Matlab经典案例
matlab 模式识别案例
matlab 模式识别案例一、介绍模式识别是一种通过学习样本数据集合中的规律,从而对未知数据进行分类或预测的技术。
在实际应用中,模式识别广泛应用于图像识别、语音识别、生物信息学等领域。
而MATLAB作为一种强大的数学计算软件,提供了丰富的工具包和函数用于模式识别的实现。
本文将介绍十个基于MATLAB的模式识别案例。
二、案例一:手写数字识别手写数字识别是模式识别中的经典问题之一。
利用MATLAB的图像处理工具箱,可以实现对手写数字图像的分割、特征提取和分类。
通过对训练集的学习,建立一个分类器,然后用测试集进行验证,即可实现对手写数字的识别。
三、案例二:人脸识别人脸识别是模式识别中的重要应用之一。
利用MATLAB的人脸识别工具箱,可以实现对人脸图像的特征提取和分类。
通过对训练集的学习,建立一个人脸模型,然后用测试集进行验证,即可实现对人脸的识别。
四、案例三:语音识别语音识别是模式识别中的重要应用之一。
利用MATLAB的语音处理工具箱,可以实现对语音信号的特征提取和分类。
通过对训练集的学习,建立一个语音模型,然后用测试集进行验证,即可实现对语音的识别。
五、案例四:信号识别信号识别是模式识别中的重要应用之一。
利用MATLAB的信号处理工具箱,可以实现对信号的特征提取和分类。
通过对训练集的学习,建立一个信号模型,然后用测试集进行验证,即可实现对信号的识别。
六、案例五:文本分类文本分类是模式识别中的重要应用之一。
利用MATLAB的自然语言处理工具箱,可以实现对文本的特征提取和分类。
通过对训练集的学习,建立一个文本模型,然后用测试集进行验证,即可实现对文本的分类。
七、案例六:图像分割图像分割是模式识别中的重要问题之一。
利用MATLAB的图像处理工具箱,可以实现对图像的分割。
通过对图像的像素进行聚类,将图像划分为不同的区域,从而实现图像分割。
八、案例七:异常检测异常检测是模式识别中的重要问题之一。
利用MATLAB的统计工具箱,可以实现对数据的异常检测。
Matlab在工业控制中的应用案例
Matlab在工业控制中的应用案例一、引言工业控制是指利用自动化技术对工业过程进行监测、测量和调节,以实现生产过程的优化和自动化。
在工业控制中,Matlab作为一种强大的数学软件和编程环境,被广泛应用于设计、分析和优化各种控制系统。
本文将介绍几个Matlab在工业控制中的成功应用案例,展示其在提高生产效率、优化产品质量以及降低生产成本方面的巨大潜力。
二、Matlab在机器人控制中的应用机器人在工业生产中扮演着越来越重要的角色,其控制系统的设计和优化对于提高生产效率至关重要。
Matlab提供了丰富的机器人控制工具箱,可以用于实现机器人的运动控制、路径规划以及力学建模等。
例如,在某汽车制造厂中,利用Matlab开发了一套针对焊接机器人的控制系统。
该系统利用Matlab的机器人工具箱进行轨迹规划和动力学仿真,实现了焊接过程的精确控制和优化。
三、Matlab在过程控制中的应用过程控制是指对化工、电力、冶金等工业过程的监控和调节,以保证产品的质量和工艺的稳定性。
Matlab提供了强大的信号处理、统计分析以及模型预测控制工具箱,在过程控制中具有广泛的应用。
例如,在某化工厂中,使用Matlab开发了一套基于模型预测控制(MPC)的系统。
该系统利用Matlab的MPC工具箱对过程进行建模和优化,实时预测过程的动态行为并调整控制参数,从而大大提高了产品的品质和生产效率。
四、Matlab在智能仪表控制中的应用智能仪表控制是指利用传感技术和智能算法,对工业仪表进行监控和自动调节。
Matlab提供了丰富的图像处理、模式识别以及优化算法,可以用于智能仪表控制系统的设计和优化。
例如,在某化工厂的管道网络系统中,使用Matlab开发了一套智能泄漏检测系统。
该系统利用Matlab的图像处理和模式识别工具箱,对管道网络中的泄漏进行实时监测和识别,从而及时采取措施避免事故的发生。
五、Matlab在电力系统控制中的应用电力系统的稳定与安全是保障电网正常运行的关键。
MATLAB应用实例分析例分析
MATLAB应用实例分析例分析Matlab应用例题选讲仅举一些运用MATLAB的例子,这些问题在数学建模中时常遇到,希望能帮助同学们在短时间内方便、快捷的使用MATLAB 解决数学建模中的问题,并善用这一工具。
常用控制命令:clc:%清屏; clear:%清变量; save:%保存变量; load:%导入变量一、利用公式直接进行赋值计算本金P以每年n次,每次i%的增值率(n与i的乘积为每年增值额的百分比)增加,当增加到r×P 时所花费的时间T为:(利用复利计息公式可得到下式) lnrnT() r,P,P(1,0.01i),T,r,2,i,0.5,n,12nln(1,0.01i)MATLAB 的表达形式及结果如下:>> r=2;i=0.5;n=12; %变量赋值>> T=log(r)/(n*log(1+0.01*i)) 计算结果显示为:T = 11.5813即所花费的时间为T=11.5813 年。
分析:上面的问题是一个利用公式直接进行赋值计算问题,实际中若变量在某个范围变化取很多值时,使用MATLAB,将倍感方便,轻松得到结果,其绘图功能还能将结果轻松的显示出来,变量之间的变化规律将一目了然。
若r在[1,9]变化,i在[0.5,3.5]变化;我们将MATLAB的表达式作如下改动,结果如图1。
r=1:0.5:9;i=0.5:0.5:3.5;n=12;p=1./(n*log(1+0.01*i));T=log(r')*p;plot(r,T)xlabel('r') %给x轴加标题ylabel('T') %给y轴加标题q=ones(1,length(i));text(7*q-0.2,[T(14,1:5)+0.5,T(14,6)-0.1,T(14,7)-0.9],num2str(i'))40350.5302520T 1151.510 22.55 33.50123456789r图11从图1中既可以看到T随r的变化规律,而且还能看到i的不同取值对T—r 曲线的影响(图中的六条曲线分别代表i的不同取值)。
Matlab技术的实际应用案例解析
Matlab技术的实际应用案例解析随着计算机技术的发展,Matlab作为一种高级技术语言,被广泛应用于多个领域。
无论是在科研领域还是工程实践中,Matlab都扮演着重要的角色。
本文将通过几个实际应用案例,探讨Matlab技术在不同领域的应用,以期给读者提供一些启示和参考。
一、图像处理领域图像处理是Matlab的一项重要应用领域。
利用Matlab提供的强大的图像处理工具箱,可以实现各种功能,例如图像增强、滤波、分割和识别等。
以下将介绍一个实际应用案例。
案例一:肿瘤图像分割肿瘤图像的分割对于医学诊断非常关键。
在某医院的研究中,研究人员利用Matlab进行了肿瘤图像的分割工作。
首先,他们先对肿瘤图像进行预处理,包括降噪和增强等操作。
然后,利用Matlab提供的图像分割算法,将肿瘤与周围组织分离出来。
最后,通过对分割后的图像进行计算,可以得到肿瘤的大小、形状等信息,为医生提供诊断依据。
二、信号处理领域信号处理是Matlab的另一个重要应用领域。
通过利用Matlab提供的信号处理工具箱,可以实现信号的滤波、谱分析、峰值检测等功能。
以下将介绍一个实际应用案例。
案例二:语音信号增强在通信领域,语音信号是一种常见的信号类型。
在某通信公司的项目中,研发团队利用Matlab对语音信号进行增强。
首先,他们通过Matlab提供的滤波器设计算法,设计了一种高效的降噪滤波器。
然后,他们利用该滤波器对采集到的语音信号进行滤波处理,去除噪声成分。
最后,通过对处理后的语音信号进行主观听感和客观评价,证明了该算法的有效性。
三、控制系统领域Matlab在控制系统领域的应用也非常广泛。
通过Matlab提供的控制系统工具箱,可以进行控制系统的建模、仿真和优化等操作。
以下将介绍一个实际应用案例。
案例三:智能交通信号优化在城市交通系统中,智能交通信号优化是一个重要的研究方向。
在某城市的交通管理局的项目中,研究人员利用Matlab进行了智能交通信号优化的仿真研究。
matlab编程实例100例(精编文档).doc
【最新整理,下载后即可编辑】1-32是:图形应用篇33-66是:界面设计篇67-84是:图形处理篇85-100是:数值分析篇实例1:三角函数曲线(1)function shili01h0=figure('toolbar','none',...'position',[198****0300],...'name','实例01');h1=axes('parent',h0,...'visible','off');x=-pi:0.05:pi;y=sin(x);plot(x,y);xlabel('自变量X');ylabel('函数值Y');title('SIN( )函数曲线');grid on实例2:三角函数曲线(2)function shili02h0=figure('toolbar','none',...'position',[200 150 450 350],...'name','实例02');x=-pi:0.05:pi;y=sin(x)+cos(x);plot(x,y,'-*r','linewidth',1);grid onxlabel('自变量X');ylabel('函数值Y');title('三角函数');实例3:图形的叠加function shili03h0=figure('toolbar','none',...'position',[200 150 450 350],...'name','实例03');x=-pi:0.05:pi;y1=sin(x);y2=cos(x);plot(x,y1,...'-*r',...x,y2,...'--og');grid onxlabel('自变量X');ylabel('函数值Y');title('三角函数');实例4:双y轴图形的绘制function shili04h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例04');x=0:900;a=1000;b=0.005;y1=2*x;y2=cos(b*x);[haxes,hline1,hline2]=plotyy(x,y1,x,y2,'semilogy','plot'); axes(haxes(1))ylabel('semilog plot');axes(haxes(2))ylabel('linear plot');实例5:单个轴窗口显示多个图形function shili05h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例05');t=0:pi/10:2*pi;[x,y]=meshgrid(t);subplot(2,2,1)plot(sin(t),cos(t))axis equalsubplot(2,2,2)z=sin(x)-cos(y);plot(t,z)axis([0 2*pi -2 2])subplot(2,2,3)h=sin(x)+cos(y);plot(t,h)axis([0 2*pi -2 2])subplot(2,2,4)g=(sin(x).^2)-(cos(y).^2);plot(t,g)axis([0 2*pi -1 1])实例6:图形标注function shili06h0=figure('toolbar','none',...'position',[200 150 450 400],...'name','实例06');t=0:pi/10:2*pi;h=plot(t,sin(t));xlabel('t=0到2\pi','fontsize',16);ylabel('sin(t)','fontsize',16);title('\it{从0to2\pi 的正弦曲线}','fontsize',16) x=get(h,'xdata');y=get(h,'ydata');imin=find(min(y)==y);imax=find(max(y)==y);text(x(imin),y(imin),...['\leftarrow最小值=',num2str(y(imin))],...'fontsize',16)text(x(imax),y(imax),...['\leftarrow最大值=',num2str(y(imax))],...'fontsize',16)实例7:条形图形function shili07h0=figure('toolbar','none',...'position',[200 150 450 350],...'name','实例07');tiao1=[562 548 224 545 41 445 745 512];tiao2=[47 48 57 58 54 52 65 48];t=0:7;bar(t,tiao1)xlabel('X轴');ylabel('TIAO1值');h1=gca;h2=axes('position',get(h1,'position'));plot(t,tiao2,'linewidth',3)set(h2,'yaxislocation','right','color','none','xticklabel',[]) 实例8:区域图形function shili08h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例08');x=91:95;profits1=[88 75 84 93 77];profits2=[51 64 54 56 68];profits3=[42 54 34 25 24];profits4=[26 38 18 15 4];area(x,profits1,'facecolor',[0.5 0.9 0.6],...'edgecolor','b',...'linewidth',3)hold onarea(x,profits2,'facecolor',[0.9 0.85 0.7],...'edgecolor','y',...'linewidth',3)hold onarea(x,profits3,'facecolor',[0.3 0.6 0.7],...'edgecolor','r',...'linewidth',3)hold onarea(x,profits4,'facecolor',[0.6 0.5 0.9],...'edgecolor','m',...'linewidth',3)hold offset(gca,'xtick',[91:95])set(gca,'layer','top')gtext('\leftarrow第一季度销量') gtext('\leftarrow第二季度销量') gtext('\leftarrow第三季度销量') gtext('\leftarrow第四季度销量') xlabel('年','fontsize',16);ylabel('销售量','fontsize',16);实例9:饼图的绘制function shili09h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例09');t=[54 21 35;68 54 35;45 25 12;48 68 45;68 54 69];x=sum(t);h=pie(x);textobjs=findobj(h,'type','text');str1=get(textobjs,{'string'});val1=get(textobjs,{'extent'});oldext=cat(1,val1{:});names={'商品一:';'商品二:';'商品三:'};str2=strcat(names,str1);set(textobjs,{'string'},str2)val2=get(textobjs,{'extent'});newext=cat(1,val2{:});offset=sign(oldext(:,1)).*(newext(:,3)-oldext(:,3))/2; pos=get(textobjs,{'position'});textpos=cat(1,pos{:});textpos(:,1)=textpos(:,1)+offset;set(textobjs,{'position'},num2cell(textpos,[3,2]))实例10:阶梯图function shili10h0=figure('toolbar','none',...'position',[200 150 450 400],...'name','实例10');a=0.01;b=0.5;t=0:10;f=exp(-a*t).*sin(b*t);stairs(t,f)hold onplot(t,f,':*')hold offglabel='函数e^{-(\alpha*t)}sin\beta*t的阶梯图'; gtext(glabel,'fontsize',16)xlabel('t=0:10','fontsize',16)axis([0 10 -1.2 1.2])实例11:枝干图function shili11h0=figure('toolbar','none',...'position',[200 150 450 350],...'name','实例11');x=0:pi/20:2*pi;y1=sin(x);y2=cos(x);h1=stem(x,y1+y2);hold onh2=plot(x,y1,'^r',x,y2,'*g');hold offh3=[h1(1);h2];legend(h3,'y1+y2','y1=sin(x)','y2=cos(x)') xlabel('自变量X');ylabel('函数值Y');title('正弦函数与余弦函数的线性组合'); 实例12:罗盘图function shili12h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例12');winddirection=[54 24 65 84256 12 235 62125 324 34 254];windpower=[2 5 5 36 8 12 76 14 10 8];rdirection=winddirection*pi/180;[x,y]=pol2cart(rdirection,windpower); compass(x,y);desc={'风向和风力','北京气象台','10月1日0:00到','10月1日12:00'};gtext(desc)实例13:轮廓图function shili13h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例13');[th,r]=meshgrid((0:10:360)*pi/180,0:0.05:1); [x,y]=pol2cart(th,r);z=x+i*y;f=(z.^4-1).^(0.25);contour(x,y,abs(f),20)axis equalxlabel('实部','fontsize',16);ylabel('虚部','fontsize',16);h=polar([0 2*pi],[0 1]);delete(h)hold oncontour(x,y,abs(f),20)实例14:交互式图形function shili14h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例14');axis([0 10 0 10]);hold onx=[];y=[];n=0;disp('单击鼠标左键点取需要的点'); disp('单击鼠标右键点取最后一个点'); but=1;while but==1[xi,yi,but]=ginput(1);plot(xi,yi,'bo')n=n+1;disp('单击鼠标左键点取下一个点');x(n,1)=xi;y(n,1)=yi;endt=1:n;ts=1:0.1:n;xs=spline(t,x,ts);ys=spline(t,y,ts);plot(xs,ys,'r-');hold off实例14:交互式图形function shili14h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例14');axis([0 10 0 10]);hold onx=[];y=[];n=0;disp('单击鼠标左键点取需要的点'); disp('单击鼠标右键点取最后一个点'); but=1;while but==1[xi,yi,but]=ginput(1);plot(xi,yi,'bo')n=n+1;disp('单击鼠标左键点取下一个点');x(n,1)=xi;y(n,1)=yi;endt=1:n;ts=1:0.1:n;xs=spline(t,x,ts);ys=spline(t,y,ts);plot(xs,ys,'r-');hold off实例15:变换的傅立叶函数曲线function shili15h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例15');axis equalm=moviein(20,gcf);set(gca,'nextplot','replacechildren')h=uicontrol('style','slider','position',...[100 10 500 20],'min',1,'max',20)for j=1:20plot(fft(eye(j+16)))set(h,'value',j)m(:,j)=getframe(gcf);endclf;axes('position',[0 0 1 1]);movie(m,30)实例16:劳伦兹非线形方程的无序活动function shili15h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例15');axis equalm=moviein(20,gcf);set(gca,'nextplot','replacechildren')h=uicontrol('style','slider','position',...[100 10 500 20],'min',1,'max',20)for j=1:20plot(fft(eye(j+16)))set(h,'value',j)m(:,j)=getframe(gcf);endclf;axes('position',[0 0 1 1]);movie(m,30)实例17:填充图function shili17h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例17');t=(1:2:15)*pi/8;x=sin(t);y=cos(t);fill(x,y,'r')axis square offtext(0,0,'STOP',...'color',[1 1 1],...'fontsize',50,...'horizontalalignment','center') 例18:条形图和阶梯形图function shili18h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例18');subplot(2,2,1)x=-3:0.2:3;y=exp(-x.*x);bar(x,y)title('2-D Bar Chart')subplot(2,2,2)x=-3:0.2:3;y=exp(-x.*x);bar3(x,y,'r')title('3-D Bar Chart')subplot(2,2,3)x=-3:0.2:3;y=exp(-x.*x);stairs(x,y)title('Stair Chart')subplot(2,2,4)x=-3:0.2:3;y=exp(-x.*x);barh(x,y)title('Horizontal Bar Chart')实例19:三维曲线图function shili19h0=figure('toolbar','none',...'position',[200 150 450 400],...'name','实例19');subplot(2,1,1)x=linspace(0,2*pi);y1=sin(x);y2=cos(x);y3=sin(x)+cos(x);z1=zeros(size(x));z2=0.5*z1;z3=z1;plot3(x,y1,z1,x,y2,z2,x,y3,z3)grid onxlabel('X轴');ylabel('Y轴');zlabel('Z轴');title('Figure1:3-D Plot')subplot(2,1,2)x=linspace(0,2*pi);y1=sin(x);y2=cos(x);y3=sin(x)+cos(x);z1=zeros(size(x));z2=0.5*z1;z3=z1;plot3(x,z1,y1,x,z2,y2,x,z3,y3)grid onxlabel('X轴');ylabel('Y轴');zlabel('Z轴');title('Figure2:3-D Plot')实例20:图形的隐藏属性function shili20h0=figure('toolbar','none',...'position',[200 150 450 300],...'name','实例20');subplot(1,2,1)[x,y,z]=sphere(10);mesh(x,y,z)axis offtitle('Figure1:Opaque')hidden onsubplot(1,2,2)[x,y,z]=sphere(10);mesh(x,y,z)axis offtitle('Figure2:Transparent') hidden off实例21PEAKS函数曲线function shili21h0=figure('toolbar','none',...'position',[200 100 450 450],...'name','实例21');[x,y,z]=peaks(30);subplot(2,1,1)x=x(1,:);y=y(:,1);i=find(y>0.8&y<1.2);j=find(x>-0.6&x<0.5);z(i,j)=nan*z(i,j);surfc(x,y,z)xlabel('X轴');ylabel('Y轴');zlabel('Z轴');title('Figure1:surfc函数形成的曲面') subplot(2,1,2)x=x(1,:);y=y(:,1);i=find(y>0.8&y<1.2);j=find(x>-0.6&x<0.5);z(i,j)=nan*z(i,j);surfl(x,y,z)xlabel('X轴');ylabel('Y轴');zlabel('Z轴');title('Figure2:surfl函数形成的曲面') 实例22:片状图function shili22h0=figure('toolbar','none',...'position',[200 150 550 350],...'name','实例22');subplot(1,2,1)x=rand(1,20);y=rand(1,20);z=peaks(x,y*pi);t=delaunay(x,y);trimesh(t,x,y,z)hidden offtitle('Figure1:Triangular Surface Plot'); subplot(1,2,2)x=rand(1,20);y=rand(1,20);z=peaks(x,y*pi);t=delaunay(x,y);trisurf(t,x,y,z)title('Figure1:Triangular Surface Plot'); 实例23:视角的调整function shili23h0=figure('toolbar','none',...'position',[200 150 450 350],...'name','实例23');x=-5:0.5:5;[x,y]=meshgrid(x);r=sqrt(x.^2+y.^2)+eps;z=sin(r)./r;subplot(2,2,1)surf(x,y,z)xlabel('X-axis')ylabel('Y-axis')zlabel('Z-axis')title('Figure1')view(-37.5,30)subplot(2,2,2)surf(x,y,z)xlabel('X-axis')ylabel('Y-axis')zlabel('Z-axis')title('Figure2')view(-37.5+90,30) subplot(2,2,3)surf(x,y,z)xlabel('X-axis')ylabel('Y-axis')zlabel('Z-axis')title('Figure3')view(-37.5,60)subplot(2,2,4)surf(x,y,z)xlabel('X-axis')ylabel('Y-axis')zlabel('Z-axis')title('Figure4')view(180,0)实例24:向量场的绘制function shili24h0=figure('toolbar','none',...'position',[200 150 450 350],...'name','实例24');subplot(2,2,1)z=peaks;ribbon(z)title('Figure1')subplot(2,2,2)[x,y,z]=peaks(15);[dx,dy]=gradient(z,0.5,0.5); contour(x,y,z,10)hold onquiver(x,y,dx,dy)hold offtitle('Figure2')subplot(2,2,3)[x,y,z]=peaks(15);[nx,ny,nz]=surfnorm(x,y,z);surf(x,y,z)hold onquiver3(x,y,z,nx,ny,nz)hold offtitle('Figure3')subplot(2,2,4)x=rand(3,5);y=rand(3,5);z=rand(3,5);c=rand(3,5);fill3(x,y,z,c)grid ontitle('Figure4')实例25:灯光定位function shili25h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例25');vert=[1 1 1;1 2 1;2 2 1;2 1 1;1 1 2;12 2;2 2 2;2 1 2];fac=[1 2 3 4;2 6 7 3;4 3 7 8;15 8 4;1 2 6 5;5 6 7 8];grid offsphere(36)h=findobj('type','surface');set(h,'facelighting','phong',...'facecolor',...'interp',...'edgecolor',[0.4 0.4 0.4],...'backfacelighting',...'lit')hold onpatch('faces',fac,'vertices',vert,...'facecolor','y');light('position',[1 3 2]);light('position',[-3 -1 3]);material shinyaxis vis3d offhold off实例26:柱状图function shili26h0=figure('toolbar','none',...'position',[200 50 450 450],...'name','实例26'); subplot(2,1,1)x=[5 2 18 7 39 8 65 5 54 3 2];bar(x)xlabel('X轴');ylabel('Y轴');title('第一子图');subplot(2,1,2)y=[5 2 18 7 39 8 65 5 54 3 2];barh(y)xlabel('X轴');ylabel('Y轴');title('第二子图');实例27:设置照明方式function shili27h0=figure('toolbar','none',...'position',[200 150 450 350],...'name','实例27');subplot(2,2,1)sphereshading flatcamlight leftcamlight rightlighting flatcolorbaraxis offtitle('Figure1')subplot(2,2,2)sphereshading flatcamlight leftcamlight rightlighting gouraudcolorbaraxis offtitle('Figure2')subplot(2,2,3)sphereshading interpcamlight rightcamlight leftlighting phongaxis offtitle('Figure3')subplot(2,2,4)sphereshading flatcamlight leftcamlight rightlighting nonecolorbaraxis offtitle('Figure4')实例28:羽状图function shili28h0=figure('toolbar','none',...'position',[200 150 450 350],...'name','实例28');subplot(2,1,1)alpha=90:-10:0;r=ones(size(alpha));m=alpha*pi/180;n=r*10;[u,v]=pol2cart(m,n);feather(u,v)title('羽状图')axis([0 20 0 10])subplot(2,1,2)t=0:0.5:10;y=exp(-x*t);feather(y)title('复数矩阵的羽状图')实例29:立体透视(1)function shili29h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例29');[x,y,z]=meshgrid(-2:0.1:2,...-2:0.1:2,...-2:0.1:2);v=x.*exp(-x.^2-y.^2-z.^2);grid onfor i=-2:0.5:2;h1=surf(linspace(-2,2,20),...linspace(-2,2,20),...zeros(20)+i);rotate(h1,[1 -1 1],30)dx=get(h1,'xdata');dy=get(h1,'ydata');dz=get(h1,'zdata');delete(h1)slice(x,y,z,v,[-2 2],2,-2)hold onslice(x,y,z,v,dx,dy,dz)hold offaxis tightview(-5,10)drawnowend实例30:立体透视(2)function shili30h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例30');[x,y,z]=meshgrid(-2:0.1:2,...-2:0.1:2,...-2:0.1:2);v=x.*exp(-x.^2-y.^2-z.^2); [dx,dy,dz]=cylinder;slice(x,y,z,v,[-2 2],2,-2)for i=-2:0.2:2h=surface(dx+i,dy,dz);rotate(h,[1 0 0],90)xp=get(h,'xdata');yp=get(h,'ydata');zp=get(h,'zdata');delete(h)hold onhs=slice(x,y,z,v,xp,yp,zp);axis tightxlim([-3 3])view(-10,35)drawnowdelete(hs)hold offend实例31:表面图形function shili31h0=figure('toolbar','none',...'position',[200 150 550 250],...'name','实例31');subplot(1,2,1)x=rand(100,1)*16-8;y=rand(100,1)*16-8;r=sqrt(x.^2+y.^2)+eps;z=sin(r)./r;xlin=linspace(min(x),max(x),33); ylin=linspace(min(y),max(y),33); [X,Y]=meshgrid(xlin,ylin);Z=griddata(x,y,z,X,Y,'cubic'); mesh(X,Y,Z)axis tighthold onplot3(x,y,z,'.','Markersize',20) subplot(1,2,2)k=5;n=2^k-1;theta=pi*(-n:2:n)/n;phi=(pi/2)*(-n:2:n)'/n;X=cos(phi)*cos(theta);Y=cos(phi)*sin(theta);Z=sin(phi)*ones(size(theta)); colormap([0 0 0;1 1 1])C=hadamard(2^k);surf(X,Y,Z,C)axis square实例32:沿曲线移动的小球h0=figure('toolbar','none',...'position',[198****8468],...'name','实例32');h1=axes('parent',h0,...'position',[0.15 0.45 0.7 0.5],...'visible','on');t=0:pi/24:4*pi;y=sin(t);plot(t,y,'b')n=length(t);h=line('color',[0 0.5 0.5],...'linestyle','.',...'markersize',25,...'erasemode','xor');k1=uicontrol('parent',h0,...'style','pushbutton',...'position',[80 100 50 30],...'string','开始',...'callback',[...'i=1;',...'k=1;,',...'m=0;,',...'while 1,',...'if k==0,',...'break,',...'end,',...'if k~=0,',...'set(h,''xdata'',t(i),''ydata'',y(i)),',...'drawnow;,',...'i=i+1;,',...'if i>n,',...'m=m+1;,',...'i=1;,',...'end,',...'end,',...'end']);k2=uicontrol('parent',h0,...'style','pushbutton',...'position',[180 100 50 30],...'string','停止',...'callback',[...'k=0;,',...'set(e1,''string'',m),',...'p=get(h,''xdata'');,',...'q=get(h,''ydata'');,',...'set(e2,''string'',p);,',...'set(e3,''string'',q)']); k3=uicontrol('parent',h0,...'style','pushbutton',...'position',[280 100 50 30],...'string','关闭',...'callback','close');e1=uicontrol('parent',h0,...'style','edit',...'position',[60 30 60 20]);t1=uicontrol('parent',h0,...'style','text',...'string','循环次数',...'position',[60 50 60 20]);e2=uicontrol('parent',h0,...'style','edit',...'position',[180 30 50 20]);t2=uicontrol('parent',h0,...'style','text',...'string','终点的X坐标值',...'position',[155 50 100 20]);e3=uicontrol('parent',h0,...'style','edit',...'position',[300 30 50 20]);t3=uicontrol('parent',h0,...'style','text',...'string','终点的Y坐标值',...'position',[275 50 100 20]);实例33:曲线转换按钮h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例33');x=0:0.5:2*pi;y=sin(x);h=plot(x,y);grid onhuidiao=[...'if i==1,',...'i=0;,',...'y=cos(x);,',...'delete(h),',...'set(hm,''string'',''正弦函数''),',...'h=plot(x,y);,',...'grid on,',...'else if i==0,',...'i=1;,',...'y=sin(x);,',...'set(hm,''string'',''余弦函数''),',...'delete(h),',...'h=plot(x,y);,',...'grid on,',...'end,',...'end'];hm=uicontrol(gcf,'style','pushbutton',...'string','余弦函数',...'callback',huidiao);i=1;set(hm,'position',[250 20 60 20]);set(gca,'position',[0.2 0.2 0.6 0.6])title('按钮的使用')hold on实例34:栅格控制按钮h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例34');x=0:0.5:2*pi;y=sin(x);plot(x,y)huidiao1=[...'set(h_toggle2,''value'',0),',...'grid on,',...];huidiao2=[...'set(h_toggle1,''value'',0),',...'grid off,',...];h_toggle1=uicontrol(gcf,'style','togglebutton',...'string','grid on',...'value',0,...'position',[20 45 50 20],...'callback',huidiao1);h_toggle2=uicontrol(gcf,'style','togglebutton',...'string','grid off',...'value',0,...'position',[20 20 50 20],...'callback',huidiao2);set(gca,'position',[0.2 0.2 0.6 0.6])title('开关按钮的使用')实例35:编辑框的使用h0=figure('toolbar','none',...'position',[200 150 350 250],...'name','实例35');f='Please input the letter';huidiao1=[...'g=upper(f);,',...'set(h2_edit,''string'',g),',...];huidiao2=[...'g=lower(f);,',...'set(h2_edit,''string'',g),',...];h1_edit=uicontrol(gcf,'style','edit',...'position',[100 200 100 50],...'HorizontalAlignment','left',...'string','Please input the letter',...'callback','f=get(h1_edit,''string'');',...'background','w',...'max',5,...'min',1);h2_edit=uicontrol(gcf,'style','edit',...'HorizontalAlignment','left',...'position',[100 100 100 50],...'background','w',...'max',5,...'min',1);h1_button=uicontrol(gcf,'style','pushbutton',...'string','小写变大写',...'position',[100 45 100 20],...'callback',huidiao1);h2_button=uicontrol(gcf,'style','pushbutton',...'string','大写变小写',...'position',[100 20 100 20],...'callback',huidiao2);实例36:弹出式菜单h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例36');x=0:0.5:2*pi;y=sin(x);h=plot(x,y);grid onhm=uicontrol(gcf,'style','popupmenu',...'string',...'sin(x)|cos(x)|sin(x)+cos(x)|exp(-sin(x))',...'position',[250 20 50 20]);set(hm,'value',1)huidiao=[...'v=get(hm,''value'');,',...'switch v,',...'case 1,',...'delete(h),',...'y=sin(x);,',...'h=plot(x,y);,',...'grid on,',...'case 2,',...'delete(h),',...'y=cos(x);,',...'h=plot(x,y);,',...'grid on,',...'case 3,',...'delete(h),',...'y=sin(x)+cos(x);,',...'h=plot(x,y);,',...'grid on,',...'case 4,',...'delete(h),',...'y=exp(-sin(x));,',...'h=plot(x,y);,',...'grid on,',...'end'];set(hm,'callback',huidiao)set(gca,'position',[0.2 0.2 0.6 0.6]) title('弹出式菜单的使用')实例37:滑标的使用h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例37');[x,y]=meshgrid(-8:0.5:8);r=sqrt(x.^2+y.^2)+eps;z=sin(r)./r;h0=mesh(x,y,z);h1=axes('position',...[0.2 0.2 0.5 0.5],...'visible','off');htext=uicontrol(gcf,...'units','points',...'position',[20 30 45 15],...'string','brightness',...'style','text');hslider=uicontrol(gcf,...'units','points',...'position',[10 10 300 15],...'min',-1,...'max',1,...'style','slider',...'callback',...'brighten(get(hslider,''value''))'); 实例38:多选菜单h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例38');[x,y]=meshgrid(-8:0.5:8);r=sqrt(x.^2+y.^2)+eps;z=sin(r)./r;h0=mesh(x,y,z);hlist=uicontrol(gcf,'style','listbox',...'string','default|spring|summer|autumn|winter',...'max',5,...'min',1,...'position',[20 20 80 100],...'callback',[...'k=get(hlist,''value'');,',...'switch k,',...'case 1,',...'colormap default,',...'case 2,',...'colormap spring,',...'case 3,',...'colormap summer,',...'case 4,',...'colormap autumn,',...'case 5,',...'colormap winter,',...'end']);实例39:菜单控制的使用h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例39');x=0:0.5:2*pi;y=cos(x);h=plot(x,y);grid onset(gcf,'toolbar','none')hm=uimenu('label','example');huidiao1=[...'set(hm_gridon,''checked'',''on''),',...'set(hm_gridoff,''checked'',''off''),',...'grid on'];huidiao2=[...'set(hm_gridoff,''checked'',''on''),',...'set(hm_gridon,''checked'',''off''),',...'grid off'];hm_gridon=uimenu(hm,'label','grid on',...'checked','on',...'callback',huidiao1);hm_gridoff=uimenu(hm,'label','grid off',...'checked','off',...'callback',huidiao2);实例40:UIMENU菜单的应用h0=figure('toolbar','none',...'position',[200 150 450 250],...'name','实例40');h1=uimenu(gcf,'label','函数');h11=uimenu(h1,'label','轮廓图',...'callback',[...'set(h31,''checked'',''on''),',...'set(h32,''checked'',''off''),',...'[x,y,z]=peaks;,',...'contour3(x,y,z,30)']);h12=uimenu(h1,'label','高斯分布',...'callback',[...'set(h31,''checked'',''on''),',...'set(h32,''checked'',''off''),',...'mesh(peaks);,',...'axis tight']);。
MATLAB_智能算法30个案例分析
MATLAB_智能算法30个案例分析1.线性回归:使用MATLAB的回归工具箱,对给定的数据集进行线性回归分析,获取拟合的直线方程。
2.逻辑回归:使用MATLAB的分类工具箱,对给定的数据集进行逻辑回归分析,建立分类模型。
3.K均值聚类:使用MATLAB的聚类工具箱,对给定的数据集进行K 均值聚类算法,将数据集分为多个簇。
4.支持向量机:使用MATLAB的SVM工具箱,对给定的数据集进行支持向量机算法,建立分类或回归模型。
5.决策树:使用MATLAB的分类工具箱,对给定的数据集进行决策树分析,建立决策模型。
6.随机森林:使用MATLAB的分类和回归工具箱,对给定的数据集进行随机森林算法,集成多个决策树模型。
7. AdaBoost:使用MATLAB的分类工具箱,对给定的数据集进行AdaBoost算法,提升分类性能。
8.遗传算法:使用MATLAB的全局优化工具箱,利用遗传算法进行优化问题的求解。
9.粒子群优化:使用MATLAB的全局优化工具箱,利用粒子群优化算法进行优化问题的求解。
10.模拟退火算法:使用MATLAB的全局优化工具箱,利用模拟退火算法进行优化问题的求解。
11.神经网络:使用MATLAB的神经网络工具箱,构建和训练多层感知机模型。
12.卷积神经网络:使用MATLAB的深度学习工具箱,构建和训练卷积神经网络模型。
13.循环神经网络:使用MATLAB的深度学习工具箱,构建和训练循环神经网络模型。
14.长短期记忆网络:使用MATLAB的深度学习工具箱,构建和训练长短期记忆网络模型。
15.GAN(生成对抗网络):使用MATLAB的深度学习工具箱,构建和训练生成对抗网络模型。
16.自编码器:使用MATLAB的深度学习工具箱,构建和训练自编码器模型。
17.强化学习:使用MATLAB的强化学习工具箱,构建和训练强化学习模型。
18.关联规则挖掘:使用MATLAB的数据挖掘工具箱,发现数据中的关联规则。
MATLAB智能算法30个案例分析
MATLAB 智能算法30个案例分析第1 章1、案例背景遗传算法(Genetic Algorithm,GA)是一种进化算法,其基本原理是仿效生物界中的“物竞天择、适者生存”的演化法则。
遗传算法的做法是把问题参数编码为染色体,再利用迭代的方式进行选择、交叉以及变异等运算来交换种群中染色体的信息,最终生成符合优化目标的染色体。
在遗传算法中,染色体对应的是数据或数组,通常是由一维的串结构数据来表示,串上各个位置对应基因的取值。
基因组成的串就是染色体,或者叫基因型个体( Individuals) 。
一定数量的个体组成了群体(Population)。
群体中个体的数目称为群体大小(Population Size),也叫群体规模。
而各个个体对环境的适应程度叫做适应度( Fitness) 。
2、案例目录:1.1 理论基础1.1.1 遗传算法概述1. 编码2. 初始群体的生成3. 适应度评估4. 选择5. 交叉6. 变异1.1.2 设菲尔德遗传算法工具箱1. 工具箱简介2. 工具箱添加1.2 案例背景1.2.1 问题描述1. 简单一元函数优化2. 多元函数优化1.2.2 解决思路及步骤1.3 MATLAB程序实现1.3.1 工具箱结构1.3.2 遗传算法中常用函数1. 创建种群函数—crtbp2. 适应度计算函数—ranking3. 选择函数—select4. 交叉算子函数—recombin5. 变异算子函数—mut6. 选择函数—reins7. 实用函数—bs2rv8. 实用函数—rep1.3.3 遗传算法工具箱应用举例1. 简单一元函数优化2. 多元函数优化1.4 延伸阅读1.5 参考文献3、主程序:1. 简单一元函数优化:clcclear allclose all%% 画出函数图figure(1);hold on;lb=1;ub=2; %函数自变量范围【1,2】ezplot('sin(10*pi*X)/X',[lb,ub]); %画出函数曲线xlabel('自变量/X')ylabel('函数值/Y')%% 定义遗传算法参数NIND=40; %个体数目MAXGEN=20; %最大遗传代数PRECI=20; %变量的二进制位数GGAP=0.95; %代沟px=0.7; %交叉概率pm=0.01; %变异概率trace=zeros(2,MAXGEN); %寻优结果的初始值FieldD=[PRECI;lb;ub;1;0;1;1]; %区域描述器Chrom=crtbp(NIND,PRECI); %初始种群%% 优化gen=0; %代计数器X=bs2rv(Chrom,FieldD); %计算初始种群的十进制转换ObjV=sin(10*pi*X)./X; %计算目标函数值while gen<MAXGENFitnV=ranking(ObjV); %分配适应度值SelCh=select('sus',Chrom,FitnV,GGAP); %选择SelCh=recombin('xovsp',SelCh,px); %重组SelCh=mut(SelCh,pm); %变异X=bs2rv(SelCh,FieldD); %子代个体的十进制转换ObjVSel=sin(10*pi*X)./X; %计算子代的目标函数值[Chrom,ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel); %重插入子代到父代,得到新种群X=bs2rv(Chrom,FieldD);gen=gen+1; %代计数器增加%获取每代的最优解及其序号,Y为最优解,I为个体的序号[Y,I]=min(ObjV);trace(1,gen)=X(I); %记下每代的最优值trace(2,gen)=Y; %记下每代的最优值endplot(trace(1,:),trace(2,:),'bo'); %画出每代的最优点grid on;plot(X,ObjV,'b*'); %画出最后一代的种群hold off%% 画进化图figure(2);plot(1:MAXGEN,trace(2,:));grid onxlabel('遗传代数')ylabel('解的变化')title('进化过程')bestY=trace(2,end);bestX=trace(1,end);fprintf(['最优解:\nX=',num2str(bestX),'\nY=',num2str(bestY),'\n'])2. 多元函数优化clcclear allclose all%% 画出函数图figure(1);lbx=-2;ubx=2; %函数自变量x范围【-2,2】lby=-2;uby=2; %函数自变量y范围【-2,2】ezmesh('y*sin(2*pi*x)+x*cos(2*pi*y)',[lbx,ubx,lby,uby],50); %画出函数曲线hold on;%% 定义遗传算法参数NIND=40; %个体数目MAXGEN=50; %最大遗传代数PRECI=20; %变量的二进制位数GGAP=0.95; %代沟px=0.7; %交叉概率pm=0.01; %变异概率trace=zeros(3,MAXGEN); %寻优结果的初始值FieldD=[PRECI PRECI;lbx lby;ubx uby;1 1;0 0;1 1;1 1]; %区域描述器Chrom=crtbp(NIND,PRECI*2); %初始种群%% 优化gen=0; %代计数器XY=bs2rv(Chrom,FieldD); %计算初始种群的十进制转换X=XY(:,1);Y=XY(:,2);ObjV=Y.*sin(2*pi*X)+X.*cos(2*pi*Y); %计算目标函数值while gen<MAXGENFitnV=ranking(-ObjV); %分配适应度值SelCh=select('sus',Chrom,FitnV,GGAP); %选择SelCh=recombin('xovsp',SelCh,px); %重组SelCh=mut(SelCh,pm); %变异XY=bs2rv(SelCh,FieldD); %子代个体的十进制转换X=XY(:,1);Y=XY(:,2);ObjVSel=Y.*sin(2*pi*X)+X.*cos(2*pi*Y); %计算子代的目标函数值[Chrom,ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel); %重插入子代到父代,得到新种群XY=bs2rv(Chrom,FieldD);gen=gen+1; %代计数器增加%获取每代的最优解及其序号,Y为最优解,I为个体的序号[Y,I]=max(ObjV);trace(1:2,gen)=XY(I,:); %记下每代的最优值trace(3,gen)=Y; %记下每代的最优值endplot3(trace(1,:),trace(2,:),trace(3,:),'bo'); %画出每代的最优点grid on;plot3(XY(:,1),XY(:,2),ObjV,'bo'); %画出最后一代的种群hold off%% 画进化图figure(2);plot(1:MAXGEN,trace(3,:));grid onxlabel('遗传代数')ylabel('解的变化')title('进化过程')bestZ=trace(3,end);bestX=trace(1,end);bestY=trace(2,end);fprintf(['最优解:\nX=',num2str(bestX),'\nY=',num2str(bestY),'\nZ=',num2str(bestZ), '\n']) 第2 章基于遗传算法和非线性规划的函数寻优算法1.1案例背景1.1.1 非线性规划方法非线性规划是20世纪50年代才开始形成的一门新兴学科。
MATLAB数学建模14个范例
1.整数规划的蒙特卡洛解法2015-06-10 (2)2. 罚函数法 2015-06-11 (3)3. 层次分析 2015-06-12 (4)4. 粒子群优化算法的寻优算法--非线性函数极值寻优 2015-06-13 (5)5有约束函数极值APSO寻优 2015-06-14 (12)6.模拟退火算法 TSP问题2015-06-15 (17)7. 右端步连续微分方程求解2015-06-16 (19)8. 多元方差分析 2015-06-17 (22)9. 基于MIV的神经网络变量筛选 2015-06-18 (25)10. RBF网络的回归--非线性函数回归的实现 2015-06-19 (29)11. 极限学习机在回归拟合中的应用 2015-06-20 (32)12. 极限学习机在分类中的应用 2015-06-21 (34)13. 基于PSO改进策略 2015-06-22 (37)14. 神经网络遗传算法函数极值寻优 2015-06-23 (46)1.1.整数规划的蒙特卡洛解法2015-06-10 已知非线性整数规划为:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤++≤++≤++++≤++++=≤≤-----++++=200520062800622400)5,....,1(9902328243max 54233216432154321543212524232221x x x x x x x x x x x x x x x x i x x x x x x x x x x x z i如果用显枚举试探,共需要计算100^5=10^10个点,其计算量非常大。
然而应用蒙特卡洛去随机模拟计算10^6个点,便可以找到满意解,那么这种方法的可信度究竟怎么样呢? 下面就分析随机采样10^6个点计算时,应用概率理论估计下可信度。
不是一般性,假设一个整数规划的最优点不是孤立的奇点。
假设目标函数落在高值区的概率分别为0.01,0.00001,则当计算10^6个点后,有任一个点落在高值区的概率分别为:1-0.99^1000000=0.99...99(100多位) 1-0.99999^1000000=0.999954602解 (1)首先编写M 文件 mengte.m 定义目标函数f 和约束向量g,程序如下:function [f,g]=mengte(x);f=x(1)^2+x(2)^2+3*x(3)^2+4*x(4)^2+2*x(5)-8*x(1)-2*x(2)-3*x(3)-... x(4)-2*x(5); g=[sum(x)-400x(1)+2*x(2)+2*x(3)+x(4)+6*x(5)-800 2*x(1)+x(2)+6*x(3)-200 x(3)*x(3)+x(4)+5*x(5)-200];(2)编写M 文件mainint.m 如下求问题的解: rand('state',sum(clock)); p0=0; ticfor i=1:10^5x=99*rand(5,1);x1=floor(x);%向下取整 x2=ceil(x);%向上取整 [f,g]=mengte(x1); if sum(g<=0)==4 if p0<=f x0=x1; p0=f; end end[f,g]=mengte(x2); if sum(g<=0)==4 if p0<=fx0=x2; p0=f; end end end x0,p0Matlab 求解整数规划祥见第二章(优秀教材)2.罚函数法 2015-06-11利用罚函数法,可将非线性规划问题的求解,转化为求解一系列无约束极值问题,因而也称这种方法为系列无约束最小化技术,简记为SUMT 。
Matlab工程应用案例分析
Matlab工程应用案例分析引言:Matlab是一种广泛应用于科学计算、工程设计和数据分析的高级计算机语言和环境。
它的强大功能和使用简单性使得它成为许多工程师和科学家的首选工具。
在本文中,我们将通过几个工程应用案例来探讨Matlab在实际工程项目中的应用。
案例一:电力系统优化设计在电力系统设计中,优化是非常关键的一个环节。
通过对系统参数的优化,可以提高系统的效率和可靠性。
Matlab在电力系统优化设计中发挥了重要作用。
例如,在某城市的电力系统中,需要对输电线路进行改造以提高输电效率。
通过收集该地区的用电数据以及电线参数,可以建立一个电力系统模型。
然后,利用Matlab提供的优化算法和模拟工具,可以快速找到最优的输电线路配置,使总损耗最小化。
案例二:机器学习算法开发机器学习算法在各个领域有着广泛的应用。
然而,开发新的机器学习算法并不是一件容易的事。
Matlab提供了丰富的机器学习工具箱和函数,可以帮助工程师和科学家开发出新的机器学习算法。
例如,某个研究团队想要开发一种基于深度学习的图像分类算法。
他们可以利用Matlab提供的深度学习工具箱,通过构建神经网络模型和训练样本数据,来实现图像分类的自动化。
该算法可以广泛应用于图像识别、智能监控等领域。
案例三:控制系统设计与仿真在控制系统设计中,Matlab是一个不可或缺的工具。
控制系统的设计需要对系统进行分析和建模,然后通过调整控制器参数来实现期望的控制效果。
Matlab提供了丰富的控制系统工具箱,可以帮助工程师完成控制系统的建模和仿真。
例如,在飞机自动驾驶系统的设计中,工程师可以使用Matlab来建立飞机的数学模型,并根据不同的控制策略进行仿真。
通过与实际飞机系统进行对比和调整,可以优化控制系统的性能。
案例四:图像处理和计算机视觉Matlab在图像处理和计算机视觉领域也有很好的应用。
例如,在自动驾驶汽车的视觉系统中,需要对实时采集的图像进行处理和分析。
matlab十个简单案例编写
matlab十个简单案例编写1. 求解线性方程组线性方程组是数学中常见的问题之一,而MATLAB提供了用于求解线性方程组的函数。
例如,我们可以使用"linsolve"函数来求解以下线性方程组:2x + 3y = 74x - 2y = 2代码如下所示:A = [2, 3; 4, -2];B = [7; 2];X = linsolve(A, B);disp(X);解释:上述代码定义了一个2x2的矩阵A和一个2x1的矩阵B,分别表示线性方程组的系数矩阵和常数向量。
然后,使用linsolve函数求解线性方程组,结果存储在X中,并通过disp函数打印出来。
运行代码后,可以得到x=2和y=1的解。
2. 求解非线性方程除了线性方程组外,MATLAB还可以用于求解非线性方程。
例如,我们可以使用"fzero"函数求解以下非线性方程:x^2 + 2x - 3 = 0代码如下所示:fun = @(x) x^2 + 2*x - 3;x0 = 0;x = fzero(fun, x0);disp(x);解释:上述代码定义了一个匿名函数fun,表示非线性方程。
然后,使用fzero函数传入fun和初始值x0来求解非线性方程的根,并通过disp函数打印出来。
运行代码后,可以得到x=1的解。
3. 绘制函数图像MATLAB提供了强大的绘图功能,可以帮助我们可视化函数的形状和特征。
例如,我们可以使用"plot"函数绘制以下函数的图像:y = cos(x)代码如下所示:x = linspace(0, 2*pi, 100);y = cos(x);plot(x, y);解释:上述代码首先使用linspace函数生成一个从0到2π的100个等间距点的向量x,然后计算对应的cos值,并存储在向量y中。
最后,使用plot函数将x和y作为横纵坐标绘制出函数图像。
运行代码后,可以看到cos函数的周期性波动图像。
MATLAB数据分析与可视化案例展示
MATLAB数据分析与可视化案例展示概述:在如今的数据驱动时代,数据分析和可视化成为了重要的技能。
MATLAB作为一款强大的数学建模和计算软件,提供了丰富的功能来帮助研究人员、工程师和科学家进行数据分析和可视化。
本文将以实际案例为基础,展示MATLAB在数据分析和可视化方面的强大能力。
案例一:销售数据分析假设我们是一家电子产品公司,我们拥有一定数量的销售数据,包括销售额、产品种类、销售地区等信息。
现在,我们希望通过分析这些数据来了解产品的销售情况,并制定相关策略。
首先,我们可以使用MATLAB的数据导入功能导入销售数据,并进行初步的数据清洗。
接下来,我们可以使用MATLAB的数据统计和可视化工具来进行分析。
例如,我们可以通过绘制销售额的时间序列图来观察销售趋势。
MATLAB提供了丰富的绘图函数,可以根据需要选择合适的图表类型,并进行个性化设置。
通过观察时间序列图,我们可以发现销售额的季度波动和增长趋势,进而为制定销售策略提供参考。
另外,我们还可以利用MATLAB的统计分析功能对销售数据进行更深入的分析。
例如,我们可以使用MATLAB的线性回归模型拟合销售数据,预测未来销售额,并评估拟合程度。
此外,我们还可以通过绘制散点图来观察销售额与其他因素(如产品种类、销售地区)之间的关系,进一步挖掘潜在的市场机会和问题。
通过以上分析,我们可以得出一些有益的结论和建议,如推出针对不同地区和产品种类的定制化销售策略,加强对新增潜在市场的开拓,优化产品组合等。
案例二:气象数据分析与可视化气象数据是一种典型的多维数据,其中包括温度、湿度、气压等多种观测指标。
使用MATLAB可以对气象数据进行分析和可视化,进而深入了解气象变化规律,为气象预测、灾害预警等提供支持。
首先,我们可以使用MATLAB的数据导入工具导入气象观测数据,并进行数据清洗和预处理。
接下来,我们可以使用MATLAB的绘图函数来绘制各种气象图表。
例如,我们可以使用MATLAB的等值线图来展示温度分布情况。
matlab经典编程例题
mat lab经典编程例题以下各题均要求编程实现,并将程序贴在题U下方。
1(从键盘输入任意个正整数,以o结束,输出那些正整数中的素数。
clc;clear;zzs(l)二input ('请输入正整数:*) ;k=l; n=0;%素数个数while zzs(k)、=Oflag=O;%是否是素数,是则为1for yz=2:sqrt(zzs(k))%因子从2至此数平方根if mod(zzs (k), yz)=0flag=l ;break;%非素数跳出循环endendif flag=O&zzs(k)>l%忽略0 和 1 的素数n二n+1;sus(n)=zzs(k);endk=k+l;zzs(k)二input ('请输入正整数:');enddisp(['你共输入了' num2str(k-l)个正整数。
它们是:'])disp(zzs(1 :k- 1))%不显示最后一个数0if n=0disp('这些数中没有素数〜')%无素数时显示elsedispf其中的素数是:')disp(sus)end2(若某数等于其所有因子(不含这个数本身)的和,则称其为完全数。
编程求10000以内所有的完全数。
clc;clear;wq二[];%完全数赋空数组for ii=2:10000yz=[];%ii的因子赋空数组for jj=2:ii/2 %从2到ii/2考察是否为ii的因子if mod(ii, jj)=Oyz=[yz jj] ;%因子数组扩展,加上j jendendif ii==sum(yz)+lwq=[wq ii];%完全数数组扩展,加上iiendenddisp([' 10000 以内的完全数为:'num2str(wq)])%输出3(下列这组数据是美国1900-2000年人口的近似值(单位:口万)。
时间t 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 人口y 76 92 106 123 132 151 179 203 227 250 2812(1)若试编写程序计算出上式中的d、b、c; y与t的经验公式为y, at, bt, bt(2)若试编写程序计算出上式中的a、b; y与t的经验公式为y, ae.2(3)在一个坐标系下,画出数表中的散点图(红色五角星),中y, ax, bx, c bt 拟合曲线图(蓝色实心线),以及(黑色点划线)。
利用Matlab解决常见数学问题的案例分析
利用Matlab解决常见数学问题的案例分析概述:Matlab是一款流行的科学软件,广泛应用于数学建模、数据分析、图像处理等领域。
本文将通过几个实际案例,介绍如何利用Matlab解决常见的数学问题,并分析其解决方法和效果。
案例一:线性方程组的求解线性方程组是数学中常见的问题之一。
假设有如下线性方程组:3x + 2y = 14x - 3y = 5可以使用Matlab中的线性方程组求解函数`linsolve`来求解。
首先,定义系数矩阵A和常数矩阵b,并调用`linsolve`函数求解方程组:```matlabA = [3 2; 4 -3];b = [1; 5];x = linsolve(A, b);```运行上述代码后,可以得到方程组的解x为:x = 3y = -2案例二:函数曲线绘制Matlab具有强大的绘图功能,可以绘制各种函数曲线。
例如,我们可以绘制正弦函数sin(x)在区间[-2π,2π]上的曲线。
首先,定义x的取值范围,并计算对应的y 值:```matlabx = -2*pi:0.1:2*pi;y = sin(x);```接下来,使用`plot`函数将曲线绘制出来:```matlabplot(x, y);```运行代码后,可以得到正弦函数的曲线图。
案例三:最小二乘拟合最小二乘拟合是一种常见的曲线拟合方法,用于将一组数据拟合成一条曲线。
假设有一组离散的数据点,我们希望找到一个曲线来拟合这些数据。
在Matlab中,可以使用`polyfit`函数进行最小二乘拟合。
例如,假设有一组数据:x = [1 2 3 4 5];y = [0.5 2.5 2 4 3.5];可以使用`polyfit`函数进行线性拟合:```matlabp = polyfit(x, y, 1);```其中,第一个参数x是自变量的取值,第二个参数y是因变量的取值,第三个参数1表示进行一次多项式拟合。
拟合的结果保存在向量p中,p(1)为拟合曲线的斜率,p(2)为截距。
matlab30个案例分析-连续Hopfield神经网络的优化
%% 连续Hopfield神经网络的优化—旅行商问题优化计算% function main%% 清空环境变量、定义全局变量clear allclcglobal A D%% 导入城市位置load city_location%% 计算相互城市间距离distance=dist(citys,citys');%% 初始化网络N=size(citys,1);A=200;D=100;U0=0.1;step=0.0001;delta=2*rand(N,N)-1;U=U0*log(N-1)+delta;V=(1+tansig(U/U0))/2;iter_num=10000;E=zeros(1,iter_num);%% 寻优迭代for k=1:iter_num% 动态方程计算dU=diff_u(V,distance);% 输入神经元状态更新U=U+dU*step;% 输出神经元状态更新V=(1+tansig(U/U0))/2;% 能量函数计算e=energy(V,distance);E(k)=e;end%% 判断路径有效性[rows,cols]=size(V);V1=zeros(rows,cols);[V_max,V_ind]=max(V);for j=1:colsV1(V_ind(j),j)=1;endC=sum(V1,1);R=sum(V1,2);flag=isequal(C,ones(1,N)) & isequal(R',ones(1,N));%% 结果显示% 计算初始路径长度sort_rand=randperm(N);citys_rand=citys(sort_rand,:);Length_init=dist(citys_rand(1,:),citys_rand(end,:)');for i=2:size(citys_rand,1)Length_init=Length_init+dist(citys_rand(i-1,:),citys_rand(i,:)');end% 绘制初始路径figure(1)plot([citys_rand(:,1);citys_rand(1,1)],[citys_rand(:,2);citys_rand(1,2)],'o-') for i=1:length(citys)text(citys(i,1),citys(i,2),[' ' num2str(i)])endtext(citys_rand(1,1),citys_rand(1,2),[' 起点' ])text(citys_rand(end,1),citys_rand(end,2),[' 终点' ])title(['优化前路径(长度:' num2str(Length_init) ')'])axis([0 1 0 1])grid onxlabel('城市位置横坐标')ylabel('城市位置纵坐标')% 计算最优路径长度[V1_max,V1_ind]=max(V1);citys_end=citys(V1_ind,:);Length_end=dist(citys_end(1,:),citys_end(end,:)');for i=2:size(citys_end,1)Length_end=Length_end+dist(citys_end(i-1,:),citys_end(i,:)');enddisp('最优路径矩阵');V1% 绘制最优路径figure(2)plot([citys_end(:,1);citys_end(1,1)],...[citys_end(:,2);citys_end(1,2)],'o-')for i=1:length(citys)text(citys(i,1),citys(i,2),[' ' num2str(i)])endtext(citys_end(1,1),citys_end(1,2),[' 起点' ])text(citys_end(end,1),citys_end(end,2),[' 终点' ])title(['优化后路径(长度:' num2str(Length_end) ')'])axis([0 1 0 1])grid onxlabel('城市位置横坐标')ylabel('城市位置纵坐标')% 绘制能量函数变化曲线plot(1:iter_num,E);ylim([0 2000])title(['能量函数变化曲线(最优能量:' num2str(E(end)) ')']);xlabel('迭代次数');ylabel('能量函数');elsedisp('寻优路径无效');end% %===========================================% function du=diff_u(V,d)% global A D% n=size(V,1);% sum_x=repmat(sum(V,2)-1,1,n);% sum_i=repmat(sum(V,1)-1,n,1);% V_temp=V(:,2:n);% V_temp=[V_temp V(:,1)];% sum_d=d*V_temp;% du=-A*sum_x-A*sum_i-D*sum_d;% %==========================================% function E=energy(V,d)% global A D% n=size(V,1);% sum_x=sumsqr(sum(V,2)-1);% sum_i=sumsqr(sum(V,1)-1);% V_temp=V(:,2:n);% V_temp=[V_temp V(:,1)];% sum_d=d*V_temp;% sum_d=sum(sum(V.*sum_d));% E=0.5*(A*sum_x+A*sum_i+D*sum_d);% % % % 计算dufunction du=diff_u(V,d)global A Dn=size(V,1);sum_x=repmat(sum(V,2)-1,1,n);sum_i=repmat(sum(V,1)-1,n,1);V_temp=V(:,2:n);V_temp=[V_temp V(:,1)];sum_d=d*V_temp;du=-A*sum_x-A*sum_i-D*sum_d;% % % % % 计算能量函数function E=energy(V,d)global A Dn=size(V,1);sum_x=sumsqr(sum(V,2)-1);sum_i=sumsqr(sum(V,1)-1);V_temp=V(:,2:n);V_temp=[V_temp V(:,1)];sum_d=d*V_temp;sum_d=sum(sum(V.*sum_d));E=0.5*(A*sum_x+A*sum_i+D*sum_d);。
Matlab在结构动力学与振动控制中的应用案例
Matlab在结构动力学与振动控制中的应用案例引言结构动力学研究了物体在受力作用下的运动规律,而振动控制则关注如何通过各种手段来控制结构的振动。
在过去的几十年里,Matlab作为一款功能强大的数值计算和数据可视化工具,被广泛地应用于结构动力学与振动控制领域。
本文将通过一些典型的案例,探讨Matlab在这些领域中的应用。
案例一:辛普森建筑物模型辛普森建筑物模型是用于研究地震对建筑物结构的影响的经典案例。
在这个模型中,建筑物底部通过弹簧与地面相连,顶部有一个质量为m的质点。
通过求解二阶常微分方程,在Matlab中可以得到建筑物的振动响应。
通过修改建筑物的初始参数和地震输入信号,我们可以得到不同条件下的振动响应,并进一步分析建筑物的安全性能。
Matlab提供了一系列用于求解常微分方程的函数,如ode45和ode15s等。
结合Matlab的图形界面,我们可以方便地可视化建筑物的振动响应。
通过修改建筑物模型的材料参数、形状和地震输入,我们可以直观地感受到这些因素对振动响应的影响,从而为结构的设计和改进提供参考。
案例二:滑模控制器的设计滑模控制是一种常用的控制方法,在结构振动控制中也被广泛应用。
在滑模控制中,通过引入一个滑模面,使得系统状态在滑模面上快速地滑动,从而实现对系统的控制。
在振动控制中,我们常用滑模控制器来实现结构的抑制和消除。
在Matlab中,我们可以借助控制系统工具箱,便捷地设计和分析滑模控制器。
通过建立结构的数学模型,并在Matlab中使用滑模控制器设计函数,我们可以得到系统的闭环响应,并评估控制器的性能指标,如响应时间、超调量和控制能力等。
在实际应用中,我们可以结合传感器和执行器等硬件装置,与Matlab相结合,实现闭环控制。
这为我们实现各种振动控制策略提供了一个方便而高效的平台。
案例三:有限元分析与模态分析有限元分析是结构工程中常用的一种分析方法,用于预测结构的应力、变形和振动等特性。
在Matlab中,有限元分析可以通过编写相应的程序实现。
matlab电机仿真精华50例
MATLAB电机仿真精华50例引言在电机设计与开发过程中,仿真是非常重要的一环。
通过使用MATLAB软件,可以模拟各种电机系统,并通过仿真来验证设计和优化控制算法。
本文将介绍50个电机仿真的经典案例,涵盖了从传统直流电机到现代无刷直流电机的各种类型。
目录1.直流电机仿真案例1.直流电机速度控制仿真2.直流电机转矩控制仿真3.直流电机位置控制仿真2.交流电机仿真案例1.感应电机启动仿真2.永磁同步电机转矩控制仿真3.永磁同步电机鲁棒性仿真3.无刷直流电机仿真案例1.无刷直流电机速度控制仿真2.无刷直流电机位置控制仿真3.无刷直流电机参数识别仿真直流电机仿真案例直流电机速度控制仿真直流电机速度控制是电机控制领域的经典问题。
通过使用MATLAB中的控制工具箱,我们可以设计速度控制闭环,并进行仿真验证。
以下是一个简单的直流电机速度控制仿真案例:1.定义直流电机速度模型;2.设计PI速度控制器;3.运行仿真,观察速度响应曲线。
直流电机转矩控制仿真直流电机转矩控制是实现精确转矩输出的关键。
通过调节电机绕组的电流,可以控制电机的输出转矩。
以下是一个简单的直流电机转矩控制仿真案例:1.定义直流电机转矩模型;2.设计PID转矩控制器;3.运行仿真,观察转矩输出曲线。
直流电机位置控制仿真直流电机位置控制是实现精确位置控制的关键。
通过结合速度反馈和位置反馈,可以实现精确的位置控制。
以下是一个简单的直流电机位置控制仿真案例:1.定义直流电机位置模型;2.设计PID位置控制器;3.运行仿真,观察位置响应曲线。
交流电机仿真案例感应电机启动仿真感应电机启动是电机启动过程中的关键问题。
通过仿真可以验证各种启动方法的性能和可行性。
以下是一个简单的感应电机启动仿真案例:1.定义感应电机启动模型;2.设计电压频率启动方法;3.运行仿真,观察启动时间和电流曲线。
永磁同步电机转矩控制仿真永磁同步电机转矩控制是实现高效电机控制的关键。
通过调节电机绕组的电流和磁场,可以控制电机的输出转矩。
matlab经典编程例题30道
MATLAB是一款功能强大的数学软件,其编程功能也受到越来越多人的关注。
下面介绍的是30个matlab经典编程例题,可以帮助大家熟悉matlab的编程语法,提高matlab 编程技能。
1. 请编写一个程序,计算出两个数的和。
2. 请编写一个程序,计算出两个数的最大值和最小值。
3. 请编写一个程序,计算出一组数据的平均值和标准差。
4. 请编写一个程序,将一个矩阵转置。
5. 请编写一个程序,求出两个矩阵的乘积。
6. 请编写一个程序,求出一个矩阵的逆矩阵。
7. 请编写一个程序,求出一个矩阵的行列式。
8. 请编写一个程序,计算出一元二次方程的解。
9. 请编写一个程序,计算出两个数组的相似度。
10. 请编写一个程序,计算出一个矩阵的特征值和特征向量。
11. 请编写一个程序,求出两个矩阵的秩。
12. 请编写一个程序,求出一个矩阵的特定元素。
13. 请编写一个程序,求出一组数据的最高值和最低值。
14. 请编写一个程序,求出两个数组的交集。
15. 请编写一个程序,求出一个矩阵的行和列之和。
16. 请编写一个程序,使用循环语句计算出100以内所有奇数的和。
17. 请编写一个程序,使用循环语句计算出1到1000以内的和。
18. 请编写一个程序,使用递归函数计算出斐波那契数列的第n项。
19. 请编写一个程序,求出一个多项式的导数。
20. 请编写一个程序,求出一个函数的极值点。
21. 请编写一个程序,求出一个数组的非零元素个数。
22. 请编写一个程序,计算出函数的不定积分。
23. 请编写一个程序,计算出函数的定积分。
24. 请编写一个程序,求出一个矩阵的秩。
25. 请编写一个程序,求出函数的极限值。
26. 请编写一个程序,求出一个矩阵的特征值分解。
27. 请编写一个程序,求出一个矩阵的LU分解。
28. 请编写一个程序,求出一个矩阵的QR分解。
29. 请编写一个程序,求出三次多项式的根。
30. 请编写一个程序,求出一个函数的积分。
matlab神经网络43个案例分析
matlab神经网络43个案例分析MATLAB神经网络是一种广泛使用的机器学习工具,可以应用于多种问题的解决。
下面为大家介绍43个用MATLAB神经网络解决的案例分析。
1. 基于神经网络的股票市场预测通过分析历史数据,建立神经网络模型,预测未来股票市场走势。
2. 神经网络分类器建模分析通过建立分类模型,对不同类型数据进行分类处理。
3. 基于神经网络的信用评估模型通过收集客户的基本信息和信用历史,建立神经网络模型,对客户的信用进行评估。
4. 神经网络医学图像分析通过医学图像数据,建立神经网络模型,进行疾病诊断与分析。
5. 基于神经网络的机器人动作控制通过神经网络,训练机器人进行动作控制,提高机器人的智能化水平。
6. 神经网络预测库存需求通过分析历史销售数据,建立神经网络模型,预测未来库存需求,提高企业的运作效率。
7. 基于神经网络的人脸识别通过收集人脸数据,建立神经网络模型,实现人脸识别功能。
8. 神经网络垃圾邮件过滤通过建立神经网络模型,对邮件进行分类,筛选出垃圾邮件。
9. 基于神经网络的语音识别通过收集语音数据,建立神经网络模型,实现语音识别功能。
10. 神经网络飞机失速预测通过分析飞机数据和空气动力学知识,建立神经网络模型,预测飞机发生失速的概率。
11. 基于神经网络的目标识别通过收集目标数据,建立神经网络模型,实现目标识别功能。
12. 神经网络电力负荷预测通过历史电力数据,建立神经网络模型,预测未来电力负荷。
13. 基于神经网络的网络入侵检测通过建立神经网络模型,检测网络攻击行为。
14. 神经网络手写数字识别通过收集手写数字数据,建立神经网络模型,实现手写数字识别功能。
15. 基于神经网络的情感分析通过对情感文本数据进行分析,建立神经网络模型,实现情感分析功能。
16. 神经网络自然语言处理通过对自然语言文本数据进行处理和分析,建立神经网络模型,实现自然语言处理功能。
17. 基于神经网络的物体识别通过收集物体数据,建立神经网络模型,实现物体识别功能。
matlab数学建模30个案例分析
案例4:基于微分方程的最优捕鱼策略
为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度,一种合理、简化的策略是,在实现可持续收获的前提下,追求最大产量或最佳效益。考虑对某种鱼的最优捕鱼策略:假设这种鱼分4个年龄组:称1龄鱼,…,4龄组,各年龄组每条鱼的平均重量分别为5.07,11.55,17.86,22.99(克)各年龄组鱼的自然死亡率均为0.8(1/年)这种鱼为季节性集中产卵繁殖,平均每条4龄鱼的产卵量为1.109× 个,3龄鱼的产卵量为这个数的一半,2龄鱼和1龄鱼不产卵 产卵和孵化期为每年的最后4个月,卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产卵总量n之比)为1.22 × /1.22× +n)
案例12:基于主成分分析的长江水质的评价和预测模型
运用主成分分析法对长江流域主要城市水质检测报告进行分析,选取主成分,并把主成分得分按方差贡献率加权求和,得出每个地区的污染综合评价指数,进而可以计算每个月长江流域的污染综合评价指数。
第三部分 优化问题
案例13:基于线性规划求解飞行管理模型
第二部分 评价问题
案例7:基于层次分析法的高考志愿选择策略
一年一度的高考结束后,许多考生面临估分后填写志愿的决策过程。这个决策关系重大,请你建立一个数学模型,帮考生考虑到各种决策因素使之能轻松应对这一重大决策。成都丙、重庆丁四所大学。
现有某市直属单位因工作需要,拟向社会公开招聘8名公务员。该单位拟将录用的8名公务员安排到所属的7个部门,并且要求每个部门至少安排一名公务员。这7个部门按工作性质可分为四类:(1)行政管理、 (2)技术管理、(3)行政执法、(4)公共事业。
招聘领导小组在确定录用名单的过程中,本着公平、公开的原则,同时考虑录用人员的合理分配和使用,有利于发挥个人的特长和能力。招聘领导小组将7个用人单位的基本情况(包括福利待遇、工作条件、劳动强度、晋升机会和学习深造机会等)和四类工作对聘用公务员的具体条件的希望达到的要求都向所有应聘人员公布。每一位参加面试人员都可以申报两个自己的工作类别志愿。
利用matlab进行仿真的案例
利用matlab进行仿真的案例利用Matlab进行仿真可以涉及多个领域的案例,下面列举10个案例:1. 汽车碰撞仿真:利用Matlab中的物理仿真库,可以模拟汽车碰撞的过程,分析碰撞时车辆的变形、撞击力等参数。
可以根据不同的碰撞角度和速度,评估不同碰撞条件下的安全性能。
2. 电力系统仿真:利用Matlab中的电力系统仿真工具,可以模拟电力系统的运行情况,包括电压、电流、功率等参数的变化。
可以用于分析电力系统的稳定性、短路故障等问题,并进行相应的优化设计。
3. 通信系统仿真:利用Matlab中的通信系统仿真工具箱,可以模拟无线通信系统的传输过程,包括信号的发送、接收、调制解调等环节。
可以用于评估不同调制方式、编码方式等对通信系统性能的影响。
4. 智能控制仿真:利用Matlab中的控制系统仿真工具,可以模拟各种控制系统的运行情况,包括PID控制、模糊控制、神经网络控制等。
可以用于设计、优化和评估各种控制算法的性能。
5. 雷达系统仿真:利用Matlab中的雷达仿真工具,可以模拟雷达系统的工作原理和性能,包括发射、接收、信号处理等过程。
可以用于评估雷达系统的探测能力、跟踪精度等指标,并进行系统参数的优化设计。
6. 气候变化模拟:利用Matlab中的气候模型,可以模拟气候系统的变化过程,包括温度、降水、风速等参数的变化。
可以用于研究气候变化对生态环境、农业生产等方面的影响,以及制定相应的应对策略。
7. 人体生理仿真:利用Matlab中的生理仿真工具箱,可以模拟人体的生理过程,包括心血管系统、呼吸系统、神经系统等。
可以用于研究不同疾病、药物对人体的影响,以及评估各种治疗方案的效果。
8. 金融市场仿真:利用Matlab中的金融工具箱,可以模拟金融市场的价格变化过程,包括股票、期货、汇率等。
可以用于研究不同投资策略、风险管理方法等对投资收益的影响,并进行相应的决策分析。
9. 电子器件仿真:利用Matlab中的电子器件仿真工具,可以模拟各种电子器件的工作原理和性能,包括二极管、晶体管、集成电路等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、三维曲线>> t=0:pi/50:10*pi;>> plot3(sin(2*t),cos(2*t),t) >> axis square>> grid on2、一窗口多图形>> t=-2*pi:0.01:2*pi;>> subplot(3,2,1)>> plot(t,sin(t))>> subplot(3,2,2)>> plot(t,cos(t))>> subplot(3,2,3)>> plot(t,tan(t))>> axis([-pi pi -100 100]) >> subplot(3,2,4)>> plot(t,cot(t))>> axis([-pi pi -100 100]) >> subplot(3,2,5)>> plot(t,atan(t))>> subplot(3,2,6)>> plot(t,acot(t))3、图形样式、标注、题字(也可以利用菜单直接Insert) >> x=0:pi/20:2*pi;>> plot(x,sin(x),'b-.')>> hold on>> plot(x,cos(x),'r--')>> hold on>> plot(x,sin(x)-1,'g:')>> hold on>> plot(x,cos(x)-1)>> xlabel('x');>> xlabel('x轴');>> ylabel('y轴');>> title('图形样式、标注等');>> text(pi,sin(pi),'x=\pi');>> legend('sin(x)','cos(x)','sin(x)-1','cos(x)-1');>> [x1,y1]=ginput(1) %利用鼠标定位查找线上某点的值x1 =2.0893y1 =-0.5000>> gtext('x=2.5') %鼠标定位放置所需的值在线上4、>> fplot('[sin(x),cos(x),sqrt(x)-1]',[0 2*pi])M文件:myfun.m内容如下:function y=myfun(x)y(:,1)=sin(x);y(:,2)=cos(x);y(:,3)=x^(1/2)-1;再运行:>> fplot('myfun',[0 2*pi])同样可以得到右图5、>> [x,y]=fplot('sin',[0 2*pi]);>> [x1,y1]=fplot('cos',[0 2*pi]);>> plot(x,y,'-r',x1,y1,'-.k')>> legend('y=sinx','y=cosx')6、>> x=[-2:0.2:2];9、用双轴对数坐标绘制y=x*3^x-30的图形>> x=logspace(-3,3);>> loglog(y,'-or','linewidth',2);>> grid on10、绘制数据向量的单轴对数坐标图形 >> x=[1:50]; >> y=[1:50];>> semilogx(x,y,'-*b') %绘制横轴为对数坐标 %纵轴为线性坐标 >> grid on>> semilogy(x,y,'-*b') %绘制纵轴为对数坐标 %横轴为线性坐标 >> grid on11、绘制矩阵的条形图, 并求出句柄属性值向量。
>> A=[1 2 3;4 5 6;7 8 9]; >> h=bar(A) h =171.0031 174.0026 176.002612、绘制矩阵的水平条形图。
>> y=[3 2 -2 2 1;-1 2 3 7 1;7 2 -3 5 2]; >> x=[1:3];>> barh(x,y)13、绘制矩阵的面积图。
>> y=[3 2 -2 2 1;-1 3 3 7 2;-7 5 5 9 3];>> area(y)14、绘制矩阵的二维饼图>> x=[1 2 3;4 5 6;7 8 9];>> explode=[0 1 0 1 0 1 0 1 0];>> pie(x,explode)15、自行确定数据向量,绘制其散点图。
>> x=rand(1,100);y=randn(1,100);scatter(x,y,20) 16、自行确定数据,绘制其柱形图。
>> x=[-2:0.01:4];>>y=randn(1131,1);>>hist(y,x)17、绘制y=sinx在[0,2*pi] 上的误差图。
>> x=[0:pi/20:2*pi];>> y=sin(x);>> E=std(y)*ones(size(x));%条形控制>> errorbar(x,y,E)18、绘制火柴杆图。
>> x=[1 1.5 2;3 3.5 4;5 5.5 6]; >> y=[4 3 2;4 8 9;2 7 3]; >> stem(x,y,'fill')%fill意思是“实心点”Array19、绘制羽列图。
>> U=[-90:5:90]*pi/180;%建立等间距数据>> V=2*ones(size(U));%根据U建立数据>> [U,V]=pol2cart(U,V);转换数据为直角坐标形式>> feather(U,V)20、同一窗口绘制和在[0,30]上的图形。
>> x=[0:0.01:30];>> y1=50*exp(-0.05*x).*sin(x);>> y2=0.5*exp(-0.5*x).*cos(x);>> plotyy(x,y1,x,y2,'plot')% plotyy(x,y1,x,y2,'plot')表示:用左侧y标度绘制(x,y1)用右侧y标度绘制(x,y2)21、绘制8阶魔方矩阵的等值线图和阶梯图。
>> A=magic(8);contour(A) %绘制等值线图stairs(A) %绘制阶梯图23、绘制罗盘图。
>> x=rand(20,1);y=randn(20,1);>> compass(x,y)24、绘制函数的梯度场矢量图。
>> [x,y]=meshgrid([-2:0.1:2]); %建立栅格点数据向量 >> z=3.*x.*y*exp(-x.^2-y.^2)-1; %计算函数值向量 >> [u,v]=gradient(z,0.2,0.2); %计算梯度值向量 >> quiver(x,y,u,v,2) %绘制梯度场矢量图25、给定向量x,y 生成网格矩阵。
>> x=[1 2 3 4];>> y=[10 11 12 13 14]; >> [U,V]=meshgrid(x,y) U =1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 V =10 10 10 10 11 11 11 11 12 12 12 12 13 13 13 13 14 14 141427、在-4<=x<=4,-4<=y<=4区域上 绘制z=x^2+y^2的三维网格图。
>> [x,y]=meshgrid(-4:0.125:4); >> z=x.^2+y.^2; >> meshc(x,y,z)28、绘制高斯分布函数的网格图。
>> [x,y]=meshgrid(-3:0.125:3); >> z=peaks(x,y);>> meshz(x,y,z)29、用surf >> [x,y]=meshgrid(-3:0.125:3); >>z=peaks(x,y); >>surf(x,y,z)30、绘制曲线图。
>> t=[0:pi/200:10*pi];>> x=2*cos(t);>> y=3*sin(t);>> z=t.^2;>> plot3(x,y,z)31、利用peaks函数产生的数据绘制其带形图。
>> [x,y]=meshgrid([-2*pi:pi/5:2*pi],[-2:1/5:2]); >> z=peaks(x,y);>> ribbon(y,z) Array32、绘制三维饼图。
>> A=[1 2 3;4 5 6;7 8 9];>> ex=[1 0 0;4 0 0;0 8 0];>> pie3(A,ex)33、在各种style参数的条件下绘制矩阵的三维条形图。
>> z=[1 2 3;4 5 6;7 8 9];>>bar3(z,'detached')>>title('bar3函数以detached参数绘制A=[1 2 3;4 5 6;7 8 9]的条形图') >> bar3(z,'grouped')>> title('bar3函数以grouped参数绘制A=[1 2 3;4 5 6;7 8 9]的条形图') >> bar3(z,'stacked')>> title('bar3函数以stacked参数绘制A=[1 2 3;4 5 6;7 8 9]的条形图')34、绘制柱形图。