自动控制原理(胡寿松)课后习题解答详解
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
K1 K 2
K 1
K2
K2
( f1 s + 1)( f 2 s + 1)
K
=
1
K2
( f1 s + 1)( f 2 s + 1) + f1
K 1
K2
K2
所以图 2-58(a)的电网络与(b)的机械系统有相同的数学模型。
4
胡寿松自动控制原理习题解答第二章
2-11 在图 2-60 中,已知和两方框相对应的微分方程分别是
Z2
=
R2
+
1 C2s
=
1 C2s
(R2C2s + 1) =
1 C2
s
(T2
s
+ 1)
所以: U 0 (s) = Z 2 =
1 C2
s
(T2
s
+
1)
=
(T1s + 1)(T2 s + 1)
Ui (s)
Z1 + Z2
R1 T1s +
1
+
1 C2
s
(T2
s
+
1)
R1C2 s + (T1s + 1)(T2 s + 1)
所以:
f1 f2 s2 + ( f1 + f2 )s +1
X 0 (s) =
f1 f2s2 + ( f1K2 + K1 f2 )s + K1K2
= K1K2
K 1
K2
X i (s) f1 f2s2 + ( f1K2 + K1 f1 + K1 f2 )s + K1K2
f1 f2 s2 + ( f1 + f2 )s +1+ f1
6 dc(t) + 10c(t) = 20e(t) dt
20 db(t) + 5b(t) = 10c(t) dt
且初始条件均为零,试求传递函数 C(s) / R(s) 及 E(s) / R(s)
解:系统结构图及微分方程得:
G(s) = 20
H (s) = 10
6s + 10
20s + 5
20
C(s) = 10G(s) =
对(3)式两边取微分得
K 2 (x&i − x&0 ) + f 2 (&x&i − &x&0 ) = K1x&
(4)
将(4)式代入(1)式中得
K1K 2 (xi − x0 ) + K1 f 2 (x&i − x&0 ) = K1 f1x&0 − f1K 2 (x&i − x&0 ) − f1 f 2 (&x&i − &x&0 )
正比,此时有
F
d(H − dt
H0)
=
(Q1
−
Q0 )
−
(Q2
−
Q0 )
于是得水箱的微分方程为
F
dH dt
= Q1 − Q2
胡寿松自动控制原理习题解答第二章
图 2-58 电网络与机械系统
1
解:(a):利用运算阻抗法得: Z1
=
R1
//
1 C1s
=
R1 C1s
R1
+
1 C1s
=
R1 = R1 R1C1s + 1 T1s + 1
=
10(20s + 5)(6s + 10) (6s + 10)(20s + 5) + 200
= 1200s 2 120s 2
+ 1500s + 500 + 230s + 250
2-12 求图 2-61 所示有源网络的传递函数
1
解:(a) Z 0
=
R0
// 1 C0s
=
R0 C0 s
R0
+
1 C0s
=
U 0 (s) Ui (s)
=
−
Z1 Z0
=
−
1 R0C1s
(T1s +1)(T0s +1)
T0 = R0C0
Z12
=
R1
//( R2
+
1 )
C2s
=
R1
//
T2 s + 1 C2s
(c)
=
R1
T2 s + C2s
1
R1
+
T2 s + C2s
1
=
R1 (T2 s + 1) T2 s + R1 + 1
R0 T0 s + 1
T0 = R0C0
8
胡寿松自动控制原理习题解答第二章
U0 (s) Ui (s)
= − R1 Z0
= − R1 R0
(T0 s + 1)
(b) Z 0
=
R0
1 //
C0 s
=
R0
1 C0s
R0
+
1 C0s
=
R0 T0 s + 1
Z1
=
R1
+
1 C1s
=
T1s + 1 C1s
T1 = R1C1
整理上式得
f1 f 2 &x&0 + f1K 2 x&0 + K1 f1x&0 + K1 f 2 x&0 + K1K 2 x0 = f1 f 2 &x&i + f1K 2 x&i + K1 f 2 x&i + K1K 2 xi
对上式去拉氏变换得
3
胡寿松自动控制原理习题解答第二章
[ ] f1 f 2 s 2 + ( f1K 2 + K1 f1 + K1 f 2 )s + K1K 2 X 0 (s) [ ] = f1 f 2 s 2 + ( f1K 2 + K1 f 2 )s + K1K 2 X i (s)
(b)以 K1 和 f1 之间取辅助点 A,并设 A 点位移为 x ,方向朝下;根据力的平衡原则,可列出如下原始方程:
K 2 (xi − x0 ) + f 2 (x&i − x&0 ) = f1 (x&0 − x&) (1)
K1x = f1 (x&0 − x&) (2)
所以 K 2 (xi − x0 ) + f 2 (x&i − x&0 ) = K1x (3)
T2 = R2C2
U 0 (s) = − Z12 = − R1 T2 s + 1
Ui (s)
R0
R0 T2 s + R1 + 1
2-13由运算放大器组成的控制系统模拟电路如图2-62所示,试求闭环传递函数Uc(s)/Ur(s)。
图2-62 控制系统模拟电路
解: U1 (s)
= − Z1 (1) U 2 (s) = − Z 2 (2) U 0 (s) = − R2 (3)
胡寿松自动控制原理习题解答第二章
2—1 设水位自动控制系统的原理方案如图 1—18 所示,其中 Q1 为水箱的进水流量, Q2 为水箱的用水流量, H 为水箱中实际水面高度。假定水箱横截面积为 F,希望水面高度 为 H 0 ,与 H 0 对应的水流量为 Q0 ,试列出
水箱的微分方程。
解 当 Q1 = Q2 = Q0 时,H = H 0 ;当 Q1 ≠ Q2 时,水面高度 H 将发生变化,其变化率与流量差 Q1 − Q2 成
10 6s + 10
R(s) 1 + G(s)H (s) 1 + 20 10
6s + 10 20s + 5
E(s) =
10
=
10
R(s) 1 + G(s)H (s) 1 + 20 10
Байду номын сангаас
6s + 10 20s + 5
=
(6s
200(20s + 5) + 10)(20s + 5) +
200
=
200(20s + 5) 120s 2 + 230s + 250
U 0 (s) + U i (s) R0
U1 (s) R0
U 2 (s) R0
式(1)(2)(3)左右两边分别相乘得
9
胡寿松自动控制原理习题解答第二章