初中抛物线经典练习题(含详细答案)

合集下载

初中数学抛物线与几何专题训练及答案

初中数学抛物线与几何专题训练及答案

全国各地中考试题压轴题精选讲座抛物线与几何问题【知识纵横】抛物线的解析式有下列三种形式:1、一般式:2y ax bx c =++(a ≠0);2、顶点式:y=a(x —h) 2-+k ;3、交点式:y=a(x —x 1)(x —x 2 ) ,这里x 1、x 2 是方程ax 2 +bx+c=0的两个实根。

解函数与几何的综合题,善于求点的坐标,进而求出函数解析式是解题的基础;而充分发挥形的因素,数形互动,把证明与计算相结合是解题的关键。

【典型例题】【例1】 (浙江杭州) 在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b )。

平移二 次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B ,C 两点(∣OB ∣<∣OC ∣),连结A ,B 。

(1)是否存在这样的抛物线F ,OC OB OA ⋅=2?请你作出判断,并说明理由;(2)如果AQ ∥BC ,且tan ∠ABO=23,求抛物线F 对应的二次函数的解析式。

【思路点拨】(1)由关系式OC OB OA ⋅=2来构建关于t 、b 的方程;(2)讨论t 的取值范围,来求抛物线F 对应的二次函数的解析式。

【例2】(江苏常州)如图,抛物线24y x x =+与x 轴分别相交于点B 、O,它的顶点为A,连接AB,把AB 所的直线沿y 轴向上平移,使它经过原点O,得到直线l,设P 是直线l 上一动点.(1)求点A 的坐标;(2)以点A 、B 、O 、P 为顶点的四边形中,有菱形、等 腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P 的坐标;(3)设以点A 、B 、O 、P 为顶点的四边形的面积为S, 点P 的横坐标为x,当46S +≤≤+,求x 的取值范围.【思路点拨】(3)可求得直线l 的函数关系式是y=-2x ,所以应讨论①当点P 在第二象限时,x<0、 ②当点P 在第四象限是,x>0这二种情况。

初中抛物线经典练习题(含详细答案)

初中抛物线经典练习题(含详细答案)

初中数学抛物线经典试题集锦编著】黄勇权第一组题型】1、已知二次函数y=x2+bx+c过点A(2,0),C(0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p 使△ ABP的面积为15,请直接写出p 点的坐标。

2、在平面直角坐标系xOy中,抛物线y=2x2+mx+n 经过点A(5,0 ),B(2,-6).(1)求抛物线的表达式及对称轴2)设点 B 关于原点的对称点为C,写出过A、C两点直线的表达式3、在平面直角坐标系xOy 中,已知抛物线的顶点 C 为(2,4),并在x 轴上截得的长度为 6 。

(1)写出抛物线与x 轴交点 A 、B 的坐标(2)求该抛物线的表达式(3)写出抛物线与y 轴交点P 的坐标4、直线的解析式为y=2x+4 ,交x 轴于点 A ,交y 轴于点B,若以 A 为顶点,,且开口向下作抛物线,交直线AB 于点D,交y 轴负半轴于点 C ,(1)若△ ABC 的面积为20,求此时抛物线的解析式(2)若△ BDO 的面积为8,求此时抛物线的解析式答案】1、已知二次函数y=x2+bx+c过点A(2,0),C(0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p 使△ ABP的面积为15,请直接写出p 点的坐标解:【第一问】因为函数y=x2+bx+c过点A(2,0),C(0, -8)分别将x=2,y=0 代入y=x2+bx+c,得0=4+2b+c -①将x=0,y=-8 代入y=x2+bx+c,得-8=c -------- ②将②代入①,解得:b=2 ------------------------------------ ③此时,将② ③代入y=x2+bx+c,所以:二次函数的解析式y=x2+ 2x -8 【第二问】1△ABP的面积= 2│AB│*│y p│------------- ④因为A、B 两点在x 轴上,令x2+ 2x -8=0 (x-2)(x+4)=0 解得:x1=2,x2= -4所以:│ AB│=│X1- X2│=│2-(- 4)│ =6 ---- ⑤又△ ABP的面积=15 --------------------------------- ⑥1由④ ⑤ ⑥,得:2 *6* │y p│=15y p =5故有:y p= ± 5即:p 点的纵坐标为 5 或-5.把y=5 代入y=x2+ 2x -8 ,即:5=x2+ 2x -8x2+ 2x -13=0解得:x= -1 ± 14那么,此时p 点坐标(-1+ 14,5),(-1- 14,5)---- ⑦把y=-5 代入y=x2+ 2x -8,即:-5=x2+ 2x -8x2+ 2x -3=0 (x-1)(x+3)=0 解得:x= 1 或x= -3 那么,此时p 点坐标(1,-5),(-3,-5)⑧由⑦ ⑧得,使△ ABP的面积为15,p 点坐标是:(-1+ 14,5),(-1- 14,5),(1,-5),(-3,-5)2、在平面直角坐标系xOy中,抛物线y=2x2+mx+n 经过点A(5,0 ),B(2,-6).(1)求抛物线的表达式及对称轴(2)设点 B 关于原点的对称点为C,写出过A、C两点直线的表达式。

抛物线试题及答案初三

抛物线试题及答案初三

抛物线试题及答案初三
一、选择题
1. 抛物线y=ax^2+bx+c的顶点坐标是()
A. (-b/2a, f(-b/2a))
B. (-b/2a, f(-b/2a))
C. (-b/2a, f(-b/2a))
D. (-b/2a, f(-b/2a))
答案:A
2. 抛物线y=x^2-4x+3与x轴的交点坐标是()
A. (1,0)和(3,0)
B. (-1,0)和(3,0)
C. (1,0)和(-3,0)
D. (-1,0)和(-3,0)
答案:A
二、填空题
3. 若抛物线y=ax^2+bx+c的对称轴为直线x=2,则b的值为______。

答案:-4a
4. 抛物线y=-2x^2+4x+1的顶点坐标为(1,3),则a=______。

答案:-2
三、解答题
5. 已知抛物线y=x^2-6x+9,求抛物线的顶点坐标。

答案:顶点坐标为(3,0)。

6. 抛物线y=2x^2-4x+1与直线y=x+2相交于A、B两点,求A、B两点
的坐标。

答案:A(1,3),B(2,4)。

四、综合题
7. 抛物线y=x^2-2x-3与x轴相交于点C、D,与y轴相交于点E,求
三角形CDE的面积。

答案:三角形CDE的面积为9。

8. 已知抛物线y=ax^2+bx+c经过点(1,0)和(-1,0),且顶点在x轴上,求抛物线的解析式。

答案:抛物线的解析式为y=x^2。

初三抛物线试题及答案

初三抛物线试题及答案

初三抛物线试题及答案一、选择题1. 抛物线y = ax^2 + bx + c的顶点坐标是什么?A. (-b, c)B. (-b/2a, c - b^2/4a)C. (-b/2a, c + b^2/4a)D. (-b/a, c)答案:B2. 如果抛物线y = x^2 + 2x + 1的对称轴是直线x = -1,那么a的值是多少?A. 1B. -1C. 0D. 2答案:A3. 抛物线y = 2x^2 - 4x + 3的开口方向是:A. 向上B. 向下C. 水平D. 无法确定答案:A二、填空题4. 已知抛物线y = 3x^2 - 6x + 5,求抛物线的顶点坐标。

答案:顶点坐标为(1, 2)5. 抛物线y = -x^2 + 4x - 3的焦点坐标是什么?答案:焦点坐标为(2, -2)三、解答题6. 已知抛物线y = 2x^2 - 8x + 7,求其与x轴的交点。

答案:首先将方程化为标准形式:y = 2(x - 2)^2 - 1。

抛物线与x轴的交点即为y = 0时的x值。

解方程2(x - 2)^2 - 1 = 0,得到x= 2 ± √(1/2),即x = 2 ± √2/2。

7. 已知抛物线y = ax^2 + bx + c经过点(1, 3)和(-1, 1),求a和b 的值。

答案:将点(1, 3)和(-1, 1)代入方程,得到两个方程:3 = a(1)^2 + b(1) + c1 = a(-1)^2 + b(-1) + c解这两个方程,得到a + b + c = 3和a - b + c = 1。

相减消去c,得到2b = 2,即b = 1。

将b的值代入任一方程,得到a + 1 + c = 3,即a + c = 2。

由于c = 3 - a - b = 3 - a - 1 = 2 - a,代入得到a + 2 - a = 2,这是一个恒等式,说明a可以是任意实数。

四、应用题8. 一个物体从地面向上抛,其高度h(米)与时间t(秒)的关系为h = -5t^2 + 20t。

抛物线课件及练习题含详解

抛物线课件及练习题含详解
2
为 y k(x p).
2
又因为A,B两点是直线AB与抛物线的交点,则
y k(x y2 2px
p ), 2
x2
(
2p k2
p)x
p2 4
0,
所以x1·x2=p2 .
4
由|AF|·|BF|=
x1
x2
p 2
x1
x
2
p2 4
1. 3
得 p2 p (4 p) 1 ,
2 23
3
即 2p 所1 ,以 p 1 ,
2p y21p2y1y1y1 y2
x
x1
,
= 2p x y1y2 2p (x y1y2 ),
y1 y2 y1 y2 y1 y2
2p
将y1·y2=-4p2代入上式得y 2p x 2p,
y1 y2
故直线AB恒过定点(2p,0).
【方法技巧】利用抛物线的性质可以解决的问题 (1)对称性:解决抛物线的内接三角形问题. (2)焦点、准线:解决与抛物线的定义有关的问题. (3)范围:解决与抛物线有关的最值问题. (4)焦点:解决焦点弦问题.
|AF|=1,|BF|= 1,求抛物线及直线AB的方程.
3
【解题指南】设出A,B两点的坐标,根据抛物线定义可分别表
示出|AF|和|BF|,进而可求得|AF|+|BF|,求得x1+x2的表达
式,表示出|AF|·|BF|,建立等式求得p,则抛物线方程可得.
再由|AB|=
2p sin 2
得4, sin2θ=
(2)y2=2px(p>0)的焦点为( p,0),由题意得
2
( p 2)2 解9 得 5p,=4或p=-12(舍去).
2

初中抛物线试题及答案

初中抛物线试题及答案

初中抛物线试题及答案
一、选择题
1. 抛物线y = x^2 - 2x + 1的顶点坐标是()。

A. (1, 0)
B. (1, -1)
C. (0, 1)
D. (0, -1)
答案:A
2. 如果抛物线y = ax^2 + bx + c的对称轴是直线x = -2,那么b的值是()。

A. 4a
B. -4a
C. 2a
D. -2a
答案:B
二、填空题
1. 抛物线y = 2x^2 + 4x + 3的顶点坐标是()。

答案:(-1, 1)
2. 抛物线y = -3x^2 + 6x - 2的对称轴方程是()。

答案:x = 1
三、解答题
1. 已知抛物线y = x^2 - 6x + 9,求抛物线与x轴的交点坐标。

答案:抛物线与x轴的交点坐标为(3, 0)。

2. 抛物线y = 2x^2 - 4x + 3,求抛物线的顶点坐标和对称轴。

答案:抛物线的顶点坐标为(1, 1),对称轴为直线x = 1。

四、应用题
1. 一个抛物线形的桥拱,其方程为y = -0.5x^2 + 4x + 1,桥拱的最高点离水面的高度是5米。

求桥拱的跨度。

答案:桥拱的跨度为8米。

2. 一个物体从地面以一定的初速度向上抛,其运动轨迹可以用抛物线y = -5x^2 + 20x + 2描述,其中x表示时间(秒),y表示高度(米)。

求物体达到最高点时的时间。

答案:物体达到最高点时的时间是2秒。

抛物线必做题型(含答案)

抛物线必做题型(含答案)
因此,当△ABC为钝角三角形时,点C的纵坐标y的取值范围是
y<- 或y> (y≠2 ).
18.解:(1)由题意可知F(a,0),设椭圆方程为 + =1(m>n>0).
= ,m2=2a2,
m2-n2=a2,n2=a2,
∴椭圆方程为 + =1,直线l:y=x-a.
y=x-a,
+ =1,
y=x-a,
y2=4ax,
4g 4.4g-4g
解得:M=40
根据乙炔的相对分子质量为26、丙炔的相对分子质量为40;而混合气体中必含一种相对分子质量小于40的烃,这种炔烃只能是乙炔。由乙炔加成可得乙烷,则所得烷烃中一定有乙烷。
4.取82mL某烷烃和快烃的混合气体在27℃和1.01×105Pa时,测定其质量为85mg,则关于混合气体的不正确叙述是[ ]
A.[- , ]B.[-2,2]
C.[-1,1]D.[-4,4]
3.在抛物线y2=2px上,横坐标为4的点到焦点的距离为5,则p的值为
A. B.1 C.4 D.2
4.设a≠0,a∈R,则抛物线y=4ax2的焦点坐标为
A.(a,0)B.(0,a)
C.(0, )D.随a符号而定
5.以抛物线y2=2px(p>0)的焦半径|PF|为直径的圆与y轴位置关系为
(1)过点(-3,2);
(2)焦点在直线x-2y-4=0上.
11.如下图所示,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A、B为端点的曲线段C上任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|= ,|AN|=3,且|NB|=6,建立适当的坐标系,求曲线段C的方程.
12.设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明直线AC经过原点O.

抛物线习题精选(带答案)

抛物线习题精选(带答案)

抛物线习题精选一、选择题1.过抛物线焦点的直线与抛物线相交于,两点,若,在抛物线准线上的射影分别是,,则为().A.45°B.60°C.90°D.120°2.过已知点且与抛物线只有一个公共点的直线有().A.1条B.2条C.3条D.4条3.已知,是抛物线上两点,为坐标原点,若,且的垂心恰好是此抛物线的焦点,则直线的方程是().A.B.C.D.4.若抛物线()的弦PQ中点为(),则弦的斜率为()A.B.C.D.5.已知是抛物线的焦点弦,其坐标,满足,则直线的斜率是()A.B.C.D.6.已知抛物线()的焦点弦的两端点坐标分别为,,则的值一定等于()A.4 B.-4 C.D.7.已知⊙的圆心在抛物线上,且⊙与轴及的准线相切,则⊙的方程是()A.B.C.D.8.当时,关于的方程的实根的个数是()A.0个B.1个C.2个D.3个9.将直线左移1个单位,再下移2个单位后,它与抛物线仅有一个公共点,则实数的值等于()A.-1 B.1 C.7 D.910.以抛物线()的焦半径为直径的圆与轴位置关系为()A.相交 B.相离 C.相切 D.不确定11.过抛物线的焦点作直线交抛物线于,两点,如果,那么长是()A.10 B.8 C.6 D.412.过抛物线()的焦点且垂直于轴的弦为,为抛物线顶点,则大小()A.小于B.等于C.大于D.不能确定13.抛物线关于直线对称的曲线的顶点坐标是()A.(0,0)B.(-2,-2)C.(2,2)D.(2,0)14.已知抛物线()上有一点,它到焦点的距离为5,则的面积(为原点)为()A.1 B.C.2 D.15.记定点与抛物线上的点之间的距离为,到此抛物线准线的距离为,则当取最小值时点的坐标为()A.(0,0)B.C.(2,2)D.16.方程表示()A.椭圆 B.双曲线 C.抛物线 D.圆17.在上有一点,它到的距离与它到焦点的距离之和最小,则的坐标为()A.(-2,8)B.(2,8)C.(-2,-8)D.(-2,8)18.设为过焦点的弦,则以为直径的圆与准线交点的个数为()A.0 B.1 C.2 D.0或1或219.设,为抛物线上两点,则是过焦点的()A.充分不必要B.必要不充分C.充要D.不充分不必要20.抛物线垂点为(1,1),准线为,则顶点为()A.B.C.D.21.与关于对称的抛物线是()A.B.C.D.二、填空题1.顶点在原点,焦点在轴上且通径(过焦点和对称轴垂直的弦)长为6的抛物线方程是_________.2.抛物线顶点在原点,焦点在轴上,其通径的两端点与顶点连成的三角形面积为4,则此抛物线方程为_________.3.过点(0,-4)且与直线相切的圆的圆心的轨迹方程是_________.4.抛物线被点所平分的弦的直线方程为_________.5.已知抛物线的弦过定点(-2,0),则弦中点的轨迹方程是________.6.顶点在原点、焦点在轴上、截直线所得弦长为的抛物线方程为____________.7.已知直线与抛物线交于、两点,那么线段的中点坐标是__ _.8.一条直线经过抛物线()的焦点与抛物线交于、两点,过、点分别向准线引垂线、,垂足为、,如果,,为的中点,则 =__________.9.是抛物线的一条焦点弦,若抛物线,,则的中点到直线的距离为_________.10.抛物线上到直线的距离最近的点的坐标是____________.11.抛物线上到直线距离最短的点的坐标为__________.12.已知圆与抛物线()的准线相切,则 =________.13.过()的焦点的弦为,为坐标原点,则=________.14.抛物线上一点到焦点的距离为3,则点的纵坐标为__________.15.已知抛物线(),它的顶点在直线上,则的值为__________.16.过抛物线的焦点作一条倾斜角为的弦,若弦长不超过8,则的范围是________.17.已知抛物线与椭圆有四个交点,这四个交点共圆,则该圆的方程为__________.18.抛物线的焦点为,准线交轴于,过抛物线上一点作于,则梯形的面积为_______________.19.探照灯的反射镜的纵断面是抛物线的一部分,安装灯源的位置在抛物线的焦点处,如果到灯口平面的距离恰好等于灯口的半径,已知灯口的半径为30cm,那么灯深为_________.三、解答题1.知抛物线截直线所得的弦长,试在轴上求一点,使的面积为392.若的焦点弦长为5,求焦点弦所在直线方程3.已知是以原点为直角顶点的抛物线()的内接直角三角形,求面积的最小值.4.若,为抛物线的焦点,为抛物线上任意一点,求的最小值及取得最小值时的的坐标.5.一抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上一宽4米,高6米的大木箱,问能否安全通过.6.抛物线以轴为准线,且过点,()求证不论点的位置如何变化,抛物线顶点的轨迹是椭圆,且离心率为定值.7.已知抛物线()的焦点为,以为圆心,为半径,在轴上方画半圆,设抛物线与半圆交于不同的两点、,为线段的中点.①求的值;②是否存在这样的,使、、成等差数列,若存在,求出的值;若不存在,说明理由.8.求抛物线和圆上最近两点之间的距离.9.正方形中,一条边在直线上,另外两顶点、在抛物线上,求正方形的面积.10.已知抛物线的一条过焦点的弦被焦点分为,两个部分,求证.11.一抛物线型拱桥的跨度为,顶点距水面.江中一竹排装有宽、高的货箱,问能否安全通过.12.已知抛物线上两点,(在第二象限),为原点,且,求当点距轴最近时,的面积.13.是抛物线上的动点,连接原点与,以为边作正方形,求动点的轨迹方程.参考答案:一、1.C;2.C;3.D;4.B;5.C;6.B;7.B;8.D;9.C10.C;11.B;12.C;13.C;14.C;15.C;16.C;17.B;18.B;19.C;20.A;21.D二、1.;2.;3.;4.5.;6.(在已知抛物线内的部分)7.或;8.(4,2);9.10.;11.;12.2;13.-414.2;15.0,,,;16.17.;18.3.14;19.36.2cm三、1.先求得,再求得或2.3.设,,则由得,,,于是当,即,时,4.抛物线的准线方程为,过作垂直准线于点,由抛物线定义得,,要使最小,、、三点必共线,即垂直于准线,与抛物线交点为点,从而的最小值为,此时点坐标为(2,2).5.建立坐标系,设抛物线方程为,则点(26,-6.5)在抛物线上,抛物线方程为,当时,,则有,所以木箱能安全通过.6.设抛物线的焦点为,由抛物线定义得,设顶点为,则,所以,即为椭圆,离心率为定值.7.①设、、在抛物线的准线上射影分别为、、,则由抛物线定义得,又圆的方程为,将代入得②假设存在这样的,使得,由定义知点必在抛物线上,这与点是弦的中点矛盾,所以这样的不存在8.设、分别是抛物线和圆上的点,圆心,半径为1,若最小,则也最小,因此、、共线,问题转化为在抛物线上求一点,使它到点的距离最小.为此设,则,的最小值是9.设所在直线方程为,消去得又直线与间距离为或从而边长为或,面积,10.焦点为,设焦点弦端点,,当垂直于轴,则,结论显然成立;当与轴不垂直时,设所在直线方程为,代入抛物线方程整理得,这时,于是,命题也成立.11.取抛物线型拱桥的顶点为原点、对称轴为轴建立直角坐标系,则桥墩的两端坐标分别为(-26,-6.5),(26,-6.5),设抛物线型拱桥的方程为,则,所以,抛物线方程为.当时,,而,故可安全通过.12.设,则,因为,所以,直线的方程为,将代入,得点的横坐标为(当且仅当时取等号),此时,,,,所以.13.设,,过,分别作为轴的垂线,垂足分别为,,而证得≌,则有,,即、,而,因此,即为所求轨迹方程.。

抛物线专题练习(含解析)

抛物线专题练习(含解析)

抛物线专题练习1.(2020·吉林省长春模拟)点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的标准方程是( )A .x 2=112yB .x 2=112y 或x 2=-136yC .x 2=-136yD .x 2=12y 或x 2=-36y2.(2020·江西省安义中学模拟)已知抛物线y =px 2(其中p 为常数)过点A (1,3),则抛物线的焦点到准线的距离等于( )A.92B.32C.118D.163.(2020·山东省乳山市第一中学模拟)顶点在原点,且过点(-4,4)的抛物线的标准方程是( ) A .y 2=-4xB .x 2=4yC .y 2=-4x 或x 2=4yD .y 2=4x 或x 2=-4y4.(2020·河南省信阳市第一中学模拟)已知AB 是抛物线y 2=8x 的一条焦点弦,|AB |=16,则AB 中点C 的横坐标是( )A .3B .4C .6D .85.(2020·四川省自贡市一中模拟)若直线AB 与抛物线y 2=4x 交于A ,B 两点,且AB ⊥x 轴,|AB |=42,则抛物线的焦点到直线AB 的距离为( )A .1B .2C .3D .56.(2020·四川省资阳模拟)设F 为抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若F 为⊥ABC 的重心,则|F A →|+|FB →|+|FC →|的值为( )7.A .1 B .2 C .3 D .47.(2020·陕西省延安模拟)已知F 是抛物线C 1:y 2=2px (p >0)的焦点,曲线C 2是以F 为圆心,p2为半径的圆,直线4x -3y -2p =0与曲线C 1,C 2从上到下依次相交于点A ,B ,C ,D ,则|AB ||CD |=( )A .16B .4 C.83 D.538.(2020·广东省惠州市一中模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线方程为x =-2,过点F 的直线与抛物线C 交于M (x 1,y 1),N (x 2,y 2)两点,若|MN |=8,则y 21+y 22=( )A .16B .32C .24D .489.(2020·湖南省邵阳市二中模拟)已知F 是抛物线C :y 2=2px (p >0)的焦点,过点R (2,1)的直线l 与抛物线C 交于A ,B 两点,R 为线段AB 的中点.若|F A |+|FB |=5,则直线l的斜率为( )A .3B .1C .2D.1210.(2020·湖北省汉川市一中模拟)已知直线l :y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点.若|F A |=2|FB |,则k =( )A.13B.23C.23D.223 11.(2020·山东省菏泽市一中模拟)已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 23-y 2=1的右焦点重合,若A 为抛物线在第一象限上的一点,且|AF |=3,则直线AF 的斜率为 .12.(2020·江西省任弼时中学模拟)若抛物线x 2=4y 上的点A 到焦点的距离为10,则点A 到x 轴的距离是 .13.(2020·福建省永春一中模拟)已知正三角形AOB (O 为坐标原点)的顶点A ,B 在抛物线y 2=3x 上,则⊥AOB 的边长是 .14.(2020·安徽省池州二中模拟)直线y=k(x-1)与抛物线y2=4x交于A,B两点,若|AB|=163,则k=.15.(2020·江苏省淮北中学模拟)已知抛物线y2=2px(p>0)过点A(2,y0),且点A到其准线的距离为4.(1)求抛物线的方程;(2)直线l:y=x+m与抛物线交于两个不同的点P,Q,若OP⊥OQ,求实数m的值.16.(2020·浙江省丽水中学模拟)如图,已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3.(1)求抛物线E的方程;(2)已知点G(-1,0),延长AF交抛物线E于点B,证明:GF为⊥AGB的平分线.17.(2020·吉林省松原市二中模拟)已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线的方程;(2)若过M作MN⊥F A,垂足为N,求点N的坐标.1.(2020·吉林省长春模拟)点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的标准方程是( )A .x 2=112yB .x 2=112y 或x 2=-136yC .x 2=-136yD .x 2=12y 或x 2=-36y【答案】D【解析】将y =ax 2化为x 2=1a y .当a >0时,准线y =-14a ,则3+14a =6,⊥a =112.当a <0时,准线y =-14a ,则⎪⎪⎪⎪3+14a =6,⊥a =-136. ⊥抛物线方程为x 2=12y 或x 2=-36y2.(2020·江西省安义中学模拟)已知抛物线y =px 2(其中p 为常数)过点A (1,3),则抛物线的焦点到准线的距离等于( )A.92B.32C.118D.16【答案】D【解析】由抛物线y =px 2(其中p 为常数)过点A (1,3),可得p =3,则抛物线的标准方程为x 2=13y ,则抛物线的焦点到准线的距离等于16.故选D.]3.(2020·山东省乳山市第一中学模拟)顶点在原点,且过点(-4,4)的抛物线的标准方程是( ) A .y 2=-4xB .x 2=4yC .y 2=-4x 或x 2=4yD .y 2=4x 或x 2=-4y 【答案】C【解析】设所求抛物线方程为y 2=kx 或x 2=my ,又点(-4,4)在抛物线上,则有-4k =16或4m =16,解得k =-4或m =4,所求抛物线方程为y 2=-4x 或x 2=4y .故选C.]4.(2020·河南省信阳市第一中学模拟)已知AB 是抛物线y 2=8x 的一条焦点弦,|AB |=16,则AB 中点C 的横坐标是( )A .3B .4C .6D .8【答案】C【解析】设A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p =16,又p =4,所以x 1+x 2=12,所以点C 的横坐标是x 1+x 22=6.]5.(2020·四川省自贡市一中模拟)若直线AB 与抛物线y 2=4x 交于A ,B 两点,且AB ⊥x 轴,|AB |=42,则抛物线的焦点到直线AB 的距离为( )A .1B .2C .3D .5【答案】A【解析】由|AB |=42及AB ⊥x 轴,不妨设点A 的纵坐标为22,代入y 2=4x 得点A 的横坐标为2,从而直线AB 的方程为x =2.又y 2=4x 的焦点为(1,0),所以抛物线的焦点到直线AB 的距离为2-1=1,故选A.]6.(2020·四川省资阳模拟)设F 为抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若F 为⊥ABC 的重心,则|F A →|+|FB →|+|FC →|的值为( )A .1B .2C .3D .4 【答案】C【解析】依题意,设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),又焦点F ⎝⎛⎭⎫12,0,所以x 1+x 2+x 3=3×12=32,则|F A →|+|FB →|+|FC →|=⎝⎛⎭⎫x 1+12+⎝⎛⎭⎫x 2+12+⎝⎛⎭⎫x 3+12=(x 1+x 2+x 3)+32=32+32=3 7.(2020·陕西省延安模拟)已知F 是抛物线C 1:y 2=2px (p >0)的焦点,曲线C 2是以F 为圆心,p2为半径的圆,直线4x -3y -2p =0与曲线C 1,C 2从上到下依次相交于点A ,B ,C ,D ,则|AB ||CD |=( )A .16B .4 C.83 D.53【答案】A【解析】因为直线4x -3y -2p =0过C 1的焦点F (C 2的圆心),故|BF |=|CF |=p 2,所以|AB ||CD |=|AF |-p2|DF |-p2.由抛物线的定义得|AF |-p 2=x A ,|DF |-p2=x D .由⎩⎪⎨⎪⎧4x -3y -2p =0,y 2=2px ,整理得8x 2-17px +2p 2=0,即(8x -p )(x -2p )=0,可得x A =2p ,x D =p 8,故|AB ||CD |=x Ax D =2pp 8=16.故选A 8.(2020·广东省惠州市一中模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线方程为x =-2,过点F 的直线与抛物线C 交于M (x 1,y 1),N (x 2,y 2)两点,若|MN |=8,则y 21+y 22=( )A .16B .32C .24D .48【答案】B【解析】由准线方程为x =-2,可知p =4,则抛物线C 的方程为y 2=8x .由抛物线的定义可知,|MN |=|MF |+|NF |=x 1+x 2+4=8,则x 1+x 2=4,即y 218+y 228=4,故y 21+y 22=32.故选B.] 9.(2020·湖南省邵阳市二中模拟)已知F 是抛物线C :y 2=2px (p >0)的焦点,过点R (2,1)的直线l 与抛物线C 交于A ,B 两点,R 为线段AB 的中点.若|F A |+|FB |=5,则直线l 的斜率为( )A .3B .1C .2 D.12【答案】B【解析】由于R (2,1)为AB 中点,设A (x A ,y A ),B (x B ,y B ).根据抛物线的定义|F A |+|FB |=x A +x B +p =2×2+p =5,解得p =1,抛物线方程为y 2=2x .y 2A =2x A ,y 2B =2x B,两式相减并化简得y B-y A x B -x A =2y A +y B =22×1=1,即直线l 的斜率为1.故选B.]10.(2020·湖北省汉川市一中模拟)已知直线l :y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点.若|F A |=2|FB |,则k =( )A.13B.23C.23D.223 【答案】D【解析】由⎩⎪⎨⎪⎧y =k (x +2),y 2=8x ,消去y 得k 2x 2+(4k 2-8)x +4k 2=0.Δ=(4k 2-8)2-16k 4>0,解得-1<k <1.设A (x 1,y 1),B (x 2,y 2).x 1+x 2=8k 2-4.⊥ x 1x 2=4.⊥ 根据抛物线的定义及|F A |=2|FB |,得x 1+2=2(x 2+2),即x 1=2x 2+2,⊥且x 1>0,x 2>0,由⊥⊥解得x 1=4,x 2=1,代入⊥得k 2=89,k >0,⊥k =223.故选D.11.(2020·山东省菏泽市一中模拟)已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 23-y 2=1的右焦点重合,若A 为抛物线在第一象限上的一点,且|AF |=3,则直线AF 的斜率为 .【答案】-22【解析】⊥双曲线x 23-y 2=1的右焦点为(2,0),⊥抛物线方程为y 2=8x .⊥|AF |=3,⊥x A +2=3,得x A =1,代入抛物线方程可得y A =±2 2.⊥点A 在第一象限,⊥A (1,22),⊥直线AF 的斜率为221-2=-2 2.]12.(2020·江西省任弼时中学模拟)若抛物线x 2=4y 上的点A 到焦点的距离为10,则点A 到x 轴的距离是 .【答案】9【解析】根据题意,抛物线x 2=4y 的准线方程为y =-1,点A 到准线的距离为10,故点A 到x 轴的距离是9.]13.(2020·福建省永春一中模拟)已知正三角形AOB (O 为坐标原点)的顶点A ,B 在抛物线y 2=3x 上,则⊥AOB 的边长是 .【答案】63【解析】如图,设⊥AOB 的边长为a ,则A ⎝⎛⎭⎫32a ,12a ,⊥点A 在抛物线y 2=3x 上,⊥14a 2=3×32a ,⊥a =6 3.] 14.(2020·安徽省池州二中模拟)直线y =k (x -1)与抛物线y 2=4x 交于A ,B 两点,若|AB |=163,则k = .【答案】±3【解析】设A (x 1,y 1),B (x 2,y 2),因为直线AB 经过抛物线y 2=4x 的焦点,所以|AB |=x 1+x 2+2=163,所以x 1+x 2=103.联立⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1)得到k 2x 2-(2k 2+4)x +k 2=0,所以x 1+x 2=2k 2+4k 2=103,所以k =± 3.]15.(2020·江苏省淮北中学模拟)已知抛物线y 2=2px (p >0)过点A (2,y 0),且点A 到其准线的距离为4.(1)求抛物线的方程;(2)直线l :y =x +m 与抛物线交于两个不同的点P ,Q ,若OP ⊥OQ ,求实数m 的值. 【解析】(1)已知抛物线y 2=2px (p >0)过点A (2,y 0),且点A 到准线的距离为4, ⊥2+p2=4,⊥p =4,⊥抛物线的方程为y 2=8x .(2)由⎩⎪⎨⎪⎧y =x +m ,y 2=8x 得x 2+(2m -8)x +m 2=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=8-2m ,x 1x 2=m 2,y 1+y 2=x 1+x 2+2m =8,y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2=8m . ⊥OP ⊥OQ ,⊥x 1x 2+y 1y 2=m 2+8m =0, ⊥m =0或m =-8.经检验,当m =0时,直线与抛物线交点中有一点与原点O 重合,不符合题意. 当m =-8时,Δ=(-24)2-4×64>0,符合题意. 综上,实数m 的值为-8.16.(2020·浙江省丽水中学模拟)如图,已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:GF 为⊥AGB 的平分线. 【解析】(1)由抛物线定义可得|AF |=2+p2=3,解得p =2.⊥抛物线E 的方程为y 2=4x .(2)证明:⊥点A (2,m )在抛物线E 上,⊥m 2=4×2,解得m =±22,由抛物线的对称性,不妨设A (2,22),由A (2,22),F (1,0), ⊥直线AF 的方程为y =22(x -1),由⎩⎨⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0,解得x =2或12,⊥B ⎝⎛⎭⎫12,-2. 又G (-1,0),⊥k GA =223,k GB =-223,⊥k GA +k GB =0, ⊥⊥AGF =⊥BGF .⊥GF 为⊥AGB 的平分线.17.(2020·吉林省松原市二中模拟)已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥F A ,垂足为N ,求点N 的坐标.【解析】(1)抛物线y 2=2px (p >0)的准线为x =-p 2,于是4+p 2=5,⊥p =2. ⊥抛物线方程为y 2=4x .(2)⊥点A 的坐标是(4,4),由题意得B (0,4),M (0,2).又⊥F (1,0),⊥k F A =43, ⊥MN ⊥F A ,⊥k MN =-34. ⊥F A 的方程为y =43(x -1), ⊥ MN 的方程为y -2=-34x , ⊥联立⊥⊥,解得x =85,y =45, ⊥点N 的坐标为⎝⎛⎭⎫85,45.。

(完整版)抛物线练习题(含答案)

(完整版)抛物线练习题(含答案)

抛物线练习题一、选择题1.在直角坐标平面内,到点(1,1)和直线 x+ 2y= 3 距离相等的点的轨迹是 ()A .直线B.抛物线C.圆D.双曲线2.抛物线 y2= x 上一点 P 到焦点的距离是 2,则 P 点坐标为 ()3,± 67,± 79,± 35,± 10A. 22B. 42C. 42D. 223.抛物线 y= ax2的准线方程是y= 2,则 a 的值为 ()11A. 8 B .-8C. 8D.- 84.设抛物线 y2= 8x 上一点 P 到 y 轴的距离是4,则点 P 到该抛物线焦点的距离是 ()A .4B . 6C. 8D. 125.设过抛物线的焦点 F 的弦为 AB,则以 AB 为直径的圆与抛物线的准线的地址关系是()A .订交B .相切C.相离D.以上答案都有可能6.过点 F(0,3)且和直线 y+ 3=0 相切的动圆圆心的轨迹方程为 ()A .y2= 12xB .y2=- 12x C. x2= 12y D .x2=- 12y7.抛物线 y2= 8x 上一点 P 到 x 轴距离为12,则点 P 到抛物线焦点 F 的距离为 ()A .20B .8C. 22D. 248.抛物线的极点在坐标原点,焦点是椭圆4x2+ y2= 1 的一个焦点,则此抛物线的焦点到准线的距离为 ()11A. 2 3 B. 3 C.2 3 D.4 39.设抛物线的极点在原点,其焦点F 在 y 轴上,又抛物线上的点(k,- 2)与 F 点的距离为4,则 k 的值是 ()A. 4 B . 4 或- 4C.- 2 D .2 或- 212的焦点坐标是 ()10.抛物线 y=m x (m<0)A.0,mB. 0,-mC. 0,1D. 0,-1 444m4m11.抛物线的极点在原点,对称轴是x 轴,抛物线上的点(-5,2 5) 到焦点的距离是6,则抛物线的方程为 ()A. y2=- 2x B .y2=- 4x C. y2= 2x D. y2=- 4x 或 y2=- 36x12.已知抛物线y2=2px(p>0) 的准线与圆 (x- 3)2+ y2= 16 相切,则p 的值为 () 1A. 2 B . 1C.2 D .4二、填空题13.过抛物线焦点 F 的直线与抛物线订交于A 、B 两点,若A 、B 在抛物线准线上的射影是A 1、B 1,则∠ A 1FB 1=。

重庆中考抛物线25题最新训练试题(含详细答案解析)

重庆中考抛物线25题最新训练试题(含详细答案解析)

.一.解答题(共7小题)1.(2013•抚顺)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D.(1)求抛物线的解析式;(2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标;(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t值.,,×)﹣×=的坐标为(,n=,)﹣,,,﹣=,秒或秒或秒时,以2.如图,直线y=﹣x+3与x轴,y轴分别交于B,C两点,抛物线y=﹣x2+bx+c经过点B和点C,点A是抛物线与x轴的另一个交点.(1)求抛物线的解析式和顶点坐标;(2)若点Q在抛物线的对称轴上,能使△QAC的周长最小,请求出Q点的坐标;(3)在直线BC上是否存在一点P,且s△PAC:S△PAB=1:3?若存在,求P点的坐标;若不存在,请说明理由.,解得则有:解得得:,)或(3.(2011•沈阳)如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,﹣3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限.①当线段PQ=AB时,求tan∠CED的值;②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.,PQ=,轴的距离是,,(,)=CG=.,﹣)x=1+﹣,﹣的纵坐标为:﹣,或1+,﹣),﹣﹣,﹣4.已知,如图1,抛物线y=ax2+bx过点A(6,3),且对称轴为直线.点B为直线OA下方的抛物线上一动点,点B的横坐标为m.(1)求该抛物线的解析式;(2)若△OAB的面积为S.求S关于m的函数关系式,并求出S的最大值;(3)如图2,过点B作直线BC∥y轴,交线段OA于点C,在抛物线的对称轴上是否存在点D,使△BCD 是以D为直角顶点的等腰直角三角形?若存在,求出所有符合条件的点B的坐标;若不存在,请说明理由.,且对称轴为直线解之,得∴该抛物线的解析式为:∴设点,∴;,,)有点B,即是:且(,解之:(舍去),时,1+,解之:(舍去)时,1+)或(﹣,5.已知抛物线y=ax2﹣2ax+n(a>0)与x轴交于A(x1,0)、B(x2,0),交y轴的负半轴于点C,且x1<x2,OC=OB,S△ABC=6(1)求此抛物线的解析式;(2)若D为抛物线的顶点,P为抛物线上的点,且在第二象限,S△PBD=15,求点P的坐标;(3)在(2)的条件下,在抛物线上是否存在点M,使△MBD为直角三角形?若存在,求出所有符合条件的M点坐标,若不存在,请说明理由.AB(﹣×3+×BC=3CD=BD=2x+h则有:﹣+h=0h=x+;,解得(﹣,,﹣)(﹣,),﹣)6.已知二次函数的图象如图所示,(1)求二次函数的解析式及顶点M的坐标;(2)若点N为线段BM上的一点,过点N作NQ⊥X轴于点Q,当点N在BM上运动时(点N不与点B、点M重合),设NQ的长为t,四边形NQAC的面积没有空为S,求S与t之间的函数关系式及自变量的取值范围;(3)在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.,,﹣)解得xt=x﹣=(﹣﹣t+3t,=,∴,(,,=,,(,﹣)(,,﹣)7.如图,抛物线y=ax2﹣5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y 轴上,且AC=BC.(1)求抛物线的对称轴;(2)写出A,B,C三点的坐标并求抛物线的解析式;(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.(4)在抛物线对称轴上是否存在点M,使点M到点A和B的距离之差最大?若存在,直接写出所有符合条件的点M坐标;不存在,请说明理由.,代入求出即可;﹣,x x+4BM=,(,﹣((是线段y=,。

(完整版)抛物线练习题(含答案)

(完整版)抛物线练习题(含答案)

抛物线练习题一、选择题1.在直角坐标平面内,到点(1,1)和直线x +2y =3距离相等的点的轨迹是( )A .直线B .抛物线C .圆D .双曲线2.抛物线y 2=x 上一点P 到焦点的距离是2,则P 点坐标为( )A.⎝⎛⎭⎫32,±62B.⎝⎛⎭⎫74,±72C.⎝⎛⎭⎫94,±32D.⎝⎛⎭⎫52,±102 3.抛物线y =ax 2的准线方程是y =2,则a 的值为( )A.18 B .-18C .8D .-8 4.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )A .4B .6C .8D .125.设过抛物线的焦点F 的弦为AB ,则以AB 为直径的圆与抛物线的准线的位置关系是( )A .相交B .相切C .相离D .以上答案都有可能6.过点F (0,3)且和直线y +3=0相切的动圆圆心的轨迹方程为( )A .y 2=12xB .y 2=-12xC .x 2=12yD .x 2=-12y7.抛物线y 2=8x 上一点P 到x 轴距离为12,则点P 到抛物线焦点F 的距离为( )A .20B .8C .22D .248.抛物线的顶点在坐标原点,焦点是椭圆4x 2+y 2=1的一个焦点,则此抛物线的焦点到准线的距离为( )A .2 3 B. 3 C.12 3 D.143 9.设抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线上的点(k ,-2)与F 点的距离为4,则k 的值是( )A .4B .4或-4C .-2D .2或-210.抛物线y =1mx 2(m <0)的焦点坐标是( ) A.⎝⎛⎭⎫0,m 4 B.⎝⎛⎭⎫0,-m 4 C.⎝⎛⎭⎫0,14m D.⎝⎛⎭⎫0,-14m 11.抛物线的顶点在原点,对称轴是x 轴,抛物线上的点(-5,25)到焦点的距离是6,则抛物线的方程为( )A .y 2=-2xB .y 2=-4xC .y 2=2xD .y 2=-4x 或y 2=-36x12.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( )A.12 B .1 C .2 D .4二、填空题13.过抛物线焦点F的直线与抛物线相交于A、B两点,若A、B在抛物线准线上的射影是A1、B1,则∠A1FB1= 。

专题12抛物线问题(解答题)

专题12抛物线问题(解答题)

专题12抛物线问题(解答题)一、解答题1.已知直线210x y -+=与抛物线2:2(0)C y px p =>交于,A B 两点,且||AB =(1)求p ;(2)设F 为C 的焦点,M ,N 为C 上两点,0FM FN ⋅=u u u u r u u u r ,求MFN △面积的最小值.2.设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =.(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.3.抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ⊥.已知点()2,0M ,且M e 与l 相切.(1)求C ,M e 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M e 相切.判断直线23A A 与M e 的位置关系,并说明理由.4.已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =u u u r u u u r ,求直线OQ 斜率的最大值.5.已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.6.设抛物线2:2(0)C y px p =>,过焦点F 的直线与抛物线C 交于点()11,A x y ,()22,B x y .当直线AB 垂直于x 轴时,2AB =.(1)求抛物线C 的标准方程.(2)已知点()1,0P ,直线AP ,BP 分别与抛物线C 交于点C ,D .①求证:直线CD 过定点;②求PAB V 与PCD △面积之和的最小值.7.过坐标原点O 作圆22:(2)3C x y ++=的两条切线,设切点为,P Q ,直线PQ 恰为抛物2:2,(0)E y px p =>的准线.(1)求抛物线E 的标准方程;(2)设点T 是圆C 上的动点,抛物线E 上四点,,,A B M N 满足:2,2TA TM TB TN ==u u r u u u r u u r u u u r ,设AB 中点为D .(i )求直线TD 的斜率;(ii )设TAB △面积为S ,求S 的最大值.8.已知直线10x y ++=与抛物线()2:20C x py p =>相切于点A ,动直线l 与抛物线C 交于不同两点M ,N (M ,N 异于点A ),且以MN 为直径的圆过点A .(1)求抛物线C 的方程及点A 的坐标;(2)当点A 到直线l 的距离最大时,求直线l 的方程.9.设抛物线C :22x py =(0p >),直线l :2y kx =+交C 于A ,B 两点.过原点O 作l 的垂线,交直线=2y -于点M .对任意R k ∈,直线AM ,AB ,BM 的斜率成等差数列.(1)求C 的方程;(2)若直线//l l ',且l '与C 相切于点N ,证明:AMN V 的面积不小于10.若椭圆2222:1,(0)x y E a b a b+=>>过抛物线24x y =的焦点,且与双曲线221x y -=有相同的焦点.(1)求椭圆E 的方程;(2)不过原点O 的直线:l y x m =+与椭圆E 交于A 、B 两点,求ABO V 面积的最大值以及此时直线l 的方程.11.已知抛物线2:2C x py =经过点()2,1P -,过点()1,0Q -的直线l 与抛物线C 有两个不同交点,A B ,且直线PA 交x 轴于M ,直线PB 交x 轴于N .(1)求直线l 斜率的取值范围;(2)证明:存在定点T ,使得QM QT λ=u u u u r u u u r ,QN QT μ=u u u r u u u r 且114λμ+=. 12.已知抛物线C :22y px =(05p <<)上一点M 的纵坐标为3,点M 到焦点距离为5.(1)求抛物线C 的方程;(2)过点()1,0作直线交C 于A ,B 两点,过点A ,B 分别作C 的切线1l 与2l ,1l 与2l 相交于点D ,过点A 作直线3l 垂直于1l ,过点B 作直线4l 垂直于2l ,3l 与4l 相交于点E ,1l 、2l 、3l 、4l 分别与x 轴交于点P 、Q 、R 、S .记DPQ V 、DAB V 、ABE V 、ERS △的面积分别为1S 、2S 、3S 、4S .若12344S S S S =,求直线AB 的方程.13.已知O 为坐标原点,抛物线()2:20C y px p =>,过点()1,0G 的直线交抛物线于A ,B两点,1OA OB ⋅=-u u u r u u u r .(1)求抛物线C 的方程;(2)若点()1,0D -,连接AD ,BD ,证明:AD BG BD AG ⋅=⋅;(3)已知圆G 以G 为圆心,1为半径,过A 作圆G 的两条切线,与y 轴分别交于点M ,N 且M ,N 位于x 轴两侧,求AMN V 面积的最小值.14.已知A ,B 是抛物线E :2y x =上不同的两点,点P 在x 轴下方,P A 与抛物线E 交于点C ,PB 与抛物线E 交于点D ,且满足PAPBPC PD λ==,其中λ是常数,且1λ≠. (1)设AB ,CD 的中点分别为点M ,N ,证明:MN 垂直于x 轴;(2)若点P 为半圆221(0)x y y +=<上的动点,且2λ=,求四边形ABDC 面积的最大值.15.已知斜率存在的直线l 过点()1,0P 且与抛物线()2:20C y px p =>交于,A B 两点.(1)若直线l 的斜率为1,M 为线段AB 的中点,M 的纵坐标为2,求抛物线C 的方程;(2)若点Q 也在x 轴上,且不同于点P ,直线,AQ BQ 的斜率满足0AQ BQ k k +=,求点Q 的坐标.。

抛物线及其标准方程含答案

抛物线及其标准方程含答案

抛物线及其标准方程一、选择题1.抛物线y=-2x 2的焦点坐标为 ( D ) A. (21-,0) B. (0, 21-) C. (81-,0) D. (0, 81-) 2. 抛物线y 2=-2px(p>0)上横坐标为-4的点到焦点的距离为10,则该抛物线的方程是(D )A .y 2=-8xB .y 2=-12xC .y 2=-20xD .y 2=-24x3.过抛物线x=41y 2的焦点的直线的倾角为3π,则抛物线顶点到直线的距离是( A ) A. 23 B. 3 C. 21 D. 1 4.抛物线y 2=4x 截直线y=2x+k 所得弦长为35,则K 的值是( D )A .2B .-2C .4D .-45.已知抛物线2y =4x 的焦点为F ,准线l 交x 轴于R ,过抛物线上一点P(4,-4)作PQ ⊥l 于点Q ,则梯形PQRF 的面积是( C )A .18B .16C . 14D .126.抛物线的顶点为坐标原点,对称轴为坐标轴,且焦点在直线2x-y-6=0上的抛物线的标准方程是( B )A .2y =6x 或2x =-12yB .2y =12x 或2x =-24yC .2y =-6x 或2x =12yD .2y =-12x 或2x =24y7. 抛物线y 2=2px(p>0)上一点M(x 0,y 0)和焦点的连线叫做点M 处的焦半径,它的值是( B )A. x 0-2pB. x 0+2p C. x 0-p D. x 0+p 8.一动圆圆心在y 2=8x 上,且动圆与定直线x+2=0相切,则此动圆必过定点( B )A .(4,0)B .(2,0)C .(0,2)D .(0,-2)9.“直线与抛物线有且只有一个公共点”是“直线与抛物线相切”的( B )A .充分不必要条件B .必要不充分条件C .充分条件D .既不充分与不必要条件10. 一条直线被抛物线x y 162=所截得的弦被点(2,4)所平分,则这条直线方程为( D )A .4x-y-4=0B .8x-y-12=0C .2x+y-8=0D .2x-y=011.抛物线y 2=18x 与圆100)6(22=++y x 的公共弦所在的直线方程是( B )A .x=±2B .x=2C .x=-6D .x=2或x=-612.设定点M (3,2)与抛物线y 2=2x 上的点P 之间的距离为d 1,P 到抛物线准线的距离为d 2,则当d 1+d 2取最小值时,P 点的坐标为( C )A .(0,0)B .(1,2)C .(2,2)D .(21,81-) 二、填空题13.抛物线x 2=4y 上一点M 到焦点的距离是2,则点M 的坐标是 (2,1)(-2,1)14.以椭圆19722=+y x 的中心为顶点,椭圆的左焦点为焦点的抛物线方程为 15.已知某抛物形拱桥,跨度20m ,每隔4m 需用一根支柱支撑,已知拱高为4m ,则从桥端算起,第二根支柱的长度是 3 。

初中抛物线经典练习题(含详细答案)

初中抛物线经典练习题(含详细答案)

初中数学抛物线经典试题集锦【编著】黄勇权【第一组题型】1、已知二次函数y=x²+bx+c过点A(2,0),C(0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p使△ABP的面积为15,请直接写出p点的坐标。

2、在平面直角坐标系xOy中,抛物线y=2x²+mx+n经过点A(5,0),B(2,-6).(1)求抛物线的表达式及对称轴(2)设点B关于原点的对称点为C,写出过A、C两点直线的表达式。

3、在平面直角坐标系xOy中,已知抛物线的顶点C为(2,4),并在x轴上截得的长度为6。

(1)写出抛物线与x轴交点A、B的坐标(2)求该抛物线的表达式(3)写出抛物线与y轴交点P的坐标4、直线的解析式为y=2x+4,交x轴于点A,交y轴于点B,若以A 为顶点,,且开口向下作抛物线,交直线AB于点D,交y轴负半轴于点C,(1)若△ABC的面积为20,求此时抛物线的解析式(2)若△BDO的面积为8,求此时抛物线的解析式【答案】1、已知二次函数y=x²+bx+c过点A(2,0),C(0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p使△ABP的面积为15,请直接写出p点的坐标。

解:【第一问】因为函数y=x²+bx+c过点A(2,0),C(0, -8)分别将x=2,y=0代入y=x²+bx+c,得0=4+2b+c-----①将x=0,y=-8代入y=x²+bx+c,得-8=c-------------②将②代入①,解得:b=2--------------------------------------③此时,将②③代入y=x²+bx+c,所以:二次函数的解析式y=x²+ 2x -8【第二问】△ABP的面积= 12│AB│*│y p│----------------------④因为A、B两点在x轴上,令x²+ 2x -8=0(x-2)(x+4)=0解得:x1=2,x2= -4所以:│AB│=│X1- X2│=│2-(- 4)│=6------⑤又△ABP的面积=15-------------------------------------⑥由④⑤⑥,得:12*6*│y p│=15│y p│=5故有:y p= ±5即:p点的纵坐标为5或-5.把y=5代入y=x²+ 2x -8,即:5=x²+ 2x -8x²+ 2x -13=0解得:x= -1± 14那么,此时p点坐标(-1+ 14,5),(-1- 14,5)-------⑦把y=-5代入y=x²+ 2x -8,即:-5=x²+ 2x -8x²+ 2x -3=0(x-1)(x+3)=0解得:x= 1或x= -3那么,此时p点坐标(1,-5),(-3,-5)------------------⑧由⑦⑧得,使△ABP的面积为15,p点坐标是:(-1+ 14,5),(-1- 14,5),(1,-5),(-3,-5)2、在平面直角坐标系xOy中,抛物线y=2x²+mx+n经过点A(5,0),B(2,-6).(1)求抛物线的表达式及对称轴(2)设点B关于原点的对称点为C,写出过A、C两点直线的表达式。

初中抛物线经典练习题(含详细答案)

初中抛物线经典练习题(含详细答案)

【编著】 黄勇权【第一组题型】1、已知二次函数y=x ²+bx+c 过点A (2,0),C (0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p 使△ABP 的面积为15,请直接写出p 点的坐标。

2、在平面直角坐标系xOy 中,抛物线y=2x ²+mx+n 经过点A (5,0),B (2,-6).(1)求抛物线的表达式及对称轴(2)设点B 关于原点的对称点为C ,写出过A 、C 两点直线的表达式。

初中数学抛物线 经典试题集锦3、在平面直角坐标系xOy中,已知抛物线的顶点C为(2,4),并在x轴上截得的长度为6。

(1)写出抛物线与x轴交点A、B的坐标(2)求该抛物线的表达式(3)写出抛物线与y轴交点P的坐标4、直线的解析式为y=2x+4,交x轴于点A,交y轴于点B,若以A为顶点,,且开口向下作抛物线,交直线AB于点D,交y轴负半轴于点C,(1)若△ABC的面积为20,求此时抛物线的解析式(2)若△BDO的面积为8,求此时抛物线的解析式【答案】1、已知二次函数y=x²+bx+c过点A(2,0),C(0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p使△ABP的面积为15,请直接写出p点的坐标。

解:【第一问】因为函数y=x ²+bx+c 过点A (2,0),C (0, -8)分别将x=2,y=0代入y=x ²+bx+c , 得 0=4+2b+c-----①将x=0,y=-8代入y=x ²+bx+c ,得-8=c-------------②将②代入①,解得:b=2--------------------------------------③此时,将② ③代入y=x ²+bx+c ,所以:二次函数的解析式 y=x ²+ 2x -8【第二问】△ABP 的面积= 12│AB │*│y p │----------------------④ 因为A 、B 两点在x 轴上,令x ²+ 2x -8=0(x-2)(x+4)=0解得:x 1=2,x 2= -4所以:│AB │=│X 1- X 2│=│2-(- 4)│=6------⑤又△ABP 的面积=--------------------------⑥由 ④ ⑤ ⑥,得 : 12*6*│y p │=15│y p│=5故有:y p= ±5即:p点的纵坐标为5或-5.把y=5代入 y=x²+ 2x -8,即:5=x²+ 2x -8x²+ 2x -13=0解得:x= -1± 14那么,此时p点坐标(-1+ 14,5),(-1- 14,5)-------⑦把y=-5代入 y=x²+ 2x -8,即:-5=x²+ 2x -8x²+ 2x -3=0(x-1)(x+3)=0解得:x= 1或x= -3那么,此时p点坐标(1,-5),(-3,-5)------------------⑧由⑦⑧得,使△ABP的面积为15,p点坐标是:(-1+ 14,5),(-1- 14,5),(1,-5),(-3,-5)2、在平面直角坐标系xOy中,抛物线y=2x²+mx+n经过点A(5,0),B(2,-6).(1)求抛物线的表达式及对称轴(2)设点B关于原点的对称点为C,写出过A、C两点直线的表达式。

2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)(含答案)

2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)(含答案)

2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)一、单选题 1.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是21.560s t t =-+.飞机着陆后到停下来滑行的距离是( )mA .300B .400C .500D .6002.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数2142y x x =-刻画,斜坡可以用一次函数12y x =刻画.下列结论错误的是( )A .小球距O 点水平距离超过4米呈下降趋势B .当小球水平运动2米时,小球距离坡面的高度为6米C .小球落地点距O 点水平距离为7米D .当小球拋出高度达到8m 时,小球距O 点水平距离为4m3.小康在体育训练中掷出的实心球的运动路线呈如图所示的抛物线形,若实心球运动的抛物线的解析式为()2116399y x =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离,则小康此次掷球的成绩(即OA 的长度)是( )A .8mB .7mC .6mD .5m4.如图,要修建一个圆形喷水池,在池中心O 点竖直安装一根水管,在水管的顶端A 处安一个喷水头,使喷出的抛物线形水柱与水池中心O 点的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心O 点3m ,则水管OA 的高是( )A.2m B.2.25m C.2.5m D.2.8m5.学校组织学生去同安进行研学实践活动,小王同学发现在宾馆房间的洗手盘台面上有一瓶洗手液(如图①).于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A下压如图②位置时,洗手液从喷口B 流出,路线近似呈抛物线状,且喷口B为该抛物线的顶点.洗手液瓶子的截面图下面部分是矩形CGHD.小王同学测得:洗手液瓶子的底面直径12cmGH=,喷嘴位置点B距台面的距离为16cm,且B、D、H三点共线.小王在距离台面15.5cm处接洗于液时,手心Q到直线DH的水平距离为3cm,若小王不去接,则洗手液落在台面的位置距DH的水平距离是()A.122cm B.123cm C.62cm D.6cm6.某公园有一个圆形喷水池,喷出的水流呈抛物线形,一条水流的高度h(单位:m)与水流运动时间t(单位:s)之间的函数解析式为2305h t t=-,那么水流从喷出至回落到地面所需要的时间是()A.6s B.4s C.3s D.2s7.如图所示,某工厂的大门是抛物线形水泥建筑物,大门的地面宽度为8m,两侧距地面3m高处各有一壁灯,两壁灯间的水平距离为6m,则厂门的高度约为()A.307B.387C.487D.5078.如图,一座拱桥的轮廓是抛物线型,桥高10米,拱高8米,跨度24米,相邻两支柱间的距离均为6米,则支柱MN的长度为()A.6米B.5米C.4.5米D.4米二、填空题9.如图,已知一抛物线形大门,其地面宽度AB长10米,一位身高1.8米的同学站在门下离门角B点1米的D 处,其头顶刚好顶在抛物线形门上C处.则该大门的最高处离地面高h为米.10.如图所示,抛物线形拱桥的顶点距水面2m时,测得拱桥内水面宽为12m.当水面升高1m后,拱桥内水面的宽度减少m.11.从地面竖直向上抛出一小球,小球的高度h(米)与小球的运动时间(秒)之间的关系式是()2h t t t=-≤≤,若抛出小球1秒钟后再抛出同样的第二个小球.则第二个小球抛出秒时,两个30506小球在空中相撞.12.从地面竖直向上跑出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是()2=-≤≤,小球运动到s时,达到最大高度.h t t t3020613.如图,以40m/s的速度将小球沿与地面成30︒角的方向击出时,小球的飞行路线将是一条抛物线,如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系2=-+,小520h t t球飞行过程中能达到的最大高度为m.14.如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端B处有一个喷水孔,喷出的抛物线形水柱在与池中心A的水平距离为1m处达到A最高点C,高度为3m,水柱落地点D离池中心A处3m,则水管AB的长为m.15.如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高8m时,水柱落点距O点为m.16.某次踢球,足球的飞行高度h(米)与水平距离x(米)之间满足2=-+,则足球从离地到落地的560h x x水平距离为米.三、解答题AA的17.如图,隧道的截面由抛物线和长方形构成,长方形的长为16m,宽为6m,抛物线的最高点C离地面1距离为8m.(1)按如图所示的直角坐标系,求该抛物线的函数表达式.(2)一大型汽车装载某大型设备后,高为7m ,宽为4m ,如果该隧道内设双向行车道,那么这辆货车能否安全通过?18.掷实心球是中考体育考试的项目.如图是一男生所掷实心球的行进路线(抛物线的一部分)的高度()y m 与水平距离()x m 之间的函数图象,且掷出时起点处高度为2m ,当到起点的水平距离为4m 时,实心球行进至最高点,此时实心球与地面的距离为3m .(1)求抛物线的函数解析式;(2)在该市的评分标准中,实心球从起点到落地点的水平距离大于等于10m 时,即可得满分,试判断该男生在此项考试中能否得满分,并说明理由(参考数据:3 1.73≈).19.南湖大桥作为我市首个全面采用数控技术的桥体音乐喷泉项目,历经多年已经成为长春市民夜间休闲放松的网红打卡地.其中喷水头喷出的水柱轨迹呈抛物线形状,喷水头P 距水面7.5m ,水柱喷射水平距离为5m 时,达到最大高度,此时距水面10m ,水柱落在水面A 点处.将收集到数据建立如图所示的平面直角坐标系,水柱喷出的高度()m y 与水平距离()m x 之间的函数关系式是21()y a x h k =-+.(1)求抛物线的表达式.(2)现调整P 的出水角度,其喷出的水柱高度()m y 与水平距离()m x 之间的函数关系式是220.1 1.2y x x m =-++,落点恰好在A 点右边的B 点处,求AB 的长.(结果精确到0.1m ,参考数据:11110.54=)20.图①是古代的一种远程投石机,其投出去的石块运动轨迹是抛物线的一部分.据《范蠡兵法》记载:“飞石重十二斤,为机发,行二百步”,其原理蕴含了物理中的“杠杆原理”.在如图②所示的平面直角坐标系中,将投石机置于斜坡OA 的底部点O 处,石块从投石机竖直方向上的点C 处被投出,已知石块运动轨迹所在抛物线的顶点坐标是()50,25,5OC =.(1)求抛物线的表达式;(2)在斜坡上的点A 建有垂直于水平线OD 的城墙AB ,且75OD =,12AD =,9AB =,点D ,A ,B 在一条直线上.通过计算说明石块能否飞越城墙AB .参考答案:1.D2.B3.B4.B。

(完整版)《抛物线》典型例题12例(含标准答案解析)

(完整版)《抛物线》典型例题12例(含标准答案解析)

《抛物线》典型例题12 例典型例题一例 1 指出抛物线的焦点坐标、准线方程.22(1)x24 y (2)x ay2(a 0)分析:(1)先根据抛物线方程确定抛物线是四种中哪一种,求出p,再写出焦点坐标和准线方程.(2)先把方程化为标准方程形式,再对 a 进行讨论,确定是哪一种后,求p 及焦点坐标与准线方程.解:(1)p 2 ,∴焦点坐标是(0,1),准线方程是:y 12 1 1(2)原抛物线方程为:y2 1 x, 2 p 1 a a①当 a 0时,p 1,抛物线开口向右,2 4a11∴焦点坐标是(1 ,0),准线方程是:x 1.4a 4a②当a 0 时,p 1,抛物线开口向左,2 4a11∴焦点坐标是( ,0),准线方程是:x .4a 4a2 1 1 综合上述,当a 0时,抛物线x ay2的焦点坐标为(1 ,0),准线方程是:x14a 4a 典型例题二例 2 若直线y kx 2与抛物线y28x交于A、B两点,且AB中点的横坐标为2,求此直线方程.分析:由直线与抛物线相交利用韦达定理列出k 的方程求解.另由于已知与直线斜率及弦中点坐标有关,故也可利用“作差法”求 k .故所求直线方程为: y 2x 2 .则所求直线方程为: y 2x 2 .典型例题三例 3 求证:以抛物线的焦点弦为直径的圆心与抛物线的准线相切. 分析:可设抛物线方程为 y 2 2px(p 0).如图所示,只须证明 A 2B MM 1 ,解法一:设 A(x 1, y 1) 、 B(x 2, y 2 ) ,则由:y kx 22y 28x可得:k 2x 2 (4k 8)x 4 0.∵直线与抛物线相交, k 0 且 0, 则k1.∵AB 中点横坐标为: x 1 x 2 4k 82 k 22,解得: k 2 或 k 1舍去).解法二: 设A(x 1,y 1)、B(x 2,y 2) ,则有 y 1 28x 12y28x 2 .两式作差解: ( y 1 y 2)(y 1 y 2) 8(x 1 x 2) ,即y 1 y 2 x 1x28 y 1 y 2x 1 x 2 4 y 1y 2 kx 1 2 kx 2 2 k( x 1 x 2) 4 4k 4 ,k 4k 8 4 故 k2或 k 1 (舍去).1MM 1AB ,故以 AB 为直径的圆,必与抛物线的准线相切.12说明:类似有: 以椭圆焦点弦为直径的圆与相对应的准线相离, 以双曲线焦点弦为直径的圆与相应的准线相交.典型例题四例4(1)设抛物线 y 2 4x 被直线 y 2x k 截得的弦长为 3 5,求 k 值.为 9 时,求 P 点坐标.求 P 点坐标.k 2x 1 x 2 1 k, x 1 x 242 解:( 1)由 yy4x 2x 得: 4x 2 k2(4k 4)x k 2 0AB (1 22)( x 1 x 2)2 5( x 1 x 2)2 4x 1x 2 5 (1 k)2 k 2 5(1 2k)AB 3 5, 5(1 2k) 3 5 ,即 k 4 2)S 9 ,底边长为 3 5 ,∴三角形高 h 2 9 6 535 ∵点 P 在x 轴上,∴设 P 点坐标是 (x 0,0) 则点 P 到直线 y 2x 4的距离就等于 h ,即 0 2 2 22 12655x1或 x 0 5,即所求 P 点坐标是(- 1,0)或( 5,0).典型例题五MM 111 12( AA 1 BB 1) 12(AF2)以(1)中的弦为底边,以x 轴上的点 P 为顶点作三角形,当三角形的面积 分析:(1)题可利用弦长公式求 k ,(2)题可利用面积求高,再用点到直线距离设直线与抛物线交于 A (x 1,y 1)与B (x 2,y 2) 两点.则有:BF )范文 范例 指导 参考例5 已知定直线 l 及定点 A (A 不在 l 上),n 为过A 且垂直于 l 的直线,设 N 为 l 上任一点, AN 的垂直平分线交 n 于 B ,点 B 关于 AN 的对称点为 P ,求证 P 的轨迹为抛物线.分析:要证 P 的轨迹为抛物线, 有两个途径, 一个证明 P 点的轨迹符合抛物线的 定义,二是证明 P 的轨迹方程为抛物线的方程, 可先用第一种方法,由 A 为定点, l 为定直线,为我们提供了利用定义的信息,若能证明 PA PN 且 PN l 即可. 证明: 如图所示,连结 PA 、PN 、NB .由已知条件可知: PB 垂直平分 NA ,且 B 关于 AN 的对称点为 P . ∴ AN 也垂直平分 PB .则四边形 PABN 为菱形.即有 PA PN .AB l. PN l.则 P 点符合抛物线上点的条件:到定点 A 的距离与到定直线的距离相等,所以 P 点的轨迹为抛物线.典型例题六例6 若线段 P 1P 2为抛物线 C:y 2 2px(p 0)的一条 分析: 此题证的是距离问题,如果把它们用两点间 的距离表示出来,其计算量是很大的.我们可以用 抛物线的定义,巧妙运用韦达定理,也可以用抛物线的定义与平面几何知识,把结论证明出来.证法一:F(2p ,0),若过 F 的直线即线段 P 1P 2所在直线斜率不存在时,则有 P 1F P 2F p,111 1 2P 1F P 2F p p p焦点弦, F 为 C 的焦点,求证:1 12 P 1F P 2F p若线段P1P2 所在直线斜率存在时,设为k,则此直线为:y k(x 2p)(k 0) ,且设P1(x1,y1),P2(x2,y2) .k(x p )2得:k(x p )2 k2x2p(k22)xk2p24x 1 x22p(k 22)k2x 1 x 2根据抛物线定义有:P1 F x1 2p,P2F x12p , P1P2 x1 x2 p则 1 1 P1F P2F P1F P2 F P1F P2Fx1x2(x1 2p)(x2 2 )x2 p2p4x1x1x2 2p (x1 x2)1请将①②代入并化简得:112P1F P2F p证法二:如图所示,设P1、P2 、F点在C的准线l 上的射影分别是P1 、P2 、F ,且不妨设P2P2 n m P1P1 ,又设P2 点在FF P1P1 上的射影分别是A、B点,由抛物线定义知,P2 F n, P1F m, FF p又P2 AF ∽P2 BP1 ,AF P2 F BP1 P2P1p(m n ) 2mn 112 m n p即 AB 2psin 2故原命题成立.典型例题七例 7 设抛物线方程为 y 2 2px(p 0) ,过焦点 F 的弦 AB 的倾斜角为 焦点弦长为 AB 2 2p .sin分析: 此题做法跟上题类似,也可采用韦达定理与抛物线定义解决问题. 证法一: 抛物线 y 2 2px( p 0)的焦点为 (2p ,0), 过焦点的弦 AB 所在的直线方程为: y tan ( x 2p ) 由方程组 y tan (x 2p)消去 y 得: y 2 2 px2 2 2 2 24 x 2 tan 2 4 p(tan 2 ) p 2 tan 2,求证:x 1 x2设 A(x 1, y 1),B(x 2,y 2) ,则x1x2p(tan 22)tan 22p4p(1 2cot 2 )又 y 1 y 2 tan ( x 1 x 2 )AB (1 tan 2 )( x 1 x 2)2 (1 tan 2 ) (x 1 x 2) 2 4x 1x 2 (1 tan 2 ) p 2 (1 cot 2 ) 4 p4sec 2 4p 2 cot 2 (1 cot 2 )2p 2 sin1 4 sin证法二: 如图所示,分别作 AA 1、 BB 1垂直于准线 l .由抛物线定义有:AFAA 1 AF cos p BFBB 1pBF cos典型例题八例 8 已知圆锥曲线 C 经过定点 P (3,2 3) ,它的一个焦点为 F (1,0),对应于该 焦点的准线为 x 1,过焦点 F 任意作曲线 C 的弦 AB ,若弦 AB 的长度不超过 8, 且直线 AB 与椭圆 3x 2 2y 2 2 相交于不同的两点,求 ( 1) AB 的倾斜角 的取值范围.(2)设直线 AB 与椭圆相交于 C 、 D 两点,求 CD 中点 M 的轨迹方程. 分析:由已知条件可确定出圆锥曲线 C 为抛物线, AB 为抛物线的焦点弦,设其 斜率为 k ,弦 AB 与椭圆相交于不同的两点, 可求出 k 的取值范围, 从而可得 的 取值范围,求 CD 中点 M 的轨迹方程时,可设出 M 的坐标,利用韦达定理化简即 可.于是可得出:AFp1 cosBFp1 cosABAF BFpp1 cos1 cos2p21 cos2p2sin故原命题成立.解:(1)由已知得PF 4 .故P到x 1 的距离 d 4 ,从而PF d ∴曲线C是抛物线,其方程为y24x .设直线AB的斜率为k,若k 不存在,则直线AB与3x2∴k 存在.设AB的方程为y k ( x 1)4 x 2可得:ky24 y 4k 0 k( x 1)2 y22 无交点.2 由y2y设A、B坐标分别为(x1,y1)、(x2, y2),则:y1y2y1y2 4AB12 (1 k2 )(y1y2)2 1k k2 (y1 y2)2 k4(1 k2 )4y1 y2 k2∵弦AB的长度不超过8,24(1 k 2)k28即k2由y2k(x21)得:(2k23x22 y223)x24k 2x 2(k21)∵AB与椭圆相交于不同的两点,k2由k21和k2 3可得: 1 k故1 tan 3 或 3 tan又0 ,∴所求的取值范围是:3或232) 设CD中点M ( x, y) 、C( x3, y3 )、D(x4,y4)由y2k(x21)得:(2k23)x24k2x3x22 y222(k 21) 0典型例题九例 9 定长为 3的线段 AB 的端点 A 、 B 在抛物线 y 2 x 上移动,求 AB 的中点到 y 轴的距离的最小值,并求出此时 AB 中点的坐标.分析: 线段 AB 中点到 y 轴距离的最小值,就是其横坐标的最小值.这是中点坐 标问题,因此只要研究 A 、 B 两点的横坐标之和取什么最小值即可.解:如图,设 F 是y 2 x 的焦点, A 、 B 两点到准线的垂线分别是 AC 、BD , 又M 到准线的垂线为 MN , C 、 D 和N 是垂足,则x34k 22, x 3 x 12k 232 x3 x 42k 2 2k 2 3 1 232k 2 3 k 2 322k 23 9x42(k 2 1) 2k 2 3则2 51 2k 21 2223即25yx12k 2 2k 2322 y 2 2 (x 1)2 22 y 22 ( x 1) 2化简得: 3x 2 2 y 2 3x∴所求轨迹方程为: 3x 22y 23x 0( 2 x 2) 531 3 1 设M 点的横坐标为 x ,纵坐标为 y , MN x ,则 x 42 4等式成立的条件是 AB 过点 F .2 2 21(y 1 y 2) y 1 y 2 2y 1y 2 2x 2 2,y 1 y 2 2 , y5 2 5 所以 M(54, 22) ,此时 M 到y 轴的距离的最小值为 45 .说明:本题从分析图形性质出发, 把三角形的性质应用到解析几何中, 解法较简.典型例题十例 10 过抛物线 y 2 px 的焦点 F 作倾斜角为 的直线,交抛物线于 A 、B 两点, 求 AB 的最小值.分析:本题可分 2 和 2两种情况讨论.当 2 时,先写出 AB 的表达式, 再求范围.解:(1) 若 2 ,此时 AB 2p .11 12( AC BD) 21( AFBF)12AB当x 45时, y 1y 2 P 214,故MN1AB :y tan (x 2p ),即 x ta y n说明:(2) 若 2 ,因有两交点,所以 0.代入抛物线方程,有 ta 2 3n p y tan p 2 0 .故 ( y 2 y 1 ) 2 4 p 2tan 2 4p 2 4p 2 csc( x 2 x 1) 2 ( y 2 y 1)2tan 2 22 csc4 p 2 2tan 故 AB 22 4 p csc (1 12 ) 4p 2 csc 4 tan 2所以 AB 2p 2 sin 2p .因 2 ,所以这里不能取“=” 综合(1)(2) ,当 2 时, AB 最小值 2p .(1) 此题须对 分 2 和 2两种情况进行讨论;的大小以及判定直线与圆是否相切.解:①点 A 在抛物线上,由抛物线定义,则 AA ' AF 1 2, 又 AA ' // x 轴 1 3 . ∴ 2 3,同理 4 6 , 而 2 3 6 4 180 ,∴ 3 6 90 ,∴ A 'FB ' 90 .选 C .②过AB 中点 M 作MM ' l ,垂中为 M ',∴以 AB 为直径的圆与直线 l 相切,切点为 M ' .又 F ' 在圆的外部,∴ AF 'B 90 . 特别地,当 AB x 轴时, M '与 F '重合, AF 'B 90 .即 AF 'B 90 ,选 B .典型例题十二例 12 已知点 M(3,2), F 为抛物线 y 2 2x 的焦点,点 P 在该抛物线上移动, 当 PM PF 取最小值时,点 P 的坐标为 __________ .分析: 本题若建立目标函数来求 PM PF 的最小值是困难的,若巧妙地利用抛则 MM1(AA ' BB ' ) 2 1 12( AF BF ) 1 AB 2物线定义,结合图形则问题不难解决.1 由定义知PF PE ,故PM PF PF PM ME MN 3 .取等号时,M 、P、E三点共线,∴ P点纵坐标为2,代入方程,求出其横坐标为2,所以P点坐标为(2, 2) .。

《抛物线》典型例题12例(含标准答案解析]

《抛物线》典型例题12例(含标准答案解析]

《抛物线》典型例题12例典型例题一例1 指出抛物线的焦点坐标、准线方程. (1)y x 42= (2))0(2≠=a ay x分析:(1)先根据抛物线方程确定抛物线是四种中哪一种,求出p ,再写出焦点坐标和准线方程.(2)先把方程化为标准方程形式,再对a 进行讨论,确定是哪一种后,求p 及焦点坐标与准线方程.解:(1)2=p ,∴焦点坐标是(0,1),准线方程是:1-=y (2)原抛物线方程为:x a y 12=,ap 12=∴ ①当0>a 时,ap 412=,抛物线开口向右, ∴焦点坐标是)0,41(a ,准线方程是:a x 41-=. ②当0<a 时,a p 412-=,抛物线开口向左, ∴焦点坐标是)0,41(a ,准线方程是:ax 41-=. 综合上述,当0≠a 时,抛物线2ay x =的焦点坐标为)0,41(a ,准线方程是:ax 41-=. 典型例题二例2 若直线2-=kx y 与抛物线x y 82=交于A 、B 两点,且AB 中点的横坐标为2,求此直线方程.分析:由直线与抛物线相交利用韦达定理列出k 的方程求解.另由于已知与直线斜率及弦中点坐标有关,故也可利用“作差法”求k .解法一:设),(11y x A 、),(22y x B ,则由:⎩⎨⎧=-=xy kx y 822可得:04)84(22=++-x k x k .∵直线与抛物线相交,0≠∴k 且0>∆,则1->k . ∵AB 中点横坐标为:2842221=+=+∴kk x x , 解得:2=k 或1-=k (舍去). 故所求直线方程为:22-=x y .解法二:设),(11y x A 、),(22y x B ,则有22212188x y x y ==. 两式作差解:)(8))((212121x x y y y y -=+-,即2121218y y x x y y +=--. 421=+x x 444)(22212121-=-+=-+-=+∴k x x k kx kx y y ,448-=∴k k 故2=k 或1-=k (舍去). 则所求直线方程为:22-=x y .典型例题三例3 求证:以抛物线的焦点弦为直径的圆心与抛物线的准线相切. 分析:可设抛物线方程为)0(22>=p px y .如图所示,只须证明12MM AB =,则以AB 为直径的圆,必与抛物线准线相切. 证明:作l AA ⊥1于l BB A ⊥11,于1B .M 为AB 中点,作l MM ⊥1于1M ,则由抛物线的定义可知:BF BB AF AA ==11,在直角梯形A A BB 11中:AB BF AF BB AA MM 21)(21)(21111=+=+=AB MM 211=∴,故以AB 为直径的圆,必与抛物线的准线相切. 说明:类似有:以椭圆焦点弦为直径的圆与相对应的准线相离,以双曲线焦点弦为直径的圆与相应的准线相交.典型例题四例4(1)设抛物线x y 42=被直线k x y +=2截得的弦长为53,求k 值. (2)以(1)中的弦为底边,以x 轴上的点P 为顶点作三角形,当三角形的面积为9时,求P 点坐标.分析:(1)题可利用弦长公式求k ,(2)题可利用面积求高,再用点到直线距离求P 点坐标.解:(1)由⎩⎨⎧+==kx y x y 242得:0)44(422=+-+k x k x设直线与抛物线交于),(11y x A 与),(22y x B 两点.则有:4,122121k x x k x x =⋅-=+[][])21(5)1(54)(5))(21(22212212212k k k x x x x x x AB -=--=-+=-+=∴53)21(5,53=-∴=∴k AB ,即4-=k (2)9=∆S ,底边长为53,∴三角形高5565392=⨯=h ∵点P 在x 轴上,∴设P 点坐标是)0,(0x 则点P 到直线42-=x y 的距离就等于h ,即55612402220=+--x 10-=∴x 或50=x ,即所求P 点坐标是(-1,0)或(5,0). 典型例题五例5 已知定直线l 及定点A (A 不在l 上),n 为过A 且垂直于l 的直线,设N 为l 上任一点,AN 的垂直平分线交n 于B ,点B 关于AN 的对称点为P ,求证P 的轨迹为抛物线.分析:要证P 的轨迹为抛物线,有两个途径,一个证明P 点的轨迹符合抛物线的定义,二是证明P 的轨迹方程为抛物线的方程,可先用第一种方法,由A 为定点,l 为定直线,为我们提供了利用定义的信息,若能证明PN PA =且l PN ⊥即可. 证明:如图所示,连结PA 、PN 、NB .由已知条件可知:PB 垂直平分NA ,且B 关于AN 的对称点为P .∴AN 也垂直平分PB .则四边形PABN 为菱形.即有PN PA =...l PN l AB ⊥∴⊥则P 点符合抛物线上点的条件:到定点A 的距离与到定直线的距离相等,所以P 点的轨迹为抛物线.典型例题六例6 若线段21P P 为抛物线)0(2:2>=p px y C 的一条焦点弦,F 为C 的焦点,求证:p F P FP 21121=+. 分析:此题证的是距离问题,如果把它们用两点间的距离表示出来,其计算量是很大的.我们可以用抛物线的定义,巧妙运用韦达定理,也可以用抛物线的定义与平面几何知识,把结论证明出来.证法一:)0,2(pF ,若过F 的直线即线段21P P 所在直线斜率不存在时, 则有p F P F P ==21,p p p F P FP 2111121=+=+∴. 若线段21P P 所在直线斜率存在时,设为k ,则此直线为:)0)(2(≠-=k px k y ,且设),(),,(222111y x P y x P .由⎪⎪⎩⎪⎪⎨⎧-=-=)2()2(p x k y px k y 得:04)2(22222=++-p k x k p x k 2221)2(k k p x x +=+∴ ①4221p x x =⋅ ②根据抛物线定义有:p x x P P px F P p x F P ++=∴+=+=21211211,2,2则F P F P F P F P F P F P 21212111⋅+=+4)(2)2)(2(22121212121p x x p x x p x x p x p x p x x +++++=++++= 请将①②代入并化简得:p F P FP 21121=+ 证法二:如图所示,设1P 、2P 、F 点在C 的准线l 上的射影分别是'1P 、'2P 、F ',且不妨设1122P P m n P P '=<=',又设2P点在F F '、11P P '上的射影分别是A 、B 点,由抛物线定义知,p F F m F P n F P ='==,,12又AF P 2∆∽12BP P ∆,1221P P F P BP AF =∴即nm nn m n p +=-- pn m m nn m p 2112)(=+∴=+∴ 故原命题成立.典型例题七例7 设抛物线方程为)0(22>=p px y ,过焦点F 的弦AB 的倾斜角为α,求证:焦点弦长为α2sin 2pAB =. 分析:此题做法跟上题类似,也可采用韦达定理与抛物线定义解决问题.证法一:抛物线)0(22>=p px y 的焦点为)0,2(p,过焦点的弦AB 所在的直线方程为:)2(tan px y -=α由方程组⎪⎩⎪⎨⎧=-=px y p x y 2)2(tan 2α消去y 得:0tan )(tan 4tan 422222=+-αααp p x设),(),,(2211y x B y x A ,则⎪⎪⎩⎪⎪⎨⎧=⋅+=+=+4)cot 21(tan )2(tan 22122221p x x p p x x ααα 又)(tan 2121x x y y -=α[]ααααααααα242222222222122122212sin 2sin 14)cot 1(cot 4sec 44)cot 1()tan 1(4)()tan 1())(tan 1(pp p p p x x x x x x AB =⋅=+⋅=⎥⎦⎤⎢⎣⎡⋅-++=-++=-+=∴即α2sin 2pAB =证法二:如图所示,分别作1AA 、1BB 垂直于准线l .由抛物线定义有:ααcos cos 11⋅-==+⋅==BF p BB BF p AF AA AF于是可得出:αcos 1-=p AF αcos 1+=pBFαααα22sin 2cos 12cos 1cos 1p pp p BFAF AB =-=++-=+=∴ 故原命题成立.典型例题八例8 已知圆锥曲线C 经过定点)32,3(P ,它的一个焦点为F (1,0),对应于该焦点的准线为1-=x ,过焦点F 任意作曲线C 的弦AB ,若弦AB 的长度不超过8,且直线AB 与椭圆22322=+y x 相交于不同的两点,求 (1)AB 的倾斜角θ的取值范围.(2)设直线AB 与椭圆相交于C 、D 两点,求CD 中点M 的轨迹方程. 分析:由已知条件可确定出圆锥曲线C 为抛物线,AB 为抛物线的焦点弦,设其斜率为k ,弦AB 与椭圆相交于不同的两点,可求出k 的取值范围,从而可得θ的取值范围,求CD 中点M 的轨迹方程时,可设出M 的坐标,利用韦达定理化简即可.解:(1)由已知得4=PF .故P 到1-=x 的距离4=d ,从而d PF = ∴曲线C 是抛物线,其方程为x y 42=.设直线AB 的斜率为k ,若k 不存在,则直线AB 与22322=+y x 无交点. ∴k 存在.设AB 的方程为)1(-=x k y由⎩⎨⎧-==)1(42x k y x y 可得:0442=--k y ky 设A 、B 坐标分别为),(11y x 、),(22y x ,则:442121-=⋅=+y y ky y222122122212)1(44)(1))(11(k k y y y y k k y y kAB +=-++=-+=∴∵弦AB 的长度不超过8,8)1(422≤+∴k k 即12≥k 由⎩⎨⎧=+-=223)1(22y x x k y 得:0)1(24)32(2222=-+-+k x k x k∵AB 与椭圆相交于不同的两点,32<∴k 由12≥k 和32<k 可得:31<≤k 或13-≤<-k 故3tan 1≤≤θ或1tan 3-<<-θ 又πθ<≤0,∴所求θ的取值范围是:34πθπ<≤或4332πθπ≤< (2)设CD 中点),(y x M 、),(33y x C 、),(44y x D由⎩⎨⎧=+-=223)1(22y x x k y 得:0)1(24)32(2222=-+-+k x k x k 9325313231322232)1(2,324222224322132243<+≤∴<≤+-=∴+=+=+-=⋅+=+∴k k k x k k x x x k k x x k k x x则323211522<+-≤k 即3252<≤x . 3)1(2)1(23221222222+-⋅-⋅=+=∴-=x y x y k k x x y k 化简得:032322=-+x y x∴所求轨迹方程为:)3252(032322<≤=-+x x y x典型例题九例9 定长为3的线段AB 的端点A 、B 在抛物线x y =2上移动,求AB 的中点到y 轴的距离的最小值,并求出此时AB 中点的坐标.分析:线段AB 中点到y 轴距离的最小值,就是其横坐标的最小值.这是中点坐标问题,因此只要研究A 、B 两点的横坐标之和取什么最小值即可. 解:如图,设F 是x y =2的焦点,A 、B 两点到准线的垂线分别是AC 、BD ,又M 到准线的垂线为MN ,C 、D 和N 是垂足,则2321)(21)(21=≥+=+=AB BF AF BD AC MN . 设M 点的横坐标为x ,纵坐标为y ,41+=x MN ,则454123=-≥x .等式成立的条件是AB 过点F . 当45=x 时,41221-=-=P y y ,故 22122)(212221221=-=++=+x y y y y y y , 221±=+y y ,22±=y . 所以)22,45(±M ,此时M 到y 轴的距离的最小值为45. 说明:本题从分析图形性质出发,把三角形的性质应用到解析几何中,解法较简.典型例题十例10 过抛物线px y 2=的焦点F 作倾斜角为θ的直线,交抛物线于A 、B 两点,求AB 的最小值. 分析:本题可分2πθ=和2πθ≠两种情况讨论.当2πθ≠时,先写出AB 的表达式,再求范围. 解:(1)若2πθ=,此时p AB 2=. (2)若2πθ≠,因有两交点,所以0≠θ. )2(tan p x y AB -=θ:,即2tan py x +=θ.代入抛物线方程,有0tan 222=--p y py θ. 故θθ22222212csc 44tan 4)(p p p y y =+=-, θθθ2222212212tan csc 4tan )()(p y y x x =-=-. 故θθθ422222csc 4)tan 11(csc 4p p AB =+=. 所以p p AB 2sin 22>=θ.因2πθ≠,所以这里不能取“=”. 综合(1)(2),当2πθ=时,p AB 2=最小值. 说明:(1)此题须对θ分2πθ=和2πθ≠两种情况进行讨论; (2)从解题过程可知,抛物线点弦长公式为θ2sin 2pl =; (3)当2πθ=时,AB 叫做抛物线的通径.通径是最短的焦点弦. 典型例题十一例11 过抛物线px y 22=)0(>p 的焦点F 作弦AB ,l 为准线,过A 、B 作l 的垂线,垂足分别为'A 、'B ,则①''FB A ∠为( ),②B AF '∠为( ).A .大于等于︒90B .小于等于︒90C .等于︒90D 不确定分析:本题考查抛物线的定义、直线与圆的位置关系等方面的知识,关键是求角的大小以及判定直线与圆是否相切.解:①点A 在抛物线上,由抛物线定义,则21'∠=∠⇒=AF AA ,又x AA //'轴31∠=∠⇒.∴32∠=∠,同理64∠=∠,而︒=∠+∠+∠+∠1804632,∴︒=∠+∠9063,∴︒=∠90''FB A .选C .②过AB 中点M 作l MM ⊥',垂中为'M , 则AB BF AF BB AA MM 21)(21)(21'''=+=+=.∴以AB 为直径的圆与直线l 相切,切点为'M .又'F 在圆的外部,∴︒<∠90'B AF .特别地,当x AB ⊥轴时,'M 与'F 重合,︒=∠90'B AF .即︒≤∠90'B AF ,选B .典型例题十二例12 已知点)2,3(M ,F 为抛物线x y 22=的焦点,点P 在该抛物线上移动,当PF PM +取最小值时,点P 的坐标为__________.分析:本题若建立目标函数来求PF PM +的最小值是困难的,若巧妙地利用抛物线定义,结合图形则问题不难解决.解:如图,由定义知PE PF =,故213=≥≥+=+MN ME PM PF PF PM .取等号时,M 、P 、E 三点共线,∴P 点纵坐标为2,代入方程,求出其横坐标为2,所以P 点坐标为)2,2(.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学抛物线经典试题集锦【编著】黄勇权【第一组题型】1、已知二次函数y=x²+bx+c过点A(2,0),C(0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p使△ABP的面积为15,请直接写出p点的坐标。

2、在平面直角坐标系xOy中,抛物线y=2x²+mx+n经过点A(5,0),B(2,-6).(1)求抛物线的表达式及对称轴(2)设点B关于原点的对称点为C,写出过A、C两点直线的表达式。

3、在平面直角坐标系xOy中,已知抛物线的顶点C为(2,4),并在x轴上截得的长度为6。

(1)写出抛物线与x轴交点A、B的坐标(2)求该抛物线的表达式(3)写出抛物线与y轴交点P的坐标4、直线的解析式为y=2x+4,交x轴于点A,交y轴于点B,若以A 为顶点,,且开口向下作抛物线,交直线AB于点D,交y轴负半轴于点C,(1)若△ABC的面积为20,求此时抛物线的解析式(2)若△BDO的面积为8,求此时抛物线的解析式【答案】1、已知二次函数y=x²+bx+c过点A(2,0),C(0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p使△ABP的面积为15,请直接写出p点的坐标。

解:【第一问】因为函数y=x²+bx+c过点A(2,0),C(0, -8)分别将x=2,y=0代入y=x²+bx+c,得0=4+2b+c-----①将x=0,y=-8代入y=x²+bx+c,得-8=c-------------②将②代入①,解得:b=2--------------------------------------③此时,将②③代入y=x²+bx+c,所以:二次函数的解析式y=x²+ 2x -8【第二问】△ABP的面积= 12│AB│*│y p│----------------------④因为A、B两点在x轴上,令x²+ 2x -8=0(x-2)(x+4)=0解得:x1=2,x2= -4所以:│AB│=│X1- X2│=│2-(- 4)│=6------⑤又△ABP的面积=15-------------------------------------⑥由④⑤⑥,得:12*6*│y p│=15│y p│=5故有:y p= ±5即:p点的纵坐标为5或-5.把y=5代入y=x²+ 2x -8,即:5=x²+ 2x -8x²+ 2x -13=0解得:x= -1± 14那么,此时p点坐标(-1+ 14,5),(-1- 14,5)-------⑦把y=-5代入y=x²+ 2x -8,即:-5=x²+ 2x -8x²+ 2x -3=0(x-1)(x+3)=0解得:x= 1或x= -3那么,此时p点坐标(1,-5),(-3,-5)------------------⑧由⑦⑧得,使△ABP的面积为15,p点坐标是:(-1+ 14,5),(-1- 14,5),(1,-5),(-3,-5)2、在平面直角坐标系xOy中,抛物线y=2x²+mx+n经过点A(5,0),B(2,-6).(1)求抛物线的表达式及对称轴(2)设点B关于原点的对称点为C,写出过A、C两点直线的表达式。

解:【第一问】因为抛物线y=2x²+mx+n经过点A(5,0),B(2,-6).将x=5,y=0 代入y=2x²+mx+n,得:0=50+5m+n-------------------①将x=2,y= -6代入y=2x²+mx+n,得:-6=8+2m+n--------------------②此时,由①、②,得:m= -12,n=10所以,抛物线的表达式:y=2x²-12x+10再将抛物线表达式进行变形:y=2x²-12x+10y=2(x²-6x+9)-8y=2(x-3)²-8所以,抛物线的对称轴是x=3【第二问】因为B点坐标为(2,-6),C是B关于原点的对称点,所以,C点的坐标(-2,6)设过A、C两点的直线方程为:y=kx+b因为过A(5,0),C(-2,6),将x=5,y=0 代入y=kx+b,得:0= 5k +b---------③将x=-2,y=6代入y=kx+b,得:6= -2k+b-------④由③④解得:k= - 67,b=307所以,过A、C两点的直线表达式为:y= - 67x+3073、在平面直角坐标系xOy中,已知抛物线的顶点C为(2,4),并在x轴上截得的长度为6。

(1)写出抛物线与x轴交点A、B的坐标(2)求该抛物线的表达式(3)写出抛物线与y轴交点P的坐标解:【第一问】因为抛物线的顶点C为(2,4),所以,对称轴是:x=2又因为抛物线在x轴上截得的长度为6,那么,对称轴x=2将6平分,也就是说,A、B两点关于x=2对称,且他们到x=2的距离是3 所以,A的横坐标:2-3 = -1B的横坐标:2+3 = 5故,抛物线与x轴交点A、B的坐标是(-1,0),(5,0)【第二问】因为抛物线的顶点C为(2,4),那么,抛物线的表达式直接可设为:y=a(x-2)²+4 【特别提示,这个非常重要,大大简化了计算】再将A(-1,0)代入y=a(x-2)²+4,得,0=a(-1-2)²+4解得:a= - 4 9所以,抛物线的表达式为,y= - 49(x-2)²+4【第二问】令x=0,代入y= - 49(x-2)²+4 ,得y= -49(0-2)²+4y=209所以,抛物线与y轴交点P的坐标(0,20 9)4、直线的解析式为y=2x+4,交x轴于点A,交y轴于点B,若以A 为顶点,,且开口向下作抛物线,交直线AB于点D,交y轴负半轴于点C,(1)若△ABC的面积为20,求此时抛物线的解析式(2)若△BDO的面积为8,求此时抛物线的解析式解:【第一问】直线的解析式为y=2x+4令x=0,代入y=2x+4,得,y=4,所以B点坐标(0, 4)令y=0,代入y=2x+4,得,x=-2,所以A点坐标(-2,0)设C点的纵坐标为y c(y c是负数),那么线段BC的长度│BC│= 4 -yc△ABC的面积=12*│x A│*│BC│=12*│-2│* (4 -yc )=204 -yc =20解得:yc = -16所以,C点坐标(0,-16)---------------------------------①以A(-2,0)为顶点,可设抛物线表达式:y= a(x+2)²+0y= a(x+2)²,它过点C(0,-16),将x=0,y= -16代入y= a(x+2)²,解得:a= -4所以,抛物线表达式y= -4(x+2)²【第二问】设D点的横坐标为x D(x D是负数),△BDO的面积= 12*│x D│*│BO│=12*│x D│*4=8│x D│=4x D是负数,所以,x D= -4,又D点在直线y=2x+4上,将x D= -4 代入y=2x+4,解得y D= -4D点坐标(-4, -4)-------------------------------------------②以A(-2,0)为顶点,可设抛物线表达式:y= a(x+2)²它过点D(-4,-4)将x= -4,y= -4代入y= a(x+2)²,解得:a= -1所以,抛物线表达式y= -(x+2)²【第二组题型】5、若关于x的方程x²+2mx+m²+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x2²的最小值为()6、平面直角坐标系中两定点A(-5,0,),B(3,0),抛物线y=ax²+bx-30(a≠0)过A、B,顶点为C,点P(m,n)为抛物线上的一点。

(1)求抛物线的解析式和顶点C的坐标。

(2)当四边形APBC为梯形,求P的坐标。

7、已知抛物线y= 34x²+bx+c 与x轴相交于点A和B(2,0),与y轴相交于C(0,-6)(1)求出抛物线的解析式和A点的坐标。

(2)D为抛物线的顶点,设P点(t,0),且t>2,如果△BDP与△CDP的面积相等,求P点的坐标。

8、在xoy直角坐标系中,点C(2,-3)关于x轴对称的点为A,关于原点对称的点为B,抛物线y=ax²+bx+c过A、B两点,且点D(3,19)在抛物线上。

【答案】5、若关于x的方程x²+2mx+m²+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x2²的最小值为()解:方程x²+2mx+m²+3m﹣2=0有两个实数根则判别式△=(2m)²- 4*(m²+3m﹣2)≥0即:m≤23------------------------------------------------①根据韦达定理,x1+x2 = -2m-------------------------②x1x2 =m²+3m﹣2-----------------③又x1(x2+x1)+x2²= x1x2 +x1²+x2²=(x2+x1)²- x1x2 【将②③代入】=(-2m)²-(m²+3m﹣2)=3m²- 3m+2=3(m- 12)²+54则顶点(12,54)其图像为由①知,当m≤23时,已经把顶点包含在内,故,当m=12时,有最小值是546、平面直角坐标系中两定点A(-5,0,),B(3,0),抛物线y=ax²+bx-30(a≠0)过A、B,顶点为C,点P(m,n)为抛物线上的一点。

(1)求抛物线的解析式和顶点C的坐标。

(2)当四边形APBC为梯形,求P的坐标。

解:【第一问】(12,54)因为点A(-5,0,),B(3,0)均为x轴上的两点,且抛物线过这两点,故抛物线的解析式可写为:y=a(x+5)(x-3)y=a(x²+2x-15)y=ax²+2ax-15a-----------①又已知,抛物线y=ax²+bx-30------------②根据恒等原理,①式与②式对应的系数相等。

那么它们的常数项相等,即:-15a = -30解得:a=2将a=2 代入①式,解得抛物线解析式为:y=2x²+4x-30 再对y=2x²+4x-30变形即:y=2(x²+2x)-30y=2(x+1)²-32所以,顶点C坐标(-1,-32)答:抛物线解析式为:y=2x²+4x-30,顶点C坐标(-1,-32)【第二问】四边形APBC为梯形,有两种情况,一是BP∥AC,一是AP∥CB (1)当BP∥AC,因为A(-5,0),C(-1,-32)直线AC的斜率k1=0-(-32)-5-(-1)= -8 ----------------③因为B(3,0),P(m,n)直线PB说完斜率k2= 0- n3- m=nm -3----------------④因为BP∥AC 所以③=④即-8 =n m -3化简:n = 24 -8m-----------------------------------------⑤因为P(m,n)在抛物线上,所以,把x=m,y=n代入y=2x²+4x-30中得:n=2m²+4m-30---------------------------------------⑥因为⑤=⑥,消去n,得:24 -8m=2m²+4m-30化简:m²+6m-27=0(m+9)(m-3)=0解得:m= -9,m=3将m= -9代入⑤中,解得,n=96,则P坐标(-9,96)将m=3代入⑤中,解得,n=0,则P坐标(3,0)与B(3,0)重合,舍去故:当BP∥AC时,P坐标为(-9,96)(2)AP∥CB同理:直线BC的斜率k3=8直线AP的斜率k4=n m+5由K3=k4,得8=nm+5即:n=8m+40----------⑦因为P(m,n)在抛物线上,所以,把x=m,y=n代入y=2x²+4x-30中得:n=2m²+4m-30--------------------------------------⑧由⑦=⑧解得,m=7,m=-5将m=7,m=-5代入⑦,解得n=106,n=0即P坐标(7,106),或p(-5,0)与A(-5,0)重合,舍去故:当AP∥CB时,P坐标为(7,106)7、已知抛物线y= 34x²+bx+c 与x轴相交于点A和B(2,0),与y轴相交于C(0,-6)(1)求出抛物线的解析式和A点的坐标。

相关文档
最新文档