dcdc开关电源管理芯片的设计

合集下载

电流模式DCDC同步降压芯片的设计与实现

电流模式DCDC同步降压芯片的设计与实现
Frequency
Modulation)模式选择单元以及PFM驱动等功能。我们利用Matlab分析了系统的 传输函数,增加了系统的稳定性,并优化了部分单元电路的结构。然后通过详细 的仿真测试,保证了电路结构的正确性。随后,我们完成了整个芯片版图的布图 工作,并将GDSII文件提交至晶圆厂流片。最后,我们对流片后的工程样片做了
1.4系统设计目标
本设计采用CSMC DPTM
0.5岬工艺进行仿真,并参加华润上华MPW流片。
本产品的设计目标为:
工作电压:2.5.5.5v 参考电压:0.6v
PWM工作频率:1.5MHz
峰值电流:1.8A 效率:>75% 芯片面积:<lmm2 静态电流:<lmA
7.要求良好的散热解决方案;
1.3本文所做的工作
本论文所要设计的芯片主要针对于使用单个锂电池供电(2.5V05.5V)便携式
设备(包括智能手机,微处理器、DSP内核供电,无线、DSL猫,PDA,MP3
播放器等),输出电压可低至0.6V的高效率降压直流变换芯片。高效率(75%以
上)和成本优势是本设计的主要考虑。本论文的结构如下: 第一章为前言部分,主要介绍电源管理技术的背景知识和本论文的工作。 第二章介绍开关电源的系统知识,对本论文所采用的技术进行了较详细的阐 述,并且给出了本论文所设计芯片的系统框图。
the
simulation
results.
paper,we analysis the
main result that cause these
difference,and also some
improvement method has given.
Key
Words:SMPS,Buck,PWM,PFM

DCDC电源芯片内部结构全解

DCDC电源芯片内部结构全解

DCDC电源芯片内部结构全解DC-DC电源芯片是一种特殊的集成电路,用于将直流电(DC)转换为所需的不同电压的直流电。

它通常由许多不同的部分组成,每个部分都具有特定的功能,可以实现高效的电能转换。

接下来,我将对DC-DC电源芯片的内部结构进行详细解释。

1.输入滤波器:电源芯片的第一个部分是输入滤波器,用于过滤输入电源的干扰和噪声,确保输入电源干净稳定,以提供可靠的工作电压。

2.整流桥:在输入电压经过滤波器后,进入整流桥。

整流桥由四个二极管组成,可以将交流电(AC)转换为直流电(DC),以供后续电路使用。

3.拉电感器:拉电感器是一种具有高电感值的元件,用于存储电能并滤波电流。

拉电感器通过存储能量,使电源芯片能够提供稳定的输出电流。

4.开关管/开关MOS管:开关管是DC-DC电源芯片的核心部分之一、它负责控制电源的开关周期,调整输出电压。

开关管通常是MOSFET管,其具有低导通电阻和快速开关速度,以提供高效的能量转换。

5.控制电路:控制电路是DC-DC电源芯片的另一个重要组成部分,负责监测并控制输出电压。

它包括一个反馈回路,用于调整开关管的开关频率和占空比,以确保输出电压达到预期值。

控制电路还可以包括一些保护功能,如过压保护和过载保护,以防止电源芯片受到损害。

6.输出滤波器:输出滤波器用于滤波输出电压,去除可能存在的高频噪声,并提供干净稳定的输出电压。

输出滤波器通常由电容器和电感器组成,能够平滑输出电压并减少纹波。

除了上述主要部分外,DC-DC电源芯片还可能包括其他辅助功能,如温度保护、短路保护和过流保护等。

这些保护功能能够保护电源芯片不受外部故障和不恰当使用的影响。

总之,DC-DC电源芯片内部结构的主要组成部分包括输入滤波器、整流桥、拉电感器、开关管、控制电路和输出滤波器。

这些部分通过协同工作实现电源的高效转换和稳定的输出电压。

同时,电源芯片可能还包括一些辅助功能,如保护功能,以确保电源芯片的安全运行。

dcdc开关电源设计原理和制作

dcdc开关电源设计原理和制作

dcdc开关电源设计原理和制作一、开关电源的基本原理开关电源是一种通过控制开关晶体管开通和关断时间比率,维持稳定输出电压的电源。

它主要由输入电路、输出电路、开关晶体管、振荡电路、稳压控制电路等组成。

开关电源具有效率高、体积小、重量轻等优点,广泛应用于电子设备、电力电子等领域。

二、开关电源的组成开关电源主要由以下几个部分组成:1.输入电路:接收交流电源输入,进行滤波、整流等处理,将交流电转化为直流电。

2.输出电路:将开关晶体管输出的脉动直流电进行滤波、稳压等处理,输出稳定的直流电。

3.开关晶体管:控制电源的开通和关断,决定输出电压的大小。

4.振荡电路:产生一定频率的脉冲信号,控制开关晶体管的开通和关断时间比率。

5.稳压控制电路:根据输出电压的变化,控制开关晶体管的导通时间,维持输出电压的稳定。

三、开关电源的设计设计开关电源需要考虑以下因素:1.输入电压范围:根据设备需要确定输入电压范围。

2.输出电压和电流:根据设备需要确定输出电压和电流。

3.转换效率:选择合适的开关晶体管和电路设计,提高转换效率。

4.稳定性:选择合适的稳压控制电路和反馈元件,保证输出电压的稳定性。

5.散热设计:选择合适的散热器和设计合适的散热结构,保证开关电源的正常工作。

四、开关电源的制作制作开关电源需要按照以下步骤进行:1.设计电路板:根据设计好的电路图,制作适合的电路板。

2.选择合适的电子元件:根据设计需要选择合适的电子元件,如开关晶体管、电容、电感等。

3.组装电路:将选择的电子元件按照电路图组装在一起。

DCDC开关电源管理芯片的设计

DCDC开关电源管理芯片的设计

DC-DC开关电源管理芯片的设计引言电源是一切电子设备的心脏部分,其质量的好坏直接影响电子设备的可靠性。

而开关电源更为如此,越来越受到人们的重视。

目前的计算机设备和各种高效便携式电子产品发展趋于小型化,其功耗都比较大,要求与之配套的电池供电系统体积更小、重量更轻、效率更高,必须采用高效率的DC/ DC开关稳压电源。

目前电力电子与电路的发展主要方向是模块化、集成化。

具有各种控制功能的专用芯片,近几年发展很迅速集成化、模块化使电源产品体积小、可靠性高,给应用带来极大方便。

从另一方面说在开关电源DC-DC变换器中,由于输入电压或输出端负载可能出现波动,应保持平均直流输出电压应能够控制在所要求的幅值偏差范围内,需要复杂的控制技术,于是各种 PWM控制结构的研究就成为研究的热点。

在这样的前提下,设计开发开关电源DC-DC控制芯片,无论是从经济,还是科学研究上都是是很有价值的。

1. 开关电源控制电路原理分析DC-DC变换器就是利用一个或多个开关器件的切换,把某一等级直流输入电压变换成另—等级直流输出电压。

在给定直流输入电压下,通过调节电路开关器件的导通时间来控制平均输出电压控制方法之一就是采用某一固定频率进行开关切换,并通过调整导通区间长度来控制平均输出电压,这种方法也称为脉宽调制[PWM]法。

PWM从控制方式上可以分为两类,即电压型控制(voltage mode control)和电流型控制(current mode control)。

电压型控制方式的基本原理就是通过误差放大器输出信号与一固定的锯齿波进行比较,产生控制用的PWM信号。

从控制理论的角度来讲,电压型控制方式是一种单环控制系统。

电压控制型变换器是一个二阶系统,它有两个状态变量:输出滤波电容的电压和输出滤波电感的电流。

二阶系统是一个有条件稳定系统,只有对控制电路进行精心的设计和计算后,在满足一定的条件下,闭环系统方能稳定的工作。

图1即为电压型控制的原理框图。

高效电感式降压型DCDC电源管理芯片的设计

高效电感式降压型DCDC电源管理芯片的设计

背景
电感式降压型DCDC电源管理芯片通过转换输入电压为所需的输出电压,为负 载提供稳定可靠的电源。其基本工作原理是:输入电压经电感器和开关管组成的 电路进行降压和整流,再经过输出滤波器平滑输出电压,实现稳定的输出。电感 式降压型DCDC电源管理芯片具有负载响应速度快、效率高、体积小、寿命长等优 点,已成为现代电子设备中的关键组件。
在实际应用中,可能还需要根据具体需求进行适当调整和优化,例如进一步 减小体积、提高效率、增强可靠性等。总之,本次演示对电流控制模式PWM降压 DCDC转换器的设计进行了详细阐述和实验验证,为相关领域的研究和应用提供了 有益的参考和借鉴。
谢谢观看
4、保护功能:考虑选择具有过压、过流、过温等保护功能的芯片,以提高 系统的安全性和稳定性。
5、价格:在满足性能要求的前提下,选择价格适中、性价比高的芯片。
电路设计
电感式降压型DCDC电源管理芯片的电路设计要点包括:
1、电感选择:根据输出电流和磁芯材料选择合适的电感值和额定电流。电 感值直接影响电路的滤波效果和输出电压的稳定性。
3、根据实际应用需求,调整电阻分压网络的阻值,以产生合适的偏置电压。
电路实验
通过搭建实验电路,验证电流控制模式PWM降压DCDC转换器的设计正确性。 在实验中,使用测试电路来检测输出电压和电流,使用示波器来观测PWM信号的 波形,使用万用表来测量电阻分压网络的阻值。通过改变输入电压或负载电阻来 观察输出电压的变化情况,从而验证转换器的稳定性和可靠性。
引言
随着电子技术的飞速发展,各种电子设备对电源的需求日益多样化。其中, 降压DCDC转换器作为一种重要的电源转换器,能够将输入的直流电压转换成较低 的直流电压,以满足各种设备的电源需求。而电流控制模式PWM降压DCDC转换器 具有更高的效率和控制精度,因此在实际应用中具有重要意义。

BUCK型DCDC开关电源芯片的设计与实现

BUCK型DCDC开关电源芯片的设计与实现

BUCK型DCDC开关电源芯片的设计与实现一、Buck型DC-DC开关电源的原理Buck型DC-DC开关电源采用PWM(脉宽调制)技术实现降压功率转换。

其基本原理是通过开关管(MOSFET)的开关控制,使电源源电压经过电感产生瞬间高压脉冲,然后经过二极管和电容进行滤波,从而得到较低的输出电压。

1.选取合适的芯片2.电路设计在电路设计中,需要考虑以下关键元件:(1)开关管(MOSFET):选择合适的MOSFET型号,使其能够承受输入电压和输出电流,并具有低导通压降和低开关损耗。

(2)电感:选择合适的电感器件,使其具有足够的电感值,以满足电路的输出电流要求,同时要考虑其饱和电流和电流纹波等参数。

(3)二极管:选用具有较高效率和低电压降的二极管,以减小功率损耗。

(4)滤波电容:选择适当的电容容值和工作电压,以保证输出电压的稳定性和滤波效果。

3.控制电路设计(1)比较器:用于比较输出电压反馈和参考电压,生成PWM信号。

(2)误差放大器:通过调节反馈电压和参考电压之间的差值,实现输出电压的稳定控制。

(3)反馈电路:将输出电压反馈给误差放大器,使其可以实时调节PWM信号。

4.输出过压保护与过流保护为了确保开关电源在异常工作条件下能够保持安全可靠的操作,需要添加过压保护和过流保护电路。

过压保护电路通常通过监测输出电压,当输出电压超过设定阈值时,立即切断开关管的导通。

过流保护电路通过监测输出电流,当输出电流超过设定阈值时,同样会切断开关管的导通。

5.PCB布局与散热设计在设计过程中,需要合理布局电路元件,以减小元件之间的相互干扰,并降低热量产生。

合理进行散热设计,确保开关管和散热器的有效散热,以保证开关电源的稳定工作。

三、BUCK型DC-DC开关电源的测试与调试完成电路设计后,需要进行测试和调试来验证设计的正确性和可靠性。

主要包括以下测试:(1)输入电压测试:测试开关电源在不同输入电压下的输出电压和效率。

(2)输出电压稳定性测试:测试开关电源在稳定工作状态下,输出电压随负载变化的情况。

DCDC电源芯片内部结构全解

DCDC电源芯片内部结构全解

DCDC电源芯片内部结构全解DC/DC电源芯片是一种将电源输入电压转换为所需输出电压的器件,常用于各种电子设备中。

它内部结构复杂,包括输入滤波电容、整流电路、开关电路、控制芯片等多个模块。

下面将从这些模块的功能和结构逐一解析DC/DC电源芯片的内部结构。

1.输入滤波电容:DC/DC电源芯片通常会在输入端接入滤波电容,用于滤除输入端的高频噪声和纹波。

这样可以保证输入电源的稳定性和提高整个系统的抗干扰能力。

2.整流电路:在DC/DC电源芯片内部,输入端的电压需要经过整流电路转换为直流电压。

整流电路通常由二极管桥或者MOS管组成,用于将输入的交流电压转换为直流电压。

3.输入滤波电感:在整流后,输入端的直流电压会带有一定的纹波。

为了进一步减小输入端的纹波,通常在芯片内部添加输入滤波电感。

输入滤波电感一般为一个线圈,具有高频电流衰减的特性。

4. 开关电路:DC/DC电源芯片内部会包含一个开关电路,用于将输入端的直流电压转换为所需的输出电压。

开关电路通常由MOS管组成,通过开关动作来控制输入电压的频率和占空比。

常见的开关电路包括降压型(Buck)和升压型(Boost)等,用于实现不同的电压转换。

5.控制芯片:DC/DC电源芯片内部的控制芯片用于对开关电路进行控制和调节。

控制芯片通常具有高精度的反馈电路,能够实时监测输出电压,并通过控制开关电路的频率和占空比来调节输出电压的稳定性和精度。

6.输出滤波电感和电容:在输出端,为了滤除输出电压的纹波和噪声,DC/DC电源芯片内部通常会添加输出滤波电感和电容。

输出滤波电感和电容主要起到平滑输出电压的作用,提供稳定的电源给外部负载。

7.保护电路:为了保护电源芯片和外部负载免受过电流、过压、过温等异常情况的影响,DC/DC电源芯片内部通常会包含一些保护电路。

例如过流保护、过压保护、过温保护等。

这些保护电路能够在异常情况下及时切断电源输出,并发出相应的警报信号。

总之,DC/DC电源芯片内部结构由输入滤波电容、整流电路、输入滤波电感、开关电路、控制芯片、输出滤波电感和电容以及保护电路等多个模块组成。

电源设计之 DC/DC 工作原理及芯片详解-设计应用

电源设计之 DC/DC 工作原理及芯片详解-设计应用

电源设计之DC/DC 工作原理及芯片详解-设计应用DC/DC电源指直流转换为直流的电源,从这个定义上看,LDO(低压差线性稳压器)芯片也应该属于DC/DC电源,但一般只将直流变换到直流,且这种转换是通过开关方式实现的电源称为DC/DC电源。

一、工作原理要理解DC/DC的工作原理,首先得了解一个定律和开关电源的三种基本拓扑(不要以为开关电源的基本拓扑很难,你继续往下看)。

1、电感电压伏秒平衡定律一个功率变换器,当输入、负载和控制均为固定值时的工作状态,在开关电源中,被称为稳态。

稳态下,功率变换器中的电感满足电感电压伏秒平衡定律:对于已工作在稳态的DC/DC功率变换器,有源开关导通时加在滤波电感上的正向伏秒一定等于有源开关截止时加在该电感上的反向伏秒。

是不是觉得有点难理解,接着往下看其公式推导过程。

伏秒平衡方程推算过程:电感的基本方程为:V(t)=L*dI(t)/dt,即电感两端的电压等于电感感值乘以通过电感的电流随时间的变化率。

根据上述方程,可得dI(t)=1/L∫V(t)dt,对于稳态的一个功率变换器,其应保证在一个周期内电感中的能量充放相等,反映在V-t图中即表示在一个周期内其面积之和为0,所以得出电感电压伏秒平衡定律。

此处可参考:DC/DC电源详解第8页(如果此处还无法理解,可先阅读下面开关电源三种基本拓扑的工作原理)。

扩展资料:1、当一个电感突然加上一个电压时,其中的电流逐渐增加,并且电感量越大,其电流增加越慢;2、当一个电感上的电流突然中断,会在电感两端产生一个瞬间高压,并且电感量越大该电压越高;3、电容的基本方程为:I(t)=dV(t)/(C*dt),当一电流流经电容时,电容两端电压逐渐增加,并且电容量越大电压增加越慢;2、开关电源三种基本拓扑2.1、BUCK降压型图1 BUCK型基本拓扑简化工作原理图图2 电感V-t特性图BUCK降压型基本拓扑原理如图1所示,其电感L1的V-t特性图如图2。

基于SG3525的DCDC开关电源设计

基于SG3525的DCDC开关电源设计

... 基于SG3525的DC/DC开关电源设计The Design of DC/DC Switching PowerSupply Based on SG3525... 毕业设计任务书题目基于SG3525的DC/DC开关电源设计一、设计内容设计一个基于SG3525可调占空比的推挽式DC/DC开关电源,给出系统的电路设计方法以及主要单元电路的参数计算。

二、基本要求1. 系统工作原理及设计思路。

2. 设计开关电源主电路。

3. 选择电源变压器,设计开关管的驱动控制电路。

4. 主要元器件的选择。

5. 利用saber进行系统仿真。

三、主要技术指标输入电压为DC10—35V,输入额定电压为12V,输出为360V,额定功率为500W。

电路以SG3525为控制芯片,使电源工作性能稳定,电源效率高。

四、应收集的资料及参考文献[1] 邹怀虚. 电源应用技术[M]. 北京:科学出版社.1998[2] 刘胜利. 现代高频开关电源实用技术[M]. 北京:电子工业出版社,2001五、毕业设计进度计划第1—2周:收集资料,完成系统工作原理及设计思路开题报告。

第3周:设计开关电源主电路。

第4—6周:选择电源变压器,设计开关管的驱动控制电路及主要元器件的选择。

第7周:中期检查。

第8—11周:利用saber进行系统仿真。

第12—13周:论文审核定稿。

第14—15周:答辩。

...毕业设计开题报告题目基于SG3525的DC/DC开关电源设计一、研究背景21世纪是信息化的时代,信息化的快速发展使得人们对于电子设备、产品的依赖性越来越大,而这些电子设备、产品都离不开电源。

开关电源相对于线性电源具有效率、体积、重量等方面的优势,尤其是高频开关电源正变得更轻,更小,效率更高,也更可靠,这使得高频开关电源成为了应用最广泛的电源。

从开关电源的组成来看,它主要由两部分组成:功率级和控制级。

功率级的主要任务是根据不同的应用场合及要求,选择不同的拓扑结构,同时兼顾半导体元件考虑设计成本;控制级的主要任务则是根据电路电信号选择合适的控制方式,目前的开关电源以PWM控制方式居多。

DC—DC开关电源管理芯片的设计

DC—DC开关电源管理芯片的设计

DC—DC开关电源管理芯片的设计作者:保欢来源:《科技与创新》2016年第07期文章编号:2095-6835(2016)07-0083-01摘要:为了使开关电源进一步满足电子产品小型化、轻量化和高功率发展的要求,以DC-DC开关电源管理芯片为主要研究对象,简单介绍了开关电源的控制形式,并对DC-DC电源转换芯片的设计方案和斜坡补偿的注意事项进行了深入研究。

关键词:DC-DC开关电源;转换芯片;PWM比较器;斜坡补偿中图分类号:TM46 文献标识码:A DOI:10.15913/ki.kjycx.2016.07.083电源作为电子设备的重要组成部分之一,其质量对电子设备的稳定性、安全性和可靠性有重要影响。

计算机设备、高效便携式电子产品的小型化、高功耗发展对其电池供电系统的体积、质量、效率等提出了更高的要求。

在此背景下,加强对DC-DC开关稳压电源的设计和研究,确保开关电源符合电子产品市场的整体要求,已成为当前电源研发领域需要着重开展的关键工作。

1 开关电源的控制形式分析DC-DC变换器后可知,该设备通过一个或多个开关器件的切换,可将某个等级的直流输入电压转变为另一等级的直流电压并输出,并在给定的直流电压下设定电路开关器件的导通时间,从而实现对平均输出电压的有效控制。

其中,以某一固定频率为依托进行开关切换是有效控制电压的重要方法,通过调整导通区间的长度,可达到准确控制平均输出电压的目的。

该方法被称为PWM脉宽调制法。

从控制方式的角度看,PWM可分为电压型控制和电流型控制两种。

其中,电压型控制的原理为:利用误差放大器输出信号,并对比信号与固定锯齿波,进而产生PWM信号。

需要说明的是,电压型控制方式实质上是一种单环控制系统,而电压控制变换器则是有输出滤波电容电压、电感电流两种状态变量的二阶系统。

开关电源的电流型控制是指对比误差放大器输出的信号与经过采样获取的电感峰值电流,从而有效控制输出脉冲占空比,并确保输出电感峰值电流随误差电压的变化而变化。

一款低功耗AC-DC开关电源管理芯片设计

一款低功耗AC-DC开关电源管理芯片设计

一款低功耗AC-DC开关电源管理芯片设计专业品质权威编制人:______________审核人:______________审批人:______________编制单位:____________编制时间:____________序言下载提示:该文档是本团队精心编制而成,期望大家下载或复制使用后,能够解决实际问题。

文档全文可编辑,以便您下载后可定制修改,请依据实际需要进行调整和使用,感谢!同时,本团队为大家提供各种类型的经典资料,如办公资料、职场资料、生活资料、进修资料、教室资料、阅读资料、知识资料、党建资料、教育资料、其他资料等等,想进修、参考、使用不同格式和写法的资料,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic materials for everyone, such as office materials, workplace materials, lifestyle materials, learning materials, classroom materials, reading materials, knowledge materials, party building materials, educational materials, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!一款低功耗AC-DC开关电源管理芯片设计一款低功耗AC/DC开关电源管理芯片设计引言:随着电子设备的普及和技术的进步,大量电子设备需要稳定可靠的电源供应。

DCDC电源芯片内部结构全解

DCDC电源芯片内部结构全解

DCDC电源芯片内部结构全解DCDC电源芯片是一种以直流电为输入,通过内部电子元件变换电压输出的电源管理芯片。

它在电子产品中起到非常重要的作用,可以提供稳定可靠的电源输出,保证电子设备的正常工作。

下面将详细介绍DCDC电源芯片的内部结构和工作原理。

输入电压传感器用于监测输入电压的大小,将其转换为电信号输入到控制电路中。

电压参考源则提供给PWM控制器一个参考电压值,用于比较和控制输出电压的稳定性。

PWM控制器是DCDC电源芯片的核心部分,它通过比较输入电压信号和参考电压信号,控制功率开关管的开关频率和占空比,以实现稳定的输出电压。

开关管驱动器用于控制功率开关管的导通和截止,使其按照PWM控制器的信号进行开关。

功率开关管是将输入电压通过变换输出为所需电压的关键部件,通过周期性地导通和截止来控制输出电压的大小。

输出电压反馈回路用于将输出电压的信息反馈给PWM控制器,以调节PWM控制器的工作状态,实现输出电压的稳定调节。

1.输入电压传感器检测输入电压的大小,并将其转换为电信号输入到PWM控制器中。

2.电压参考源提供一个稳定的参考电压值给PWM控制器,用于比较和控制输出电压的稳定性。

3.PWM控制器接收到输入电压信号和参考电压信号后,控制开关管驱动器输出相应的信号,控制功率开关管的导通和截止。

4.功率开关管周期性地进行导通和截止的操作,将输入电压进行变换,输出为稳定的输出电压。

5.输出电压反馈回路将输出电压的信息反馈给PWM控制器,根据反馈信号实时调整PWM控制器的输出信号,实现对输出电压的稳定调节。

通过以上工作原理和内部结构的介绍,可以看出DCDC电源芯片在电子产品中的重要性和作用。

它可以实现对输出电压的稳定调节,保证电子设备的正常工作和运行。

同时,DCDC电源芯片还具有高效能、小体积、低损耗等优点,是电子产品中不可或缺的一部分。

BUCK型DCDC开关电源芯片的设计与实现

BUCK型DCDC开关电源芯片的设计与实现

BUCK型DCDC开关电源芯片的设计与实现BUCK型DCDC开关电源芯片是一种常用于电子设备中的降压型直流到直流转换器。

它能够将输入电压降低到较低的输出电压,同时还能够提供高效的电力转换。

本文将介绍BUCK型DCDC开关电源芯片的设计与实现。

首先,BUCK型DCDC开关电源芯片的设计需要考虑以下几个关键因素:1.输入输出电压:确定所需的输入和输出电压范围。

输入电压应该大于最小额定输入电压,输出电压应小于输入电压。

2.输入输出电流:根据应用需求确定所需的输入和输出电流。

这将影响开关器件和滤波器的尺寸选择。

3.开关频率:选择适当的开关频率以平衡功率转换效率和电路尺寸。

较高的开关频率能够减小开关器件尺寸,但可能导致更多的开关损耗。

4.控制方式:选择合适的控制方式,比如PWM调制或恒定频率和变占空比调制。

PWM调制常用于高功率应用,而恒定频率和变占空比调制常用于低功率应用。

接下来是BUCK型DCDC开关电源芯片的实现过程:1.选择电源芯片:根据设计需求,选择适当的BUCK型DCDC开关电源芯片。

考虑芯片的输入输出电压范围、电流能力和控制功能等因素。

2.设计输入和输出滤波器:根据电源芯片的输入输出电流要求,设计适当的输入输出滤波器来减小电流纹波和噪音。

3.设计控制电路:根据选择的控制方式,设计控制电路来生成适当的PWM信号或调制信号。

这可以使用定时器、比较器和反馈电路等元件实现。

4.选择开关器件:根据输入输出电压和电流要求,选择合适的功率开关器件。

这些器件应能够处理所需的功率和频率要求,并具备低开关损耗和低导通电阻。

5.进行电路布局和焊接:根据设计要求,在PCB上进行电路布局和元器件焊接。

应留出足够的空间来放置所有的电路元件,并确保良好的热管理。

6.进行测试和调试:完成电路布局和焊接后,进行对电路的测试和调试。

这包括验证输入输出电压、电流和效率等参数。

如果有必要,进行相应的调整和优化。

最后,完成BUCK型DCDC开关电源芯片的设计与实现后,可以将其应用于各种电子设备中。

一种同步降压型DC_DC开关电源IC的设计

一种同步降压型DC_DC开关电源IC的设计

同步降压型DC/DC 开关电源设计一、引言电源是一切电子设备的动力心脏,其性能的优劣直接关系到整个系统的安全性和可靠性指标。

它分为线性电源和开关电源两种,开关电源又分为AC/AC 电源、DC/DC 电源、AC/DC 电源、DC/AC 电源。

开关电源以其效率高、体积小等优点,在通信、计算机及家用电器等领域得到广泛应用,特别是目前便携式设备市场需求巨大,DC/DC 开关电源的需求也越来越大,性能要求也越来越高,而DC/DC 开关电源的设计也更具挑战性。

二、降压型开关电源工作原理O在开关管S 开启时,若忽略S 上的压降,流过电感L 的电流为L I ,并且会呈上升趋势,有如下关系:OUT IN L V V dtdI L -= 其中Vin ,out V 认为是稳定常量,可得下式:T V V I I L O U T IN L )()(0-=-Io 为t=0时电感中的初始电流。

当开关S 关闭时,电感电流L I 将通过二极管D 续流,此时,L I 将减小, 电感L 中的电流L I ,在开关S 开启时上升,而在S 关闭时下降。

三、控制电路设计1、电流源电路的设计由于采用了自偏置结构,电路在开始工作时很容易进入0平衡状态,而使得电路不能正常工作。

3MP ,4MP ,5MP 构成自启动电路,当刚加电源电压时,通过4MP 为1MN 注入电流,当电流到一定值时4MP 关断,4MP 停止供电,此时电流BIAS I 建立。

图显示了在DD V =3.3V ,EMP T =25℃时,该电流源的启动过程。

其中A 为6MP 栅极电压,B 为4MP 栅极电压,C 为电源电压。

VDD2、基准电压电路的设计基准电压电路为芯片中提供稳定的偏置和比较基准。

因而要求该电压对电源电压变化和温度变化均不敏感。

基准电压可以表示如下:REF V =)(ON RE V +T MV将与温度相关的参数对温度T求偏导,则BEF V 的温度系数表现如下:T V REF∂∂=T V O N BE ∂∂)(+M TV T ∂∂令BEF V 的温度系数为零,那么可求得M 的值。

DCDC开关电源设计

DCDC开关电源设计

DC-DC开关电源设计摘要开关稳压电源因为其具有功耗小、效率高、体积小、重量轻、稳压范围宽等优点日益得到广泛得应用。

目前,国内外开关稳压电源得发展得趋势就是不断提高输出效率与输出功率。

要提高输出得效率,必须提高电源得开关频率。

这就对电路中其它器件得频率特性提出了更高得要求。

并且现在得开关调节模块大多都已经集成化,使用方便,有很高得线性与负载调节特性,转换效率高负载调整率低而且输出纹波小,这里我用lm2596开关调节器实现降压,用STC89S52为核心电路控制ADC0809模数转换对输出电压电流得监测,将监测到得数据显示在液晶LCD1602上,有过流保护功能,监测电路使用得电源由降压后转换提供。

关键字开关稳压电源开关调节器ADC0809 STC89S52 LCD1602一、设计要求与指标要求1、基本部分:1、输出可调电压5—15V,输出电流不小于1、5A,接入负载能长时间稳定工作;(15)2、DC/DC 转换效率不低于70%; (5)3、能够显示输出电压,电流,误差小于2%;(10)4、U=12V、Io 在0、1~1A 范围内变化,负载调整率SI≤2%;(10)5、输入电压24V,输出电压稳定12V,输出电流为1、5A 时输出纹波小于200mv;(10)2、发挥部分:1、输出可调电压为3—18V,输出电流达到2、5A 以上,接入负载能长时间稳定工作,进一步扩展电源输出功率;(5)2、能够显示输出电压,电流,误差小于0、5%;(10)3、Uo=12V 、Io 在0、1~2、5A 范围内变化, 负载调整SI ≤0、5%;(5)4、输出电压稳定为12V,输出电流为2、5A 时,输出纹波小于50(10)5、输出电流为2、5A 进一步提升DC/DC 转换效率,使不低于85(10)6、具有输出过流保护功能, Io≥3、5A 时动作;且故障排除后够恢;(5)7、其她;(5)3、说明(1)输入电压由直流稳压电源提供,逆变电源全部电路均由UI供电,不得再使用其她电源;(2)负载调整率计算方法: Io=0、1A时输出电压为Uo1, Io=1A时输出电压Uo2,则负载调整率:(3)注意作品制作工艺,留出电流、电压测试端口。

DCDC开关电源的设计

DCDC开关电源的设计

引言负电源的好坏很大程度上影响电子测量装置运行的性能,严重的话会使测量的数据大大偏离预期。

目前,电子测量装置的负电源通常采用抗干扰能力强,效率高的开关电源供电方式。

以往的隔离开关电源技术通过变压器实现负电压的输出,但这会增大负电源的体积以及电路的复杂性。

而随着越来越多专用集成DC/DC控制芯片的出现,使得电路简单、体积小的非隔离负电压开关电源在电子测量装置中得到了越来越广泛的应用。

因此,对非隔离负电压开关电源的研究具有很高的实用价值。

传统的非隔离负电压开关电源的电路拓扑有以下两种,如图1、图2所示。

图3是其滤波输出电容的充电电流波形。

由图3可见,采用图2结构的可获得输出纹波更小的负电压电源,并且在相同电感峰值电流的情况下其带负载能力更强。

由于图2的开关器件要接在电源的负极,这会使得其控制电路会比图1来得复杂,因此在市场也没有实现图2电路结构(类似于线性稳压电源调节芯片7915功能)的负电压开关电源控制芯片。

为了弥补现有非隔离负电压开关电源技术的不足,以获得一种带负载能力强、输出纹波小的非隔离负电压开关电源,本文提出一种采用Boost开关电源控制芯片LT1935及分立元件实现了图2所示原理的基于峰值电流控制的新型非隔离负电压DC/DC开关电源。

图1 传统的非隔离负电压开关电源电路结构1图2 传统的非隔离负电压开关电源电路结构2图3 两种开关电源滤波电容的充电电流波形1 工作原理分析本文设计的非隔离负电压DC/DC开关电源如图4所示,负电源工作在连续电流模式。

当电源控制器LT1935内部的功率三极管导通时,直流电源给输出电感L1和输出电容C1充电。

当电源控制器LT1935内部的功率三极管关断时,输出电感L1中的电流改由通过肖特基二极管VD1提供的低阻抗回路继续给输出电容C1充电直至下一个周期电源控制器LT1935内部的功率三极管再次导通。

可见电容C1在输出电感L1储存能量和释放能量的过程中均获得充电,从而减小了输出纹波电压。

DC开关电源控制器研究与芯片设计的开题报告

DC开关电源控制器研究与芯片设计的开题报告

AC/DC开关电源控制器研究与芯片设计的开题报告1. 研究背景与意义随着现代电子科技的飞速发展,电源技术的发展也迅速发展。

AC/DC开关电源广泛应用于各种电子设备中,如计算机、通信系统、工厂自动化等,广泛的应用产生了大量的需求,同时也对控制器进行了更新和优化。

在现有的AC/DC开关电源控制器设计中,一些问题存在,如传统的控制器在需要对输出电压进行调节、在高压状态下,对元器件的保护需要更好的设计等等。

所以,如何设计一款AC/DC开关电源控制器来实现对输出电压进行调节以及实现更好的保护,成为了本研究的重要课题。

2. 研究内容与目标本研究的主要内容是AC/DC开关电源控制器的研究和芯片设计。

本研究旨在设计一款AC/DC开关电源控制器,其具有较强的保护能力以及可以实现对输出电压的调节,并以此为基础进行芯片设计。

研究目标为:(1)分析AC/DC开关电源的工作原理和控制策略;(2)设计AC/DC开关电源控制器,具有较强的保护能力;(3)实现对输出电压的调节;(4)进行芯片设计并进行仿真验证。

3. 研究方法为了达到研究目标,本研究采用理论模拟和实验相结合的研究方法。

首先,通过文献调研和资料收集,对AC/DC开关电源控制器的相关知识进行学习和了解,为后续的研究提供基础。

其次,进行控制器的设计,设计思路是根据电源进入后的控制电路改变其输出特性,以控制输出特性。

实验设计采用改进后的大功率AC/DC开关电源的控制器,结合开关电源的相关理论,构建电路并进行仿真验证。

通过数学模型的建立,对实验进行模拟验证,探究不同的参数设置对输出特性的影响。

最后,根据实验结果进行芯片的设计,并进行性能评估。

4. 研究预期成果通过本研究的深入探究,预计将会取得如下成果:(1)研究AC/DC开关电源的工作原理以及控制策略;(2)设计一款AC/DC开关电源控制器,具有较强的保护能力和实现对输出电压的调节;(3)进行芯片设计并进行性能评估。

实验结果可为电源的设计提供一定的借鉴意义,设计出高效可靠的AC/DC开关电源控制器,并具有一定的实际应用价值。

DC开关电源芯片的设计与实现的开题报告

DC开关电源芯片的设计与实现的开题报告

BUCK型DC/DC开关电源芯片的设计与实现的开题报告前言DC-DC转换技术是现代电源电子学的一个重要分支。

而BUCK型DC-DC转换器由于其构造简单、效率高、成本低、适合于On-Chip实现等特点,成为了集成电源电子学领域中最常用的DC-DC转换器之一。

基于BUCK型DC-DC转换器的芯片广泛应用于移动设备、电子产品、汽车电子、通信等领域。

在BUCK型DC-DC芯片的设计和实现过程中,需要考虑如何提高转换效率、降低电磁干扰和成本,同时满足不同应用场景的需求。

本文将介绍BUCK型DC-DC芯片的设计和实现,并讨论其中的一些关键问题。

一、BUCK型DC-DC转换器原理简介BUCK型DC-DC转换器是一种降压型DC-DC转换器。

它将高电压直流输入转变为低电压直流输出。

脉宽调制技术(PWM)是BUCK型DC-DC转换器控制的一种常用方法。

其基本工作原理如下:1. 开始时,开关管S1导通,电感L充电,电容C放电。

2. S1关闭,电感L磁场储能,电容C充电。

3. 当S1再次导通时,电荷从电容C和电感L流向负载。

4. 循环复制以上过程,控制S1导通和关闭时间的不同,可以达到不同的输出电压。

斩波器的输出电压可以用下面的公式计算:Vo=Vin*D其中Vin为输入电压,D为占空比,因为斩波器是以固定的时间单位进行工作,占空比就是导通时间占一个时间单位的比例。

二、BUCK型DC-DC芯片的设计和实现1.芯片的电路拓扑BUCK型DC-DC芯片的电路拓扑如下图所示:BUCK型DC-DC芯片通常由开关管、电感、二极管、输入电容和输出电容组成。

在BUCK型DC-DC芯片中,电阻通常被忽略。

电感和电容通常是离线元件。

输入和输出电容的大小和开关频率将影响BUCK型DC-DC芯片的稳定性和效率。

2.芯片的控制方式BUCK型DC-DC芯片的控制通常由PWM控制器实现,根据上述原理,通过调整斩波器的占空比来得到不同的输出电压。

同样的,斩波器的频率也是一个非常重要的参数。

降压式DC-DC开关电源管理芯片的研究与设计的开题报告

降压式DC-DC开关电源管理芯片的研究与设计的开题报告

降压式DC-DC开关电源管理芯片的研究与设计的开题报告一、选题背景与意义随着信息化与智能化的发展,智能手机、平板等消费电子设备逐渐成为生活中必不可少的一部分,因此,如何提高这类产品的使用时间,续航时间、发挥其性能是很重要的问题。

而DC-DC开关电源管理芯片的应用则是在具备高效能的同时降低电源噪声和传输功率的误差,从而提高设备的使用寿命与使用效果。

本次选题根据市场需求,选取了一款降压式DC-DC开关电源管理芯片的研究与设计,为消费电子设备的续航时间提供更加有力的保障。

二、研究目标本次选题旨在研究和设计一款降压式DC-DC开关电源管理芯片,使得其在实现更高的效率和降低传输功率误差的同时,可以具备更加广泛的应用场景。

具体目标如下:1.设计出降压式DC-DC开关电源管理芯片的电路原理图,并在PCB 上实现设计。

2.对该芯片的性能进行测试,验证其输出稳定性和效率,检查电源噪声和传输功率误差是否达到预期目标。

3.通过对芯片结构的分析和实验研究,进一步优化其设计,提高芯片的性能。

三、研究方法和步骤本次选题的研究方法主要采用以下几种方法:1.文献调研法:收集和阅读相关文献资料,了解和掌握降压式DC-DC开关电源管理芯片的基本理论和技术原理。

2.仿真模拟法:采用SPICE等模拟软件进行仿真模拟,验证设计方案的可行性。

3.电路实验法:通过构建实验电路,验证设计方案的正确性。

具体步骤如下:1.调研:收集和整理相关的降压式DC-DC开关电源管理芯片设计文献资料,了解技术原理和应用场景。

2.仿真:采用SPICE等模拟软件进行仿真模拟,验证设计方案的可行性。

3.电路设计:根据仿真结果进行电路设计,绘制电路原理图和PCB 图,进行电路布局和封装。

4.焊接:按照设计要求焊接元器件到PCB板上。

5.测试:根据测试要求,对电路进行测试,检查电源噪声和传输功率误差是否符合设计要求。

6.结果分析和反馈:对测试结果进行分析总结,反馈与设计方案的改进等问题。

芯片内部设计原理和结构(DC-DC降压电源芯片为例)

芯片内部设计原理和结构(DC-DC降压电源芯片为例)

芯片内部设计原理和结构(DC/DC降压电源芯片为
例)
 本文将以DC/DC降压电源芯片为例详细解说一颗电源芯片的内部设计,它和板级的线路设计有何异同?芯片内部的参考电压又被称为带隙基准电压,值为1.2V左右。

同时开关电源的基本原理是利用PWM方波来驱动功率MOS管。

 这是一颗电机驱动芯片的内部版图(类比如PCB的LayOut)颜色是根据不同材质结构染的色。

 可以看到芯片的内部结构也和PCB设计一样,模块结构布局清晰明了,接下来我们看看芯片的内部线路图是如何设计的,和板级的线路设计有何异同。

以TI 的一颗常用芯片LM2675为例,打开DataSheet,首先看框图:
 这个图包含了电源芯片的内部全部单元模块,BUCK结构我们已经很理解了,这个芯片的主要功能是实现对MOS管的驱动,并通过FB脚检测输出状态来形成环路控制PWM驱动功率MOS管,实现稳压或者恒流输出。

这是一个非同步模式电源,即续流器件为外部二极管,而不是内部MOS管。

 一、基准电压。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DC-DC开关电源管理芯片的设计
引言
电源是一切电子设备的心脏部分,其质量的好坏直接影响电子设备的可靠性。

而开关电源更为如此,越来越受到人们的重视。

目前的计算机设备和各种高效便携式电子产品发展趋于小型化,其功耗都比较大,要求与之配套的电池供电系统体积更小、重量更轻、效率更高,必须采用高效率的DC/ DC开关稳压电源。

目前电力电子与电路的发展主要方向是模块化、集成化。

具有各种控制功能的专用芯片,近几年发展很迅速集成化、模块化使电源产品体积小、可靠性高,给应用带来极大方便。

从另一方面说在开关电源DC-DC变换器中,由于输入电压或输出端负载可能出现波动,应保持平均直流输出电压应能够控制在所要求的幅值偏差范围内,需要复杂的控制技术,于是各种 PWM控制结构的研究就成为研究的热点。

在这样的前提下,设计开发开关电源DC-DC控制芯片,无论是从经济,还是科学研究上都是是很有价值的。

1. 开关电源控制电路原理分析
DC-DC变换器就是利用一个或多个开关器件的切换,把某一等级直流输入电压变换成另—等级直流输出电压。

在给定直流输入电压下,通过调节电路开关器件的导通时间来控制平均输出电压控制方法之一就是采用某一固定频率进行开关切换,并通过调整导通区间长度来控制平均输出电压,这种方法也称为脉宽调制[PWM]法。

PWM从控制方式上可以分为两类,即电压型控制(voltage mode control)和电流型控制(current mode control)。

电压型控制方式的基本原理就是通过误差放大器输出信号与一固定的锯齿波进行比较,产生控制用的PWM信号。

从控制理论的角度来讲,电压型控制方式是一种单环控制系统。

电压控制型变换器是一个二阶系统,它有两个状态变量:输出滤波电容的电压和输出滤波电感的电流。

二阶系统是一个有条件稳定系统,只有对控制电路进行精心的设计和计算后,在满足一定的条件下,闭环系统方能稳定的工作。

图1即为电压型控制的原理框图。

图1 电压型控制的原理框图
电流型控制是指将误差放大器输出信号与采样到的电感峰值电流进行比较.从而对输出脉冲的占空比进行控制,使输出的电感峰值电流随误差电压变化而变化。

电流控制型是一个一阶系统,而一阶系统是无条件的稳定系统。

是在传统的PWM电压控制的基础上,增加电流负反馈环节,使其成为一个双环控制系统,让电感电流不在是一个独立的变量,从而使开关变换器的二阶模型变成了一个一阶系统。

信号。

从图2中可以看出,与单一闭环的电压控制模式相比,电流模式控制是双闭环控制系统,外环由输出电压反馈电路形成,内环由互感器采样输出电感电流形成。

在该双环控制中,由电压外环控制电流内环,即内环电流在每一开关周期内上升,直至达到电压外环设定的误差电压阂值。

电流内环是瞬时快速进行逐个脉冲比较工作的,并且监测输出电感电流的动态变化,电压外环只负责控制输出电压。

因此电流型控制模式具有比起电压型控制模式大得多的带宽。

图2 电流型控制原理框图
电流型控制模式有不少优点:线性调整率(电压调整率)非常好;整个反馈电路变成了一阶电路,由于反馈信号电路与电压型相比,减少了一阶,因此误差放大器的控制环补偿网络得以简化,稳定度得以提高并且改善了频响,具有更大的增益带宽乘积;具有瞬时峰值电流限流功能;简化了反馈控制补偿网络、负载限流、磁通平衡等电路的设计,减少了元器件的数量和成本,这对提高开关电源的功率密度,实现小型化,模块化具有重要的意义。

当然了也有缺点,例如占空比大于50%时系统可能出现不稳定性,可能会产生次谐波振荡;另外,在电路拓扑结构选择上也有局限,在升压型和降压—升压型电路中,由于储能电感不在输出端,存在峰值电流与平均电流的误差。

对噪声敏感,抗噪声性差等等。

对于这样的缺点现在已经有了解决的方案,斜波补偿是很必要的一种方法。

2.芯片内部模块的设计
本目的是设计一个基于PWM控制的boost升压式DC-DC电源转换芯片,该芯片实现基于双环(电压环和电流环)一阶控制系统的电流模式PWM控制电路,在该集成模块内将包括控制、驱动、保护、检测电路等。

最后在电路系统基本框架的基础上,结合电力电子技术与微电子技术,采用采用BiCMOS工艺,具体针对DC-DC变换电路的实现进行研究。

系统方面的设计以及系统框图和各个功能模块的设计思想
图3 系统模块原理框图
下面分别的介绍系统各个功能模块:
①误差放大电路误差是用于调整变换器的高增益差分放大器。

放大器产生误差信号,他被供给PWM比较器。

当输出电压样本与内部电压基准比较并放大差值时产生误差信号。

误差放大器的2号脚Vref就是基准电压产生的固定基准。

② PWM比较器当来自电流取样信号,当然是电感电流和振荡器产生的补偿谐波想加后的电流信号,超过误差信号时,PWM比较器翻转,复位驱动锁存器断开电源开关,以此来控制开关管的开通与关断。

③振荡器模块振荡器电路提供一定频率的时钟信号,以设置变换器工作频率,以及用于斜率补偿的定时斜升波。

时钟波形为脉冲,而定时斜升波就是用于斜波补偿的,在电感取样端相加。

④驱动器锁存器锁存器包括RS触发器与相关逻辑,它通过接通和断开驱动电路来控制电源开关的状态。

来自锁存器的低输出电平把它断开。

正常工作方式下,在时钟脉冲期间触发器被置为高电平,当PWM比较器输出变为高电平时锁存器复位。

⑤软启动电路模块当整个系统刚启动时,电感产生一个很大的冲击电流,软启动让系统开始时不能在全占空比下启动,使输出电压以受控的上升速率增加至额定稳压点。

设计思想是利用外接电容的充放电使得占空比慢慢提高,达到输出稳定的目的。

⑥电流采样电路提供斜率补偿电流灵敏电压给PWM比较器。

⑦保护电路模块监视电源开关的电流,若该值超过额定峰值,则该电路作用,重新开始软启动周期。

3.设计中必须要考虑的几点细节问题
①关于斜波补偿
这是在上文提到过的电流控制型开关变换器中存在的根本性问题。

电流控制型就是将实际的电感电流和电压外环设定的电流值分别接到PWM比较器的两端进行比较,用来控
制开关管。

下面分析斜波补偿的原因。

如下图分别是占空比大于50%和小于50%的尖峰电流控制的电感电流波形图。

图4 斜坡补偿原理分析
其中Ve是电压放大器输出的电流设定值,ΔI0是扰动电流,m1,m2分别是电感电流的上升沿及下降沿斜率。

由图可知,当占空比小于50%时扰动电流引起的电流误差ΔI l变小了,而占空比大于50%时扰动电流引起的电流误差ΔI l变大了。

所以尖峰电流模式控制在占空比大于50%时,经过一个周期会将扰动信号扩大,从而造成工作不稳定,这时需给删比较器加坡度补偿以稳定电路,加了坡度补偿,即使占空比小于50%,电路性能也能得到改善。

因此斜坡补偿能很好的增加电路稳定性,使电感电流平均值不随占空比变化,并减小峰值和平均值的误差,斜坡补偿还能抑制次谐波振荡和振铃电感电流。

这里就不再详细地说明,斜波补偿方面必须要确定补偿波形的斜率的精确大小,采用的方法就是建立系统模型,导出传递函数,计算出补偿斜率的值。

这是很关键的一步。

②关于软启动问题
DC/ DC开关电源在启动过程中,容易产生浪涌电流,可能对电子系统产生损伤。

为避免启动时输入电流过大,输出电压过冲,在设计中必须采用软启动电路,该方法的不足之处是,当输出电压的阈值未达到时,发生浪涌电流现象可能对电子系统造成损伤,而且在输出电压达到阈值之后,也可能因为偶然的过流使得电源多次重新启动。

因此应采用基于周期到周期的电流限制门限来限制上电时的浪涌电流,并防止电源多次重新启动。

如图5
图5 软启动电路
4.总结
本文对开关电源工作原理进行了详细的分析,对芯片内部模块进行了设计,最后采用BiCMOS工艺对芯片进行实现。

,对芯片系统方面的设计又整体的把握,详细的论述了芯片设计的思想,这种方法对其他领域的芯片系统设计又很大帮助,因此有很大意义。

相关文档
最新文档