (b 0x +b 1)e 2x .把它代入所给方程,得-2b 0x +2b 0-b 1=x .比较两头x 同次幂的系数,得⎩⎨⎧=-=-0212100b b b -2b 0=1,2b 0-b 1=0.由此求得210-=b ,b 1=-1.于是求得所给方程的一个特解为x e x x y 2)121(*--=.从而所给方程的通解为x x x e x x e C e C y 223221)2(21+-+=.提示y *=x (b 0x +b 1)e 2x (b 0x 2+b 1x )e 2x[(b 0x 2+b 1x )e 2x][(2b 0x +b 1)(b 0x 2+b 1x )×2]e2x[(b 0x 2+b 1x )e 2x][2b 02(2b 0x b 1)×2(b 0x 2+b 1x )×22]e 2xy *5y *6y *[(b 0x 2+b 1x )e 2x]5[(b 0x 2+b 1x )e 2x]6[(b 0x 2+b 1x )e 2x] [2b 02(2b 0x b 1)×2(b 0x 2+b 1x )×22]e2x5[(2b 0x +b 1)(b 0x 2+b 1x )×2]e 2x 6(b 0x 2+b 1x )e 2x[2b 04(2b 0x b 1)5(2b 0x +b 1)]e2x[2b 0x +2b 0b 1]e2x方程y+py+qy =e lx[P l (x )cos wx +P n (x )sin wx ]的特解形式应用欧拉公式可得e lx [P l (x )cos wx +P n (x )sin wx ]x i x i e x P e x P )()()()(ωλωλ-++=,其中)(21)(i P P x P n l -=,)(21)(i P P x P n l +=. 而m =max{l ,n }. 设方程y +py +qy =P (x )e (l +iw )x 的特解为y 1*=x k Q m (x )e (l +iw )x , 则)(1)(*ωλi m k e x Q x y -=必是方程)()(ωλi e x P qy y p y -=+'+''的特解,其中k 按liw 不是特征方程的根或是特征方程的根依次取0或1.于是方程y+py +qy =e lx[P l (x )cos wx +P n (x )sin wx ]的特解为 =x k e lx [R (1)m (x )cos wx +R (2)m (x )sin wx ].综上所述,我们有如下结论:如果f (x )=e lx[P l (x )cos wx +P n (x )sin wx ],则二阶常系数非齐次线性微分方程 y+py +qy =f (x )的特解可设为 y *=x k e lx [R (1)m (x )cos wx +R (2)m (x )sin wx ],其中R (1)m (x )、R (2)m (x )是m 次多项式,m =max{l ,n },而k 按l +i w(或l -iw )不是特征方程的根或是特征方程的单根依次取0或1. 例3求微分方程y +y =x cos2x 的一个特解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )属于e lx [P l (x )cos wx +P n (x )sin wx ]型(其中l =0,w =2,P l (x )=x ,P n (x )=0).与所给方程对应的齐次方程为y +y =0,它的特征方程为r 2+1=0.由于这里l +iw =2i 不是特征方程的根,所以应设特解为 y *=(ax +b )cos2x +(cx +d )sin2x .把它代入所给方程,得(-3ax -3b +4c )cos2x -(3cx +3d +4a )sin2x =x cos2x . 比较两头同类项的系数,得31-=a ,b =0,c =0,94=d .于是求得一个特解为x x x y 2sin 942cos 31*+-=.提示 y *=(ax +b )cos2x +(cx +d )sin2x .y *=a cos2x 2(ax +b )sin2x +c sin2x +2(cx +d )cos2x (2cx +a 2d )cos2x +(2ax 2b c )sin2xy *=2c cos2x 2(2cx +a 2d )sin2x 2a sin2x +2(2ax 2b c )cos2x (4ax 4b 4c )cos2x (4cx 4a 4d )sin2x y *y *(3ax 3b 4c )cos2x (3cx 4a 3d )sin2x 由⎪⎩⎪⎨⎧=--=-=+-=-0340304313d a c c b a 得31-=a ,b =0,c =0,94=d .。
二阶微分方程解
二阶微分方程解二阶微分方程分为齐次和非齐次两种类型。
在这里,我们主要讨论二阶常系数齐次线性微分方程的解法。
二阶常系数齐次线性微分方程的一般形式为:ayy'' + by' + cy = 0其中,a、b、c为常数。
求解过程如下:1. 特征方程:首先求出微分方程的特征方程。
特征方程为:r^2 - pr - q = 0其中,p、q为常数。
2. 求解特征方程:求出特征方程的两个根r1和r2。
可以使用公式:r1,2 = (-p ±√(p^2 - 4q)) / 23. 根据根与系数的关系,得出二阶微分方程的通解:通解= yC1* e^(r1x) + yC2 * e^(r2x)其中,yC1和yC2为待定系数,可通过初始条件求解。
4. 求解特解:若需要求解特解,可以先设特解的形式为y = yE(x),然后将其代入原方程,求解待定系数。
举例:求解二阶常系数齐次线性微分方程:yy'' - 2y' + 3y = 01. 特征方程:r^2 - 2r + 3 = 02. 求解特征方程:r1= 1,r2 = 33. 通解:通解= yC1* e^x + yC2* e^-x4. 求解特解:设特解为y = yE(x) = e^(x^2)将其代入原方程,求解得到yE(x)为原方程的特解。
需要注意的是,二阶微分方程的解法不仅限于齐次方程,还包括非齐次方程。
非齐次方程的解法通常需要先求解齐次方程的通解,然后通过待定系数法求解特解。
此外,还有其他类型的二阶微分方程,如艾里方程等,其解法更为复杂。
二阶变系数齐次微分方程通解的求法
假设 2 ( * %) &" ( ( + %) & (( , %)5 $ , , 即 " %& . " ( % ( !) & ( ( 5 $, ( & . ") ( &% . " )5 $ 6 因为 & 为常数, 所以 & # " , 由此得方程的一个特解 !! # #"% ,
% 再设 !" # $ ( %) #特解, 则
! ( ( ) &( "
参考文献
+ 张清芳, 库在强0 用观察法求某些二阶系数齐次方程的通解 [ ,] , 高等数学研究, "’’- , . (&) : /0 —/. [!]
-----------------------------------------( 上接第 !. 页) + 所以原方程组的通解为: " & 2 0 & $ ! $ &20 $ " - 2 0 $ " "20 (!! ("! (&! (!! ("! (&! 1 %( !! !" ) # ’ # ’ ’ % ! ’ (!" ("" (&" (!" ("" (&" ’ % 2 0 ’ ! -20 ’ ’ ’ ’ ! " % & ("! $ ("" & 2 0 % & (&! $ (&" $ & 2 0 % & (!! $ (!" " 2 0 $ - (!! % " (!" $ " $ - ("! % " ("" - 2 0 $ -& (&! % " (&" (!! ("! (&! - 2 0 % (!" ("" % 2 0 % (&" (!" ("" (&"
一元二阶常系数齐次微分方程通解
一元二阶常系数齐次微分方程通解
一元二阶常系数齐次微分方程通解是指形如y''+ay'+by=0的微分方程的解的形式。
其中,a和b是常系数。
通解的一般形式可以表示为y=C1e^(r1x)+C2e^(r2x)。
其中,r1和r2是解的特征根,C1和C2是常数。
对于一元二阶常系数齐次微分方程,解的特征根可以通过求解对应的特征方程来获得。
特征方程的形式是r^2+ar+b=0。
根据特征方程的不同情况,可以分为三种情况:
1. 当特征方程有两个不相等的实根r1和r2时,通解为
y=C1e^(r1x)+C2e^(r2x)。
2. 当特征方程有一个重根r0时,通解为y=(C1+C2x)e^(r0x)。
3. 当特征方程有一对共轭复根α±βi时,通解为
y=e^(αx)(C1cos(βx)+C2sin(βx))。
所以,一元二阶常系数齐次微分方程的通解可以通过求解特征方程的根,并代入不同情况的形式来得到。
其中,C1和C2为待定常数,可根据边界条件或初始条件来确定具体的解。
二阶常微分方程的几种解法
二阶常系数非齐次线性微分方程的几种解法一 公式解法目前,国内采用的高等数学科书中, 求二阶常系数线性非奇次微分方程[1]:通解的一般方法是将其转化为对应的齐次方程的通阶与它本'''()y ay by f x ++=身的特解之和。
微分方程阶数越高, 相对于低阶的解法越难。
那么二阶常系数齐次微分方程是否可以降价求解呢? 事实上, 经过适当的变量代换可将二阶常系数非齐次微分方程降为一阶微分方程求解。
而由此产生的通解公式给出了该方程通解的更一般的形式。
设二阶常系数线性非齐次方程为(1)'''()y ay by f x ++=这里都是常数。
为了使上述方程能降阶, 考察相应的特征方程b a 、(2)20k ak b ++=对特征方程的根分三种情况来讨论。
1 若特征方程有两个相异实根。
则方程(1) 可以写成12k 、k'''1212()()y k k y k k y f x --+=即 '''212()()()y k y k y k y f x ---= 记 , 则(1) 可降为一阶方程'2z y k y =-由一阶线性方程的通解公'1()z k z f x -= [5]()()[()]p x dx p x dxy e Q x e dx c -⎰⎰=+⎰(3)知其通解为这里表示积分之后的函数是以为自变量的。
1130[()]xk xk tz e f t edt c -=+⎰0()xh t dt ⎰x 再由11230[()]x k xk t dy k y z e f t e dt c dx--==+⎰解得12212()()34012[(())]k k xxuk xk k ue y e ef t dt du c c k k --=++-⎰⎰应用分部积分法, 上式即为1212212()()34001212121[()()]k k xk k xxxk xk tk te e y ef t edt f t edt c c k k k k k k ----=-++---⎰⎰(4)1122121200121[()()]x x k x k t k xk t k k x e f t e dt e f t e dt c e c e k k --=-++-⎰⎰2 若特征方程有重根, 这时方程为k 或'''22()y ky k y f x -+='''()()()y ky k y ky f x ---=由公式(3) 得到'10[()]x kx kt y ky e e f t dt c --=+⎰再改写为'1()xkxkx kt ey key e f t dt c ----=+⎰即10()()x kxkt d e y e f t dt c dx--=+⎰故(5)120()()xkx kt kx kx y ex t e f t dt c xe c e -=-++⎰例1 求解方程'''256xy y y xe -+=解 这里 的两个实根是2 , 32560k k -+=.由公式(4) 得到方程的解是2()x f x xe =332222321200xxx t t x t t x xy e e te dt e e te dt c e c e --=-++⎰⎰32321200xxx t x x xe te dt e tdt c e c e -=-++⎰⎰2232132xx x x x e c e c e ⎡⎤=--++⎢⎥⎣⎦这里.321c c =-例2 求解方程'''2ln x y y y e x-+=解 特征方程 有重根1 , .由公式(5) 得到方程的解是2210k k -+=()ln x f x e x =120()ln xx t t x xy ex t e e tdt c xe c e -=-++⎰120()ln xxx xe x t tdt c xe c e =-++⎰1200[ln ln ]xxxx xe x tdt t tdt c xe c e =-++⎰⎰21213ln 24x x xx e x c xe c e ⎡⎤=-++⎢⎥⎣⎦二 常数变易法二阶常系数非齐次线性微分方程的一般形式是, (6)'''()y py qy f x ++= , (7)'''0y py qy ++=其中 为常数,根构造方程(7) 的两个线性无关的解,再由这两个解构造出方p q 、程(7) 的通解。
一元二阶微分方程通解
一元二阶微分方程通解
一元二阶微分方程通解的求解方法有多种,下面以常系数齐次线性微分方程为例进行说明。
一般形式的一元二阶齐次线性微分方程可以写成:
a*d^2y/dx^2 + b*dy/dx + c*y = 0
其中,a、b、c都是常数。
首先,我们需要找到该微分方程的特征方程。
假设y=e^(rx)是方程的解,代入微分方程中,得到特征方程:
a*r^2 + b*r + c = 0
解这个特征方程,可以得到两个根r1和r2。
根据根的情况,分为三种情况:
1. 当特征方程有两个不相等的实根r1和r2时,通解形式为:
y = C1*e^(r1*x) + C2*e^(r2*x)
其中C1和C2为任意常数。
2. 当特征方程有一个重根r时,通解形式为:
y = (C1 + C2*x)*e^(r*x)
其中C1和C2为任意常数。
3. 当特征方程有一对共轭复根α±βi时,通解形式为:
y = e^(α*x)*(C1*cos(β*x) + C2*sin(β*x))
其中C1和C2为任意常数。
需要注意的是,以上是针对齐次线性微分方程的通解形式。
如果是非齐次线性微分方程,还需要加上一个特解。
二阶微分方程解法(参考模板)
第六节 二阶常系数齐次线性微分方程教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线性微分方程的解法教学重点:二阶常系数齐次线性微分方程的解法 教学过程:一、二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程: 方程 y+py +qy =0称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数.如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解.我们看看, 能否适当选取r , 使y =e rx满足二阶常系数齐次线性微分方程, 为此将y =e rx代入方程 y +py +qy =0得(r 2+pr +q )e rx=0.由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx就是微分方程的解. 特征方程: 方程r 2+pr +q =0叫做微分方程y+py +qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式2422,1q p p r -±+-= 求出.特征方程的根与通解的关系:(1)特征方程有两个不相等的实根r 1、r 2时, 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解. 这是因为,函数x r e y 11=、x r e y 22=是方程的解, 又xr r xr x r e e e y y )(212121-==不是常数. 因此方程的通解为x r x r e C e C y 2121+=.(2)特征方程有两个相等的实根r 1=r 2时, 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解.这是因为, x r e y 11=是方程的解, 又x r x r xr x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111=++++=q pr r xe p r e x r x r ,所以xr xe y 12=也是方程的解, 且x e xe y y xr xr ==1112不是常数. 因此方程的通解为 x r x r xe C e C y 1121+=.(3)特征方程有一对共轭复根r 1, 2=a ib 时, 函数y =e(a +ib )x、y =e(a ib )x是微分方程的两个线性无关的复数形式的解. 函数y =e axcos bx 、y =e axsin bx 是微分方程的两个线性无关的实数形式的解. 函数y 1e(a +ib )x和y 2e(a ib )x都是方程的解 而由欧拉公式 得y 1e (a +ib )x e x (cos x i sin x )y 2e(aib )xe x (cos x i sin x )y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 22ie x sin x )(21sin 21y y ix e x -=βα故e ax cos bx 、y 2=e axsin bx 也是方程解.可以验证, y 1=e ax cos bx 、y 2=e axsin bx 是方程的线性无关解. 因此方程的通解为y =e ax(C 1cos bx +C 2sin bx ). 求二阶常系数齐次线性微分方程y +py +qy =0的通解的步骤为:第一步 写出微分方程的特征方程 r 2+pr +q =0第二步 求出特征方程的两个根r 1、r 2.第三步 根据特征方程的两个根的不同情况, 写出微分方程的通解. 例1 求微分方程y-2y -3y =0的通解.解 所给微分方程的特征方程为 r 2-2r -3=0, 即(r 1)(r 3)0其根r 1=-1, r 2=3是两个不相等的实根, 因此所求通解为 y =C 1e -x+C 2e 3x.例2 求方程y+2y+y=0满足初始条件y|x=0=4、y|x=0=-2的特解.解所给方程的特征方程为r2+2r+1=0, 即(r1)20其根r1=r2=1是两个相等的实根, 因此所给微分方程的通解为y=(C1+C2x)e-x.将条件y|x=0=4代入通解, 得C1=4, 从而y=(4+C2x)e-x.将上式对x求导, 得y=(C2-4-C2x)e-x.再把条件y|x=0=-2代入上式, 得C2=2. 于是所求特解为x=(4+2x)e-x.例 3 求微分方程y-2y+5y= 0的通解.解所给方程的特征方程为r2-2r+5=0特征方程的根为r1=12i r2=12i是一对共轭复根因此所求通解为y=e x(C1cos2x+C2sin2x).n阶常系数齐次线性微分方程: 方程y(n) +p1y(n-1)+p2 y(n-2) + + p n-1y+p n y=0,称为n阶常系数齐次线性微分方程, 其中p1, p2 , , p n-1, p n都是常数.二阶常系数齐次线性微分方程所用的方法以及方程的通解形式, 可推广到n阶常系数齐次线性微分方程上去.引入微分算子D及微分算子的n次多项式L(D)=D n+p1D n-1+p2 D n-2 + + p n-1D+p n则n阶常系数齐次线性微分方程可记作(D n+p1D n-1+p2 D n-2 + + p n-1D+p n)y=0或L(D)y0注 D叫做微分算子D0y y D y y D2y y D3y y D n y y(n)分析令y e rx则L(D)y L(D)e rx(r n+p1r n-1+p2 r n-2 + + p n-1r+p n)e rx=L(r)e rx因此如果r是多项式L(r)的根则y e rx是微分方程L(D)y0的解n阶常系数齐次线性微分方程的特征方程L(r)r n+p1r n-1+p2 r n-2 + + p n-1r+p n0称为微分方程L(D)y0的特征方程特征方程的根与通解中项的对应: 单实根r 对应于一项: Ce rx;一对单复根r 1, 2=a ib 对应于两项: e ax(C 1cos bx +C 2sin bx );k 重实根r 对应于k 项: e rx (C 1+C 2x + +C k x k -1); 一对k 重复根r 1, 2=a ib 对应于2k 项:e ax[(C 1+C 2x + +C k x k -1)cos bx +( D 1+D 2x + +D k x k -1)sin bx ]. 例4 求方程y (4)-2y +5y=0 的通解.解 这里的特征方程为r 4-2r 3+5r 2=0, 即r 2(r 2-2r +5)=0, 它的根是r 1=r 2=0和r 3, 4=12i .因此所给微分方程的通解为y =C 1+C 2x +e x(C 3cos2x +C 4sin2x ). 例5 求方程y (4)+b 4y =0的通解, 其中b 0.解 这里的特征方程为 r 4+b 4=0. 它的根为)1(22,1i r ±=β, )1(24,3i r ±-=β.因此所给微分方程的通解为 )2sin2cos(212x C x C ey xβββ+=)2sin2cos(432x C x C exβββ++-.二、二阶常系数非齐次线性微分方程简介二阶常系数非齐次线性微分方程: 方程y +py +qy =f (x )称为二阶常系数非齐次线性微分方程, 其中p 、q 是常数. 二阶常系数非齐次线性微分方程的通解是对应的齐次方程 的通解y =Y (x )与非齐次方程本身的一个特解y =y *(x )之和:y =Y (x )+ y *(x ).当f (x )为两种特殊形式时, 方程的特解的求法: 一、 f (x )=P m (x )e lx型当f (x )=P m (x )e lx时, 可以猜想, 方程的特解也应具有这种形式. 因此, 设特解形式为y *=Q (x )e lx , 将其代入方程, 得等式 Q(x )+(2l +p )Q(x )+(l 2+pl +q )Q (x )=P m (x ).(1)如果l 不是特征方程r 2+pr +q =0 的根, 则l 2+pl +q 0. 要使上式成立, Q (x )应设为m 次多项式:Q m(x)=b0x m+b1x m-1+ +b m-1x+b m,通过比较等式两边同次项系数, 可确定b0, b1, , b m, 并得所求特解y*=Q m(x)e lx.(2)如果l是特征方程r2+pr+q=0 的单根, 则l2+pl+q=0, 但2l+p0, 要使等式Q(x)+(2l+p)Q(x)+(l2+pl+q)Q(x)=P m(x).成立, Q(x)应设为m+1 次多项式:Q(x)=xQ m(x),Q m(x)=b0x m+b1x m-1+ +b m-1x+b m,通过比较等式两边同次项系数, 可确定b0, b1, , b m, 并得所求特解y*=xQ m(x)e lx.(3)如果l是特征方程r2+pr+q=0的二重根, 则l2+pl+q=0, 2l+p=0, 要使等式Q(x)+(2l+p)Q(x)+(l2+pl+q)Q(x)=P m(x).成立, Q(x)应设为m+2次多项式:Q(x)=x2Q m(x),Q m(x)=b0x m+b1x m-1+ +b m-1x+b m,通过比较等式两边同次项系数, 可确定b0, b1, , b m, 并得所求特解y*=x2Q m(x)e lx.综上所述, 我们有如下结论: 如果f(x)=P m(x)e lx, 则二阶常系数非齐次线性微分方程y+py+qy =f(x)有形如y*=x k Q m(x)e lx的特解, 其中Q m(x)是与P m(x)同次的多项式, 而k按l不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2.例1 求微分方程y-2y-3y=3x+1的一个特解.解这是二阶常系数非齐次线性微分方程, 且函数f(x)是P m(x)e lx型(其中P m(x)=3x+1, l=0).与所给方程对应的齐次方程为y-2y-3y=0,它的特征方程为r2-2r-3=0.由于这里l=0不是特征方程的根, 所以应设特解为y*=b0x+b1.把它代入所给方程, 得-3b0x-2b0-3b1=3x+1,比较两端x同次幂的系数, 得⎩⎨⎧=--=-13233100b b b -3b 0=3, -2b 0-3b 1=1.由此求得b 0=-1, 311=b . 于是求得所给方程的一个特解为 31*+-=x y . 例2 求微分方程y-5y +6y =xe 2x的通解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )是P m (x )e lx型(其中P m (x )=x , l =2). 与所给方程对应的齐次方程为y -5y +6y =0,它的特征方程为r 2-5r +6=0.特征方程有两个实根r 1=2, r 2=3. 于是所给方程对应的齐次方程的通解为Y =C 1e 2x +C 2e 3x .由于l =2是特征方程的单根, 所以应设方程的特解为y *=x (b 0x +b 1)e 2x .把它代入所给方程, 得 -2b 0x +2b 0-b 1=x . 比较两端x 同次幂的系数, 得 ⎩⎨⎧=-=-0212100b b b -2b 0=1, 2b 0-b 1=0.由此求得210-=b , b 1=-1. 于是求得所给方程的一个特解为 x e x x y 2)121(*--=. 从而所给方程的通解为x x x e x x e C e C y 223221)2(21+-+=. 提示y *=x (b 0x +b 1)e 2x (b 0x 2+b 1x )e 2x[(b 0x 2+b 1x )e 2x][(2b 0x +b 1)(b 0x 2+b 1x )×2]e2x[(b 0x 2+b 1x )e 2x][2b 02(2b 0x b 1)×2(b 0x 2+b 1x )×22]e 2xy *5y *6y *[(b 0x 2+b 1x )e 2x]5[(b 0x 2+b 1x )e 2x]6[(b 0x 2+b 1x )e 2x][2b 02(2b 0x b 1)×2(b 0x 2+b 1x )×22]e 2x5[(2b 0x +b 1)(b 0x 2+b 1x )×2]e2x6(b 0x 2+b 1x )e 2x[2b 04(2b 0x b 1)5(2b 0x +b 1)]e 2x[2b 0x +2b 0b 1]e 2x方程y+py +qy =e lx[P l (x )cos wx +P n (x )sin wx ]的特解形式应用欧拉公式可得e lx [P l (x )cos wx +P n (x )sin wx ]]2)(2)([ ie e x P e e x P e x i x i nx i xi l x ωωωωλ---++=x i nl x i n l e x iP x P e x iP x P )()()]()([21)]()([21ωλωλ-+++-=x i x i e x P e x P )()()()(ωλωλ-++=,其中)(21)(i P P x P n l -=, )(21)(i P P x P n l +=. 而m =max{l , n }. 设方程y+py+qy =P (x )e(l +iw )x的特解为y 1*=x k Q m (x )e(l +iw )x,则)(1)(*ωλi m k e x Q x y -=必是方程)()(ωλi e x P qy y p y -=+'+''的特解, 其中k 按l iw 不是特征方程的根或是特征方程的根依次取0或1. 于是方程y+py +qy =e lx[P l (x )cos wx +P n (x )sin wx ]的特解为x i m k x i m k e x Q x e x Q x y )()()()(*ωλωλ-++=)sin )(cos ()sin )(cos ([x i x x Q x i x x Q e x m m x k ωωωωλ-++= =x k e lx[R(1)m(x )cos wx +R(2)m(x )sin wx ].综上所述, 我们有如下结论:如果f (x )=e lx[P l (x )cos wx +P n (x )sin wx ], 则二阶常系数非齐次线性微分方程y+py +qy =f (x )的特解可设为y *=x k e lx [R (1)m (x )cos wx +R (2)m (x )sin wx ],其中R(1)m(x )、R(2)m(x )是m 次多项式, m =max{l , n }, 而k 按l +i w (或l -iw )不是特征方程的根或是特征方程的单根依次取0或1. 例3 求微分方程y+y =x cos2x 的一个特解.解 所给方程是二阶常系数非齐次线性微分方程,且f (x )属于e lx[P l (x )cos wx +P n (x )sin wx ]型(其中l =0, w =2, P l (x )=x , P n (x )=0). 与所给方程对应的齐次方程为y +y =0,它的特征方程为r 2+1=0.由于这里l +iw =2i 不是特征方程的根, 所以应设特解为y *=(ax +b )cos2x +(cx +d )sin2x .把它代入所给方程, 得(-3ax -3b +4c )cos2x -(3cx +3d +4a )sin2x =x cos2x . 比较两端同类项的系数, 得 31-=a , b =0, c =0, 94=d . 于是求得一个特解为 x x x y 2sin 942cos 31*+-=. 提示y *=(ax +b )cos2x +(cx +d )sin2x .y *=a cos2x 2(ax +b )sin2x +c sin2x +2(cx +d )cos2x(2cx +a2d )cos2x +(2ax 2b c )sin2xy *=2c cos2x 2(2cx +a 2d )sin2x 2a sin2x +2(2ax 2b c )cos2x(4ax4b4c )cos2x(4cx 4a 4d )sin2xy *y *(3ax 3b 4c )cos2x (3cx 4a 3d )sin2x由⎪⎩⎪⎨⎧=--=-=+-=-0340304313d a c c b a 得31-=a , b =0, c =0, 94=d .(注:文档可能无法思考全面,请浏览后下载,供参考。
常系数二阶微分方程的齐次通解
常系数二阶微分方程的齐次通解————————————————————————————————作者:————————————————————————————————日期:附录2 常系数二阶微分方程的齐次通解常系数二阶齐次微分方程 0=+2+2022y dtdy dt yd ωα 设其中α、ω0都是正实数。
要使二阶微分方程有确定的解,必须知道两个初始条件:初始值y (0)和一阶导数的初始值0=t dt dy 。
这里只讨论齐次通解在一些典型的系数值下的特点,不求出解中的待定常数。
目的在于避免过多的数学式子,突出对有普遍意义的特征的认识。
尝试St e y =(S 为实的或复的常数)是否能为方程的解。
代入方程可得恒等式: 0=)+2+(202S S S e St ωα由此得到决定常数S 的特征方程: 0=+2+202ωαS S该一元二次代数方程的根为: 202-±-=ωααS因常数项的值不同,解的形式不同:1.自由振荡情况(无阻尼情况)(0=α)此时,S 是一对共轭虚数: 01j =ωS 02-j =ωS齐次通解为: t t e K e K t y 00-j 2j 1+=)(ωω变为常用的三角函数式 )+sin(=)(0θωt K t y这是一个等幅正弦振荡,ω0 是自由振荡角频率或谐振角频率。
K 和θ 是由初始条件决定的常数。
2.欠阻尼情况( 0<<0ωα )此时,S 是一对共轭复数: d 1j +-=ωαS d 2j --=ωαS齐次通解为: )+sin(=)(d -θωαt Ke t y t 这是一个衰减振荡。
其中,220-=αωωd (正实数)是衰减振荡角频率。
振幅按指数函数t e α-衰减,故称α为衰减系数。
K 和θ 是由初始条件决定的常数。
这种情况下,系统开始会有正弦振荡,但随时间而衰减,过一段时间后就消失。
3.过阻尼情况(0>ωα)此时,S 是两个负实数:2021-+-=ωααS2022---=ωααS齐次通解为: t t e K e K t y )---(2)-+(-1202202+=)(ωααωααK 1和K 2 是由初始条件决定的常数。
齐次二阶线性微分方程通解
齐次二阶线性微分方程通解齐次二阶线性微分方程(SecondOrderLinearDifferentialEquations,简称SOLDE)是数学方面最重要的问题之一。
这类方程式经常出现在物理,工程,经济等领域,是理解物理世界的有效工具。
齐次二阶线性微分方程的基本形式为:$$a_{2}y^{}+a_{1}y^{}+a_{0}y=g(x)$$其中,$y$ 代表函数,$y^{}$ $y^{}$ 代表其导数,$a_{i}$ 代表系数,$g(x)$ 代表非齐次的项。
齐次二阶线性微分方程的解法大体包括:(1)利用特征方程求出特征根;(2)利用特征根求出特征线性表达式;(3)利用特征线性表达式求出通解。
一般来说,特征方程是$lambda^{2}+a_{1}lambda+a_{0}=0$,可求出特征根 $lambda_{1}=-bpmsqrt{b^{2}-4ac}$,中 $b$ $c$别是$a_{1}$ $a_{0}$对应值。
特征根 $ lambda_{1} $ 以及 $ lambda_{2} $值可以用来求出特征线性表达式,即$ y_{1}=c_{1}e^{lambda_{1}x},y_{2}=c_{2}e^{lambda_{2}x}$,$c_{1}$ $c_{2}$任意常数。
最后,可以利用非齐次项 $g(x)$出通解,即$y=c_{1}e^{lambda_{1}x}+c_{2}e^{lambda_{2}x}+intg(x)e^{-lambda_{1}x}dx$。
自然界中出现的大多数物理问题都可以用齐次二阶线性微分方程来解决。
比如,它可以描述圆柱面上的波动,电动势的分布,甚至是振荡运动等。
例如,$y^{}+16y=0$一个齐次二阶线性微分方程,他可以用来描述物体在固定点作对称正弦振荡运动,物体做位移 $A$,解为:$ y=Asin 8t+Bcos 8t $。
齐次二阶线性微分方程的重要性不言而喻,它适用于众多的应用场景,使物理学者们能够准确的描述和预测客观世界的运动状态。
二阶常系数齐次线性微分方程的通解证明
二阶常系数齐次线性微分方程的通解证明来源:文都教育在考研数学中,微分方程是一个重要的章节,每年必考,其中的二阶常系数齐次线性微分方程是一个基本的组成部分,它也是求解二阶常系数非齐次线性微分方程的基础,但很多同学对其求解公式不是十分理解,做题时也感到有些困惑,为了帮助大家对其通解公式有更深的理解和更牢固的掌握,文都网校的蔡老师下面对它们进行一些分析和简捷的证明,供考研的朋友们学习参考。
一、二阶常系数齐次线性微分方程的通解分析通解公式:设0y py qy '''++=,,p q 为常数,特征方程02=++q p λλ的特征根为12,λλ,则1)当12λλ≠且为实数时,通解为1212x x y C eC e λλ=+; 2)当12λλ=且为实数时,通解为1112xx y C e C xe λλ=+; 3)当12,i λλαβ=±时,通解为12(cos sin )x y e C x C x αββ=+;证:若02=++q p λλ的特征根为12,λλ,则1212(),p q λλλλ=-+ =,将其代入方程0y py qy '''++=中得1212()y py qy y y y λλλλ''''''++=-++=212212()()()0y y y y y y y y λλλλλλ'''''''=---=---=,令2z y y λ'=-,则11110x dz z z z z c e dxλλλ'-=⇒=⇒=,于是121x y y c e λλ'-=,由一阶微分方程的通解公式得221212()()()1212[][]dx dx x x x y e c e e dx C e c e dx C λλλλλλ----⎰⎰=+=+⎰⎰ …(1) 1)当12λλ≠且为实数时,由(1)式得原方程的通解为21212()121212[]x x x x c y e e C C e C e λλλλλλλ-=+=+-,其中1112c C λλ=-,12C C 和为任意常数。
二阶偏微分方程的通解
二阶偏微分方程的通解二阶偏微分方程是指包含两个自变量的二阶微分方程,其中每个自变量都有两次导数。
这种方程通常涉及到物理学、工程学和数学等领域。
本文将介绍如何求解二阶偏微分方程的通解。
一、二阶偏微分方程的定义二阶偏微分方程可以写成如下形式:$$\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partialy^2}=f(x,y,u,\frac{\partial u}{\partial x},\frac{\partial u}{\partial y}) $$其中,$u(x,y)$是未知函数,$f(x,y,u,\frac{\partial u}{\partialx},\frac{\partial u}{\partial y})$是已知函数。
二、齐次线性偏微分方程齐次线性偏微分方程指的是$f(x,y,u,\frac{\partial u}{\partialx},\frac{\partial u}{\partial y})=0$的情况。
此时,原方程可以写成如下形式:$$a_{11}\frac{\partial^2u}{\partialx^2}+a_{12}\frac{\partial^2u}{\partial x \ \ \ \ \ \ \ \ \ y}+a_{22}\frac{\partial^2u}{\ \ \ y^2}=0$$其中$a_{11},a_{12},a_{22}$为常数。
对于这种情况,我们可以采用分离变量法求解。
假设$u(x,y)=X(x)Y(y)$,则有:$$\frac{\partial^2u}{\partial x^2}=X''(x)Y(y),\ \\frac{\partial^2u}{\partial y^2}=X(x)Y''(y)$$将上式代入原方程得到:$$a_{11}X''(x)Y(y)+a_{12}X'(x)Y'(y)+a_{22}X(x)Y''(y)=0$$将$X''(x)/X(x)$和$Y''(y)/Y(y)$分别移到等号左边,可得:$$\frac{X''(x)}{X(x)}=-\lambda,\ \ \frac{Y''(y)}{Y(y)}=\lambda $$其中$\lambda$为常数。
二阶微分方程齐次解的通解一定有两个
一、引言微分方程是描述自然现象和工程实践中种种关系的数学工具,它的解对于理解和预测这些现象至关重要。
在微分方程的研究中,齐次二阶微分方程是一个非常重要的概念。
本文将对齐次二阶微分方程的齐次解进行深入探讨,探究其通解一定有两个的证明。
二、齐次二阶微分方程的定义齐次二阶微分方程可以写作形式为y''(x) + p(x)y'(x) + q(x)y(x) = 0的微分方程,其中p(x)和q(x)是定义在区间上的连续函数。
如果p(x)和q(x)是常数,则称为常系数齐次二阶微分方程。
三、齐次二阶微分方程的齐次解1. 定义齐次二阶微分方程的齐次解是指对应的齐次线性微分方程的解。
若y1(x)和y2(x)是齐次线性微分方程y''(x) + p(x)y'(x) + q(x)y(x) = 0的两个解,则它们的线性组合y(x) = c1y1(x) + c2y2(x)也是这个微分方程的解,其中c1和c2是任意常数。
2. 通解的定义齐次二阶微分方程的通解指包含了其所有解的解集合,通解可以用线性组合的形式表示出来。
对于齐次二阶微分方程y''(x) + p(x)y'(x) + q(x)y(x) = 0,它的通解可以表示为y(x) = c1y1(x) + c2y2(x),其中y1(x)和y2(x)是方程的两个解,c1和c2是任意常数。
四、齐次解的通解一定有两个的证明1. Bernoulli公式对于齐次二阶微分方程y''(x) + p(x)y'(x) + q(x)y(x) = 0,我们可以通过Bernoulli公式进行变换,令y(x) = u(x)v(x),其中u(x)和v(x)是待定的函数。
带入方程后可以得到一个关于u(x)和v(x)的一阶常系数齐次线性微分方程。
通过适当的选择u(x)和v(x),我们可以得到这个一阶微分方程的通解,从而得到原方程的通解。
二阶齐次微分方程的通解 统一用复数
二阶齐次微分方程的通解统一用复数引言概述:
二阶齐次微分方程是数学中的重要概念,它描述了许多自然现象和物理问题中的变化规律。
本文将详细介绍二阶齐次微分方程的通解,并统一使用复数进行表示。
正文内容:
1. 二阶齐次微分方程的定义
1.1 二阶齐次微分方程的一般形式
1.2 齐次性质的解释
2. 二阶齐次微分方程的特征方程
2.1 特征方程的推导
2.2 特征方程的解法
2.3 复数解的引入
3. 复数解的表示
3.1 复数解的定义
3.2 复数解的性质
3.3 复数解的通解表示
4. 实数解与复数解的关系
4.1 实数解与复数解的联系
4.2 实数解的特殊情况
4.3 复数解的物理意义
5. 二阶齐次微分方程的通解
5.1 通解的定义
5.2 通解的求解方法
5.3 通解的表示形式
总结:
总结1:二阶齐次微分方程是描述自然现象和物理问题中变化规律的重要工具。
总结2:复数解的引入使得二阶齐次微分方程的解更加丰富多样。
总结3:通过求解特征方程和应用复数解的表示,可以得到二阶齐次微分方程的通解。
通过本文的介绍,我们对二阶齐次微分方程的通解有了更加深入的了解。
复数解的引入使得我们可以更加灵活地求解和表示二阶齐次微分方程的解。
深入研究二阶齐次微分方程的通解,对于解决实际问题具有重要的意义。
二阶常系数非齐次微分方程的通解和特解
二阶常系数非齐次微分方程的通解和特解二阶常系数非齐次微分方程是指形如y''+py'+qy=F(x)的微分方程,其中p和q是常数,F(x)是已知的函数,y是未知函数。
这类微分方程的解法包括通解和特解。
首先考虑非齐次微分方程的通解。
通解一般分为两部分,即其对应的齐次微分方程的通解和非齐次微分方程的特解。
对于齐次微分方程y''+py'+qy=0,它的特征方程为r^2+pr+q=0,其中r是未知常数。
根据特征方程的根的情况分为三种情况:1. 当特征根为实数时,即r1≠r2,则齐次微分方程的通解为y=C1e^(r1x)+C2e^(r2x)。
其中C1和C2是任意常数,可以通过给定的边界条件计算得到。
2. 当特征根为复数时,即r1=r2=α+iβ,实部为α,虚部为β,则齐次微分方程的通解为y=e^(αx)(C1cosβx+C2sinβx)。
其中C1和C2是任意常数,可以通过给定的边界条件计算得到。
3. 当特征根为重根时,即r1=r2=r,则齐次微分方程的通解为y=(C1+C2x)e^(rx),其中C1和C2是任意常数,可以通过给定的边界条件计算得到。
对于非齐次微分方程y''+py'+qy=F(x),我们可以采用常数变易法求出它的特解:设非齐次微分方程的特解为y1(x),则y1''+py1'+qy1=F(x)令y1=A(x)e^(mx),其中A(x)是待定函数,m是未知常数将y1代入上式得到A(x)和m的关系式:A''e^(mx)+2Am'e^(mx)+Am^2e^(mx)+pA'e^(mx)+pAm'e^(mx )+qAe^(mx)=(F(x))/e^(mx)整理得到A''+2mA'+(m^2+p)A=(F(x))/e^(mx)此时我们可以令(A(x))'=0,使得A(x)是一个常数,从而得到一个特解y1=C(e^(mx)),其中C是未知常数。
二阶非齐次常系数微分方程的积分通解
二阶非齐次常系数微分方程的积分通解
二阶非齐次常系数微分方程的积分通解可以通过以下步骤得到:
首先,我们需要找到对应的二阶齐次常系数微分方程的通解。
这通常可以通过求解特征方程来完成。
假设特征方程为r2+ar+b=0,其解为r1和r2。
那么,齐次微分方程的通解就是yh=c1er1x+c2er2x,其中c1和c2是常数。
接下来,我们需要找到非齐次微分方程的特解。
这通常可以通过尝试法来完成。
假设非齐次项为f(x),我们可以尝试一个形如yp=Axn的函数,其中A是待定的常数,n是非齐次项f(x)的最高次幂。
将yp代入原方程,解出A,得到特解yp。
最后,将齐次微分方程的通解和非齐次微分方程的特解相加,就得到了原方程的积分通解:y=yh+yp。
需要注意的是,以上步骤仅适用于二阶非齐次常系数微分方程,对于其他类型的微分方程,求解方法可能会有所不同。
此外,在实际应用中,还需要根据具体的问题和条件,选择合适的求解方法和步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六节 二阶常系数齐次线性微分方程教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线性微分方程的解法教学重点:二阶常系数齐次线性微分方程的解法教学过程:一、二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程: 方程y ''+py '+qy =0称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数.如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解.我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程y ''+py '+qy =0得(r 2+pr +q )e rx =0.由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解.特征方程: 方程r 2+pr +q =0叫做微分方程y ''+py '+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式2422,1q p p r -±+-= 求出.特征方程的根与通解的关系:(1)特征方程有两个不相等的实根r 1、r 2时, 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解.这是因为,函数x r e y 11=、x r e y 22=是方程的解, 又x r r xr x r e e e y y )(212121-==不是常数. 因此方程的通解为x r x r e C e C y 2121+=.(2)特征方程有两个相等的实根r 1=r 2时, 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解.这是因为, x r e y 11=是方程的解, 又x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+''0)()2(121111=++++=q pr r xe p r e x r x r ,所以xr xe y 12=也是方程的解, 且x e xe y y x r x r ==1112不是常数. 因此方程的通解为x r x r xe C e C y 1121+=.(3)特征方程有一对共轭复根r 1, 2=α±i β时, 函数y =e (α+i β)x 、y =e (α-i β)x 是微分方程的两个线性无关的复数形式的解. 函数y =e αx cos βx 、y =e αx sin βx 是微分方程的两个线性无关的实数形式的解. 函数y 1=e (α+i β)x 和y 2=e (α-i β)x 都是方程的解, 而由欧拉公式, 得y 1=e (α+i β)x =e αx (cos βx +i sin βx ),y 2=e (α-i β)x =e αx (cos βx -i sin βx ),y 1+y 2=2e αx cos βx , )(21cos 21y y x e x +=βα, y 1-y 2=2ie αx sin βx , )(21sin 21y y ix e x -=βα. 故e αx cos βx 、y 2=e αx sin βx 也是方程解.可以验证, y 1=e αx cos βx 、y 2=e αx sin βx 是方程的线性无关解.因此方程的通解为y =e αx (C 1cos βx +C 2sin βx ).求二阶常系数齐次线性微分方程y ''+py '+qy =0的通解的步骤为:第一步 写出微分方程的特征方程r 2+pr +q =0第二步 求出特征方程的两个根r 1、r 2.第三步 根据特征方程的两个根的不同情况, 写出微分方程的通解.例1 求微分方程y ''-2y '-3y =0的通解.解 所给微分方程的特征方程为r 2-2r -3=0, 即(r +1)(r -3)=0.其根r 1=-1, r 2=3是两个不相等的实根, 因此所求通解为y =C 1e -x +C 2e 3x .例2 求方程y ''+2y '+y =0满足初始条件y |x =0=4、y '| x =0=-2的特解.解所给方程的特征方程为r2+2r+1=0,即(r+1)2=0.其根r1=r2=-1是两个相等的实根,因此所给微分方程的通解为y=(C1+C2x)e-x.将条件y|x=0=4代入通解,得C1=4,从而y=(4+C2x)e-x.将上式对x求导,得y'=(C2-4-C2x)e-x.再把条件y'|x=0=-2代入上式,得C2=2.于是所求特解为x=(4+2x)e-x.例3 求微分方程y''-2y'+5y= 0的通解.解所给方程的特征方程为r2-2r+5=0.特征方程的根为r1=1+2i,r2=1-2i,是一对共轭复根,因此所求通解为y=e x(C1cos2x+C2sin2x).n阶常系数齐次线性微分方程:方程y(n) +p1y(n-1)+p2 y(n-2) +⋅⋅⋅+p n-1y'+p n y=0,称为n阶常系数齐次线性微分方程,其中p1,p2 ,⋅⋅⋅,p n-1,p n都是常数.二阶常系数齐次线性微分方程所用的方法以及方程的通解形式,可推广到n阶常系数齐次线性微分方程上去.引入微分算子D,及微分算子的n次多项式:L(D)=D n+p1D n-1+p2 D n-2 +⋅⋅⋅+p n-1D+p n,则n阶常系数齐次线性微分方程可记作(D n+p1D n-1+p2 D n-2 +⋅⋅⋅+p n-1D+p n)y=0或L(D)y=0.注: D叫做微分算子D0y=y, D y=y', D2y=y'', D3y=y''',⋅⋅⋅,D n y=y(n).分析:令y=e rx,则L(D)y=L(D)e rx=(r n+p1r n-1+p2 r n-2 +⋅⋅⋅+p n-1r+p n)e rx=L(r)e rx.因此如果r是多项式L(r)的根,则y=e rx是微分方程L(D)y=0的解.n阶常系数齐次线性微分方程的特征方程:L(r)=r n+p1r n-1+p2 r n-2 +⋅⋅⋅+p n-1r+p n=0称为微分方程L(D)y=0的特征方程.特征方程的根与通解中项的对应:单实根r对应于一项:Ce rx;一对单复根r 1, 2=α ±i β 对应于两项: e αx (C 1cos βx +C 2sin βx );k 重实根r 对应于k 项: e rx (C 1+C 2x + ⋅ ⋅ ⋅ +C k x k -1);一对k 重复根r 1, 2=α ±i β 对应于2k 项:e αx [(C 1+C 2x + ⋅ ⋅ ⋅ +C k x k -1)cos βx +( D 1+D 2x + ⋅ ⋅ ⋅ +D k x k -1)sin βx ].例4 求方程y (4)-2y '''+5y ''=0 的通解.解 这里的特征方程为r 4-2r 3+5r 2=0, 即r 2(r 2-2r +5)=0,它的根是r 1=r 2=0和r 3, 4=1±2i .因此所给微分方程的通解为y =C 1+C 2x +e x (C 3cos2x +C 4sin2x ).例5 求方程y (4)+β 4y =0的通解, 其中β>0.解 这里的特征方程为r 4+β 4=0. 它的根为)1(22,1i r ±=β, )1(24,3i r ±-=β. 因此所给微分方程的通解为)2sin 2cos (212x C x C e y x βββ+=)2sin 2cos (432 x C x C e x βββ++-.二、二阶常系数非齐次线性微分方程简介二阶常系数非齐次线性微分方程: 方程y ''+py '+qy =f (x )称为二阶常系数非齐次线性微分方程, 其中p 、q 是常数.二阶常系数非齐次线性微分方程的通解是对应的齐次方程的通解y =Y (x )与非齐次方程本身的一个特解y =y *(x )之和:y =Y (x )+ y *(x ).当f (x )为两种特殊形式时, 方程的特解的求法:一、 f (x )=P m (x )e λx 型当f (x )=P m (x )e λx 时, 可以猜想, 方程的特解也应具有这种形式. 因此, 设特解形式为y *=Q (x )e λx , 将其代入方程, 得等式Q ''(x )+(2λ+p )Q '(x )+(λ2+p λ+q )Q (x )=P m (x ).(1)如果λ不是特征方程r 2+pr +q =0 的根, 则λ2+p λ+q ≠0. 要使上式成立, Q (x )应设为m 次多项式:Q m (x )=b 0x m +b 1x m -1+ ⋅ ⋅ ⋅ +b m -1x +b m ,通过比较等式两边同次项系数, 可确定b 0, b 1, ⋅ ⋅ ⋅ , b m , 并得所求特解y *=Q m (x )e λx .(2)如果λ是特征方程 r 2+pr +q =0 的单根, 则λ2+p λ+q =0, 但2λ+p ≠0, 要使等式 Q ''(x )+(2λ+p )Q '(x )+(λ2+p λ+q )Q (x )=P m (x ).成立, Q (x )应设为m +1 次多项式:Q (x )=xQ m (x ),Q m (x )=b 0x m +b 1x m -1+ ⋅ ⋅ ⋅ +b m -1x +b m ,通过比较等式两边同次项系数, 可确定b 0, b 1, ⋅ ⋅ ⋅ , b m , 并得所求特解 y *=xQ m (x )e λx .(3)如果λ是特征方程 r 2+pr +q =0的二重根, 则λ2+p λ+q =0, 2λ+p =0, 要使等式 Q ''(x )+(2λ+p )Q '(x )+(λ2+p λ+q )Q (x )=P m (x ).成立, Q (x )应设为m +2次多项式:Q (x )=x 2Q m (x ),Q m (x )=b 0x m +b 1x m -1+ ⋅ ⋅ ⋅ +b m -1x +b m ,通过比较等式两边同次项系数, 可确定b 0, b 1, ⋅ ⋅ ⋅ , b m , 并得所求特解y *=x 2Q m (x )e λx .综上所述, 我们有如下结论: 如果f (x )=P m (x )e λx , 则二阶常系数非齐次线性微分方程y ''+py '+qy =f (x )有形如y *=x k Q m (x )e λx的特解, 其中Q m (x )是与P m (x )同次的多项式, 而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2.例1 求微分方程y ''-2y '-3y =3x +1的一个特解.解 这是二阶常系数非齐次线性微分方程, 且函数f (x )是P m (x )e λx 型(其中P m (x )=3x +1, λ=0). 与所给方程对应的齐次方程为y ''-2y '-3y =0,它的特征方程为r 2-2r -3=0.由于这里λ=0不是特征方程的根, 所以应设特解为y *=b 0x +b 1.把它代入所给方程, 得-3b 0x -2b 0-3b 1=3x +1,比较两端x 同次幂的系数, 得⎩⎨⎧=--=-13233100b b b , -3b 0=3, -2b 0-3b 1=1.由此求得b 0=-1, 311=b . 于是求得所给方程的一个特解为 31*+-=x y .例2 求微分方程y ''-5y '+6y =xe 2x 的通解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )是P m (x )e λx 型(其中P m (x )=x , λ=2). 与所给方程对应的齐次方程为y ''-5y '+6y =0,它的特征方程为r 2-5r +6=0.特征方程有两个实根r 1=2, r 2=3. 于是所给方程对应的齐次方程的通解为 Y =C 1e 2x +C 2e 3x .由于λ=2是特征方程的单根, 所以应设方程的特解为 y *=x (b 0x +b 1)e 2x .把它代入所给方程, 得-2b 0x +2b 0-b 1=x .比较两端x 同次幂的系数, 得⎩⎨⎧=-=-0212100b b b , -2b 0=1, 2b 0-b 1=0. 由此求得210-=b , b 1=-1. 于是求得所给方程的一个特解为 x e x x y 2)121(*--=.从而所给方程的通解为x x x e x x e C e C y 223221)2(21+-+=.提示:y *=x (b 0x +b 1)e 2x =(b 0x 2+b 1x )e 2x ,[(b 0x 2+b 1x )e 2x ]'=[(2b 0x +b 1)+(b 0x 2+b 1x )⋅2]e 2x ,[(b 0x 2+b 1x )e 2x ]''=[2b 0+2(2b 0x +b 1)⋅2+(b 0x 2+b 1x )⋅22]e 2x .y *''-5y *'+6y *=[(b 0x 2+b 1x )e 2x ]''-5[(b 0x 2+b 1x )e 2x ]'+6[(b 0x 2+b 1x )e 2x ] =[2b 0+2(2b 0x +b 1)⋅2+(b 0x 2+b 1x )⋅22]e 2x -5[(2b 0x +b 1)+(b 0x 2+b 1x )⋅2]e 2x +6(b 0x 2+b 1x )e 2x =[2b 0+4(2b 0x +b 1)-5(2b 0x +b 1)]e 2x =[-2b 0x +2b 0-b 1]e 2x .方程y ''+py '+qy =e λx [P l (x )cos ωx +P n (x )sin ωx ]的特解形式应用欧拉公式可得e λx [P l (x )cos ωx +P n (x )sin ωx ]]2)(2)([ ie e x P e e x P e x i x i n x i x i l x ωωωωλ---++= x i n l x i n l e x iP x P e x iP x P )()()]()([21)]()([21ωλωλ-+++-= x i x i e x P e x P )()()()(ωλωλ-++=, 其中)(21)(i P P x P n l -=, )(21)(i P P x P n l +=. 而m =max{l , n }. 设方程y ''+py '+qy =P (x )e (λ+i ω)x 的特解为y 1*=x k Q m (x )e (λ+i ω)x , 则)(1)(*ωλi m k e x Q x y -=必是方程)()(ωλi e x P qy y p y -=+'+''的特解, 其中k 按λ±i ω不是特征方程的根或是特征方程的根依次取0或1. 于是方程y ''+py '+qy =e λx [P l (x )cos ωx +P n (x )sin ωx ]的特解为 x i m k x i m k e x Q x e x Q x y )()()()(*ωλωλ-++=)sin )(cos ()sin )(cos ([x i x x Q x i x x Q e x m m x k ωωωωλ-++= =x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ].综上所述, 我们有如下结论:如果f (x )=e λx [P l (x )cos ωx +P n (x )sin ωx ], 则二阶常系数非齐次线性微分方程 y ''+py '+qy =f (x )的特解可设为y *=x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ],其中R (1)m (x )、R (2)m (x )是m 次多项式, m =max{l , n }, 而k 按λ+i ω (或λ-i ω)不是特征方程的根或是特征方程的单根依次取0或1.例3 求微分方程y ''+y =x cos2x 的一个特解.解 所给方程是二阶常系数非齐次线性微分方程,且f (x )属于e λx [P l (x )cos ωx +P n (x )sin ωx ]型(其中λ=0, ω=2, P l (x )=x , P n (x )=0). 与所给方程对应的齐次方程为y ''+y =0,它的特征方程为r 2+1=0.由于这里λ+i ω=2i 不是特征方程的根, 所以应设特解为 y *=(ax +b )cos2x +(cx +d )sin2x .把它代入所给方程, 得(-3ax -3b +4c )cos2x -(3cx +3d +4a )sin2x =x cos2x . 比较两端同类项的系数, 得 31-=a , b =0, c =0, 94=d . 于是求得一个特解为 x x x y 2sin 942cos 31*+-=. 提示:y *=(ax +b )cos2x +(cx +d )sin2x .y *'=a cos2x -2(ax +b )sin2x +c sin2x +2(cx +d )cos2x ,=(2cx +a +2d )cos2x +(-2ax -2b +c )sin2x ,y *''=2c cos2x -2(2cx +a +2d )sin2x -2a sin2x +2(-2ax -2b +c )cos2x =(-4ax -4b +4c )cos2x +(-4cx -4a -4d )sin2x .y *''+ y *=(-3ax -3b +4c )cos2x +(-3cx -4a -3d )sin2x .由⎪⎩⎪⎨⎧=--=-=+-=-0340304313d a c c b a , 得31-=a , b =0, c =0, 94=d .。