大学期末考试机械优化设计复习题

合集下载

(完整版)机械优化设计试卷期末考试及答案

(完整版)机械优化设计试卷期末考试及答案

第一、填空题1.组成优化设计的数学模型的三要素是 设计变量 、目标函数 和 约束条件 。

2.可靠性定量要求的制定,即对定量描述产品可靠性的 参数的选择 及其 指标的确定 。

3.多数产品的故障率随时间的变化规律,都要经过浴盆曲线的 早期故障阶段 、 偶然故障阶段 和 耗损故障阶段 。

4.各种产品的可靠度函数曲线随时间的增加都呈 下降趋势 。

5.建立优化设计数学模型的基本原则是在准确反映 工程实际问题 的基础上力求简洁 。

6.系统的可靠性模型主要包括 串联模型 、 并联模型 、 混联模型 、 储备模型 、 复杂系统模型 等可靠性模型。

7. 函数f(x 1,x 2)=2x 12 +3x 22-4x 1x 2+7在X 0=[2 3]T 点处的梯度为 ,Hession矩阵为 。

(2.)函数()22121212,45f x x x x x x =+-+在024X ⎡⎤=⎢⎥⎣⎦点处的梯度为120-⎡⎤⎢⎥⎣⎦,海赛矩阵为2442-⎡⎤⎢⎥-⎣⎦8.传统机械设计是 确定设计 ;机械可靠性设计则为 概率设计 。

9.串联系统的可靠度将因其组成单元数的增加而 降低 ,且其值要比可靠度 最低 的那个单元的可靠度还低。

10.与电子产品相比,机械产品的失效主要是 耗损型失效 。

11. 机械可靠性设计 揭示了概率设计的本质。

12. 二元函数在某点处取得极值的充分条件是()00f X ∇=必要条件是该点处的海赛矩阵正定。

13.对数正态分布常用于零件的 寿命疲劳强度 等情况。

14.加工尺寸、各种误差、材料的强度、磨损寿命都近似服从 正态分布 。

15.数学规划法的迭代公式是 1k k k k X X d α+=+ ,其核心是 建立搜索方向,模型求解 两方面的内容。

17.无约束优化问题的关键是 确定搜索方向 。

18.多目标优化问题只有当求得的解是 非劣解 时才有意义,而绝对最优解存在的可能性很小。

19.可靠性设计中的设计变量应具有统计特征,因而认为设计手册中给出的数据范围涵盖了均值左右 3σ 的区间。

《机械优化设计》复习题-答案

《机械优化设计》复习题-答案

《机械优化设计》复习题解答一、填空题1、用最速下降法求f (X)=100(x 2— x 12) 2+(1— x 1) 2的最优解时,设X (0)=[—0。

5,0。

5]T ,第一步迭代的搜索方向为 [—47,-50]T 。

2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。

3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解.4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。

5、包含n 个设计变量的优化问题,称为 n 维优化问题。

6、函数C X B HX X T T++21的梯度为B 。

7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)TGd 1=0,则d 0、d 1之间存在共轭关系.8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素.9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是,充分条件是(正定 。

10、 K —T 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。

11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [—2.36 10] 。

12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。

13、牛顿法的搜索方向d k = ,其计算量大 ,且要求初始点在极小点 附近 位置。

14、将函数f(X )=x 12+x 22—x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 .15、存在矩阵H,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭. 16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r 数列,具有单调递增特点。

《机械优化设计》复习题-答案

《机械优化设计》复习题-答案

机械优化设计复习题解答一、填空题1、用最速下降法求fX=100x 2- x 12 2+1- x 1 2的最优解时,设X 0=,T ,第一步迭代的搜索方向为 -47,-50T ;2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长;3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解;4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势;5、包含n 个设计变量的优化问题,称为 n 维优化问题;6、函数C X B HX X T T++21的梯度为HX+B ; 7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足d 0T Gd 1=0,则d 0、d 1之间存在共轭关系;8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素;9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是,充分条件是正定 ;10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合; 11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 10 ; 12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件;13、牛顿法的搜索方向d k= ,其计算量大 ,且要求初始点在极小点 附近 位置; 14、将函数fX=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 ;15、存在矩阵H,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭; 16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r 数列,具有单调递增特点;17、采用数学规划法求解多元函数极值点时,根据迭代公式需要进行一维搜索,即求最优步长;1k k H g --18、与负梯度成锐角的方向为函数值下降的方向,与梯度成直角的方向为函数值变化为零的方向;19、对于一维搜索,搜索区间为[]b a ,,中间插入两个点()()111111,,,b f a f b a b a <<计算出,则缩短后的搜索区间为11b a20、由于确定搜索方向和最佳步长的方法不一致,派生出不同的无约束优化问题数值求解方法;1、导出等式约束极值条件时,将等式约束问题转换为无约束问题的方法有消元法和拉格朗日法;2、优化问题中的二元函数等值线,从外层向内层函数值逐渐变小;3、优化设计中,可行设计点位可行域内内的设计点;4、方向导数定义为函数在某点处沿某一方向的变化率5、在n 维空间中互相共轭的非零向量个数最多有n 个;6、外点惩罚函数法的迭代过程可在可行域外进行,惩罚项的作用是随便迭代点逼近边界或等式约束曲面; 二、选择题1、下面C 方法需要求海赛矩阵; A 、最速下降法 B 、共轭梯度法 C 、牛顿型法 D 、DFP 法2、对于约束问题根据目标函数等值线和约束曲线,判断()1[1,1]T X =为 ,()251[,]22TX =为 ;D A .内点;内点 B. 外点;外点 C. 内点;外点 D. 外点;内点3、内点惩罚函数法可用于求解B 优化问题; A 无约束优化问题B 只含有不等式约束的优化问题C 只含有等式的优化问题D 含有不等式和等式约束的优化问题4、对于一维搜索,搜索区间为a,b,中间插入两个点a1、b1,a1<b1,计算出fa1<fb1,则缩短后的搜索区间为D;A a1,b1B b1,bC a1,bD a,b15、D不是优化设计问题数学模型的基本要素;A设计变量B约束条件C目标函数D 最佳步长6、变尺度法的迭代公式为x k+1=x k-αk H k▽fx k,下列不属于H k必须满足的条件的是C ;A. Hk之间有简单的迭代形式B.拟牛顿条件C.与海塞矩阵正交D.对称正定7、函数)(Xf在某点的梯度方向为函数在该点的A;A、最速上升方向B、上升方向C、最速下降方向D、下降方向8、下面四种无约束优化方法中,D在构成搜索方向时没有使用到目标函数的一阶或二阶导数;A 梯度法B 牛顿法C 变尺度法D 坐标轮换法9、设)(Xf为定义在凸集R上且具有连续二阶导数的函数,则)(Xf在R上为凸函数的充分必要条件是海塞矩阵GX在R上处处B;A 正定B 半正定C 负定D 半负定10、下列关于最常用的一维搜索试探方法——黄金分割法的叙述,错误的是D,假设要求在区间a,b插入两点α1、α2,且α1<α2;A、其缩短率为B、α1=b-λb-aC、α1=a+λb-aD、在该方法中缩短搜索区间采用的是外推法;11、与梯度成锐角的方向为函数值A方向,与负梯度成锐角的方向为函数值B方向,与梯度成直角的方向为函数值 C方向;A、上升B、下降C、不变D、为零12、二维目标函数的无约束极小点就是 B;A、等值线族的一个共同中心B、梯度为0的点C、全局最优解D、海塞矩阵正定的点13、最速下降法相邻两搜索方向d k和d k+1必为 B 向量;A 相切B 正交C 成锐角D 共轭14、下列关于内点惩罚函数法的叙述,错误的是A;A 可用来求解含不等式约束和等式约束的最优化问题;B 惩罚因子是不断递减的正值C初始点应选择一个离约束边界较远的点;D 初始点必须在可行域内三、问答题看讲义1、试述两种一维搜索方法的原理,它们之间有何区答:搜索的原理是:区间消去法原理区别:1、试探法:给定的规定来确定插入点的位置,此点的位置确定仅仅按照区间的缩短如何加快,而不顾及函数值的分布关系,如黄金分割法2、插值法:没有函数表达式,可以根据这些点处的函数值,利用插值方法建立函数的某种近似表达式,近而求出函数的极小点,并用它作为原来函数的近似值;这种方法称为插值法,又叫函数逼近法;2、惩罚函数法求解约束优化问题的基本原理是什么答,基本原理是将优化问题的不等式和等式约束函数经过加权转化后,和原目标函数结合形成新的目标函数——惩罚函数求解该新目标函数的无约束极值,以期得到原问题的约束最优解3、试述数值解法求最佳步长因子的基本思路;答主要用数值解法,利用计算机通过反复迭代计算求得最佳步长因子的近似值4、试述求解无约束优化问题的最速下降法与牛顿型方法的优缺点;答:最速下降法此法优点是直接、简单,头几步下降速度快;缺点是收敛速度慢,越到后面收敛越慢;牛顿法优点是收敛比较快,对二次函数具有二次收敛性;缺点是每次迭代需要求海塞矩阵及其逆矩阵,维数高时及数量比较大;5、写出用数学规划法求解优化设计问题的数值迭代公式,并说明公式中各变量的意义,并说明迭代公式的意义;6、什么是共轭方向满足什么关系共轭与正交是什么关系四、解答题1、试用梯度法求目标函数fX=+ x1x2-2x1的最优解,设初始点x0=-2,4T,选代精度ε=迭代一步;解:首先计算目标函数的梯度函数,计算当前迭代点的梯度向量值梯度法的搜索方向为, 因此在迭代点x0的搜索方向为12,-6T 在此方向上新的迭代点为:===把新的迭代点带入目标函数,目标函数将成为一个关于单变量的函数令,可以求出当前搜索方向上的最优步长新的迭代点为当前梯度向量的长度, 因此继续进行迭代; 第一迭代步完成;2、试用牛顿法求f X =x1-22+x1-2x22的最优解,设初始点x0=2,1T;解1:注:题目出题不当,初始点已经是最优点,解2是修改题目后解法;牛顿法的搜索方向为,因此首先求出当前迭代点x0的梯度向量、海色矩阵及其逆矩阵不用搜索,当前点就是最优点;解2:上述解法不是典型的牛顿方法,原因在于题目的初始点选择不当;以下修改求解题目的初始点,以体现牛顿方法的典型步骤;以非最优点x0=1,2T作为初始点,重新采用牛顿法计算牛顿法的搜索方向为,因此首先求出当前迭代点x0的梯度向量、以及海色矩阵及其逆矩阵梯度函数:初始点梯度向量:海色矩阵:海色矩阵逆矩阵:当前步的搜索方向为:=新的迭代点位于当前的搜索方向上:====把新的迭代点带入目标函数,目标函数将成为一个关于单变量的函数令,可以求出当前搜索方向上的最优步长新的迭代点为当前梯度向量的长度, 因此继续进行迭代;第二迭代步:因此不用继续计算,第一步迭代已经到达最优点;这正是牛顿法的二次收敛性;对正定二次函数,牛顿法一步即可求出最优点;3、设有函数 fX=x12+2x22-2x1x2-4x1,试利用极值条件求其极值点和极值;解:首先利用极值必要条件找出可能的极值点:令=求得,是可能的极值点;再利用充分条件正定或负定确认极值点;因此正定, 是极小点,极值为fX=-84、求目标函数f X =x12+x1x2+2x22 +4x1+6x2+10的极值和极值点;解法同上5、试证明函数 f X =2x12+5x22 +x32+2x3x2+2x3x1-6x2+3在点1,1,-2T处具有极小值;解:必要条件:将点1,1,-2T带入上式,可得充分条件=40正定;因此函数在点1,1,-2T处具有极小值6、给定约束优化问题min fX=x1-32+x2-22. g1X=-x12-x22+5≥0g 2X=-x1-2x2+4≥0g 3X= x1≥0g 4X=x2≥0验证在点TX]2[,1=Kuhn-Tucker条件成立; 解:首先,找出在点TX]2[,1=起作用约束:g1X =0g2X =0g3X =2g4X =1因此起作用约束为g1X、g2X;然后,计算目标函数、起作用约束函数的梯度,检查目标函数梯度是否可以表示为起作用约束函数梯度的非负线性组合;==,求解线性组合系数得到均大于0因此在点T X ]2[,1=Kuhn-Tucker 条件成立 7、设非线性规划问题用K-T 条件验证[]TX 0,1*=为其约束最优点;解法同上8、已知目标函数为fX= x 1+x 2,受约束于:g 1X=-x 12+x 2≥0 g 2X=x 1≥0 写出内点罚函数; 解:内点罚函数的一般公式为其中: r 1>r 2 >r 3… >r k … >0 是一个递减的正值数列 r k =Cr k-1, 0<C <1 因此 罚函数为:9、已知目标函数为fX= x 1-12+x 2+22受约束于:g 1X=-x 2-x 1-1≥0g 2X=2-x 1-x 2≥0 g 3X=x 1≥0 g 4X=x 2≥0试写出内点罚函数; 解法同上10、如图,有一块边长为6m 的正方形铝板,四角截去相等的边长为x 的方块并折转,造一个无盖的箱子,问如何截法x 取何值才能获得最大容器的箱子;试写出这一优化问题的数学模型以及用MATLAB 软件求解的程序;11、某厂生产一个容积为8000cm 3的平底无盖的圆柱形容器,要求设计此容器消耗原材料最少,试写出这一优化问题的数学模型以及用MATLAB 软件求解的程序;12、一根长l 的铅丝截成两段,一段弯成圆圈,另一段弯折成方形,问应以怎样的比例截断铅丝,才能使圆和方形的面积之和为最大,试写出这一优化设计问题的数学模型以及用MATLAB 软件求解的程序;13、求表面积为300m 2的体积最大的圆柱体体积;试写出这一优化设计问题的数学模型以及用MATLAB 软件求解的程序; 14、薄铁板宽20cm,折成梯形槽,求梯形侧边多长及底角多大,才会使槽的断面积最大;写出这一优化设计问题的数学模型,并用matlab软件的优化工具箱求解写出M文件和求解命令;15、已知梯形截面管道的参数是:底边长度为c,高度为h,面积A=64516mm2,斜边与底边的夹角为θ,见图1;管道内液体的流速与管道截面的周长s的倒数成比例关系s只包括底边和两侧边,不计顶边;试按照使液体流速最大确定该管道的参数;写出这一优化设计问题的数学模型;并用matlab软件的优化工具箱求解写出M文件和求解命令;16、某电线电缆车间生产力缆和话缆两种产品;力缆每米需用材料9kg,3个工时,消耗电能4kW·h,可得利润60元;话缆每米需用材料4kg,10个工时,消耗电能5kW·h,可得利润120元;若每天材料可供应360kg,有300个工时消耗电能200kW·h可利用;如要获得最大利润,每天应生产力缆、话缆各多少米写出该优化问题的数学模型以及用MATLAB软件求解的程序;。

09-10机械优化设计试卷期末考试及答案

09-10机械优化设计试卷期末考试及答案

第一.填空题1 •组成优化设计数学模型的三要素是设计变量、H标函数、约束条住。

~2]「一12一2.函数/ (, x2) = ^!~ + x22 - 4x, AS + 5在X()= 4点处的梯度为° ,海赛矩阵3.LI标函数是一项设汁所追求的指标的数学反映,因此对它最基本的要求是能用来评价设计的优劣,,同时必须是设计变量的可计算函数。

4.建立优化设计数学模型的基本原则是确切反映工程实际问题,的基础上力求简洁。

5.约束条件的尺度变换常称规格化,这是为改善数学模型性态常用的一种方法。

6•随机方向法所用的步长一般按加速步长法来确定,此法是指依次迭代的步长按一定的比例递增的方法。

7.最速下降法以—负梯度方向作为搜索方向,因此最速下降法乂称为_槌度法,其收敛速度较 ___________________ o8•二元函数在某点处取得极值的充分条件是O必要条件是该点处的海赛矩阵正定9•拉格朗日乘子法的基本思想是通过增加变量将等式约束优化问题变成无约束优化问题,这种方法又被称为竝法。

10改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩11坐标轮换法的基本思想是把多变量的优化问题转化为单变量的优化问题12.在选择约束条件时应特别注意避免出现相互矛盾的约束,,另外应当尽量减少不必要的约束。

13.口标函数是n维变量的函数,它的函数图像只能在凹―空间中描述出来, 为了在n维空间中反映EJ标函数的变化情况,常釆用LI标函数等值面的方法。

14.数学规划法的迭代公式是—X M=X k^a k d k_.其核心是建立搜索方向, 和讣算最佳步长15协调曲线法是用来解决设计LI标互相矛盾的多LI标优化设汁问题的。

16•机械优化设讣的一般过程中,建立优化设讣数学模型是首要和关键的一步,它是取得正确结果的前提。

二、名词解释1.凸规划对于约束优化问题min/(X)s.t. gj(X)5 0 (J = 1,2,3,…肿)若/(X)、g,X)(J = l,2,3,…")都为凸函数,则称此问题为凸规划。

机械优化设计试卷期末考试及答案(补充版)

机械优化设计试卷期末考试及答案(补充版)

第一、填空题1、组成优化设计数学模型得三要素就是设计变量、目标函数、约束条件。

2、函数在点处得梯度为,海赛矩阵为3、目标函数就是一项设计所追求得指标得数学反映,因此对它最基本得要求就是能用来评价设计得优劣,,同时必须就是设计变量得可计算函数。

4、建立优化设计数学模型得基本原则就是确切反映工程实际问题,得基础上力求简洁。

5、约束条件得尺度变换常称规格化,这就是为改善数学模型性态常用得一种方法。

6、随机方向法所用得步长一般按加速步长法来确定,此法就是指依次迭代得步长按一定得比例递增得方法。

7、最速下降法以负梯度方向作为搜索方向,因此最速下降法又称为梯度法,其收敛速度较慢。

8、二元函数在某点处取得极值得充分条件就是必要条件就是该点处得海赛矩阵正定9、拉格朗日乘子法得基本思想就是通过增加变量将等式约束优化问题变成无约束优化问题,这种方法又被称为升维法。

10改变复合形形状得搜索方法主要有反射,扩张,收缩,压缩11坐标轮换法得基本思想就是把多变量得优化问题转化为单变量得优化问题12.在选择约束条件时应特别注意避免出现相互矛盾得约束,,另外应当尽量减少不必要得约束。

13.目标函数就是n维变量得函数,它得函数图像只能在n+1,空间中描述出来,为了在n维空间中反映目标函数得变化情况,常采用目标函数等值面得方法。

14、数学规划法得迭代公式就是,其核心就是建立搜索方向, 与计算最佳步长15协调曲线法就是用来解决设计目标互相矛盾得多目标优化设计问题得。

16、机械优化设计得一般过程中, 建立优化设计数学模型就是首要与关键得一步,它就是取得正确结果得前提。

二、名词解释1.凸规划对于约束优化问题若、都为凸函数,则称此问题为凸规划。

2.可行搜索方向就是指当设计点沿该方向作微量移动时,目标函数值下降,且不会越出可行域。

3.设计空间:n个设计变量为坐标所组成得实空间,它就是所有设计方案得组合4.、可靠度产品在规定得条件,规定得时间内完成规定功能得概率、5.收敛性就是指某种迭代程序产生得序列收敛于6、非劣解:就是指若有m个目标,当要求m-1个目标函数值不变坏时,找不到一个X,使得另一个目标函数值比,则将此为非劣解。

《机械优化设计》试题及答案解析

《机械优化设计》试题及答案解析

《机械优化设计》复习题及答案一、填空题1、用最速下降法求f(X)=100(X2- X12) 2+(1- x i) 2的最优解时,设X(°)=[-0.5,0.5]T,第一步迭代的搜索方向为卜47;-50] ______________ 。

2、机械优化设计采用数学规划法,其核心一是建立搜索方向二是计算最佳步长因子 ________ 。

3、当优化问题是—凸规划______ 的情况下,任何局部最优解就是全域最优解。

4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成高-低-高___________ 趋势。

5、包含n个设计变量的优化问题,称为__n _______ 维优化问题。

16、函数—X T HX B T X C的梯度为HX+B 。

27、设G为n>n对称正定矩阵,若n维空间中有两个非零向量d°, d1,满足(d°)T Gd—=0, 则d0、d1之间存在—共轭 ______ ■关系。

8、设计变量、约束条件______________ 、目标函数________________ 是优化设计问题数学模型的基本要素。

9、对于无约束二元函数f(X1,X2),若在X°(X10,X20)点处取得极小值,其必要条件是_梯度为零,充分条件是海塞矩阵正定 ______________ 。

10、 ________________ 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。

11、用黄金分割法求一元函数f (xHx2 -10x 36的极小点,初始搜索区间[a,b] =[-10,10],经第一次区间消去后得到的新区间为[-2.36236] 。

12、优化设计问题的数学模型的基本要素有设_________ 、13、牛顿法的搜索方向d k= ______ ,其计算量大,且要求初始点在极小点逼近位置。

14、将函数f(X)=x 12+X22-X1X2-10X1-4X2+60表示成-X T HX - B T X C 的形2式 ________________________ 。

机械优化设计试卷期末考试及答案

机械优化设计试卷期末考试及答案

第一、填空题1.组成优化设计数学模型的三要素是设计变量、目标函数、约束条件。

2.函数f f石,x2)= x: +x2? —4x^2 +5在Xo=| 1点处的梯度为| ",海赛矩阵』\ ] 0」为[2r〔-4 2一3.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要求是能用来评价设计的优劣,,同时必须是设计变量的______ 。

4.建立优化设计数学模型的基本原则是确切反映工程实际问题,的基础上力求简洁。

5•约束条件的尺度变换常称规格化,这是为改善数学模型性态常用的一种方法。

6•随机方向法所用的步长一般按加速步长法来确定,此法是指依次迭代的步长按一定的比例递增的方法。

7.______________________________________________________________ 最速下降法以_负梯度方向作为搜索方向,因此最速下降法又称为_________________ 梯度法,其收敛速度较慢______ 。

8•二元函数在某点处取得极值的充分条件是X。

=0必要条件是该点处的海赛矩阵正定9.拉格朗日乘子法的基本思想是通过增加变量将等式约束优化问题变成无约束优化问题,这种方法又被称为升维法。

10改变复合形形状的搜索方法主要有反 ___11坐标轮换法的基本思想是把多变量的优化问题转化为单变量的优化问题12•在选择约束条件时应特别注意避免出现相互矛盾的约束,,另外应当尽量减少_____ 。

13.目标函数是n维变量的函数,它的函数图像只能在n+1,空间中描述出来,为了在n维空间中反映目标函数的变化情况,常采用目标函数等值面的方法。

14.数学规划法的迭代公式是—= x k― dL,其核心是建立搜索方向, 和计算最佳步长15协调曲线法是用来解决设计目标互相矛盾的多目标优化设计问题的。

16.机械优化设计的一般过程中,建立优化设计数学模型是首要和关键的一步,它是取得正确结果的前提。

机械优化设计试卷期末考试及答案(补充版)

机械优化设计试卷期末考试及答案(补充版)

第一、填空题 1. 组成优化设计数学模型的三要素是 设计变量、 目标函数、约束条件T 23.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要求是能用 来评价设计的优劣,,同时必须是设计变量的可计算函数 。

4. 建立优化设计数学模型的基本原则是确切反映 工程实际问题,的基础上力求简 _洁 ___ 。

5. 约束条件的尺度变换常称 规格化,这是为改善数学模型性态常用的一种方法。

6. 随机方向法所用的步长一般按 加速步长 法来确定,此法是指依次迭代的步长按一定的比例 递增的方法。

7. 最速下降法以_负梯度 方向作为搜索方向,因此最速下降法又称为梯度法,其收敛速度较慢 。

8•二元函数在某点处取得极值的充分条件是If X 0 =O 必要条件是该点处的海赛矩阵正9•拉格朗日乘子法的基本思想是通过增加变量将等式纟 __________ 优化问题变成无 约束优化问题,这种方法又被称为升维 法。

10改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩 11坐标轮换法的基本思想是把多变量的优化问题转化为单变量的优化问题12 •在选择约束条件时应特别注意避免出现 相互矛盾的约束,,另外应当尽量减少不必要的约束。

13 •目标函数是n 维变量的函数,它的函数图像只能在 n+1,空间中描述出来,为了在 n维空间中反映目标函数的变化情况,常采用 目标函数等值面的方法。

14.数学规划法的迭代公式是 —X k 1= X k=∙kd k—,其核心是建立搜索方向, —和计算最佳步长15协调曲线法是用来解决设计目标互相矛盾的多目标优化设计问题的。

16.机械优化设计的一般过程中, 建立优化设计数学模型是首要和关键的一步, 它是取得正确结果的前提。

、名词解释1 •凸规划对于约束优化问题min f Xs.t g j(X )≤0 (j =1,2,3,…,m)若f X、g j X (j =1,2,3,…,m)都为凸函数,则称此问题为凸规划。

《机械优化设计》试卷及答案,DOC

《机械优化设计》试卷及答案,DOC

《机械优化设计》复习题及答案一、填空题1、用最速下降法求f(X)=100(x 2-x 12)2+(1-x 1)2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为[-47;-50]。

2、机械优化设计采用数学规划法,其核心一是建立搜索方向二是计算最佳步长因子。

3、当优化问题是__凸规划______的情况下,任何局部最优解就是全域最优解。

4567,则89点处取得极小值,其必要条件是梯1011间121314121212++215、存在矩阵H ,向量d 1,向量d 2,当满足(d1)TGd2=0,向量d 1和向量d 2是关于H 共轭。

16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r 数列,具有由小到大趋于无穷特点。

17、采用数学规划法求解多元函数极值点时,根据迭代公式需要进行一维搜索,即求。

二、选择题1、下面方法需要求海赛矩阵。

A、最速下降法B、共轭梯度法C、牛顿型法D、DFP法2、对于约束问题),1D[a,b]15、_________不是优化设计问题数学模型的基本要素。

A设计变量B约束条件C目标函数D最佳步长6、变尺度法的迭代公式为x k+1=x k -αk H k ▽f(x k ),下列不属于H k 必须满足的条件的是________。

A.H k 之间有简单的迭代形式B.拟牛顿条件C.与海塞矩阵正交D.对称正定7、函数)(X f 在某点的梯度方向为函数在该点的。

10、下列关于最常用的一维搜索试探方法——黄金分割法的叙述,错误的是,假设要求在区间[a ,b]插入两点α1、α2,且α1<α2。

A 、其缩短率为0.618B 、α1=b-λ(b-a )C 、α1=a+λ(b-a )D 、在该方法中缩短搜索区间采用的是外推法。

11、与梯度成锐角的方向为函数值上升方向,与负梯度成锐角的方向为函数值下降方向,与梯度成直角的方向为函数值不变方向。

A、上升B、下降C、不变D、为零12、二维目标函数的无约束极小点就是。

《机械优化设计》复习题.doc

《机械优化设计》复习题.doc

《机械优化设计》复习题一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为 。

2、机械优化设计采用数学规划法,其核心一是 ,二是 。

3、当优化问题是________的情况下,任何局部最优解就是全域最优解。

4、应用外推法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 趋势。

5、包含n 个设计变量的优化问题,称为 维优化问题。

6、函数 C X B HX X T T ++21的梯度为 。

7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在______关系。

8、与负梯度成锐角的方向为函数值 方向,与梯度成直角的方向为函数值 方向。

9、 、 、 是优化设计问题数学模型的基本要素。

10、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是 ,充分条件是 。

11、 条件可以叙述为在极值点处目标函数的负梯度为起作用的各约束函数梯度的非负线性组合。

12、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 。

13、优化设计问题的数学模型的基本要素有 、 、 。

14、牛顿法的搜索方向d k = ,其计算量 ,且要求初始点在极小点 位置。

15、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T ++21的形式 。

16、存在矩阵H ,向量 d 1,向量 d 2,当满足 ,向量 d 1和向量 d 2是关于H 共轭。

17、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r 数列,具有 特点。

机械优化设计试卷期末考试及答案

机械优化设计试卷期末考试及答案

1.组成优化设计数学模型的三要素是 设计变量 、 目标函数 、 约束条件 。

2.函数()22121212,45f x x x x x x =+-+在024X ⎡⎤=⎢⎥⎣⎦点处的梯度为120-⎡⎤⎢⎥⎣⎦,海赛矩阵 为2442-⎡⎤⎢⎥-⎣⎦3.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要求是能用 来评价设计的优劣,,同时必须是设计变量的可计算函数 。

4.建立优化设计数学模型的基本原则是确切反映 工程实际问题,的基础上力求简洁 。

5.约束条件的尺度变换常称 规格化,这是为改善数学模型性态常用的一种方法。

6.随机方向法所用的步长一般按 加速步长 法来确定,此法是指依次迭代的步长按一定的比例 递增的方法。

7.最速下降法以 负梯度 方向作为搜索方向,因此最速下降法又称为 梯度法,其收敛速度较 慢 。

8.二元函数在某点处取得极值的充分条件是()00f X ∇=必要条件是该点处的海赛矩阵正定9.拉格朗日乘子法的基本思想是通过增加变量将等式约束 优化问题变成 无 约束优化问题,这种方法又被称为 升维 法。

10改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩11坐标轮换法的基本思想是把多变量 的优化问题转化为 单变量 的优化问题12.在选择约束条件时应特别注意避免出现 相互矛盾的约束, ,另外应当尽量减少不必要的约束 。

13.目标函数是n 维变量的函数,它的函数图像只能在n+1, 空间中描述出来,为了在n 维空间中反映目标函数的变化情况,常采用 目标函数等值面 的方法。

14.数学规划法的迭代公式是 1k k k k X X d α+=+ ,其核心是 建立搜索方向,和 计算最佳步长15协调曲线法是用来解决 设计目标互相矛盾 的多目标优化设计问题的。

16.机械优化设计的一般过程中, 建立优化设计数学模型 是首要和关键的一步,它是取得正确结果的前提。

二、名词解释1.凸规划对于约束优化问题()min f X..s t ()0j g X ≤ (1,2,3,,)j m =⋅⋅⋅若()f X 、()j g X (1,2,3,,)j m =⋅⋅⋅都为凸函数,则称此问题为凸规划。

机械优化设计试卷期末考试及答案(补充版)

机械优化设计试卷期末考试及答案(补充版)

第一、填空题1.组成优化设计数学模型的三要素是设计变量、目标函数、约束条件。

2.函数在点处的梯度为,海赛矩阵为3.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要求是能用来评价设计的优劣,,同时必须是设计变量的可计算函数。

4.建立优化设计数学模型的基本原则是确切反映工程实际问题,的基础上力求简洁。

5.约束条件的尺度变换常称规格化,这是为改善数学模型性态常用的一种方法。

6.随机方向法所用的步长一般按加速步长法来确定,此法是指依次迭代的步长按一定的比例递增的方法。

7.最速下降法以负梯度方向作为搜索方向,因此最速下降法又称为梯度法,其收敛速度较慢。

8.二元函数在某点处取得极值的充分条件是必要条件是该点处的海赛矩阵正定9.拉格朗日乘子法的基本思想是通过增加变量将等式约束优化问题变成无约束优化问题,这种方法又被称为升维法。

10改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩11坐标轮换法的基本思想是把多变量的优化问题转化为单变量的优化问题12.在选择约束条件时应特别注意避免出现相互矛盾的约束,,另外应当尽量减少不必要的约束。

13.目标函数是n维变量的函数,它的函数图像只能在n+1, 空间中描述出来,为了在n维空间中反映目标函数的变化情况,常采用目标函数等值面的方法。

14.数学规划法的迭代公式是,其核心是建立搜索方向,和计算最佳步长15协调曲线法是用来解决设计目标互相矛盾的多目标优化设计问题的。

16.机械优化设计的一般过程中,建立优化设计数学模型是首要和关键的一步,它是取得正确结果的前提。

二、名词解释1.凸规划对于约束优化问题若、都为凸函数,则称此问题为凸规划。

2.可行搜索方向是指当设计点沿该方向作微量移动时,目标函数值下降,且不会越出可行域。

3.设计空间:n个设计变量为坐标所组成的实空间,它是所有设计方案的组合4..可靠度产品在规定的条件,规定的时间内完成规定功能的概率.5.收敛性是指某种迭代程序产生的序列收敛于6.非劣解:是指若有m个目标,当要求m-1个目标函数值不变坏时,找不到一个X,使得另一个目标函数值比,则将此为非劣解。

大学期末考试机械优化设计复习题

大学期末考试机械优化设计复习题
…………………………………装……………………………订…………………………线………….………………………………
五、用内点惩罚函数法求下面问题的约束最优解:
(15分)
(构造惩罚函数,用解析法求解。)
六、用用复合形法求解二维约束优化问题(20分)
s.t.
要求迭代计算两个新复合形.初始复合形的3个顶点为:
共3页第3页
六、用改进的鲍威尔法求函数 的极小点。初始点为
(迭代一轮)(20分)
三、设目标函数
f(x)=4+4.5x1-4x2+x12+2x22-2x1x2+x14-2x12x2求其无约束的最优点(x1*,x2*)。(10分)
(A)卷2008-2009学年第1学期班级:姓名:学号:
…………………………………装……………………………订…………………………线………….………………………………
适用专业
机设2005级
考核性质
考查
开卷
命题教师
赵静
考试时间
100分钟
题号










十一
总分
得分
评阅人
复核人
一、填空题(每空2分,共20分)
1.优化设计问题的基本解法有解析法法和数值ห้องสมุดไป่ตู้法。
2.无约束优化问题取得极值的充分必要条件是和。
3.在进行一维搜索时,所要确定的搜索区间应为的趋势。
4.机械优化设计数学模型的三要素是、、。
5. K-T条件的几何意义是。
6.多元函数求极值的阻尼牛顿法的迭代公式为。
二、简答题(每题5分,共20分)
1.建立优化设计数学模型的基本原则。

大学期末考试机械优化设计复习题及其答案

大学期末考试机械优化设计复习题及其答案

大学期末考试机械优化设计复习题及其答案1化问题的三要素:设计变量,约束条件,目标函数。

2机械优设计数学规划法的核心:一、建立搜索方向,二、计算最佳步长因子3外推法确定搜索区间,函数值形成高-低-高区间4数学规划法的迭代公式是,其核心是建立搜索方向,和计算最佳步长5若n维空间中有两个非零向量d0,d1,满足(d0)TGd1=0,则d0、d1之间存在_共轭关系6,与负梯度成锐角的方向为函数值下降方向,与梯度成直角的方向为函数值不变方向。

外点;内点的判别7那三种方法不要求海赛矩阵:最速下降法共轭梯度法变尺度法8、那种方法不需要要求一阶或二阶导数:坐标轮换法9、拉格朗日乘子法是升维法P3710、惩罚函数法又分为外点惩罚函数法、内点惩罚函数法、混合惩罚函数法三种11,.函数在点处的梯度为,海赛矩阵为12.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要求是能用来评价设计的优劣,同时必须是设计变量的可计算函数。

13.建立优化设计数学模型的基本原则是确切反映工程实际问题,的基础上力求简洁。

14.约束条件的尺度变换常称规格化,这是为改善数学模型性态常用的一种方法。

15,.随机方向法所用的步长一般按加速步长法来确定,此法是指依次迭代的步长按一定的比例递增的方法。

16.最速下降法以负梯度方向作为搜索方向,因此最速下降法又称为梯度法,其收敛速度较慢。

17二元函数在某点处取得极值的充分条件是必要条件是该点处的海赛矩阵正定18.拉格朗日乘子法的基本思想是通过增加变量将等式约束优化问题变成无约束优化问题,这种方法又被称为升维法。

19,改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩20坐标轮换法的基本思想是把多变量的优化问题转化为单变量的优化问题21.在选择约束条件时应特别注意避免出现相互矛盾的约束,,另外应当尽量减少不必要的约束。

22.目标函数是n维变量的函数,它的函数图像只能在n+1,空间中描述出来,为了在n维空间中反映目标函数的变化情况,常采用目标函数等值面的方法。

大学期末考试机械优化设计复习题

大学期末考试机械优化设计复习题
5.约束条件的尺度变换常称规格化,这是为改善数学模型性态常用的一种方法。
6.随机方向法所用的步长一般按加速步长法来确定,此法是指依次迭代的步长按一定的比例递增的方法。
7.最速下降法以负梯度方向作为搜索方向,因此最速下降法又称为梯度法,其收敛速度较慢。
8.二元函数在某点处取得极值的必要条件是 ,充分条件是该点处的海赛矩阵正定
9. 在可行方向法中,产生可行方向的条件是什么?
答:1.可行性条件
dk与起作用的约束函数在xk点的梯度∇g(Xk)的夹角大于或等于90°:[∇g(Xk)]Tdk≤0
*若迭代点Xk处于J个约束边界的相交处,应同时成立:[∇g(Xk)]Tdk≤0(j=1,2,…J)
2.下降性条件
dk与目标函数在Xk点的梯度∇f(Xk)的夹角大于90°:[∇f(Xk)]Tdk< 0
2.可行搜索方向:是指当设计点沿该方向作微量移动时,目标函数值下降,且不会越出可行域。
3.设计空间:n个设计变量为坐标所组成的实空间,它是所有设计方案的组合
4..可靠度:
5.收敛性:是指某种迭代程序产生的序列 收敛于
6.非劣解:是指若有m个目标 ,当要求m-1个目标函数值不变坏时,找不到一个X,使得另一个目标函数值 比 ,则将此 为非劣解。
9.拉格朗日乘子法的基本思想是通过增加变量将等式约束优化问题变成无约束优化问题,这种方法又被称为升维法。
10改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩
11坐标轮换法的基本思想是把多变量的优化问题转化为单变量的优化问题
12.在选择约束条件时应特别注意避免出现相互矛盾的约束,,另外应当尽量减少不必要的约束。
一、填空题
1.组成优化设计数学模型的三要素是设计变量、目标函数、约束条件。

机械优化设计试卷期末考试及答案

机械优化设计试卷期末考试及答案

第一、填空题1.组成优化设计数学模型的三要素是 设计变量 、 目标函数 、 约束条件 。

2.函数()22121212,45f x x x x x x =+-+在024X ⎡⎤=⎢⎥⎣⎦点处的梯度为120-⎡⎤⎢⎥⎣⎦,海赛矩阵 为2442-⎡⎤⎢⎥-⎣⎦3.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要求是能用 来评价设计的优劣,,同时必须是设计变量的可计算函数 。

4.建立优化设计数学模型的基本原则是确切反映 工程实际问题,的基础上力求简洁 。

5.约束条件的尺度变换常称 规格化,这是为改善数学模型性态常用的一种方法。

6.随机方向法所用的步长一般按 加速步长 法来确定,此法是指依次迭代的步长按一定的比例 递增的方法。

7.最速下降法以 负梯度 方向作为搜索方向,因此最速下降法又称为 梯度法,其收敛速度较 慢 。

8.二元函数在某点处取得极值的充分条件是()00f X ∇=必要条件是该点处的海赛矩阵正定9.拉格朗日乘子法的基本思想是通过增加变量将等式约束 优化问题变成 无 约束优化问题,这种方法又被称为 升维 法。

10改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩11坐标轮换法的基本思想是把多变量 的优化问题转化为 单变量 的优化问题 12.在选择约束条件时应特别注意避免出现 相互矛盾的约束, ,另外应当尽量减少不必要的约束 。

13.目标函数是n 维变量的函数,它的函数图像只能在n+1, 空间中描述出来,为了在n 维空间中反映目标函数的变化情况,常采用 目标函数等值面 的方法。

14.数学规划法的迭代公式是 1k k k k X X d α+=+ ,其核心是 建立搜索方向, 和 计算最佳步长15协调曲线法是用来解决 设计目标互相矛盾 的多目标优化设计问题的。

16.机械优化设计的一般过程中, 建立优化设计数学模型 是首要和关键的一步,它是取得正确结果的前提。

二、名词解释 1.凸规划对于约束优化问题()min f X..s t ()0j g X ≤ (1,2,3,,)j m =⋅⋅⋅若()f X 、()j g X (1,2,3,,)j m =⋅⋅⋅都为凸函数,则称此问题为凸规划。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题1.组成优化设计数学模型的三要素是 设计变量 、 目标函数 、 约束条件 。

2.函数()22121212,45f x x x x x x =+-+在024X ⎡⎤=⎢⎥⎣⎦点处的梯度为120-⎡⎤⎢⎥⎣⎦,海赛矩阵为2442-⎡⎤⎢⎥-⎣⎦3.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要求是能用来评价设计的优劣,,同时必须是设计变量的可计算函数 。

4.建立优化设计数学模型的基本原则是确切反映 工程实际问题,的基础上力求简洁 。

5.约束条件的尺度变换常称 规格化,这是为改善数学模型性态常用的一种方法。

6.随机方向法所用的步长一般按 加速步长 法来确定,此法是指依次迭代的步长按一定的比例 递增的方法。

7.最速下降法以 负梯度 方向作为搜索方向,因此最速下降法又称为 梯度法,其收敛速度较 慢 。

8.二元函数在某点处取得极值的必要条件是()00f X ∇= , 充分条件是该点处的海赛矩阵正定9.拉格朗日乘子法的基本思想是通过增加变量将等式约束 优化问题变成 无约束优化问题,这种方法又被称为 升维 法。

10改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩11坐标轮换法的基本思想是把多变量 的优化问题转化为 单变量 的优化问题12.在选择约束条件时应特别注意避免出现 相互矛盾的约束, ,另外应当尽量减少不必要的约束 。

13.目标函数是n 维变量的函数,它的函数图像只能在n+1, 空间中描述出来,为了在n 维空间中反映目标函数的变化情况,常采用 目标函数等值面 的方法。

14.数学规划法的迭代公式是 1k k k k XX d α+=+ ,其核心是 建立搜索方向, 和 计算最佳步长 。

15协调曲线法是用来解决 设计目标互相矛盾 的多目标优化设计问题的。

16.机械优化设计的一般过程中, 建立优化设计数学模型 是首要和关键的一步,它是取得正确结果的前提。

1. 优化设计问题的基本解法有 解析法 法和 数值法2. 无约束优化问题取得极值的充分必要条件是 一阶导数等于零 和 二阶导数大于零。

3. 在进行一维搜索时,所要确定的搜索区间应为 高低高 的趋势。

4. 多元函数求极值的阻尼牛顿法的迭代公式为:二、名词解释1.凸规划: 对于约束优化问题 ()min f X..s t ()0j g X ≤ (1,2,3,,)j m =⋅⋅⋅若()f X 、()jg X (1,2,3,,)j m =⋅⋅⋅都为凸函数,则称此问题为凸规划。

2.可行搜索方向:是指当设计点沿该方向作微量移动时,目标函数值下降,且不会越出可行域。

3.设计空间:n 个设计变量为坐标所组成的实空间,它是所有设计方案的组合 4..可靠度:5.收敛性:是指某种迭代程序产生的序列(){}0,1,kXk =⋅⋅⋅收敛于1lim k k XX +*→∞=6. 非劣解:是指若有m 个目标()()1,2,i f X i m =⋅⋅⋅,当要求m-1个目标函数值不变坏时,找不到一个X ,使得另一个目标函数值()i f X 比()i f X *,则将此X *为非劣解。

7. 黄金分割法:是指将一线段分成两段的方法,使整段长与较长段的长度比值等于较长段与较短段长度的比值。

8.可行域:满足所有约束条件的设计点,它在设计空间中的活动范围称作可行域。

9.维修度 略三、简答题1.什么是内点惩罚函数法?什么是外点惩罚函数法?他们适用的优化问题是什么?在构造惩罚函数时,内点惩罚函数法和外点惩罚函数法的惩罚因子的选取有何不同?1)内点惩罚函数法是将新目标函数定义于可行域内,序列迭代点在可行域内逐步逼近约束边界上的最优点。

内点法只能用来求解具有不等式约束的优化问题。

内点惩罚函数法的惩罚因子是由大到小,且趋近于0的数列。

相邻两次迭代的惩罚因子的关系为 1(1,2,)kk r cr k -==⋅⋅⋅c 为惩罚因子的缩减系数,其为小于1的正数,通常取值范围在0.1~0.72)外点惩罚函数法简称外点法,这种方法新目标函数定义在可行域之外,序列迭代点从可行域之外逐渐逼近约束边界上的最优点。

外点法可以用来求解含不等式和等式约束的优化问题。

外点惩罚函数法的惩罚因子,它是由小到大,且趋近于∞的数列。

惩罚因子按下式递增1(1,2,)kk r cr k -==⋅⋅⋅,式中c 为惩罚因子的递增系数,通常取5~10c =2.共轭梯度法中,共轭方向和梯度之间的关系是怎样的?试画图说明。

. 对于二次函数,()12T T f X X GX b X c =++,从k X 点出发,沿G 的某一共轭方向k d 作一维搜索,到达1k X +点,则1k X+点处的搜索方向jd 应满足()()10Tj k k dgg +-=,即终点1k X +与始点k X 的梯度之差1k k g g +-与k d 的共轭方向j d 正交。

3.为什么说共轭梯度法实质上是对最速下降法进行的一种改进?.答:共轭梯度法是共轭方向法中的一种,在该方法中每一个共轭向量都依赖于迭代点处的负梯度构造出来的。

共轭梯度法的第一个搜索方向取负梯度方向,这是最速下降法。

其余各步的搜索方向是将负梯度偏转一个角度,也就是对负梯度进行修正。

所以共轭梯度法的实质是对最速下降法的一种改进。

4.写出故障树的基本符号及表示的因果关系。

5.算法的收敛准则由哪些?试简单说明。

6.优化设计的数学模型一般有哪几部分组成?简单说明。

7.简述随机方向法的基本思路答:随机方向法的基本思路是在可行域内选择一个初始点,利用随机数的概率特性,产生若干个随机方向,并从中选择一个能使目标函数值下降最快的随机方向作为可行搜索方向。

从初始点出发,沿搜索方向以一定的步长进行搜索,得到新的X 值,新点应该满足一定的条件,至此完成第一次迭代。

然后将起始点移至X ,重复以上过程,经过若干次迭代计算后,最终取得约束最优解。

8. 复合形法的基本思路是什么?答:在可行域中选取K 个设计点(n+1≤K≤2n)作为初始复合形的顶点。

比较各顶点目标函数值的大小,去掉目标函数值最大的顶点(称最坏点),以坏点以外其余各点的中心为映射中心,用坏点的映射点替换该点, 构成新的复合形顶点。

反复迭代计算,使复合形不断向最优点移动和收缩,直至收缩到复合形的顶点与形心非常接近,且满足迭代精度要求为止。

9. 在可行方向法中,产生可行方向的条件是什么?答:1.可行性条件d k 与起作用的约束函数在x k 点的梯度∇g (X k )的夹角大于或等于90°:[∇g (X k)]T dk≤ 0* 若迭代点X k 处于J 个约束边界的相交处,应同时成立: [∇g (X k )]T d k ≤ 0 (j=1,2,…J )2. 下降性条件d k 与目标函数在X k 点的梯度∇f (X k )的夹角大于90°:[∇f (X k)] Td k< 0综上所述,当X k 处于J 个起作用的约束面上时,适用可行方向的数学条件是:三、计算题1.试用牛顿法求()221285f X x x =+的最优解,设()[]01010TX=。

初始点为()[]01010TX=,则初始点处的函数值和梯度分别为()()0120121700164200410140f X x x f X x x =+⎡⎤⎡⎤∇==⎢⎥⎢⎥+⎣⎦⎣⎦,沿梯度方向进行一维搜索,有()010000010200102001014010140X X f X αααα-⎡⎤⎡⎤⎡⎤=-∇=-=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦0α为一维搜索最佳步长,应满足极值必要条件()()[]()()()(){}()αϕααααααααmin 14010514010200104200108min min 200020001=-⨯+-⨯-⨯+-⨯=∇-=X f X f X f()001060000596000ϕαα'=-=,从而算出一维搜索最佳步长 0596000.05622641060000α==则第一次迭代设计点位置和函数值01010200 1.245283010140 2.1283019X αα--⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦()124.4528302f X =,从而完成第一次迭代。

按上面的过程依次进行下去,便可求得最优解。

2、试用黄金分割法求函数()20fααα=+的极小点和极小值,设搜索区间[][],0.2,1a b =(迭代一次即可)解:显然此时,搜索区间[][],0.2,1a b =,首先插入两点12αα和,由式 ()1()10.61810.20.5056b b a αλ=--=--=()2()0.20.61810.20.6944a b a αλ=+-=+⨯-=计算相应插入点的函数值()()4962.29,0626.4021==ααf f 。

因为()()12ff αα>。

所以消去区间[]1,a α,得到新的搜索区间[]1,b α,即[][][]1,,0.5056,1b a b α==。

第一次迭代:插入点10.6944α=, 20.50560.618(10.5056)0.8111α=+-=相应插入点的函数值()()1229.4962,25.4690f f αα==,由于()()12ff αα>,故消去所以消去区间[]1,a α,得到新的搜索区间[]1,b α,则形成新的搜索区间[][][]1,6944.0,,1==b a b α。

至此完成第一次迭代,继续重复迭代过程,最终可得到极小点。

3.用牛顿法求目标函数()22121625f X x x =++5的极小点,设()[]022TX =。

解:由 ()[]022T X=,则()11022326450100f x x f X x f x ∂⎢⎥⎢⎥∂⎡⎤⎡⎤⎢⎥∇===⎢⎥⎢⎥∂⎢⎥⎣⎦⎣⎦⎢⎥∂⎣⎦()22211220222212320050f f x x x f X f f x x x ⎢⎥∂∂⎢⎥∂∂∂⎡⎤⎢⎥∇==⎢⎥⎢⎥∂∂⎣⎦⎢⎥∂∂∂⎣⎦,其逆矩阵为()12010321050f X -⎡⎤⎢⎥⎡⎤∇=⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦因此可得:()()11020010264032211000050X X f X f X -⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎡⎤=-∇∇=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦()15f X =,从而经过一次迭代即求得极小点[]00TX *=,()5f X *=优化设计期末考试(二)1优化问题的三要素:设计变量,约束条件, 目标函数。

2机械优设计数学规划法的核心:一、建立搜索方向,二、计算最佳步长因子 3外推法确定搜索区间,函数值形成 高-低-高 区间 4数学规划法的迭代公式是1k k kk X X d α+=+ ,其核心是 建立搜索方向, 和 计算最佳步长5若n 维空间中有两个非零向量d0,d1,满足(d0)TGd1=0,则d0、d1之间存在_共轭关系6,与负梯度成锐角的方向为函数值 下降 方向,与梯度成直角的方向为函数值 不变 方向。

相关文档
最新文档