教师评价模型_数学建模

合集下载

数学建模评价模型方法实用教案

数学建模评价模型方法实用教案
当“很不满意”时,则隶属度为 0.01,即 f (1) 0.01.
计算得 1.1086, 0.8942, a 0.3915, b 0.3699。

f
(x)
1
1.1086(x
0.8942)2
1 ,1
x3
0.3915ln x 0.3699 , 3 x 5
22
第第2二2十页二页/,共共448页8。页
一类多属性(或多指标)的综合评价问题。
4
第第4四页页,/共共484页8。页
一、一般(yībān)数据建模问题的 提出
综合评价是科学、合理决策( juécè)的前提。 综合评价的基础是信息的综合利用。 综合评价的过程是数据建模的过程。 数据建模的基础是数据的标准化处理。
如何构成一个综合(zōnghé)评价问题呢?
(2)分析预测实际(shíjì)对象未来的变化状
1
第第1一页页,/共共484页8。页
1. 一般(yībān)数据建模问题的提出 2. 数据处理的一般(yībān)方法 3. 数据建模的综合评价方法
4. 数据建模的动态加权方法 5. 数据建模的综合排序方法
6. 数据建模的预测方法
2
第第2二页页,/共共484页8。页
设系统有 m 个评价指标(属性)
x1, x2, , xm (m 1) , 即 评 价 指 标 向 量
x (x1, x2, , xm )T 。
7
第第7七页页,/共共448页8。页
综合(zōnghé)评价问题的五个要素
(3)权重系数 针对每一综合评价问题不同的评价目的,各评
价指标之间的相对重要性是不同的。 权重系数:用来(yònɡ lái)刻画评价指标之间相
在实际数据指标 x1, x2, , xm (m 1) 之间,往往

数学建模评价类模型

数学建模评价类模型

数学建模评价类模型
数学建模评价类模型是指针对数学建模的模型进行评估的方法,是模型评价的一种重要方式。

传统的数学建模评价类模型一般由模型准确度、模型耗费以及模型质量三方面评价。

首先,模型准确度是评价模型质量的基础,是模型评价比较重要的指标之一。

它反映了模型拟合现实情况的精确程度,是选择和调整模型的关键点。

一般需要衡量模型的真实性和拟合度。

真实性测量模型的准确性,评价模型的输出能否真实反映现实情况;拟合度测量模型的契合度,评价模型对输入变量的拟合程度有多好。

一般模型评价准确度可以用均方差、拟合指标、距离指标等指标来衡量。

其次,模型耗费是另一个重要的指标。

它考察了模型处理工作量大小,表示模型的计算消耗,可衡量模型计算效率的高低,具有重要的实际意义。

一般模型耗费可以用计算量指标衡量,也可以用算法的执行时间进行评价。

最后,模型质量是衡量模型优劣的一个重要指标,指的是模型与实际运用的效果。

模型质量可以用实际结果与模型给出结果之间的偏差来衡量,也可以用效率指标,如模型预测准确度、预测时效性、分类准确率等来评价。

数学建模0-1评价类模型

数学建模0-1评价类模型

数学建模0-1评价类模型
0-1评价类模型(0-1 evaluation models)是数学建模中常用的一类模型,其主要用于评估某个问题或方案的优劣、可行性等,并将其转化为一个二元决策问题。

在0-1评价类模型中,问题或方案往往需要被评估和比较,根据一定的评价指标或标准进行打分或判定。

通常,这些评价指标都是与问题或方案相关的具体变量或要素。

通过对这些变量或要素进行二值化处理,将其转化为0或1,以表示其是否满足某个特定的标准或条件。

0-1评价类模型的一种常见形式是使用0-1整数规划模型(0-1 integer programming model)。

在这种模型中,通过引入决策变量,并设置适当的约束条件和目标函数,将评价指标转化为决策变量的取值,从而达到优化选择或决策的目的。

决策变量通常用0或1表示,其中0表示不选择或不满足相应的条件,1表示选择或满足相应的条件。

除了整数规划模型,还可以利用其他数学建模方法进行0-1评价类模型的建模和求解,包括动态规划、线性规划、模糊理论等。

0-1评价类模型在实际应用中具有广泛的应用场景,例如项目选择、资源配置、投资决策、风险评估等。

通过将问题或方案抽象为0-1评价类模型,可以帮助决策者在复杂的决策环境中进行科学合理的决策,并提供决策依据和参考。

数学建模评价模型方法

数学建模评价模型方法

数学建模评价模型方法数学建模是运用数学方法对实际问题进行分析和求解的过程。

在数学建模中,评价模型方法是指对构建的数学模型进行评价,判断其优劣和可行性。

本文将介绍几种常用的数学建模评价模型方法。

一、模型的合理性评价模型的合理性评价是指对构建的数学模型是否合理、可行的评价。

主要包括以下几个方面:1.物理现象的还原性:模型能否从数学上还原出实际问题的主要特征和规律。

例如,对于物理问题,模型应能够描述物体的运动规律等。

2.参数的确定性:模型的参数是否能够通过实际观测或实验得到。

如果参数无法得到准确的数值,那么模型的可行性将受到质疑。

3.数学形式的合理性:模型的数学形式是否符合问题的特点和要求。

例如,对于动力系统问题,模型的微分方程形式是否合理。

4.结果的可解性:模型是否能够得到解,解的形式是否合理。

可解性是模型可行性的基础。

5.模型的稳定性:模型在参数或初始条件变化下的稳定性。

模型的稳定性是评价模型可行性的重要指标。

二、模型的精确性评价模型的精确性评价是指对构建的数学模型的精确程度进行评价,主要包括以下几个方面:1.近似程度:模型对实际问题的近似程度。

模型应能够在保持简洁性的前提下最大程度地还原实际问题的特点。

3.可靠性评价:模型结果的可靠性和可信度。

评价模型的可靠性可以通过对模型在不同数据集上的验证和对模型假设的检验来进行。

4.提升方法:对模型的改进方法和提高精确性的途径的研究。

模型可以通过引入更多的因素、扩大数据范围、改进算法等方法来提高精确性。

三、模型的应用评价模型的应用评价是指对构建的数学模型在实际应用中的可行性和效果进行评价,主要包括以下几个方面:1.模型的适应性:模型是否能够适应不同的实际问题和应用场景。

模型应具有一定的通用性和扩展性。

2.解决问题的有效性:模型是否能够解决实际问题,并提供可行的解决方案。

模型的应用性是评价其有效性的关键指标。

3.实际可操作性:模型的实际操作难度和成本。

模型的实际应用应该能够满足操作的简便性和成本的可控性。

数学建模评价模型

数学建模评价模型

数学建模评价模型1.准确性评价:这是评估模型与实际数据的契合程度。

准确性评价可以通过计算模型预测结果与实际数据之间的差异来实现。

常见的准确性评价指标有均方根误差(RMSE)、平均绝对误差(MAE)等。

均方根误差是模型预测值与真实值之间的差值的均方根,平均绝对误差是模型预测值与真实值之间的差值的平均值。

准确性评价越小,则模型准确性越高。

2.可靠性评价:可靠性评价是评估模型在不同数据集上的稳定性。

通过将模型应用于不同的数据集,观察模型预测结果的变化情况,可以评估模型的可靠性。

常见的可靠性评价方法包括交叉验证和蒙特卡洛模拟。

交叉验证将数据集分为训练集和测试集,通过多次重复实验,观察模型预测结果的稳定性。

蒙特卡洛模拟则是通过随机生成不同数据集,观察模型预测结果的分布情况。

3.灵敏度分析:灵敏度分析是评估模型对输入参数变化的敏感性。

建模时,经常需要设定各种参数值,而不同参数值可能导致不同的结果。

灵敏度分析可以帮助确定哪些参数对模型输出的影响最大。

常见的灵敏度分析方法包括单因素灵敏度分析和多因素灵敏度分析。

单因素灵敏度分析是将一个参数保持不变,观察模型结果的变化情况。

多因素灵敏度分析则是将多个参数同时变化,并观察模型结果的变化情况。

4.适用性评价:适用性评价是评估模型在特定问题上的适用性。

不同的问题可能需要不同的数学模型,评价模型的适用性可以帮助确定模型是否适用于特定问题。

适用性评价可以通过将模型应用于类似的问题,并进行验证来实现。

在实施数学建模评价模型时,需要根据具体问题的特点和需求来选择合适的评价指标和方法。

同时,在建立数学模型之前,需要确定评价指标的合理范围,以便在评估结果时进行比较和判断。

总之,数学建模评价模型是一种用于评估数学建模结果的方法。

通过准确性评价、可靠性评价、灵敏度分析和适用性评价,可以评估模型的优劣、准确性和可靠性,为实际问题的解决提供参考。

学生评教的数据分析与评教指标体系评估的数学建模

学生评教的数据分析与评教指标体系评估的数学建模

学生评教的数据分析与评教指标体系评估的数学建模首先,我们需要收集学生评教的数据,包括评估教师的问卷调查结果。

问卷调查通常包含一系列问题,例如教师的授课内容、教学方法、作业质量、教师的态度等。

每个问题都有多个选项,学生需要选择相应的选项或给出评分。

通过收集这些数据,我们可以了解学生对教师的评价。

接下来,我们可以对收集到的数据进行分析。

一种常见的方法是计算每个问题的平均得分或比例。

这可以帮助我们了解每个问题的整体得分情况。

另外,我们可以计算每个问题选项的得分或比例,并进行比较。

例如,对于问题“教师的授课内容”,我们可以计算每个选项的比例,并比较不同选项的得分情况,从而了解学生对于不同授课内容的评价。

除了对每个问题进行分析,我们还可以对整体评价进行计算。

一种常见的方法是计算加权平均得分,其中每个问题的得分乘以相应问题的权重,然后将所有问题的加权得分相加。

权重可以根据问题的重要性进行确定。

通过计算整体评价得分,我们可以了解学生对教师的总体评价。

建立评教指标体系是评估教师教学质量的重要步骤。

评教指标体系可以包含多个评估指标,例如综合得分、教学方法得分、作业质量得分等。

通过收集学生的评教数据,并计算相应的指标得分,我们可以对教师的教学质量进行评估和比较。

评估教师的教学质量可以使用多种数学模型。

一种常见的模型是多元回归分析。

该模型可以帮助我们理解不同因素对学生评价的影响。

例如,我们可以将学生评价作为因变量,教师的授课内容、教学方法、作业质量等作为自变量,然后通过回归分析来了解这些因素对学生评价的影响程度。

此外,我们还可以使用聚类分析来对教师进行分类,以便比较不同类型教师的教学质量。

聚类分析可以根据学生评价的相似性,将教师分为若干个不同的群组。

通过比较不同群组的评价结果,我们可以了解不同类型教师的教学质量,从而为学校提供更好的教学指导和管理建议。

综上所述,学生评教的数据分析与评教指标体系评估是一项复杂而重要的工作。

数学建模优秀论文基于层次分析法的模糊综合评价模型

数学建模优秀论文基于层次分析法的模糊综合评价模型

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):广东金融学院参赛队员(打印并签名) :1. 曾彬2. 曾庆达3. 陈佳玲指导教师或指导教师组负责人(打印并签名):日期: 2013 年8 月 22日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国评阅编号(由全国组委会评阅前进行编号):高校学生评教系统改进的研究摘要本文是研究关于高等学校学生评价教师的评价系统问题,用层次分析法确定了十项指标的权值,并给出了一个新的评教分数的计分模型-模糊综合评价模型。

本文亮点在于采用基于层次分析法的模糊数学模型。

首先,建立层次分析模型,充分考虑每个指标对综合评价的贡献,并把贡献按权值进行分配;通过层次分析法中的归一化处理,得到两两指标间的相对重要性的定量描述,从而解决不同指标间的差异。

其次建立模糊综合评教模型,输入一组专家(同学)的模糊评价,通过最大隶属度原则把模糊评价输出为综合评价。

最后本文在难易程度不同的课程下(在专业必修课,专业选修课,公共选修课下进行评价),得出同一教师的综合评价,发现其在不同课程下的综合评价均相同。

于是得出结论,该模型的确能解决不同课程难易程度带来的对总体评教的影响。

因为一个教师的综合教学质量并不应该在不同的课程下得到变化较大的评教。

数学教学中的数学建模能力培养与评价方式

数学教学中的数学建模能力培养与评价方式

数学教学中的数学建模能力培养与评价方式引言:在现代社会中,数学已经成为一门必不可少的学科。

然而,传统的数学教学方法往往局限于理论与计算,缺乏对数学知识在实际问题中的应用。

为了培养学生独立思考、解决问题的能力,数学建模逐渐受到教育界的关注。

本文将探讨数学建模能力的培养与评价方式。

一、数学建模能力的培养1. 培养对实际问题的敏感性数学建模的核心在于将实际问题转化为数学模型,因此培养学生对实际问题的敏感性是培养数学建模能力的第一步。

教师可以通过引入真实生活中的问题,以及与学科知识有关联的实际案例,激发学生的兴趣并提高他们对问题的觉察能力。

2. 培养数学建模的思维方式数学建模需要学生具备抽象思维和系统思维的能力。

因此,在数学教学中,教师可以适当强调问题解决的思考过程,鼓励学生从不同角度思考问题,并倡导学生采用反思、分析和推理等方法解决问题。

同时,教师还可以引导学生在解决问题时使用不同的数学工具和技巧,提高他们的数学思维能力。

3. 培养团队合作精神数学建模往往需要团队合作,通过团队共同努力才能解决复杂问题。

因此,培养学生团队合作精神非常重要。

在教学过程中,教师可以组织学生分组进行小组讨论和合作研究,在团队中培养学生的合作意识和交流能力。

二、数学建模能力的评价方式1. 综合评价数学建模涉及多个方面的能力,包括问题分析能力、模型建立能力、解决方案选择能力等。

因此,在评价学生的数学建模能力时,应综合考虑这些能力的发展情况。

可以通过学生的作业、小组项目表现、课堂参与度等多个方面综合评价学生的数学建模能力。

2. 实际应用评估数学建模的目的是解决实际问题,因此,实际应用评估是评价数学建模能力的重要方式之一。

可以引导学生将数学知识应用于实际问题,通过实际案例分析和解决方案效果评估来评价学生的数学建模能力。

3. 开放性问题评估数学建模要求学生独立思考和解决问题,因此,在评价学生的数学建模能力时,可以采用开放性问题评估。

通过提出开放性问题,观察学生的解决过程和思维方式,评价学生的数学建模能力和创新能力。

评价模型数学建模

评价模型数学建模

评价模型数学建模
评价模型数学建模是一项关键任务,它要求建立一个完善且可靠的评价体系,以对数学建模的过程和结果进行评估。

这个评价体系应该包括以下几个方面:
第一,对数学建模的过程进行评价。

这个过程包括问题分析、模型设计、数据采集、模型求解、结果分析等多个环节。

评价这个过程的关键是确定评价指标和评价方法。

比如,可以针对问题分析阶段的思考深度、模型设计的创新性、数据采集的有效性和准确性、模型求解的速度和精度、结果分析的逻辑性和实用性等方面进行评价,而评价的方法可以是专家评分、对比分析、统计分析等。

第二,对数学建模的结果进行评价。

这个结果包括模型的可行性、实用性、稳定性和精度等方面。

评价这个结果的关键是确定评价标准和评价方法。

比如,可以针对模型的预测精度、预测置信度、控制效果、决策支持能力等方面进行评价,而评价的方法可以是模型检验、模拟测试、实际应用等。

第三,对数学建模的实践能力进行评价。

这个能力包括问题识别、模型构建、数据处理、模型求解、结果解释等方面。

评价这个能力的关键是确定评价内容和评价方法。

比如,可以针对学生在数学建模竞赛中的表现、在实际应用中的表现等方面进行评价,而评价的方法可以是模型检验、模拟测试、实际应用等。

通过建立一个完善且可靠的评价体系,可以有效提高数学建模的质量和水平,促进数学建模的应用和发展。

数学建模万能模板9模型优缺点评价三篇

数学建模万能模板9模型优缺点评价三篇

数学建模万能模板9模型优缺点评价篇一模型评价优点:1 、本文在正确、清楚地分析了题意地基础上,建立了合理、科学的可变成本计算模型,为求最大利润准备了条件。

2 、在假设基础上建立了计算折旧费用的模型,巧妙地解决了实房、期房数目不确定的问题。

3 、建立了以最大利润为目标的单目标规划函数,选用MATLAB 编程,具有一定的实际价值。

4 、运用了正确的数据处理方法,很好的解决了小数取整问题。

缺点:1 、在编程中,没有加入的约束条件,导致了最终的运算结果出现小数。

最后,我们采用人工方法进行了较好的弥补。

2 、公司预计的销售量与实际的销售量肯定会有出入。

但在模型计算中,我们取了预计值作为近似值来计算,这与实际值必会有些出入。

3 、在假设中我们作出了“顾客完全服从公司分配”的假设,这与实际情况不完全相符。

4 、在确定固定成本G 和销售费用X 时,我们只是从网上查阅的资料中得到1500 元/ 平方米和0.1 的粗略值,这与实际情况有出入。

但这只会对净利润L 的值产生影响,而不会影响建造计划。

5 、模型建立过程中引入的变量过多,容易引起“维数灾”,且不利于编程处理。

十、模型优缺点评价优点1 、原创性很强,文章中的大部分模型都是自行推导建立的;2 、建立的规划模型能与实际紧密联系,结合实际情况对问题进行求解,使得模型具有很好的通用性和推广性;3 、模型的计算采用专业的数学软件,可信度较高;4 、对附件中的众多表格进行了处理,找出了许多变量之间的潜在关系;5 、对模型中涉及到的众多影响因素进行了量化分析,使得论文有说服力。

缺点1 、规划模型的约束条件有点简单;2 、顾客满意度调查的权重系数人为确定缺少理论依据;3 、没有很好地把握论文的重心,让人感觉论文有点散。

篇二模型评价:模型优点:建立的模型方法简单易行,且易中应用于现实生活。

模型缺点:考虑的影响因素较少,在处理问题时可能存在一些误差。

仅使用一个月的数据具有一定的局限性,另外对外伤患者都按急症处理,考虑的情况比较简单。

数学建模素养评价模型与案例分析

数学建模素养评价模型与案例分析

数学核心素养是数学课程目标的集中体现,是具有数学基本特征的思维品质、关键能力以及情感、态度与价值观的综合体现.《普通高中数学课程标准(2017年版)》(以下简称《标准》)明确指出,数学课程的重要目标之一是在学习数学和应用数学的过程中,发展学生的数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析数学学科核心素养.在《标准》的学业质量评价中,重点是核心素养评价,将每个核心素养划分为三个水平,每个水平有相关描述以及实例说明.仔细分析这些水平描述,感觉比较笼统、可操作性不够强,对实际教学缺乏有效的指导,尤其是作为六大数学核心素养之一的数学建模素养的评价,更是感觉不便操作.而考试评价对高中教师的导向功能是不得不重视的.也正是基于这样的现实,要想落实数学建模素养培养,首先要做的工作应该是让教师弄清楚管理部门或高考是如何评价和考查这种核心素养的,以此来引导教师重视数学建模素养的培养.为此,本文试以数学建模素养评价为例,探讨学业质量评价中如何对数学建模素养水平进行评价.一、数学建模素养的内涵一般认为,数学模型是研究者依据研究目的,将所研究的客观事物的过程和现象的主要特征和主要关系,采用形式化的数学语言,概括或近似地表达出来的一种结构.数学建模是把现实世界中的实际问题进行提炼,抽象为数学模型,求出数学模型的解,验证数学模型的合理性,并用数学模型提供的结论再来解释实际问题的一种应用过程.这个过程可以具体表示为:理解问题—简化问题—建立模型—计算求解—解释结果—修改模型—得出结论.数学建模过程结构图如图1所示.1.理解问题2.简化问题3.建立模型4.计算求解5.解释结果6.修改模型7.得出结论数学建模过程结构图图1收稿日期:2020-02-24基金项目:宁波市教育规划重点课题——基于学生视角的新高考改革的调查与思考(2018YZD002).作者简介:邵光华(1964—),男,教授,主要从事数学教育研究.数学建模素养评价模型与案例分析邵光华摘要:已有数学建模素养评价模式有三种:横向评价、纵向评价和模型创新性评价.《普通高中数学课程标准(2017年版)》将数学建模素养划分为三个水平,用“情境与问题、知识与技能、思维与表达、交流与反思”四个维度加以区分与体现.分析了数学建模素养教学与评价案例中并未按照数学建模素养划分的三个水平的四个维度进行说明而导致的理论划分与案例例说不一致的冲突.基于数学建模素养的三个水平的划分维度以及每个水平的表现,结合已有数学建模能力评价模式,重新构建了与数学建模素养划分水平具体要求与表现相一致的数学建模素养评价模型,并举案例说明,合理解决了数学建模素养科学评价问题.关键词:数学建模;素养水平;评价··3《标准》将数学建模提升为数学核心素养之一.素养是一种稳定的内在心理品质,是知识、能力、行为习惯等人格化特征的综合集中反映.数学建模素养被看成是“对现实问题进行数学抽象,用数学语言表达问题,用数学方法构建模型解决问题的素养”.具体而言,数学建模素养可以理解为以下四个方面的综合体现:建立模型解决问题时必备的数学基础知识与方法等建模知识;相关的诸如阅读理解、抽象概括、数学运算、逻辑推理、数学应用等数学能力;抽象和转化等重要建模思想;在建模过程中体现的情感、态度与价值观.二、《标准》中数学建模素养的评价指南1.数学核心素养水平划分维度《标准》将每一种数学学科核心素养都划分为三个水平,并对每一个水平通过数学学科核心素养的具体体现和体现数学学科核心素养的四个维度给予表述.这四个维度为情境与问题、知识与技能、思维与表达、交流与反思,具体说明如表1所示.表1:反映数学学科核心素养的四个维度维度情境与问题知识与技能思维与表达交流与反思说明情境主要是指现实情境、数学情境、科学情境;问题是指在情境中提出的数学问题,分为简单问题、较复杂问题、复杂问题能够帮助学生形成相应数学学科核心素养的知识与技能数学活动过程中反映的思维品质,表述的严谨性与准确性能够用数学语言直观地解释与交流数学的概念、结论、应用和思想方法,并能进行评价、总结与拓展2.《标准》中数学建模素养的评价模型《标准》通过情境与问题、知识与技能、思维与表达、交流与反思四个维度对数学建模素养的三个水平进行区分与体现.数学建模素养的评价模型如表2所示.表2:数学建模素养的评价模型维度情境与问题知识与技能思维与表达交流与反思水平一了解熟悉的数学模型的实际背景及其数学描述,了解数学模型中的参数、结论的实际含义知道数学建模过程包括提出问题、建立模型、求解模型、检验结果、完善模型.能够在熟悉的实际情境中,模仿学过的数学建模过程解决问题对于学过的数学模型,能够举例说明数学建模的意义,体会其蕴涵的数学思想;感悟数学表达对数学建模的重要性在交流的过程中,能够借助或引用已有数学建模的结果说明问题水平二能够在熟悉的现实情境中,发现问题并转化为数学问题,知道数学问题的价值与作用能够选择合适的数学模型表达所要解决的数学问题,理解模型中参数的意义,知道如何确定参数,建立模型,求解模型;能够根据问题的实际意义检验结果,完善模型,解决问题能够在关联情境中,经历数学建模的过程,理解数学建模的意义,能够运用数学语言,表述数学建模过程中的问题以及解决问题的过程和结果,形成研究报告,展示研究成果在交流的过程中,能够用模型思想说明问题水平三能够在综合的科学情境中,运用数学思维进行分析,发现情境中的数学关系,提出数学问题能够运用数学建模的一般方法和相关知识,创造性地建立数学模型,解决问题能够理解数学建模的意义和作用,能够运用数学语言,清晰、准确地表达数学建模的过程和结果在交流的过程中,能够通过数学建模的结论和思想阐释科学规律和社会现象··4可以看出,“情境与问题”维度涉及的是数学建模问题的层次,情境由熟悉到综合,问题由简单到复杂.“知识与技能”维度涉及的是数学建模的过程与模型创新性层次,先模仿学过的模型解决问题,然后选择已知的模型解决问题,最后创造性地建立模型解决问题.“思维与表达”维度涉及的是模型评价与报告撰写水平,由要求举例说明学过的模型的意义,到要求用数学语言表述数学建模的过程,形成研究报告,再到强调学生真正理解数学建模的作用,得出问题的结论.“交流与反思”维度是对数学建模素养的本质的要求程度,由简单的借助模型结果说明问题,到能用模型思想说明问题,再到运用模型思想解决社会现实问题.从数学教育的角度来讲,数学思想是更高层次的理性认识,关于数学内容和方法的本质的认识是对数学内容和方法的本质的进一步概括.数学模型作为一种重要思想被学生理解是非常有意义的.评价模型中,“情境与问题”维度针对的是问题的难易程度与情境的复杂程度,是教师设置考查学生数学建模素养的试题的参考依据.但是,“数学模型的实际背景、熟悉的现实情境、综合的科学情境”三类情境的定义却未明确,“简单问题、复杂问题、较复杂问题”的区分标准也未提及,以及情境、问题两者有何关联,这些都可能增加教师设置测试问题的难度.“知识与技能”维度以考查学生数学建模知识与数学建模过程为主,量化评价的可操作性较弱,应该增加对该维度的量化评价细节.“思维与表达”与“知识与技能”两个维度相辅相成,“思维与表达”是对“知识与技能”的成果的呈现形式予以说明,因此评价时也采用量化评价方式.“交流与反思”维度是数学建模完成之后的交流、反思活动,考查形式可以采用生生、师生交流或组织学生公开答辩,亦可以采用具体量化评价方式.3.《标准》中用于评价的满意原则和加分原则的说明《标准》列举了“鞋号问题、包装彩绳问题、体重与脉搏问题、估计考生总数问题”四个案例用来说明如何评价数学建模素养水平,目的是想通过这些案例给学业水平考试与高考命题以指导.这些案例都是应用问题、开放性问题或探究性问题,可以同时考查学生的思维过程、实践能力和创新意识.《标准》同时指出,在具体评价数学建模素养水平层次时,除了按照前面的评价模型标准外,还需要遵循满意原则和加分原则.所谓“满意原则”就是不一定追求真正的“最优”,只要教师认可就行了,这种寻求“满意性”的系统方案的方法,虽然不如找“最优化”方案方法那么严格、精确,但是它比较灵活.而“加分原则”可以理解为针对数学建模过程的完整性、数学建模方法的创新性、模型的创新性、语言表达的准确性等方面进行加分.结合满意原则和加分原则,四个案例水平综合评价结果如表3所示.表3:四个案例的水平层次判定及评判根据案例鞋号包装彩绳体重与脉搏估计考生总数素养水平水平一水平二水平二水平一水平二水平二水平二水平三水平一水平二评价缘由得出简单模型模型创新数学建模过程完整提出猜想得出模型语言表达准确情境复杂,表达准确方法创新,模型创新体现统计思想过程表述清楚满意原则加分原则加分原则满意原则满意原则加分原则满意原则满意原则加分原则满意原则满意原则4.《标准》中数学建模素养评价模式不足的细化分析通过分析《标准》中案例的评价方式,不难发现,它是横向评价、纵向评价,以及“满意原则”和“加分原则”三个方面相结合的综合评价模式.“横向评价模式”是根据学生解决的不同水平的数学建模问题的情况来裁定其数学建模素养的层次.“纵向评价模式”是将数学建模素养分解为过程要素,具体过程为确定变量、探索关系、建立模型、计算系数、分析结论,根据学生解决问题达到过程中的哪一步来判断其数学建模素养水平.对于“满意原则”和“加分原则”,若学生已经完成数学建模过程中的某一步,根据满意原则直接判定其达到该步骤对应的数学建模素养水平;若学生未完整完成数学建模过程中的某一步,根据加分原则适当加分.例如,对于水平一的数学建模问题,··5数学建模过程完整、模型有创新,根据加分原则,评定为水平二.水平二的数学建模问题,模型合理,数学建模过程不完整,根据满意原则,评定为水平一;模型创新,过程完整,根据加分原则,评定为水平三.水平三的建模问题,提出问题,有思路,根据满意原则,评定为水平一;模型合理,数学建模过程不完整,根据满意原则,评定为水平二.综合起来,可以得出如图2所示的数学建模素养水平评价模型.数学建模素养水平评价模型数学建模素养水平水平一水平二水平三简单问题较复杂问题复杂问题图2根据该评价模型,《标准》提供的数学建模素养案例中,“鞋号问题”“彩绳包装问题”“估计考生总数问题”是数学建模素养水平一、水平二的评定案例,“体重与脉搏问题”是数学建模素养水平二、水平三的评定案例.仔细分析这些数学建模素养水平评定案例,发现似乎存在需要完善的地方.一是评定没有遵循数学建模问题与数学建模水平呈一一对应原则,案例是通过一个数学建模问题评定两个乃至三个数学建模素养水平.二是在评价数学建模素养水平的过程中未对数学建模素养的相关维度的具体表现进行表述.三是通过对数学建模素养划分为过程要素来评价.一方面,破坏了数学建模过程的整体性,难以凸显学生的数学建模素养.因为数学建模是问题解决的一部分,学生用数学建模的思想与方法去解决问题的根本点是是否真正解决了问题,解决问题的过程与问题的结果同等重要,而得出结果则需要经历完整的数学建模过程.因此,根据数学建模过程要素评定不合理.另一方面,忽略高中生认知水平的差异性.例如,数学建模素养达到水平一的学生未能完成关于水平二的问题的任何数学建模步骤,按照过程要素评价方式,将评定该学生的数学建模素养不能达到数学建模素养水平一.事实上,按照过程要素得出的评价结果与学生真实的素养水平会大相径庭.三、基于四个维度的数学建模素养评价模型的构建鉴于《标准》中关于数学建模素养评价的操作不甚明晰,下面,笔者重新构建更具操作性的评定设计方案,并通过案例给予说明.1.数学建模核心素养评价应该坚持两个原则针对《标准》中数学建模素养水平评价方案的不足,我们提出评价学生数学建模素养水平应该遵循的两个基本原则.原则1:基于数学建模情境与问题维度.为方便教师编制对应的数学建模素养水平测试题,数学建模问题与数学建模素养水平需要呈一一对应关系.事实上,能够通过数学建模解决的实际问题的难度水平在一定意义上能够显示一个人的数学建模素养水平的高低.基于此,我们提出数学建模素养水平与数学建模问题的难度应该呈一一对应关系.简单问题对应数学建模素养水平一,较复杂问题对应数学建模素养水平二,复杂问题对应数学建模素养水平三.简单问题包括一般的应用题,以及数量关系较明显的实际问题.该类问题较易入手,容易找到量与量之间的··6关系,结果也比较简单,不需要过多的分析、整理.较复杂问题主要指从社会生产、生活的实际中来的问题,背景较为复杂,不容易切入,较难下手,需要经过分析与判断做出适当假设,量与量之间的关系也较容易发现,得到的结果并不要求精确,但是需要做出一定的分析、说明,进行简单评价.复杂问题指从实际生活中来而且未经数学化的问题,解决它不仅需要相应的数学知识,还需要了解非数学领域的知识,这类问题难以切入,不容易发现其中的量与量之间的关系,在求解中除了应用数学知识外,还需要运用计算机进行模拟、试算、检验,并需要对模型进行分析与评价,结果要求是最优解,没有标准答案,需要以科技论文呈现.原则2:数学建模素养水平评价需要体现情境与问题、知识与技能、思维与表达、交流与反思四个维度.《标准》中给出的这四个维度能够切实综合反映学生的数学建模素养水平,为了更准确地反映水平层次,需要将这四个维度量化.2.基于四个维度的数学建模核心素养评价模型的方案设计结合每个水平的具体表现,我们将这四个维度划分为相应的子维度,记分法则参照文献[11]中的“数学建模能力评价量表”.由此设计并构建了数学建模核心素养评定方案,如表4所示.可以规定,获得相应数学建模素养水平问题总分的60%,就可以认定学生达到了该水平.表4:基于四个维度的数学建模素养评价方案维度情境与问题知识与技能思维与表达交流与反思子维度提出问题做出假设定义变量、参数使用的数学方法问题结果模型分析与评价写作与组织结果报告理想情况简洁、确切地表明该模型的问题是什么.(3分)主要的假设确切、合理且易于理解.(3分)合理列出重要的参数和变量,并做出相关解释.(3分)呈现了合理的数学方法和数学结果,提供了合理的解释.(4分)清晰地提出解决方案,还包含有用的可视化辅助(表格、图形),并进行解释.(4分)提供了解决方案的可行性和可靠性.例如,与其他解决方案相比,本模型怎样?(3分)论文格式很好,可顺利地阅读,选择最佳可视化辅助且易于理解.(5分或4分)语言表达流畅,易于理解,针对听众的疑问给予合理解释.(5分或4分)符合要求问题的陈述很容易识别,但是不够精确.(2分)指出主要假设,但是缺乏合理性或可读性.(2分)合理列出重要参数和变量,没有确切的解释.(2分)陈述了数学方法,但是难以令人理解.(3分或2分)陈述了答案,但是解决方案的各个方面难以理解或不完整.(3分或2分)分析缺乏适当的维度.例如,忽略了所述结果的明显后果.(2分)格式符合要求,行文流畅,缺乏可视化辅助说明,不易理解.(3分或2分)语言表达流畅,未对听众的疑问给予合理解释.(3分或2分)需要改进问题的陈述难以理解或被隐藏在原文中.(1分)给出假设并说明其合理性,但是与问题不贴切.(1分)设置了部分变量、参数.(1分)陈述了数学方法,但是包含可以解决的数学错误.(1分)给出了答案,但是没有给出适当的图形、恰当的单位等.(1分)提供了一些分析,但是没有任何从整体出发看问题的意识.(1分)论文格式符合要求,行文不流畅.(1分)用自然语言流畅表达,但是听众难以理解.(1分)未完成没有给出问题陈述.(0分)没有假设,或缺乏假设的理由.(0分)没有确定变量或参数.(0分)没有提出模型,或提出的模型包含重大错误.(0分)未提供解决方案.(0分)文章中不包含任何的模型分析或评估.(0分)论文格式不符合要求.(0分)无法用自然语言流畅表述模型.(0分)··7四、基于四个维度数学建模核心素养评价模型的案例分析有关数学建模素养水平评价的问题编制或选取与“情境与问题”“知识与技能”两个维度的要求密切相关.下面我们主要根据这两个维度进行分析说明.说明的形式是先解析《标准》的要求,再解释本文选择的问题为何符合要求.1.数学建模核心素养水平一案例分析情境与问题维度要求:教师可以将教材中涉及的数学模型作为原材,选取适时的背景编制问题.可以为一般的应用问题或数量关系较明显的实际问题.知识与技能维度要求:问题需要设置参数或条件假设.水平一的问题是已经适度数学化的问题,学生经历从学过的数学模型中选取合适的模型,求解模型、检验模型、完善模型.情境:人社部拿出延迟退休方案,采取渐进式延迟退休年龄政策,采取小步慢走,渐进到位.男性延迟退休年龄的具体方案如表5所示.表5:男性延迟退休年龄方案出生年份退休年龄出生年份退休年龄出生年份退休年龄196160.00196861.75197563.50196260.25196962.00197663.75196360.50197062.25197764.00196460.75197162.50197864.25196561.00197262.75197964.50196661.25197363.00198064.75196761.50197463.25198165.00问题:男性的退休年龄随出生年份逐步调整的计算模型是什么?在情境与问题层面,该情境是学生熟悉的情境,问题是已经数学化的问题.从表格里的数据可知,调整过程中男性的出生年份与退休年龄均成等差数列,等差数列模型是学生学过的数学模型.在知识与技能层面,学生只需要通过模仿等差数列模型,设置模型相关参数,建立男性的退休年龄随出生年份逐步调整的计算模型,经历建立模型的过程.具体建模过程如下.由表5中的数据不难看出,数据呈等差数列特征.假设调整过程中的男性的出生年份为数列{}y n,退休年龄为数列{}a n,模型分别设为y n=y0+nd1,a n=a0+nd2.在2021年年龄为60岁的男性出生年份y0=1961,d1=1;目前的退休年龄a0=60,d2=0.25;从表5中可知,数列的长度n为从开始调整年龄到预定的退休年龄65岁的年龄跨度是20年,且作为连接男性出生年份与退休年龄数学关系的桥梁,即an-a0d2=y n-y0d1,再结合a0,d2,y0,d1的值,得到男性的退休年龄随出生年份逐步调整的计算模型an=60+0.25()y n-1961.2.数学建模核心素养水平二案例分析情境与问题维度要求:这种问题从社会的生产、生活实际中来,不容易切入,难以下手,需要学生将现实问题数学化,知道问题的价值与作用.知识与技能维度要求:该类问题需要经过分析与判断,量与量之间的关系容易被发现;可以跨学科寻找与解决此问题类似的模型;仍然需要在数学建模之前,做出适当假设,且理解设置参数的意义;得到的结果不一定精确,需要进行一定的分析、说明,简单评价,解决问题.情境:一辆小汽车在普通路面上行驶,得九组关于车速、反应距离、刹车距离的数据,如表6所示.反应距离即驾驶员做出反应动作到刹车制动开始起作用汽车行驶的距离.刹车距离即从刹车制动开始起作用到汽车完全停止这段时间内汽车行驶的距离.表6:车速与反应距离、刹车距离对应数据表车速/km·h-1324048566472808895反应距离/m6.78.510.111.913.415.216.818.620.1刹车距离/m6.18.512.31621.928.23645.355.5问题:对于这辆小汽车与这位驾驶员,分别建立反应距离关于车速的函数模型、刹车距离关于车速的函数模型.··8在情境与问题层面,该情境是学生熟悉的现实情境,是跨学科的问题,需要学生将问题数学化.将汽车运动问题转化为具体的路程与速度问题.在知识与技能层面,该问题是物理学科的匀速与减速问题,在物理学科中有类似的模型.通过观察数据并分析量与量之间的关系,学生选择路程与速度模型:匀速运动模型s=vt,匀减速运动模型s=v 22a.学生需要经历模型参数的假设,并且对结果进行分析.(1)假设驾驶员的反应时间为t,反应距离为s1,刹车距离为s2,车速为v.选取匀速运动模型s1=vt,计算驾驶员做出反应动作到刹车制动开始起作用汽车行驶的时间.将九组车速与反应距离的数据代入匀速运动模型,通过计算发现九组反应时间t非常接近,t的均值tˉ=0.7584,t的方差为2.0927×10-5,驾驶员的反应时间可以设定为定值0.7584,对于这辆小汽车与这位驾驶员,反应距离关于车速的函数模型为s1= 0.7584t.(2)假设这辆小汽车的减速度为a,选取匀减速运动模型s2=v22a.将九组车速与刹车距离数据代入匀减速运动模型,通过计算发现九个12a的值非常接近,12a的均值是0.072,12a的方差是1.7617×10-5,12a可以设定为定值0.072.对于这辆小汽车与这位驾驶员,刹车距离关于车速的函数模型s2=0.072v2.3.数学建模核心素养水平三案例分析情境与问题维度要求:情境是综合的科学情境,问题是现实生活中未经过数学化的问题.难以切入问题,不容易发现量与量之间的关系.知识与技能维度要求:这类问题没有能运用或者模仿的模型.学生在理解题意,将现实问题数学化的基础上,运用学习过的数学知识创造性地建立数学模型.在求解步骤中除了数学知识,还需要运用计算机进行模拟、试算、检验,解决问题.情境:储药柜的结构类似于书橱,从上到下有若干层横向隔板.每一层称为一个储药槽,每个储药槽内用竖向隔板隔开,形成若干个存放药盒的储药格,一个储药槽内只能摆放同一种药品,如图3所示.图3问题:为保证药品在储药槽内顺利出入,要求药盒与两侧竖向隔板之间、与上下两层横向隔板之间应留2mm的间隙,同时还要求药盒在储药槽内推送的过程中不会出现并排重叠、侧翻或水平旋转.表7给出了20种药盒的尺寸规格,给出能够存放这些药盒且满足上述要求的储药格宽度类型最少的设计方案.表7:药盒规格表药盒编号长度/mm宽度/mm厚度/mm药盒编号长度/mm宽度/mm厚度/mm112076241195553321257220121086218312576211395553349171151413476205125722115955533612085201685464671173726171257533878652018116761691175656191001001010744740201317738在情境与问题层面:问题从实际生活中来,未经过数学化处理,难以切入问题,不容易发现量与量之间的关系,是综合情境复杂问题.在数学建模过程中,实际问题抽象为数学问题,需要借助于几何直观.模型求解运用不等式,通过解不等式寻找储药格宽度与存储药盒厚度的关系,划分药盒的厚度间隔.在知识层面上,学生遇到的困难大.在知识与技能层面,该问题无已知的模型可以直接运用,需要学生有数学建模素养水平三的能力,建立模型,解决问题.问题数学化分析如下.(1)药盒在储药槽内推送的过程中不会出现并排重叠,即药槽的宽度小于药盒宽度的两倍.··9。

数学建模评价模型方法

数学建模评价模型方法

数学建模评价模型方法数学建模评价模型方法一、关于评价指标所谓指标就是用来评价系统的参量。

例如,在校学生规模、教学质量、师资结构、科研水平等,就可以作为评价高等院校综合水平的主要指标。

一般说来,任何—个指标都反映和刻画事物的—个侧面。

从指标值的特征看,指标可以分为定性指标和定量指标。

定性指标是用定性的语言作为指标描述值,定量指标是用具体数据作为指标值。

例如,旅游景区质量等级有 5A、 4A、 3A、 2A 和 1A之分,则旅游景区质量等级是定性指标;而景区年旅客接待量、门票收入等就是定量指标。

从指标值的变化对评价目的的影响来看,可以将指标分为以下四类:(1) 极大型指标 ( 又称为效益型指标 ) 是指标值越大越好的指标;(2) 极小型指标 ( 又称为成本型指标 ) 是指标值越小越好的指标;(3) 居中型指标是指标值既不是越大越好,也不是越小越好,而是适中为最好的指标;(4) 区间型指标是指标值取在某个区间内为最好的指标。

例如,在评价企业的经济效益时,利润作为指标,其值越大,经济效益就越好,这就是效益型指标;而管理费用作为指标,其值越小,经济效益就越好,所以管理费用是成本型指标。

再如建筑工程招标中,投标报价既不能太高又不能太低,其值的变化范围一般是× 标的价,超过此范围的都将被淘汰,因此投标报价为区间型指标。

投标工期既不能太长又不能太短,就是居中型指标。

在实际中,不论按什么方式对指标进行分类,不同类型的指标可以通过相应的数学方法进行相互转换1 评价指标的处理方法一般情况下,在综合评价指标中,各指标值可能属于不同类型、不同单位或不同数量级,从而使得各指标之间存在着不可公度性,给综合评价带来了诸多不便。

为了尽可能地反映实际情况,消除由于各项指标间的这些差别带来的影响,避免出现不合理的评价结果,就需要对评价指标进行一定的预处理,包括对指标的一致化处理和无量纲化处理。

1 . 指标的一致化处理所谓一致化处理就是将评价指标的类型进行统一。

数学建模万能模板9模型优缺点评价三篇

数学建模万能模板9模型优缺点评价三篇

数学建模万能模板9模型优缺点评价篇一模型评价优点:1 、本文在正确、清楚地分析了题意地基础上,建立了合理、科学的可变成本计算模型,为求最大利润准备了条件。

2 、在假设基础上建立了计算折旧费用的模型,巧妙地解决了实房、期房数目不确定的问题。

3 、建立了以最大利润为目标的单目标规划函数,选用MATLAB 编程,具有一定的实际价值。

4 、运用了正确的数据处理方法,很好的解决了小数取整问题。

缺点:1 、在编程中,没有加入的约束条件,导致了最终的运算结果出现小数。

最后,我们采用人工方法进行了较好的弥补。

2 、公司预计的销售量与实际的销售量肯定会有出入。

但在模型计算中,我们取了预计值作为近似值来计算,这与实际值必会有些出入。

3 、在假设中我们作出了“顾客完全服从公司分配”的假设,这与实际情况不完全相符。

4 、在确定固定成本G 和销售费用X 时,我们只是从网上查阅的资料中得到1500 元/ 平方米和0.1 的粗略值,这与实际情况有出入。

但这只会对净利润L 的值产生影响,而不会影响建造计划。

5 、模型建立过程中引入的变量过多,容易引起“维数灾”,且不利于编程处理。

十、模型优缺点评价优点1 、原创性很强,文章中的大部分模型都是自行推导建立的;2 、建立的规划模型能与实际紧密联系,结合实际情况对问题进行求解,使得模型具有很好的通用性和推广性;3 、模型的计算采用专业的数学软件,可信度较高;4 、对附件中的众多表格进行了处理,找出了许多变量之间的潜在关系;5 、对模型中涉及到的众多影响因素进行了量化分析,使得论文有说服力。

缺点1 、规划模型的约束条件有点简单;2 、顾客满意度调查的权重系数人为确定缺少理论依据;3 、没有很好地把握论文的重心,让人感觉论文有点散。

篇二模型评价:模型优点:建立的模型方法简单易行,且易中应用于现实生活。

模型缺点:考虑的影响因素较少,在处理问题时可能存在一些误差。

仅使用一个月的数据具有一定的局限性,另外对外伤患者都按急症处理,考虑的情况比较简单。

数学建模评价模型方法

数学建模评价模型方法

数学建模评价模型方法目标评价方法是通过对建模目标进行分析和评价,从而确定模型的合理性和准确性。

常用的目标评价方法有以下几种:1.目标一致性评价:通过比较建模目标与实际需求的一致性,评估模型是否能够准确反映实际问题的特征。

可以通过专家访谈、问卷调查等方式,收集相关数据,然后通过定量或定性分析的方法来评价目标一致性。

2.目标完备性评价:评估模型是否能够完整地描述问题的各个方面。

可以通过检查模型的输入、输出和求解方法,判断是否包括了问题的所有关键要素,从而评价模型的完备性。

3.目标可行性评价:评估模型是否能够在给定的条件下实现。

通过对模型中所涉及的参数、约束条件和假设进行分析,判断模型是否符合实际操作的限制和要求。

效果评价方法是通过对模型的输出结果进行分析和评价,从而判断模型的有效性和可靠性。

常用的效果评价方法有以下几种:1.精度评价:评估模型的输出结果与实际观测值或已知数据之间的偏差程度。

可以采用各种统计指标,如均方根误差、平均绝对百分比误差等,来度量模型的精度。

2.稳定性评价:评估模型在不同条件下的输出结果是否稳定。

可以通过对输入条件的变化、参数的敏感性分析等方法,来评估模型的稳定性。

3.可行性评价:评估模型的输出结果是否满足实际的约束条件和要求。

可以通过比较模型的输出结果与给定的约束条件来判断模型的可行性。

在实际应用中,常常需要综合考虑目标评价和效果评价方法来对建模进行综合评价。

可以根据实际情况,确定评价指标的权重,并运用多指标综合评价方法来评价模型的综合效果。

总之,数学建模评价模型方法是评估模型合理性、准确性和可行性的重要手段。

通过目标评价和效果评价方法的综合应用,可以对建模过程和建模结果进行全面评估,为实际问题的求解提供科学的依据和方法。

初中数学教师应该如何评价学生的数学建模能力

初中数学教师应该如何评价学生的数学建模能力

初中数学教师应该如何评价学生的数学建模能力数学建模是指将数学理论与实际问题相结合,通过建立数学模型和运用数学方法对问题进行分析、解决的过程。

作为初中数学教师,对学生的数学建模能力进行评价是十分重要的。

本文将从学生对问题的理解能力、数学原理的运用能力和解决问题的创新能力三个方面,论述初中数学教师如何评价学生的数学建模能力。

一、学生对问题的理解能力学生对问题的理解能力是进行数学建模的基础。

评价学生的数学建模能力,教师需要观察学生在课堂上和作业中对问题的理解情况。

学生是否能够准确地理解问题的背景和目标,并能根据问题进行分析,把握问题的关键要素。

比如,在给定一个实际生活中的问题时,学生是否能提出恰当的数学模型,并根据模型进行定量分析。

教师可以通过考察学生在课堂上的展示,课堂讨论的参与度以及作业中的解答情况来评价学生的问题理解能力。

二、数学原理的运用能力数学建模需要学生能够将数学原理和概念灵活运用于实际问题中。

评价学生的数学建模能力,教师需要观察学生在解决问题过程中对数学原理的正确应用。

学生是否能够准确地选择和使用适当的数学方法,是否能够把握数学原理的适用范围和限制条件。

此外,学生是否能够将数学概念和运算符合理组合,并能够运用数学工具进行计算和验证。

教师可以通过评价学生的作业,考察学生的数学推理和计算能力,以及解答过程的正确性和准确性。

三、解决问题的创新能力数学建模注重学生的解决问题的创新能力。

评价学生的数学建模能力,教师需要观察学生在解决问题过程中的创造性思维和创新意识。

学生是否能够从不同角度思考问题,能够提出新颖的解决方法和思路。

此外,学生是否能够对问题进行深入分析,在分析结果的基础上进行评价和改进,不断优化解决方案。

教师可以通过学生的课堂表现和作业完成情况,考察学生的解决问题的独立思考能力、创造性思维和实践能力。

总结起来,初中数学教师应该从学生对问题的理解能力、数学原理的运用能力和解决问题的创新能力三个方面评价学生的数学建模能力。

数学建模常见评价模型简介

数学建模常见评价模型简介

数学建模常见评价模型简介Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998常见评价模型简介评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。

主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。

层次分析模型层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。

其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。

运用层次分析法进行决策,可以分为以下四个步骤:步骤1 建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。

步骤2构造成对比较阵对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵;步骤3计算权向量并作一致性检验由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。

步骤4计算组合权向量(作组合一致性检验)组合权向量可作为决策的定量依据通过一个具体的例子介绍层次分析模型的应用。

例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。

步骤1 建立系统的递阶层次结构将决策问题分为3个层次:目标层O ,准则层C ,方案层P ;每层有若干元素,各层元素间的关系用相连的直线表示。

图1 选择旅游地的层次结构步骤2构造比较矩阵标度值 含义1 两因素相比,具有同等重要性 3 两因素相比,前者比后者稍重要 5 两因素相比,前者比后者明显重要 7 两因素相比,前者比后者强烈重要 9 两因素相比,前者比后者极端重要2、4、6、8表示上述相邻判断的中间值以上各数值的倒数若指标i 与指标j 比较相对重要性用上述之一数值标度,则指标j 与指标i 的相对重要性用上述数值的倒数标度表1 1~9标度的含义设要比较各准则n C C C ,,,21 对目标O 的重要性,记判断矩阵为A显然,A 是正互反阵。

数学建模常见评价模型简介完整版

数学建模常见评价模型简介完整版

数学建模常见评价模型简介HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】常见评价模型简介评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。

主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。

层次分析模型层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。

其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。

运用层次分析法进行决策,可以分为以下四个步骤:步骤1 建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。

步骤2构造成对比较阵对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵;步骤3计算权向量并作一致性检验由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。

步骤4计算组合权向量(作组合一致性检验)组合权向量可作为决策的定量依据通过一个具体的例子介绍层次分析模型的应用。

例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。

步骤1 建立系统的递阶层次结构将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。

图1 选择旅游地的层次结构步骤2构造比较矩阵标度值 含义1 两因素相比,具有同等重要性 3 两因素相比,前者比后者稍重要 5 两因素相比,前者比后者明显重要 7 两因素相比,前者比后者强烈重要 9 两因素相比,前者比后者极端重要2、4、6、8表示上述相邻判断的中间值以上各数值的倒数若指标与指标比较相对重要性用上述之一数值标度,则指标与指标的相对重要性用上述数值的倒数标度表1 1~9标度的含义设要比较各准则n C C C ,,,21 对目标O 的重要性,记判断矩阵为A 显然,A 是正互反阵。

教师评价模型 数学建模

教师评价模型 数学建模

教师评价模型一、 摘要学校是一个充满着评价人的场所,每时每刻都在对各个人进行评价。

毫不夸张地说评价教师是学校里每个人的“日常功课”。

由于教师职业劳动的特殊性,它是复杂劳动。

不能仅仅用工作量来评价教师的劳动,同时评价教师的人员纷繁复杂,方式多种多样。

评价教师的标准往往束缚着学校的教学质量,教师教学的积极性。

所以教师评价的确定就显的很重要。

新课程强调:评价的功能应从注重甄别与选拔转向激励、反馈与调整;评价内容应从过分注重学业成绩转向注重多方面发展的潜能;评价主体应从单一转向多元。

那么如何公正、客观地评价教师的同时,有效地保护教师的教学积极性和帮助提高学校的办学水平呢?此模型的建立改变了以往同类模型的多种弊端,从另一角度更加合理地分析、评价,就是为了更公平,公正地对教师做出合理的评价,从而促进学生发展和教师提高。

本模型主要用了模糊数学模型和对各项评价付权重的方法进行建模分析。

从(1)教师对自己的评价,(2)学生对教师的评价;(3)由专家组对教师的评价的角度出发,通过量化,加权,得出结果。

然后确定三方面的比重来评价教师。

同时通过确定教师自评与他人评价的比值范围,而确定这次评价是否有效。

在各个方面采用的数学模型如下:1、 教师对自己的评价:教师对自己的满意度,既体现教师的主人翁意识也保护教师的教学积极性。

161160iii P Q D ==∑ ( i ∈[1,16])(Q 表示教师自评的得分Pi 表示教师对自己各项符合度而打的分数 Di 表示对教师自评要求各项所加给的权重) 2、 学生对教师的评价:表明以学生为主体,体现了模型的客观性,公平、公开的原则。

9ji ij i d c a ==∑ ija=ijnuija=A (U ,V )( U 为评价的主要因素,V 为评价因素分等。

C i 为学生对教师的各项评价要求所付的权重 N 为填写有效调查表的人数)3、 由专家组成通过听课对教师的评价:表明专家对教师指导性,帮助教师提高教学水平。

层次分析法评价模型

层次分析法评价模型

层次分析法评价模型评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。

主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。

层次分析模型层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。

其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。

运用层次分析法进行决策,可以分为以下四个步骤:步骤1 建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。

步骤2构造成对比较阵对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵;步骤3计算权向量并作一致性检验由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。

步骤4计算组合权向量(作组合一致性检验)组合权向量可作为决策的定量依据通过一个具体的例子介绍层次分析模型的应用。

例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。

步骤1 建立系统的递阶层次结构将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。

图1 选择旅游地的层次结构步骤2构造比较矩阵元素之间两两对比,对比采用美国运筹学家A.L.Saaty 教授提出的1~9比率标度法(表1)对不同指标进行两两比较,构造判断矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教师评价模型一、 摘要学校是一个充满着评价人的场所,每时每刻都在对各个人进行评价。

毫不夸张地说评价教师是学校里每个人的“日常功课”。

由于教师职业劳动的特殊性,它是复杂劳动。

不能仅仅用工作量来评价教师的劳动,同时评价教师的人员纷繁复杂,方式多种多样。

评价教师的标准往往束缚着学校的教学质量,教师教学的积极性。

所以教师评价的确定就显的很重要。

新课程强调:评价的功能应从注重甄别与选拔转向激励、反馈与调整;评价内容应从过分注重学业成绩转向注重多方面发展的潜能;评价主体应从单一转向多元。

那么如何公正、客观地评价教师的同时,有效地保护教师的教学积极性和帮助提高学校的办学水平呢?此模型的建立改变了以往同类模型的多种弊端,从另一角度更加合理地分析、评价,就是为了更公平,公正地对教师做出合理的评价,从而促进学生发展和教师提高。

本模型主要用了模糊数学模型和对各项评价付权重的方法进行建模分析。

从(1)教师对自己的评价,(2)学生对教师的评价;(3)由专家组对教师的评价的角度出发,通过量化,加权,得出结果。

然后确定三方面的比重来评价教师。

同时通过确定教师自评与他人评价的比值范围,而确定这次评价是否有效。

在各个方面采用的数学模型如下:1、 教师对自己的评价:教师对自己的满意度,既体现教师的主人翁意识也保护教师的教学积极性。

161160iii P Q D ==∑ ( i ∈[1,16])(Q 表示教师自评的得分Pi 表示教师对自己各项符合度而打的分数 Di 表示对教师自评要求各项所加给的权重) 2、 学生对教师的评价:表明以学生为主体,体现了模型的客观性,公平、公开的原则。

9ji ij i d c a ==∑ ija=ijnuija=A (U ,V )( U 为评价的主要因素,V 为评价因素分等。

C i 为学生对教师的各项评价要求所付的权重 N 为填写有效调查表的人数)3、 由专家组成通过听课对教师的评价:表明专家对教师指导性,帮助教师提高教学水平。

体现了评价的权威性,真实性。

同时也是作为教师提拔的一个方面。

(1)建立综合评价矩阵51ij ijikk c gc==∑(2)综合评价B=A ⊕R=(b 1,b 2,……,b m ) M (∧,∨)----主因素决定型 B j =max{(a i r ij ),1<=i<=n}(j=1,2,……,m)分别载1.2.3中加权进行如下计算以表明确定得分的有效性,超出的、这个范围就意味着无效。

范围0.75<=M<=1.25*60%*40%QM R W =+(0.75<=M<=1.25为教师的分的有效性 Q 为教师自评的总分W 为专家评判的总分 R 为学生评价的总分 ) 模型的缺点和推广 优点:(1)采用模糊数学建模,充分考虑许多因素。

评价尽量客观,真实,全面 (2)采用加权,分等。

使教师之间互相的竞争,同时也保护了教师的积极性 (3)模型分为三个方面进行建模,以教师自我评价的主要方面,综合评议。

真正体现评价的发展性、引导性和促进性。

不足(1)没有大量的数据来调整模型的系数,使模型更加贴进现实。

(2)对于结果有效性范围的确定不是很准确,采用人为划定。

(3)如果这次评价无效,其后的处理方法不太详细。

推广:模型可以用于创新性,科技类公司的人员测评,对于复杂型劳动的公司人员的管理有极大的帮助。

关键词 :评价 教师 自我评价 多次评价 新课程 教学积极性二、问题重述据有关调查资料表明,一名教师从入门到胜任工作,至少要3年的教学实践,到单独承担教学任务和尝试创造性教学需4至8年,从成熟到最佳水平的发挥则需要8至15年,而到出成果阶段则需要15至30年。

因此教师的工作是复杂劳动。

评价一个教师考虑的因素就很多了。

同时评价教师的人员纷繁复杂,方式多种多样。

但在以往教师评价方面存在很多的问题,如教师多处于被动接收检查、被评判的地位,在最终的评价结果里很少有自己发表意见的机会;评价结果通常与奖励、评职称挂钩,很少提出能够真正帮助教师提高的发展性建议;评价总是面面俱到,不能提供具有针对性的、有重点的指导实践证明:一个学校如果在管理过程中不注重对教师的激励,干好干坏一个样,就会人浮于事,人心涣散。

如果运用激励艺术,建立有效的激励机制,加大竞争力度,教师就会有目标、有干劲。

在激励因素的作用下,教师内在的潜能得到激发,就会形成一股推动力、造就一种发展力。

激励就是激发教师的热情,调动教师的积极性;激励的作用就是让教师个人的潜力最大限度地发挥出来,提高工作成效。

教师要在一起和睦共处,必须形成一个健康、融洽、和谐、宽松、友爱、民主的心理环境,形成一个干群、同事、师生之间团结共进的人际环境,形成一个广开言路,心理沟通,宽严适度,管理得当的工作环境。

惟有如此,学校才能把优秀教师稳定下来,才能产生“良禽择木而栖”的效应。

一个和谐的校园氛围是骨干教师成长的土壤。

评价的实质是促使人们的工作和学习日趋完善,是行为的自觉性和反思性的体现。

课程与教学评价同样如此,它的根本目的要立足于“帮”,而不是局限于“评”;要注意帮助教师提高教学实效。

在一线教学的教师们同样鼓励、需要得到尊重,评价应该保护教师的自尊和改进教学的积极性;评价应该帮助教师对自己的教学行为进行分析与反思,建立以教师自评为主的多元化评价体系。

如何公正、客观地评价教师的同时,有保护教师的教学积极性,帮助提高学校办学水平。

三、问题的分析教师评价是学校管理的重要环节,目的是激励教师提高教育教学能力,帮助教师成长。

教师评价可分为行政性评价和发展性评价两大类。

本文中我们研究的是教师的发展性评价,即帮助教师发现教学中存在的问题,进而改善教育教学行为,提高教育教学质量。

建立以教师自评为主,校长、教师、学生、家长共同参与的评价制度,是教师从多种渠道获得信息,不断提高教师的教学水平。

也就是说,对教师教学行为的评价要立足于“帮”,而不是局限于“评”;要注意帮助教师提高教学实效,而不是为了展现评价者自水平。

作为评价者,应该了解教师需要什么样的帮助,如果能换位思考,则可以使自己的行为更多的体现对别人的尊重与关怀。

在一线教学的教师们同样鼓励、需要得到尊重,评价应该保护教师的自尊和改进教学的积极性;教师需要个性化的帮助,尤其需要专业发展方面的指导,评价应该帮助教师对自己的教学行为进行分析与反思,建立以教师自评为主的多元化评价体系。

教师自己为自己打分。

体现教师的主人翁意识,有利于提高教师对自己的满意度。

在一线教学的教师们得到了鼓励、需要得到了尊重,评价在保护教师的自尊和改进教学的积极性;还帮助教师对自己的教学行为进行分析与反思,同时容易形成一个健康、融洽、和谐、宽松、友爱、民主的心理环境,形成一个干群、同事、师生之间团结共进的人际环境,形成一个广开言路,心理沟通,宽严适度,管理得当的工作环境。

学生对教师的评价。

他们是顾客、是上帝,教师服务的满意度应有他们说了算,只有他们满意了,学校才能生存、发展。

学生对教师的评价肯定不会看你在外面上了多少节公开课,他看你的上课就是平时实实在在的家常课上得怎么样。

他也不会管你在报刊杂志上发表了多少文章,而只看你教学是否有条理,学生考试的成绩怎么样。

他一般也不会在乎你受过什么级别的奖励,只要你对学生好,学生喜欢你并最终喜欢你的课就成。

他们在评价教师的时候心里都有一杆看不见的称,即使这杆称不一定精确,可他们心目中好教师的形象一点也不比身处教育教学第一线的人来得模糊,由于他们的动机的单纯,他们对教师的个人经历不是很感兴趣,正是如此由于身处局外而看得异常清晰。

专家组成通过听课对教师的评价。

表明专家对教师指导性,帮助教师提高教学水平。

体现了评价的权威性,真实性。

同时也是作为教师提拔的一个方面。

通过以上三个方面的评价,评价小组召开评议会,根据评价小组和学生的评价,结合教师自评及小组评价时教师个人的申辩,给教师一个分数,给受评教师一个定性意见,定性意见要用事实说话,并提出今后改进的建议和努力的方向,真正体现评价的发展性、引导性和促进性。

本模型主要用了模糊数学模型和对各项付权重和方法进行建模分析。

从(1)教师对自己的评价,(2)学生对教师的评价;(3)由专家组对教师的评价的角度出发,通过量化,加权,得出结果。

然后确定三方面的比重来评价教师。

同时通过教师自评与他人评价的比值范围,而确定这次评价是否有效。

四、符号定义及说明i 表示在三次评价中各项要求的项数j 表示五种不同的评语,当j=1表示“好”当j=2表示“较好”当j=3表示“一般”当j=4表示“较差”当j=5表示“差”P i表示教师对自己各项符合度而打的分数D i表示对教师自评要求各项所加给的权重Q 表示教师自评所得的总分U 表示学生对教师的课堂教学评价的主要因素和基本要求构成的集合v 表示学生对教师的评语构成的集合C i表示学生对教师的各项评价要求所付的权重d j表示在学生对教师评价中所对应的评语v的等级R 表示在学生对教师评价中所得的总分C ij (i=1,2,3,4;j=1,2,3,4,5)表示在专家对教师评价中专家对教师赞成的第i项因素为第j种评价的票数W 表示专家对教师评价所得的总分M 表示教师自评与他人评价的比值五、模型的建立与求解一、评价办法(一)教师教学工作评价指标体系包括四部分内容:专家评价小组、学生的评价,专家对教师的评价。

专家评价小组、学生、的权重分别为40%、60%。

(二)教师教学工作的评价结果根据得分分为5级(三)教师自评1、教师之间不能进行相互考虑。

2、教师应该诚实守信、以人格为重。

3、教师应该写出自己在一年中的总结,自己教学的长处和不足。

4、教师应该从别人评价不了的方面考虑,认真反省自己的主观方面的不足。

(三)学生评价1、学生评价必须在课程考试前进行。

2、参与评价的学生不得少于该教师授课学生总数的2/3。

3、学生评价由专家安排人员组织学生认真填写测评表,并及时回收与统计。

(四)专家评价1、专家在进行测评前,首先要对学生进行宣传和动员,认真学习教学工作评价指标体系内涵,认真对待评价工作,严格掌握评价标准,客观地反映教师教学情况和质量,使评价工作真正起到对今后教学工作的促进作用。

2、评价要应侧重于教学内容的规范性和先进性、教学方法和方式的适用性和科学性以及作业批改、论文指导、试卷批改的准确性和认真程度等,在听取教师个人自我评以及听课、查看作业、学生论文、试卷等基础上,填写评价表。

3、专家评价小组根据平时听课、召开学生座谈会、检查学生作业、学生试卷、教师教案以及了解教师教学方法的改革情况等,对教师的教学工作进行全面评价,并进行测评,4、主要从教学态度、教学内容、教学方法、教学基本功等方面进行教学规范程度的评价,评价结果记入总分。

相关文档
最新文档