河北省2020年新高一数学必修一第三章函数的概念与性质知识点总结(人教版)
2020年高中数学新教材同步必修第一册 第3章 3.1.1 函数的概念
一、函数关系的判断
例1 下列对应关系式中是A到B的函数的是 A.A⊆R,B⊆R,x2+y2=1
√B.A={-1,0,1},B={1,2},f:x→y=|x|+1
C.A=R,B=R,f:x→y=x-1 2
D.A=Z,B=Z,f:x→y= 2x-1
反思
感悟 判断对应关系是否为函数,主要从以下三个方面去判断: (1)A,B必须是非空实数集; (2)A中任何一个元素在B中必须有元素与其对应; (3)A中任何一个元素在B中的对应元素必须唯一.
三、同一个函数的判定
例4 下列选项中能表示同一个函数的是 x2-1
A.y=x+1 与 y= x-1
√B.y=x2+1与s=t2+1
C.y=2x与y=2x(x≥0) D.y=(x+1)2与y=x2
解析 对于选项A,前者定义域为R,后者定义域为{x|x≠1},不是同一个函数; 对于选项B,虽然变量不同,但定义域和对应关系均相同,是同一个函数; 对于选项C,虽然对应关系相同,但定义域不同,不是同一个函数; 对于选项D,虽然定义域相同,但对应关系不同,不是同一个函数.
思考 定义域和值域分别相同的两个函数是同一个函数吗? 答案 不一定,如果对应关系不同,这两个函数一定不是同一个函数.
知识点三 区间
1.区间概念(a,b为实数,且a<b)
定义
名称
符号
{x|a≤x≤b} 闭区间
_[a_,__b_]_
{x|a<x<b}
开区间
_(_a_,__b_)
{x|a≤x<b} 半开半闭区间 _[_a_,__b_)
(x+1)0
(2)y=
;
x+2
解 由于0的零次幂无意义,
故x+1≠0,即x≠-1.
高中数学新教材必修第一册第三章 函数的概念与性质基础知识
第三章 函数的概念与性质1函数的概念:一般地,设B A ,是非空的实数集,如果对于集合A 中的 x ,按照某种 f ,在集合B 中都有 y 与它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作A x x f y ∈=),(,其中,x 叫做 ,x 的取值范围A 叫做函数的 ,与x 的值相对应的y 值叫做 ,函数值的集合}|)({A x x f ∈叫做函数的 ,值域是集合B 的子集.2函数的三要素: 、 、 . 求函数定义域的原则:(1)若()f x 为整式,则其定义域是 ;(2)若()f x 为分式,则其定义域是 ;(3)若()f x 是二次根式(偶次根式),则其定义域是 ;(4)若()0f x x =,则其定义域是 ;(5)若()()0,1x f x a a a =>≠,则其定义域是 ;(6)若()()log 0,1a f x x a a =>≠,则其定义域是 ;(7)若f (x )=sinx,g (x )=cosx ,则其定义域是 ;(8)若x x f tan )(=,则其定义域是 ;求函数值域的方法:配方法,换元法,图象法,单调性法等;求函数的解析式的方法:待定系数法,换元法,配凑法,方程组法等;3函数的表示方法:解析法(用函数表达式表示两个变量之间的对应关系)、图象法(用图象表达两个变量之间的对应关系)、列表法(列出表格表示两个变量之间的对应关系).4分段函数:在定义域内,对于自变量x 的不同取值区间,有不同对应关系的函数.6函数的单调性:(1)单调递增:设任意 ,当 时,有 .特别的,当函数在它的定义域上单调递增时,该函数称为增函数;(2)单调递减:设任意 ,当 时,有 特别的,当函数在它的定义域上单调递增时,该函数称为减函数.7单调区间:如果函数在区间上单调递增或单调递减,那么就说函数在这一区间有(严格的)单调性,区间就叫做函数的单调区间,单调区间分为单调增区间和单调减区间.8复合函数的单调性:同增异减.9函数的最大值、最小值:一般地,设函数)(x f y =的定义域为I ,如果存在实数M 满足: ,都有 ; 使得 ,那么称M 是函数的最大(小)值.10函数的奇偶性:偶函数:一般地,设函数)(x f y =的定义域为I ,如果 ,都有 ,且 ,那么函数叫做 ;偶函数的图象关于 对称;奇函数:一般地,设函数)(x f y =的定义域为I ,如果 ,都有 ,且 ,那么函数叫做 ;奇函数的图象关于 对称;若奇函数)(x f y =的定义域中有零,则其函数图象必过原点,即(0)0f =.11幂函数:一般地,函数 叫做幂函数,其中 是自变量, 是常数. 12幂函数()f x x α=的性质:①所有的幂函数在 都有定义,并且图象都通过点 ; ①如果0α>,则幂函数的图象过原点,并且在区间[)0,+∞上是 ; ①如果0α<,则幂函数的图象在区间()0,+∞上是 ,①幂函数图象不出现于第四象限.。
人教版高中数学必修一函数知识点总结
高中数学必修一第三章函数的应用知识点总结一、方程的根与函数的零点1、函数零点的概念:对于函数y=f(x),使f(x)=0 的实数x叫做函数的零点。
(实质上是函数y=f(x)与x轴交点的横坐标)2、函数零点的意义:方程f(x)=0 有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点3、零点定理:函数y=f(x)在区间[a,b]上的图象是连续不断的,并且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b)至少有一个零点c,使得f( c)=0,此时c 也是方程f(x)=0 的根。
4、函数零点的求法:求函数y=f(x)的零点:(1)(代数法)求方程f(x)=0 的实数根;(2)(几何法)对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.5、二次函数的零点:二次函数f(x)=ax2+bx+c(a≠0).1)△>0,方程f(x)=0有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点.2)△=0,方程f(x)=0有两相等实根(二重根),二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.3)△<0,方程f(x)=0无实根,二次函数的图象与x轴无交点,二次函数无零点.二、二分法1、概念:对于在区间[a,b]上连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。
2、用二分法求方程近似解的步骤:⑴确定区间[a,b],验证f(a)f(b)<0,给定精确度ε;⑵求区间(a,b)的中点c;⑶计算f(c),①若f(c)=0,则c就是函数的零点;②若f(a)f(c)<0,则令b=c(此时零点x0∈(a,c))③若f(c)f(b)<0,则令a=c(此时零点x0∈(c,b))(4)判断是否达到精确度ε:即若|a-b|<ε,则得到零点近似值为a(或b);否则重复⑵~⑷三、函数的应用:(1)评价模型:给定模型利用学过的知识解模型验证是否符合实际情况。
高一上数学必修一第三章《3.1函数的概念与性质》知识点梳理
高一上必修一第三章《函数》知识点梳理3.1.1函数及其表示方法学习目标:(1)在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用;(2)了解构成函数的要素,能求简单函数的定义域、值域;(3)通过具体问题情境总结共性,抽象出函数概念,积累从具体到抽象的活动经验,发展数学抽象的核心素养。
【重点】1.了解构成函数的要素,会求一些简单函数的定义域和值域.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).【难点】1、求函数的定义域和值域回顾初中所学的函数,在情境与问题中感受高中函数表达方式与初中的不同。
一、函数的概念我们已经学习过一些函数的知识,例如已经总结出:在一个变化过程中,数值发生变化的量称为变量;在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么就称y是x的函数.再例如,我们知道y=2x是正比例函数,y=-3x-1是一次函数,y=-2是反比例函数,y=x2+2x-3是二次函数,等等。
【情境与问题】(1)国家统计局的课题组公布,如果将2005年中国创新指数记为100,近些年来中国创新指数的情况如下表所示。
以y表示年度值,i表示中国创新指数的取值,则i是y的的函数吗?如果是,这个函数用数学符号可以怎样表示?(2)利用医疗仪器可以方便地测量出心脏在各时刻的指标值,据此可以描绘出心电图,如下图所示。
医生在看心电图时,会根据图形的整体形态来给出诊断结果(如根据两个峰值的间距来得出心率等).初中实际上是用变量的观点和解析式来描述函数的,但从情境与问题中的两个实例可知,初中的方法有一定的局限性:情境与问题中的i是y的函数,v是t的函数,但是这两个函数与初中的函数有所不同,比如都很难用一个解析式表示,而且每个变量的取值范围也有了限制,等等。
第三章函数的概念与性质单元复习讲义高一上学期数学(2020)
第三章单元《函数的概念与性质》作业设计课标要求本单元的学习,可以帮助学生建立完整的函数概念,不仅把函数理解为刻画变量之间依赖关系的数学语言和工具,也把函数理解为实数集合之间的对应关系;能用代数运算和函数图象揭示函数的主要性质;在现实问题中,能利用函数构建模型,解决问题.内容包括:函数概念、函数性质、*[1]函数的形成与发展.(1)函数概念①在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念(参见案例2),体会集合语言和对应关系在刻画函数概念中的作用。
了解构成函数的要素,能求简单函数的定义域。
②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数,理解函数图象的作用。
③通过具体实例,了解简单的分段函数,并能简单应用。
(2)函数性质①借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义。
②结合具体函数,了解奇偶性的概念和几何意义。
③结合三角函数,了解周期性的概念和几何意义。
内容分析本节课位于人教A版高中数学教材必修一的第三章的第二节本节是这一章重要环节。
是函数这一主线之下的重要内容,具有承上启下的重要作用。
本章我们用集合的语言与对应关系进一步描述了函数概念,与初中的函数定义相比较,突出了函数概念的本质:两个数集之间的一种确定的对应关系;明确了函数的三个构成要素:定义域、对应关系和值域;引入了函数符号:y=f(x).与初中基于变量关系的函数定义相比,本章基于两个实数集之间对应关系的函数定义,抽象层次显然提高了。
在今后的学习中我们会逐渐体会到这种函数定义的必要性,例如,在这种定义下,不同的函数可以进行加、减、乘、除等运算,从而使函数研究的内容和应用的范围得到扩展。
函数是描述变量之间依赖关系的重要数学模型。
函数的表示方法主要有解析法、图象法、列表法等.在解决问题时,面对不同的需要,选择恰当的方法表示函数是很重要的。
河北省2020年新高一数学必修一第三章函数的概念与性质知识点总结(人教版)
2020年新高一数学必修一知识点总结第三章函数的概念与性质3.1函数的概念及其表示1.函数是刻画变量间对应关系的数学模型和工具。
2.函数问题的共同特征:①定义域、值域均为非空数集;②定义域和值域间有一个对应关系;③对于定义域中的任何一个自变量,在值域中都有唯一确定的数与之对应。
3.函数中的对应关系可用解析式、图象、表格等表示,为了表示方便,引进符号f 统一表示对应关系。
【注】函数符号()y f x =是由德国数学家莱布尼茨在18世纪引入的。
4.函数定义一般地,设,A B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记作(),y f x x A =∈。
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合(){}f x x A ∈叫做函数的值域。
5.函数的三要素:①定义域;②对应关系;③值域。
6.(1)函数的定义域和对应关系可以确定出函数的值域,即一个函数的值域是由它的定义域和对应关系决定的。
(2)没有特别说明的情况下,函数的定义域默认是使其有意义的自变量取值范围。
如y =,则默认定义域是{}0x x ≠(3)实际问题中的函数定义域要根据实际情况定.如:匀速直线运动中位移、速度和时间的关系:()s t v t = ,隐含着0t ≥。
6.几个特殊函数的定义域和值域(1)正比例函数()0y kx k =≠,定义域和值域都为全体实数R。
(2)一次函数()0y kx b k =+≠,定义域和值域都为全体实数R。
(3)反比例函数()0k y k x=≠,定义域为{}0x x ≠,值域为{}0y y ≠。
(4)一元二次函数()20y ax bx c a =++≠,定义域为R。
①当0a >时,值域为244ac b y y a ⎧⎫-⎪⎪≥⎨⎬⎪⎪⎩⎭;②当0a <时,值域为244ac b y y a ⎧⎫-⎪⎪≤⎨⎬⎪⎪⎩⎭。
新教材人教A版高中数学必修第一册第三章函数的概念与性质 知识点易错点解题方法提炼汇总
第三章函数的概念与性质3.1函数的概念及其表示............................................................................................. - 1 -3.1.1函数的概念.................................................................................................. - 1 -3.1.2函数的表示法(1) ......................................................................................... - 7 -3.1.2函数的表示法(2) ....................................................................................... - 13 -3.2函数的基本性质................................................................................................... - 18 -3.2.1单调性与最大(小)值(1) ............................................................................. - 18 -3.2.1单调性与最大(小)值(2) ............................................................................. - 22 -3.2.2奇偶性 ....................................................................................................... - 29 -3.3幂函数 .................................................................................................................. - 35 -3.4函数的应用(一) .................................................................................................... - 40 - 3.1函数的概念及其表示3.1.1函数的概念知识点一函数的概念y=x中x与y的对应关系,和y=x2x中x与y的对应关系相同吗?知识梳理(1)一般地,设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function),记作y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).显然,值域是集合B的子集.(2)函数的三要素:一个函数的构成要素为:定义域、对应关系和值域.值域是由定义域和对应关系决定的.(3)相同函数:如果两个函数的定义域相同,并且对应关系完全一致,即相同的自变量对应的函数值也相同,那么这两个函数是同一个函数.知识点二区间的概念知识梳理(1)一般区间的表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b](2)特殊区间定义区间数轴表示{x|x≥a}[a,+∞){x|x>a}(a,+∞){x|x≤b}(-∞,b]{x|x<b}(-∞,b)R(-∞,+∞)解题方法探究探究一函数关系的判断[例1](1)下列集合A到集合B的对应f是函数的是()A.A={-1,0,1},B={0,1},f:A中的数平方B.A={0,1},B={-1,0,1},f:A中的数开方C.A=Z,B=Q,f:A中的数取倒数D.A=R,B={正实数},f:A中的数取绝对值[解析]按照函数定义,选项B,集合A中的元素1对应集合B中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C,元素0取倒数没有意义,也不符合函数定义中集合A中任意元素都对应唯一函数值的要求;选项D,集合A中的元素0在集合B中没有元素与其对应,也不符合函数定义中集合A中的任意元素都对应唯一函数值的要求,只有选项A符合函数定义.[答案] A(2)下列图形中,不能确定y是x的函数的是()[解析]任作一条垂直于x轴的直线x=a,移动直线,根据函数的定义可知,此直线与函数图象至多有一个交点.结合选项可知D不满足要求,因此不表示函数关系.[答案] D1.判断一个对应是否是函数的方法2.根据图形判断对应是否为函数的步骤(1)任取一条垂直于x轴的直线l.(2)在定义域内平行移动直线l.(3)若l与图形有且只有一个交点,则是函数;若在定义域内没有交点或有两个或两个以上的交点,则不是函数.如图所示:探究二求函数的定义域[例2](1)函数y=21-1-x的定义域为()A.(-∞,1) B.(-∞,0)∪(0,1]C .(-∞,0)∪(0,1)D .[1,+∞)(2)已知函数y =f (x )与函数y =x +3+1-x 是相等函数,则函数y =f (x )的定义域是( )A .[-3,1]B .(-3,1)C .(-3,+∞)D .(-∞,1](3)函数y =(x +1)0|x |-x 的定义域是( )A .{x |x >0}B .{x |x <0}C .{x |x <0,且x ≠-1}D .{x |x ≠0,且x ≠-1}(4)已知等腰△ABC 的周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,则函数的定义域为________.[解析] (1)由⎩⎨⎧1-x ≥0,1-1-x ≠0解得⎩⎨⎧x ≤1,x ≠0.故选B.(2)由于y =f (x )与y =x +3+1-x 是相等函数,故二者定义域相同,所以y =f (x )的定义域为{x |-3≤x ≤1}.写成区间形式为[-3,1].故选A.(3)∵⎩⎨⎧ x +1≠0,|x |-x >0,∴⎩⎨⎧ x ≠-1,|x |>x ,∴⎩⎨⎧x ≠-1,x <0.故选C.(4)由题意知0<y <10,即0<10-2x <10,解得0<x <5.又底边长y 与腰长x 应满足2x >y ,即4x >10,x >52.综上,52<x <5.[答案] (1)B (2)A (3)C (4)⎝ ⎛⎭⎪⎫52,5求函数定义域的实质及结果要求(1)求函数的定义域实质是解不等式(组),即将满足的条件转化为解不等式(组)的问题,要求把满足条件的不等式列全.(2)结果要求:定义域的表达形式可以是集合形式,也可以是区间形式. (3)一般地,形如y =f (x ),则f (x )≥0, 形如y =1f (x ),则f (x )≠0,形如y =(f (x ))0,则f (x )≠0.探究三 求函数值问题 [例3] [教材P 65例2拓展探究] (1)若函数f (x )=x +3+1x +2,求f (f (-3))的值. [解析] ∵f (-3)=-1. ∴f (f (-3))=f (-1)=-1+3+1-1+2=2+1. (2)若函数f (x )=x +3+1x +2,求f (x -1)的定义域. [解析] 法一:f (x -1)=x -1+3+1x -1+2=x +2+1x +1∴⎩⎨⎧ x +2≥0,x +1≠0, ∴⎩⎨⎧x ≥-2,x ≠-1.定义域为[-2,-1)∪(-1,+∞).法二:∵f (x )的定义域为{x |x ≥-3且x ≠-2}, ∴f (x -1)的定义域为x -1≥-3且x -1≠-2. 即{x |x ≥-2且x ≠-1}. (3)若函数f (x )=x +3+1x +2,设g (x )=x 2-3,求f [g (x )]. [解析] 首先g (x )≥-3,且g (x )≠-2, 即x 2-3≥-3且x 2-3≠-2, ∴x ≠±1.∴f [g (x )]=g (x )+3+1g (x )+2=x 2+1x 2-1=|x |+1x 2-1.∴f [g (x )]=|x |+1x 2-1(x ≠±1).函数求值的方法及关注点(1)方法:①求f(a):已知f(x)的解析式时,只需用a替换解析式中的x即得f(a)的值.②求f(g(a)):已知f(x)与g(x),求f(g(a))的值应遵循由里往外的原则.(2)关注点:用来替换解析式中x的数a必须是函数定义域内的值,否则函数无意义.易错点归纳一、抽象函数有“据”可依——抽象函数的定义域问题、求值问题所谓抽象函数,是指明显、具体的给出x与y之间的关系,只是借用函数符号来表达,指明了一些性质的函数.1.定义域问题求抽象函数定义域的原则及方法(1)原则:同在对应法则f下的范围相同,即f(t),f(φ(x)),f(h(x))三个函数中的t,φ(x),h(x)的范围相同.(2)方法:①已知f(x)的定义域为A,求f(g(x))的定义域,其实质是已知g(x)∈A,求x的范围;②已知f(g(x))的定义域为A,求f(x)的定义域,其实质是已知x∈A,求g(x)的范围,此范围就是f(x)的定义域.[典例](1)已知函数f(x)的定义域为[0,1],求f(x2+1)的定义域;(2)已知函数f(2x-1)的定义域为[0,1),求f(1-3x)的定义域.[解析](1)因为函数f(x2+1)中的x2+1相当于函数f(x)中的x,所以0≤x2+1≤1,即-1≤x2≤0,所以x=0,故f(x2+1)的定义域为{x|x=0}.(2)因为f(2x-1)的定义域为[0,1),即0≤x<1,所以-1≤2x-1<1.故f(x)的定义域为[-1,1),所以-1≤1-3x<1.解得0<x≤23,所以f(1-3x)的定义域为⎝⎛⎦⎥⎤0,23.2.求值问题充分利用所给函数的性质或者特征,结合已知值,采用赋值法.[典例]定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f (-3)等于( )A .2B .3C .6D .9[解析] f (1)=f (1+0)=f (1)+f (0)+2×1×0=f (1)+f (0),得f (0)=0;又f (0)=f (-1+1)=f (-1)+f (1)+2×(-1)×1=f (-1)+2-2=f (-1),得f (-1)=0;f (-2)=f (-1-1)=2f (-1)+2×(-1)2=2×0+2=2;f (-3)=f (-2-1)=f (-2)+f (-1)+2×(-2)×(-1)=2+0+4=6. [答案] C点评 求解此类问题时要灵活选择赋值量,反复运用已知关系式. 二、求定义域时盲目化简[典例] 求函数y =(x +1)2x +1-1-x 的定义域.[解析] 要使函数有意义,须⎩⎨⎧1-x ≥0,x +1≠0,得x ≤1且x ≠-1定义域为(-∞,-1)∪(-1,1].纠错心得 从表达式特征上看,似乎将函数式化简为y =x +1-1-x ,求定义域更简单.1-x ≥0得x ≤1.这已经破坏了函数的概念.求定义域务必是针对原函数而求,化简也是定义域内保持等价才可以.3.1.2 函数的表示法(1)知识点 函数的三种表示方法比较函数的三种表示法,它们各自的特点是什么?知识梳理 解析法,就是用数学表达式表示两个变量之间的对应关系. 列表法,就是列出表格来表示两个变量之间的对应关系. 图象法,就是用图象表示两个变量之间的对应关系. 这三种方法是常用的函数表示法.解题方法探究探究一列表法表示函数[例1](1)某路公共汽车,行进的站数与票价关系如下表:(2)下表表示函数y=f(x),则f(x)>x的整数解的集合是________.(3)如表:则方程g(f(x))=x[解析](1)观察表格可知,自变量(行进的站数)为7时函数的值为1.5,所以此人乘车的票价应为1.5元.(2)当0<x<5时,f(x)>x的整数解为{1,2,3}.当5≤x<10时,f(x)>x的整数解为{5}.当10≤x<15时,f(x)>x的整数解为∅.当15≤x<20时,f(x)>x的整数解为∅.综上所述,f(x)>x的整数解的集合是{1,2,3,5}.(3)当x=1时,f(x)=2,g(f(x))=2,不符合题意;当x=2时,f(x)=3,g(f(x))=1,不符合题意;当x=3时,f(x)=1,g(f(x))=3,符合题意,综上,方程g(f(x))=x的解集为{3}.[答案](1)1.5(2){1,2,3,5}(3){3}列表法表示函数的相关问题的解法解决此类问题关键在于弄清每个表格表示的函数,对于f(g(x))这类函数值的求解,应从内到外逐层求解,而求解不等式,则可分类讨论或列表解决.探究二函数的图象及应用[例2](1)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2016年1月至2018年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳[解析]2016年8月到9月,10月到11月等是逐月下降的,故A错.[答案] A(2)已知二次函数y=-x2+4x-3.①指出该函数图象的开口方向、对称轴方程、顶点坐标、与坐标轴的交点的坐标,并画出函数图象的草图.②说明其图象由y=-x2的图象经过怎样平移得来的.③当定义域为[0,3]时,结合该二次函数图象求该函数的值域.[解析]①y=-x2+4x-3=-(x-2)2+1,图象的开口向下,对称轴方程为x =2,顶点坐标为(2,1).令y=0解得,x=1或x=3,所以此函数图象与x轴相交于点(1,0)和(3,0),令x=0解得,y=-3,所以此函数图象与y轴相交于点(0,-3),画出此函数的图象,如图所示:②由y=-x2的图象向右平移2个单位长度,得函数y=-(x-2)2的图象,再向上平移1个单位长度,得函数y=-(x-2)2+1的图象.③画出函数y=-x2+4x-3,x∈[0,3]的图象,如图所示,观察图象可知该函数的值域为[-3,1].作函数图象的基本步骤利用图象认识函数左右看范围→函数的定义域上下看范围→函数的值域左右看变化→函数值随x的变化情况探究三求函数解析式[例3](1)(待定系数法)已知f(x)是一次函数,且f(f(x))=16x-25,求f(x).[解析]设f(x)=kx+b(k≠0),则f(f(x))=k(kx+b)+b=k2x+kb+b,∴k2x+kb+b=16x-25.∴⎩⎨⎧k 2=16,kb +b =-25, ∴⎩⎨⎧k =4,b =-5或⎩⎪⎨⎪⎧k =-4,b =253.∴f (x )=4x -5或f (x )=-4x +253.(2)换元法(或配凑法)已知f (x +1)=x +2x ,求f (x )的解析式.[解析] 法一(换元法):令t =x +1,则x =(t -1)2,t ≥1,所以f (t )=(t -1)2+2(t -1)=t 2-1(t ≥1),所以f (x )的解析式为f (x )=x 2-1(x ≥1).法二(配凑法):f (x +1)=x +2x =x +2x +1-1=(x +1)2-1. 因为x +1≥1,所以f (x )的解析式为f (x )=x 2-1(x ≥1). (3)(方程组法)已知f (x )+2f (-x )=x 2+2x ,求f (x ). [解析] ∵f (x )+2f (-x )=x 2+2x ,① ∴将x 换成-x ,得f (-x )+2f (x )=x 2-2x .② ∴由①②得3f (x )=x 2-6x ,∴f (x )=13x 2-2x .求函数解析式的方法易错点归纳一、一“图”胜万言——函数图象的应用[典例] 已知函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则b 的取值范围是( )A .(-∞,0)B .(0,1)C .(1,2)D .(2,+∞)[解析] 法一:由f (x )的图象知点(0,0),(1,0),(2,0)在图象上,得⎩⎨⎧d =0,a +b +c =0,8a +4b +2c =0⇒⎩⎨⎧b =-3a ,c =2a ,d =0.∴f (x )=ax 3-3ax 2+2ax . 又由图象知f (-1)<0,∴-a -3a -2a <0⇒a >0,则b =-3a <0. 故选A.法二:由三次函数f (x )的图象过(0,0),(1,0),(2,0)点,可设f (x )=ax (x -1)(x -2)=ax 3-3ax 2+2ax .又∵f (3)>0,得6a >0⇒a >0, ∴b =-3a <0.故选A. [答案] A二、忽视新元的范围 [典例] 已知f (x 2+1)=x 2+1x 2+1,求f (x )的解析式. [解析] 设t =x 2+1, ∴t ≥1, ∴x 2=t -1,∴f (t )=t -1+1t , ∴f (x )=x +1x -1(x ≥1).纠错心得 此题用换元法或配凑法求出f (x )后,易丢定义域的证明(x ≥1).3.1.2 函数的表示法(2)知识点 分段函数 预习教材,思考问题函数y =|x |在x ≥0与x <0时的解析式相同吗?知识梳理 如果函数y =f (x ),x ∈A ,根据自变量x 在A 中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数.解题方法探究探究一 分段函数的定义域、值域及求值问题 [例1] [教材P 68例6拓展探究](1)若已知函数M (x )=⎩⎨⎧(x +1)2,x ≤-1,x +1,-1<x ≤0,(x +1)2,x >0.求①M (-3),②M (2),③M [M (0)],④f [M (-3)],⑤F [M (a )]. [解析] ①当x =-3时,M (-3)=(-3+1)2=4. ②当x =2时,M (2)=(2+1)2=9. ③∵M (0)=1,∴M [M (0)]=M (1)=(1+1)2=4. ④∵f (x )=x +1,∴f [M (-3)]=f (4)=4+1=5. ⑤当a ≤-1时,M (a )=(a +1)2, ∴f [M (a )]=(a +1)2+1.当-1<a ≤0时,M (a )=a +1, ∴f [M (a )]=(a +1)+1=a +2. 当a >0时,M (a )=(a +1)2, ∴f [M (a )]=(a +1)2+1.综上,f [M (a )]=⎩⎨⎧(a +1)2+1, a ≤-1,a +2, -1<a ≤0,(a +1)2+1, a >0.(2)∀x ∈R ,用m (x )表示f (x )、g (x )中的较小者,记为m (x )=min {}f (x ),g (x ).求m (x )的解析式,并求m (x )的值域.[解析] 由(x +1)2=x +1得x =-1或x =0,即函数y =f (x )与y =g (x )的图象相交于两点(-1,0)和(0,1). 结合f (x )与g (x )的图象得出 m (x )的解析式为m (x )=⎩⎨⎧x +1,x ≤-1,(x +1)2,-1<x ≤0,x +1, x >0,如图,值域为R .1.分段函数定义域、值域的求法(1)分段函数的定义域是各段函数定义域的并集. (2)分段函数的值域是各段函数值域的并集.2.绝对值函数的定义域、值域通常要转化为分段函数来解决. 3.分段函数求函数值的方法(1)确定要求值的自变量属于哪一段区间.(2)代入该段的解析式求值,直到求出值为止.当出现f (f (x 0))的形式时,应从内到外依次求值.探究二 求分段函数解析式[例2] 如图①,在边长为6的正方形ABCD 的边上有一点P ,沿着折线BCDA 由点B (起点)向点A (终点)运动.设点P 运动的路程为x ,△APB 的面积为y .求:(1)y 与x 之间的函数关系式;(2)画出y =f (x )的图象.[解析] (1)按照题意,根据x 的变化,写出分段函数的解析式. 当点P 在线段BC 上移动时,即0<x ≤6,BP =x , 于是S △APB =12AB ·BP =12×6×x =3x ;当点P 在线段CD 上移动时,即6<x ≤12,S △APB =12AB ·BC =12×6×6=18; 当点P 在线段DA 上移动时,即12<x <18,S △APB =12AB ·P A =12×6×(18-x )=54-3x .于是y =⎩⎨⎧3x ,0<x ≤6,18,6<x ≤12,54-3x ,12<x <18.(2)画出y =f (x )的图象,如图②所示.求分段函数解析式的关键点(1)明确自变量x 的分段区间及分段点.(2)明确每一段上的函数类型用待定系数法求.探究三 分段函数与方程、不等式[例3] (1)函数f (x )=⎩⎨⎧x 2+2,x ≤2,2x ,x >2.若f (x 0)=8,则x 0=________.[解析] 当x 0≤2时,f (x 0)=x 20+2=8,即x 20=6,∴x 0=-6或x 0=6(舍去). 当x 0>2时,f (x 0)=2x 0=8,∴x 0=4. 综上,x 0=-6或x 0=4. [答案] -6或4(2)已知函数f (x )=⎩⎨⎧x ,x ≤-2,x +1,-2<x <43x ,x ≥4,,若f (a )<-3,则a 的取值范围是________.[解析] 当a ≤-2时,f (a )=a <-3,此时不等式的解集是(-∞,-3); 当-2<a <4时,f (a )=a +1<-3,此时不等式无解; 当a ≥4时,f (a )=3a <-3,此时不等式无解. 所以a 的取值范围是(-∞,-3). [答案] (-∞,-3)由分段函数的函数值求自变量的方法已知分段函数的函数值求对应的自变量的值,可分段利用函数解析式求得自变量的值,但应注意检验函数解析式的适用范围,也可先判断每一段上的函数值的范围,确定解析式再求解.易错点归纳一、形分而神不分——分段函数问题的求解方法分段函数只是在自变量不同的范围下,有不同的解析式,但在定义域内,它还是一个函数,而不是多个函数,解决问题时,要“分段处理”,然后结果要合为一体.[典例] 已知实数a ≠0,函数f (x )=⎩⎨⎧2x +a ,x <1,-x -2a ,x >1,若f (1-a )=f (1+a ),则a 的值为________.[解析] 当a <0时,1-a >1,1+a <1, 所以f (1-a )=-(1-a )-2a =-a -1, f (1+a )=2(1+a )+a =3a +2. 因为f (1-a )=f (1+a ), 所以-1-a =3a +2, 所以a =-34.当a >0时,1-a <1,1+a >1, 所以f (1-a )=2(1-a )+a =2-a , f (1+a )=-(1+a )-2a =-3a -1.因为f (1-a )=f (1+a ),所以2-a =-3a -1 所以a =-32(舍去). 综上所述,a =-34.[答案] -34 二、不分类讨论致错[典例] 若函数f (x )=⎩⎨⎧3-x 2,-1≤x ≤2,x -3,2<x ≤5,则方程f (x )=1的解是( )A.2或2B.2或3C.2或4D .±2或4[解析] 当-1≤x ≤2时,由f (x )=1得, 3-x 2=1,所以x =2或x =-2(舍去). 当2<x ≤5时,由f (x )=1得,x -3=1,所以x =4. 综上,f (x )=1的解是x =2或x =4.[答案] C纠错心得解决分段函数求值问题,要紧扣“分段”的特征,即函数在定义域的不同部分,有不同的对应关系,它不是几个函数,而是一个函数,应看成一个整体才有意义,它的定义域应是各部分x范围的并集,求值时要重视x的取值范围.如本例当-1≤x≤2时,求出x=2或x=-2,通过检验应舍去x=- 2.3.2函数的基本性质3.2.1单调性与最大(小)值(1)知识点函数的单调递增、单调递减对于函数f(x)=x2,如何用符号语言描述?知识梳理(1)定义域为I的函数f(x)的增减性(2)①特别地,当函数f(x)在它的定义域上单调递增时,我们就称它是增函数(increasing function).②特别地,当函数f(x)在它的定义域上单调递减时,我们就称它是减函数(decreasing function).③如果函数y =f (x )在区间D 上单调递增或单调递减,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.解题方法探究探究一 由函数图象求函数的单调区间[例1] 作出函数y =-x 2+2|x |+3的图象并指出它的单调区间. [解析] 根据绝对值的意义,y =-x 2+2|x |+3 =⎩⎨⎧ -x 2+2x +3,x ≥0-x 2-2x +3,x <0=⎩⎨⎧-(x -1)2+4,x ≥0-(x +1)2+4,x <0. 作出函数图象如图所示,根据图象可知,函数在区间(-∞,-1],[0,1]上是增函数;函数在区间(-1,0),(1,+∞)上是减函数.一般来说,求函数单调区间可以根据函数的图象.在某区间内,由左至右图象是上升的,该区间就是函数的单调增区间;某区间内,由左到右图象是下降的,该区间就是函数的单调减区间.探究二 函数单调性的证明或判断 [例2] [教材P 79例3拓展探究]根据定义证明y =x +1x 在(0,1)上是单调递减. [证明] ∀x 1,x 2∈(0,1),且x 1<x 2,有 y 1-y 2=⎝ ⎛⎭⎪⎫x 1+1x 1-⎝ ⎛⎭⎪⎫x 2+1x 2=(x 1-x 2)+⎝ ⎛⎭⎪⎫1x 1-1x 2=(x 1-x 2)+x 2-x 1x 1x 2=x 1-x 2x 1x 2(x 1x 2-1).由于0<x 1<1,0<x 2<1.∴0<x 1x 2<1. ∴x 1x 2-1<0. 又由x 1<x 2, ∴x 1-x 2<0, ∴x 1-x 2x 1x 2(x 1x 2-1)>0,∴y 1>y 2,∴函数y =x +1x 在(0,1)上是减函数.证明或判断函数单调性的方法主要是定义法(在解决选择或填空题时有时可用图象法),利用定义法证明或判断函数单调性的步骤是:探究三 利用单调性求参数[例3] 已知函数f (x )=ax 2-x +1在(-∞,2)上单调递减,求a 的取值范围. [解析] 当a =0时,f (x )=-x +1在(-∞,2)上单调递减,符合题意; 当a ≠0时,要使f (x )在(-∞,2)上单调递减,则⎩⎪⎨⎪⎧a >0,--12a ≥2,解得0<a ≤14.综上,a 的取值范围为⎣⎢⎡⎦⎥⎤0,14.根据函数的单调性求参数取值范围的方法(1)利用单调性的定义:设单调区间内x 1<x 2,由f (x 1)-f (x 2)<0(或f (x 1)-f (x 2)>0)恒成立求参数范围.(2)利用具体函数本身所具有的特征:如二次函数单调区间被对称轴一分为二,根据对称轴相对于所给单调区间的位置求参数.需注意:若一函数在区间[a,b]上是单调的,则该函数在此区间的任意子集上也是单调的.易错点归纳一、单调性定义的拓展及规律1.f(x1)-f(x2)x1-x2>0⇔(x1-x2)[f(x1)-f(x2)]>0⇔f(x)是增函数.2.f(x1)-f(x2)x1-x2<0⇔(x1-x2)[f(x1)-f(x2)]<0⇔f(x)是减函数.3.f(x)在区间A上是单调函数,则k>0时,kf(x)的单调性不变;k<0时,则相反.4.f(x),g(x)在区间A上同单调,则f(x)+g(x)的单调性不变.5.若f(x)在区间A上是单调函数,则1f(x)的单调性相反,2nf(x)(f(x)>0)、2n-1f(x)(n∈N*)的单调性相同.6.图象关于轴(与x轴垂直)对称的函数在它们的对称区间上的单调性相反,图象关于中心对称的函数在它们的对称区间上的单调性相同.[典例] 1.判定函数y=x2-2x+x-1的单调性,并求单调区间.[解析]定义域为x≥1,函数y1=x2-2x,y2=x-1均为增函数,则y=x2-2x+x-1也为增函数,则y=x2-2x+x-1的增区间为[1,+∞).2.定义在R上的函数f(x),对任意的x1,x2∈R,(x1≠x2)有f(x2)-f(x1)x2-x1<0,若a+b≤0,则有()A.f(a)+f(b)≤-f(a)-f(b)B.f(a)+f(b)≥-f(a)-f(b)C.f(a)+f(b)≤f(-a)+f(-b)D.f(a)+f(b)≥f(-a)+f(-b)[解析]由题意知,f(x)在R上为减函数.由题意知,a≤-b,b≤-a,∴f(a)≥f(-b),f(b)≥f(-a),∴f(a)+f(b)≥f(-a)+f(-b),故选D.[答案] D二、对“单调区间”和“在区间上单调”两个概念理解错误而致误[典例]若函数f(x)=x2+2(a-1)x+2的单调递减区间是(-∞,4],求实数a 的取值范围.[解析]函数f(x)的图象的对称轴为直线x=1-a.因为函数的单调递减区间是(-∞,4],所以1-a=4,解得a=-3.故实数a的取值范围是{-3}.纠错心得单调区间是一个整体概念,例如函数的单调减区间是I,指的是函数递减的最大范围是区间I,而函数在某一区间上的单调,则指此区间是相应单调区间的子区间.3.2.1单调性与最大(小)值(2)知识点函数的最值(1)函数f(x)=x2图象的最低点的纵坐标是多少?(2)函数f(x)=-x2图象的最高点的纵坐标是多少?知识梳理几何意义f(x)图象上最高点的纵坐标f(x)图象上最低点的纵坐标解题方法探究探究一利用图象法求函数的最值[例1]已知函数f(x)=⎩⎪⎨⎪⎧x2-x(0≤x≤2),2x-1(x>2),求函数f(x)的最大值、最小值.[解析]作出f(x)的图象如图:由图象可知,当x=2时,f(x)取最大值为2;当x=12时,f(x)取最小值为-14.所以f(x)的最大值为2,最小值为-14.用图象法求最值的三个步骤探究二利用单调性求最值[例2]求函数f(x)=x2+9-x,x∈[-4,0]的最大值和最小值.[解析]设x1,x2是[-4,0]上的任意两个实数,且x1<x2,则f(x1)-f(x2)=x21+9-x1-x22+9+x2=(x1-x2)(x1+x2)x21+9+x22+9+x2-x1.∵-4≤x1<x2≤0,∴x1-x2<0,x1+x2<0,x2-x1>0,∴f(x1)-f(x2)>0,即f(x1)>f(x2),∴f(x)在[-4,0]上是减函数.∴f(x)min=f(0)=3,f(x)max=f(-4)=9.利用单调性求最值的一般步骤(1)判断函数的单调性.(2)利用单调性写出最值.探究三二次函数的最值问题[例3][教材P80例4拓展探究](1)已知二次函数f(x)=x2-2x+3.①当x∈[-2,0]时,求f(x)的最值;②当x∈[-2,3]时,求f(x)的最值;③当x∈[t,t+1]时,求f(x)的最小值g(t).[解析]f(x)=x2-2x+3=(x-1)2+2,其对称轴为x=1,开口向上.①当x∈[-2,0]时,f(x)在[-2,0]上是单调递减的,故当x=-2时,f(x)有最大值f(-2)=11;当x=0时,f(x)有最小值f(0)=3.②当x∈[-2,3]时,f(x)在[-2,3]上先递减后递增,故当x=1时,f(x)有最小值f(1)=2.又|-2-1|>|3-1|,所以f(x)的最大值为f(-2)=11.③a.当t>1时,f(x)在[t,t+1]上单调递增,所以当x=t时,f(x)取得最小值,此时g(t)=f(t)=t2-2t+3.b .当t ≤1≤t +1,即0≤t ≤1时, f (x )在区间[t ,t +1]上先递减后递增,故当x =1时,f (x )取得最小值,此时g (t )=f (1)=2. c .当t +1<1,即t <0时,f (t )在[t ,t +1]上单调递减, 所以当x =t +1时,f (x )取得最小值, 此时g (t )=f (t +1)=t 2+2,综上得,g (t )=⎩⎨⎧t 2-2t +3,t >1,2,0≤t ≤1,t 2+2,t <0.(2)求f (x )=x 2-2ax -1在区间[0,2]上的最大值和最小值. [解析] f (x )=(x -a )2-1-a 2,对称轴为x =a . ①当a <0时,由图可知,f (x )min =f (0)=-1, f (x )max =f (2)=3-4a .②当0≤a <1时,由图可知,f (x )min =f (a )=-1-a 2, f (x )max =f (2)=3-4a .③当1≤a ≤2时,由图可知,f (x )min =f (a )=-1-a 2,f (x )max =f (0)=-1. ④当a >2时,由图可知,f (x )min =f (2)=3-4a , f (x )max =f (0)=-1.(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论.(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分类讨论求解.探究四 利用单调性比较大小、解不等式[例4] (1)如果函数f (x )=x 2+bx +c ,对任意实数x 都有f (2+x )=f (2-x ).试比较f (1),f (2),f (4)的大小.[解析] 由题意知,f (x )的对称轴为x =2, 故f (1)=f (3). ∵f (x )=x 2+bx +c ,∴f (x )在[2,+∞)上为增函数. ∴f (2)<f (3)<f (4), 即f (2)<f (1)<f (4).(2)已知y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),求a 的取值范围.[解析] 由题意可得⎩⎨⎧-1<1-a <1,-1<2a -1<1,解得0<a <1.①又f (x )在(-1,1)上是减函数,且f (1-a )<f (2a -1),∴1-a >2a -1,即a <23.② 由①②可知,0<a <23, 即所求a 的取值范围是⎝ ⎛⎭⎪⎫0,23.1.利用单调性比较大小的方法(1)利用函数单调性可以比较函数自变量(函数值)的大小,即已知f (x )在区间D 上为增函数,则对x 1,x 2∈D ,x 1<x 2⇔f (x 1)<f (x 2).(2)利用单调性比较函数值的大小,务必将自变量x 的值转化到同一单调区间上才能进行比较,最后写结果时再还原回去.2.利用函数单调性解不等式 与函数单调性有关的结论(1)正向结论:若y =f (x )在给定区间上是增函数,则当x 1<x 2时,f (x 1)<f (x 2);当x 1>x 2时,f (x 1)>f (x 2);(2)逆向结论:若y =f (x )在给定区间上是增函数,则当f (x 1)<f (x 2)时,x 1<x 2;当f (x 1)>f (x 2)时,x 1>x 2.当y =f (x )在给定区间上是减函数时,也有相应的结论.易错点归纳一、抽象函数单调性及最值的求解抽象函数一般由方程(不等式)确定,这类函数的单调性问题一般用单调性的定义来处理,但要注意运用好所给条件,判断出函数值之间的关系,常见思路是:先在所证区间上设出任意x 1,x 2(x 1<x 2),然后利用题设条件向已知区间上转化,最后运用函数单调性的定义解决问题.注意:若给出的是和型[f (x +y )=…]抽象函数,判定符号时的变形为f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1),f (x 2)-f (x 1)=f (x 2)-f [(x 1-x 2)+x 2];若给出的是积型[f (xy )=…]抽象函数,判定符号时的变形为f (x 2)-f (x 1)=f ⎝ ⎛⎭⎪⎫x 1·x 2x 1-f (x 1).[典例] 已知函数f (x )对任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数; (2)求f (x )在[-3,3]上的最大值与最小值.[解析] (1)证明:令x =y =0,得f (0)+f (0)=f (0), ∴f (0)=0.又令y =-x ,得f (x )+f (-x )=f (x -x )=f (0)=0, ∴f (-x )=-f (x ).任取x 1,x 2∈R ,且x 1<x 2,则x 2-x 1>0,f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (x 2-x 1). ∵x 2-x 1>0,依题设x >0时,有f (x )<0, ∴f (x 2-x 1)<0,即f (x 2)-f (x 1)<0, ∴f (x 2)<f (x 1).∴y =f (x )在R 上是减函数.(2)∵[-3,3]⊆R ,故f (x )max =f (-3),f (x )min =f (3). 由(1)可知f (-3)=-f (3),又∵f (3)=f (2+1)=f (2)+f (1)=f (1+1)+f (1)=f (1)+f (1)+f (1)=3f (1)=3×⎝ ⎛⎭⎪⎫-23=-2, ∴f (-3)=-f (3)=2,∴f (x )max =f (-3)=2,f (x )min =f (3)=-2. 二、忽视参数对最值的影响[典例] 函数y =ax +1在区间[-1,3]上的最大值为4,求a 的值. [解析] 当a >0时,y =ax +1为增函数. ∴当x =3时,∴y max =3a +1=4.∴a =1. 当a <0时,y =ax +1为减函数.∴当x =-1时,y max =-a +1=4.∴a =-3. 综上,a =1或a =-3.纠错心得 忽视对a ,即对函数单调性的讨论,直接认为y =ax +b 为增函数,只有一个解,当函数的单调性受参数影响时,要根据题意进行讨论.3.2.2 奇偶性知识点 函数奇偶性的定义(1)函数f (x )=x 2的图象有什么对称性? (2)函数f (x )=1x 的图象有什么对称性?知识梳理 (1)一般地,设函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I ,且f (-x )=f (x ),那么函数f (x )就叫做偶函数(even function).偶函数的图象关于y 轴对称,反之成立.(2)一般地,设函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I ,且f (-x )=-f (x ),那么函数f (x )就叫做奇函数(odd function).奇函数的图象关于原点对称,反之成立.解题方法探究探究一 函数奇偶性的判断 [例1] 判断下列函数的奇偶性: (1)f (x )=x 4+2x 2; (2)f (x )=x 3+1x ;(3)f (x )=x 2-1+1-x 2; (4)f (x )=⎩⎨⎧x 3-3x 2+1(x >0),x 3+3x 2-1(x <0);(5)f (x )=1-x 2|x +2|-2.[解析] (1)∵f (x )的定义域为R ,关于原点对称, 又f (-x )=(-x )4+2(-x )2=x 4+2x 2=f (x ), ∴f (x )为偶函数.(2)∵f (x )的定义域为(-∞,0)∪(0,+∞),它关于原点对称, 又f (-x )=(-x )3+1-x=-⎝ ⎛⎭⎪⎫x 3+1x =-f (x ),∴f (x )为奇函数.(3)∵f (x )的定义域为{-1,1}, 是两个具体数,但它关于原点对称, 又f (-1)=f (1)=0, f (-1)=-f (1)=0,∴f (x )=x 2-1+1-x 2既是奇函数,又是偶函数.(4)函数f (x )的定义域是(-∞,0)∪(0,+∞),关于原点对称. ①当x >0时,-x <0,则f (-x )=(-x )3+3(-x )2-1=-x 3+3x 2-1 =-(x 3-3x 2+1)=-f (x ). ②当x <0时,-x >0,则f (-x )=(-x )3-3(-x )2+1=-x 3-3x 2+1 =-(x 3+3x 2-1)=-f (x ).由①②知,当x ∈(-∞,0)∪(0,+∞)时, 都有f (-x )=-f (x ),∴f (x )为奇函数.(5)由题设得:⎩⎨⎧1-x 2≥0,|x +2|-2≠0,∴函数f (x )定义域为[-1,0)∪(0,1],关于原点对称,且x +2>0,∴|x +2|=x +2,∴f (x )=1-x 2|x +2|-2=1-x 2x +2-2=1-x 2x ,∴f (-x )=1-(-x )2-x =-1-x 2x =-f (x ),∴f (x )是奇函数.函数奇偶性的判定方法(1)定义法:若函数的定义域不是关于原点对称的对称区域,则该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的对称区域,再判断f (-x )是否等于±f (x ),或判断f (x )±f (-x )是否等于零,或判断f (x )f (-x )是否等于±1等. 用定义判断函数奇偶性的一般步骤:①求函数的定义域,并判断定义域是否关于原点对称. ②用-x 代x ,验证是否有f (-x )=-f (x )或f (-x )=f (x ), 若f (-x )=-f (x ),则f (x )为奇函数; 若f (-x )=f (x ),则f (x )为偶函数;若f (-x )=-f (x ),且f (-x )=f (x ),则f (x )既是奇函数又是偶函数; 若f (-x )≠f (x ),且f (-x )≠-f (x ),则f (x )为非奇非偶函数. (2)图象法:奇(偶)函数的等价条件是它的图象关于原点(y 轴)对称.探究二 已知函数奇偶性求函数解析式 [例2] [教材P 86第11题拓展探究](1)已知y =f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2-2x ,求f (x )在R 上的解析式.[解析] 设x <0,则-x >0, ∴f (-x )=(-x )2-2(-x )=x 2+2x . 又y =f (x )是定义在R 上的偶函数, ∴f (-x )=f (x ),∴f (x )=x 2+2x (x <0). ∴f (x )=⎩⎨⎧x 2-2x ,x ≥0,x 2+2x ,x <0.(2)若f (x )是定义在R 上的奇函数,当x <0时,f (x )=x (2-x ),求函数f (x )的解析式.[解析] ∵f (x )是定义在R 上的奇函数, ∴f (-x )=-f (x ),f (0)=0.当x >0时,-x <0,则f (-x )=-x (2+x )=-f (x ), ∴f (x )=x (x +2).故f (x )=⎩⎨⎧x (x +2)(x >0),0(x =0),x (2-x )(x <0).(3)设函数y =F (x )的定义域为[-m ,m ](m >0).试探究y =F (x )可否写为奇函数f (x ),与偶函数g (x )的和的形式,若能,求出f (x )与g (x ).[解析] 设f (x )+g (x )=F (x ), ① x ∈[-m ,m ].∴f (-x )+g (-x )=F (-x ). 又∵f (x )为奇函数,g (x )为偶函数, ∴-f (x )+g (x )=F (-x ). ② ①+②得,2g (x )=F (x )+F (-x ), ∴g (x )=12[F (x )+F (-x )].①-②得,2f (x )=F (x )-F (-x ), ∴f (x )=12[F (x )-F (-x )]. 故F (x )可写为f (x )+g (x )的形式. f (x )=12[F (x )-F (-x )], g (x )=12[F (x )+F (-x )].利用函数奇偶性求函数解析式的步骤(1)“求谁设谁”,即在哪个区间上求解析式,x 就应在哪个区间上设; (2)转化到已知区间上,代入已知的解析式;(3)利用f (x )的奇偶性写出-f (x )或f (-x ),从而解出f (x ).探究三 已知奇偶性求值或参数[例3] (1)若f (x )=(x +a )(x -4)为偶函数,则实数a =________. (2)已知函数f (x )=⎩⎨⎧x 2+x ,x ≤0,ax 2+bx ,x >0为奇函数,则a +b =________.(3)设f (x )是定义在R 上的奇函数,且x ≥0时,f (x )=x 2+2x +b ,则f (-1)=________.(4)已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于________.[解析] (1)∵f (x )为偶函数,∴f (x )=f (-x ), 即(x +a )(x -4)=(-x +a )(-x -4), 整理得,2a =8,∴a =4. (2)由题意知⎩⎨⎧f (2)=-f (-2),f (1)=-f (-1),则⎩⎨⎧4a +2b =-2,a +b =0, ∴⎩⎨⎧a =-1,b =1. 当a =-1,b =1时,经检验知f (x )为奇函数,故a +b =0. (3)∵f (x )是定义在R 上的奇函数,∴f (0)=b =0, ∴f (x )=x 2+2x (x ≥0),∴f (-1)=-f (1)=-(1+2)=-3. (4)⎩⎨⎧f (-1)+g (1)=-f (1)+g (1)=2f (1)+g (-1)=f (1)+g (1)=4两式相加得g (1)=3. [答案] (1)4 (2)0 (3)-3 (4)3利用函数奇偶性求参数值的方法(1)此类问题应充分运用奇(偶)函数的定义,构造函数,从而使问题得到快速解决.(2)在定义域关于原点对称的前提下,若解析式中仅含有x 的奇次项,则函数为奇函数;若解析式中仅含有x 的偶次项,则函数为偶函数,常利用此结论构造函数.(3)利用奇偶性求参数值时,应根据x ∈R 等式恒成立的特征求参数.易错点归纳一、单调性与奇偶性珠联璧合的妙用(1)将函数的奇偶性与单调性相结合,可知: ①奇函数在(-b ,-a )和(a ,b )上有相同的单调性. ②偶函数在(-b ,-a )和(a ,b )上有相反的单调性. 这里,区间(-b ,-a )和(a ,b )都在函数定义域内.因此,若函数具有奇偶性,研究单调性或最值或作图象等问题,只需在非负值范围内研究即可,在负值范围内由对称性可得.(2)研究函数的单调性、奇偶性必须在定义域上进行,如果没有给出定义域,则需先求出.[典例] 设定义在[-2,2]上的奇函数f (x )在区间[0,2]上是减函数,若f (1-m )<f (m ),求实数m 的取值范围.[解析] 因为f (x )是奇函数且f (x )在[0,2]上是减函数, 所以f (x )在[-2,2]上是减函数. 所以不等式f (1-m )<f (m )等价于⎩⎨⎧1-m >m ,-2≤m ≤2,-2≤1-m ≤2,解得-1≤m <12.二、由奇偶性的对称特点拓展的图象对称性 1.函数图象的轴对称2.函数图象的中心对称[典例] 若函数y =f (x )在(0,2)上是增函数,函数y =f (x +2)是偶函数,则下列结论正确的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1)D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72[解析] ∵y =f (x +2)是偶函数,∴y =f (x )的图象关于直线x =2对称,∴f (1)=f (3). 又f (x )在(0,2)上为增函数,∴f (x )在(2,4)上为减函数, ∴f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. [答案] B3.3 幂函数知识点一 幂函数的定义函数f (x )=x 、f (x )=x 2、f (x )=1x ,以前叫什么函数,它们有什么共同特征? 知识梳理 (1)一般地,函数y =x α叫做幂函数(power function),其中x 是自变量,α是常数.(2)幂函数解析式的结构特征 ①指数为常数;。
高一数学必修一函数知识点总结
二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f : A T B为从集合A到集合B的一个函数.记作:y=f(x) , x€ A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x € A }叫做函数的值域.1 .定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:(1) 分式的分母不等于零;(2) 偶次方根的被开方数不小于零;(3) 对数式的真数必须大于零;(4) 指数、对数式的底必须大于零且不等于 1.(5) 如果函数是由一些基本函数通过四则运算结合而成的•那么,它的定义域是使各部分都有意义的x的值组成的集合.(6) 指数为零底不可以等于零,(7) 实际问题中的函数的定义域还要保证实际问题有意义相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关) ;②定义域一致(两点必须同时具备)(见课本21页相关例2)2 .值域:先考虑其定义域(1) 观察法⑵配方法(3) 代换法3.函数图象知识归纳(1) 定义:在平面直角坐标系中,以函数y=f(x) , (x € A)中的x为横坐标,函数值y为纵坐标的点P(x , y)的集合C,叫做函数y=f(x),(x € A)的图象.C上每一点的坐标(x , y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x , y),均在C上. ⑵画法A、描点法:B、图象变换法常用变换方法有三种1) 平移变换2) 伸缩变换3) 对称变换4 .区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2 )无穷区间(3)区间的数轴表示.5. 映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f: A B为从集合A到集合B的一个映射。
高一数学第三章知识点总结
高一数学第三章知识点总结高一数学人教版第三章知识点总结一、函数的概念1. 函数的定义- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y = f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
- 其中x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y 值叫做函数值,函数值的集合{y|y = f(x),x∈ A}叫做函数的值域。
2. 函数的三要素- 定义域:- 分式函数分母不为0,如y=(1)/(x),定义域为{x|x≠0}。
- 偶次根式函数被开方数非负,如y = √(x),定义域为{x|x≥slant0}。
- 对数函数y=log_{a}x(a>0,a≠1),定义域为(0,+∞)。
- 对应关系:- 函数的对应关系决定了函数的性质和图象特征。
例如y = x^2和y=(x + 1)^2,它们的对应关系不同,图象形状相同但位置不同。
- 值域:- 求值域的方法有观察法、配方法、换元法等。
例如对于函数y=x^2+2x + 3=(x + 1)^2+2,因为(x + 1)^2≥slant0,所以y≥slant2,值域为[2,+∞)。
二、函数的表示法1. 解析法- 就是用数学表达式表示两个变量之间的对应关系,如y = 2x+1,y=(1)/(x^2)等。
优点是简明、全面地概括了变量间的关系;便于理论分析和计算。
2. 图象法- 用图象表示两个变量之间的对应关系,如一次函数y = kx + b(k≠0)的图象是一条直线。
图象法的优点是直观形象地表示函数的变化趋势。
3. 列表法- 列出表格来表示两个变量之间的对应关系,例如某城市一天内不同时刻的气温表。
列表法的优点是不需要计算就可以直接看出与自变量的值相对应的函数值。
三、函数的单调性1. 增函数与减函数的定义- 设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x_{1},x_{2},当x_{1}<x_{2}时,都有f(x_{1})<f(x_{2}),那么就说函数y =f(x)在区间D上是增函数;当x_{1}<x_{2}时,都有f(x_{1})>f(x_{2}),那么就说函数y = f(x)在区间D上是减函数。
人教版高中函数知识点总结
人教版高中函数知识点总结一、函数的概念1. 函数的定义函数是一种对应关系,它将一个自变量映射到一个因变量上。
数学上通常用f(x)来表示函数,其中x为自变量,f(x)为因变量。
2. 定义域和值域函数的定义域是自变量能够取到的所有值的集合,而值域是函数得到的因变量的所有可能值的集合。
3. 函数的符号表示通常用f(x)和y来表示函数,其中y=f(x)。
此外,还有其他表示函数的方式,比如y=f(x), y=f(u), z=f(x,y)等。
4. 函数的图像函数的图像是函数在直角坐标系中的表示,可以通过图像的形状和特点来理解函数的性质和特点。
二、函数的性质1. 奇函数和偶函数奇函数满足f(-x)=-f(x)的函数,偶函数满足f(-x)=f(x)的函数。
2. 单调性当函数在定义域内的任意两点x1和x2满足x1<x2时,如果f(x1)<=f(x2),则函数在此区间上是递增的;如果f(x1)>=f(x2),则函数在此区间上是递减的。
3. 有界性函数在定义域内是否有上界和下界的性质。
4. 周期性如果对于任意的x,有f(x)=f(x+T),其中T是一个正数,则称函数具有周期性,而T称为函数的周期。
三、函数的运算1. 函数的和、差、积、商两个函数的和、差、积、商分别定义如下:(f+g)(x) = f(x) + g(x)(f-g)(x) = f(x) - g(x)(f*g)(x) = f(x) * g(x)(f/g)(x) = f(x) / g(x)2. 复合函数给定两个函数f(x)和g(x),我们可以定义它们的复合函数为h(x) = f(g(x))。
3. 函数的逆如果一个函数f(x)在定义域D上是单射的,即对于任意的x1和x2,如果f(x1)=f(x2),则x1=x2,那么f(x)在D上就存在逆函数f^-1(x)。
四、函数的极限1. 函数在无穷远处的极限当自变量x趋于无穷大时,我们研究函数f(x)的极限:lim[f(x)] (x→∞)。
高一数学必修一函数的概念与性质知识点总结
高一数学必修一函数的概念与性质知识点总结一、内容描述高一数学必修一函数的概念与性质知识点总结涵盖了高中阶段关于函数基础概念及其性质的核心内容。
文章首先介绍了函数的基本概念,包括函数的定义、表示方法以及函数的性质等。
文章详细阐述了函数的性质,包括单调性、奇偶性、周期性以及复合函数的性质等。
文章还介绍了函数图像的画法及其与性质之间的关系,以及如何利用函数性质解决实际问题。
文章总结了函数在数学学习中的重要性,强调掌握函数概念与性质对于后续数学学习的基础作用。
通过本文的学习,学生可以更好地理解和掌握函数知识,为后续数学学习打下坚实的基础。
1. 简述函数概念的重要性函数是描述自然现象和规律的重要工具。
在物理、化学、生物等自然学科中,许多现象的变化过程都可以通过函数关系进行描述。
物理学中的运动规律、化学中的化学反应速率与浓度的关系等,都需要借助函数概念进行建模和分析。
函数是数学体系中的核心和基础。
函数连接了代数、几何、三角学等多个分支,是数学知识和方法综合运用的基础。
对函数概念的深入理解,有助于我们更好地理解和掌握数学的其它分支和领域。
函数也是解决实际问题的重要工具。
在现实生活中,很多问题的解决都需要建立数学模型,而函数作为构建数学模型的基本元素之一,能够帮助我们准确地描述问题并找到解决方案。
在经济学、统计学、工程学等领域,函数的运用非常广泛。
函数概念的重要性不言而喻。
高一学生在学习数学时,应深入理解函数的概念,掌握其性质和特点,为后续学习和解决实际问题打下坚实的基础。
2. 引出本文目的:总结函数的概念与性质本文旨在系统梳理和归纳高一数学必修一课程中函数的核心概念与基本性质。
函数是数学中的核心概念之一,具有广泛的应用领域。
在高中阶段,学生需要深入理解函数的基础定义、性质和图像特征,为后续学习奠定坚实基础。
本文的目的在于帮助学生全面总结函数的相关知识点,加深对函数概念与性质的理解,以便更好地掌握和应用函数这一重要的数学工具。
高中数学 函数概念及其性质知识总结 新人教版必修1
数学必修1函数概念及性质(知识点总结)(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数,在集合B中都有唯一确定的数f和它对应,那么就称f:A→B为从集合A 到集合B的一个函数.记作: =f,∈A.其中,叫做自变量,的取值范围A叫做函数的定义域;与的值相对应的值叫做函数值,函数值的集合{f| ∈A }叫做函数的值域.注意:错误!如果只给出解析式=f,而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;错误!函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:1分式的分母不等于零; 2偶次方根的被开方数不小于零; 3对数式的真数必须大于零;4指数、对数式的底必须大于零且不等于1 5如果函数是由一些基本函数通过四则运算结合而成的那么,它的定义域是使各部分都有意义的的值组成的集合(6)指数为零底不可以等于零 6实际问题中的函数的定义域还要保证实际问题有意义又注意:求出不等式组的解集即为函数的定义域。
2.构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①表达式相同;②定义域一致两点必须同时具备见课本21页相关例2值域补充1、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域 2应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础 3求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等3 函数图象知识归纳1定义:在平面直角坐标系中,以函数=f , ∈A中的为横坐标,函数值为纵坐标的点→→,u=g,∈A,则 =f[g]=F,∈A 称为f、g的复合函数。
新教材人教A版高中数学必修第一册第三章函数的概念与性质 重点难点归纳总结
第三章函数的概念与性质3.1函数的概念及其表示 (1)3.1.1函数的概念 (1)第一课时函数的概念(一) (1)第二课时函数的概念(二) (5)3.1.2函数的表示法 (12)第一课时函数的表示法 (12)第二课时分段函数 (16)3.2函数的基本性质 (23)3.2.1单调性与最大(小)值 (23)第一课时函数的单调性 (23)第二课时函数的最大(小)值 (29)3.2.2奇偶性 (33)第一课时奇偶性的概念 (33)第二课时函数奇偶性的应用 (37)3.3幂函数 (40)3.4函数的应用(一) (47)3.1函数的概念及其表示3.1.1函数的概念第一课时函数的概念(一)知识点函数的概念对函数概念的再理解(1)函数定义中强调“三性”:任意性、存在性、唯一性,即对于非空数集A 中的任意一个(任意性)数x,在非空数集B中都有(存在性)唯一(唯一性)的数y与之对应.这三性只要有一个不满足,便不能构成函数;(2)y=f(x)仅仅是函数符号,不是表示“y等于f与x的乘积”,f(x)也不一定就是解析式.除f(x)外,有时还用g(x),u(x),F(x),G(x)等符号来表示函数.1.在函数的概念中,如果函数y=f(x)的定义域与对应关系确定,那么函数的值域确定吗?提示:确定.2.对应关系f必须是一个解析式的形式吗?提示:不一定.1.判断正误.(正确的画“√”,错误的画“×”)(1)任何两个集合之间都可以建立函数关系.()(2)已知定义域和对应关系就可以确定一个函数.()(3)定义域中的每一个x可以对应着不同的y.()(4)“y=f(x)”表示的是“y等于f与x的乘积”.()答案:(1)×(2)√(3)×(4)×2.下图中能表示函数关系的是________(填序号).解析:由于③中的2与1和3同时对应,故③不是函数.答案:①②④3.函数f(x)=14-x的定义域是________.解析:由4-x>0,解得x<4,所以原函数的定义域为{x|x<4}.答案:{x|x<4}4.已知f(x)=x2+1,则f(-1)=________.解析:∵f(x)=x2+1,∴f(-1)=(-1)2+1=2.答案:2题型一函数关系的判断[例1](1)设M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形:其中,能表示从集合M到集合N的函数关系的个数是()A.0B.1C.2 D.3(2)(多选)下列两个集合间的对应中,是A到B的函数的有()A.A={-1,0,1},B={-1,0,1},f:A中的数的平方B.A={0,1},B={-1,0,1},f:A中的数的开方C.A=Z,B=Q,f:A中的数的倒数D.A={1,2,3,4},B={2,4,6,8},f:A中的数的2倍[解析](1)①中,因为在集合M中当1<x≤2时,在N中无元素与之对应,所以①不是;②中,对于集合M中的任意一个数x,在N中都有唯一的数与之对应,所以②是;③中,x=2对应元素y=3∉N,所以③不是;④中,当x=1时,在N中有两个元素与之对应,所以④不是.因此只有②是,故选B.(2)A中,可构成函数关系;B中,对于集合A中元素1,在集合B中有两个元素与之对应,因此不是函数关系;C中,A中元素0的倒数没有意义,在集合B中没有元素与之对应,因此不是函数关系;D中,可构成函数关系,故选A、D.[答案](1)B(2)AD1.判断对应关系是否为函数的2个条件(1)A,B必须是非空实数集;(2)A中的任意一个元素在B中有且只有一个元素与之对应.2.根据图形判断是否为函数的方法 (1)任取一条垂直于x 轴的直线l ; (2)在定义域内平行移动直线l ;(3)若l 与图形有且只有一个交点,则是函数;若在定义域内没有交点或有两个或两个以上的交点,则不是函数.[注意] 对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系.[例2] 求下列函数的定义域: (1)y =x -1·1-x ; (2)y =(x -1)0+2x +1. [解] (1)由题意得,⎩⎨⎧x -1≥0,1-x ≥0⇒x =1,∴函数的定义域为{1}.(2)由题意得,⎩⎪⎨⎪⎧x -1≠0,2x +1≥0,x +1≠0,解得x >-1,且x ≠1,∴函数的定义域为{x |x >-1,且x ≠1}.求函数定义域的常用方法(1)若f (x )是分式,则应考虑使分母不为零; (2)若f (x )是偶次根式,则被开方数大于或等于零;(3)若f (x )是指数幂,则函数的定义域是使幂运算有意义的实数集合; (4)若f (x )是由几个式子构成的,则函数的定义域是几个部分定义域的交集; (5)若f (x )是实际问题的解析式,则应符合实际问题,使实际问题有意义.[例3]已知f(x)=11+x(x∈R,且x≠-1),g(x)=x2+2(x∈R),则f(2)=________,f(g(2))=________.[解析]∵f(x)=11+x,∴f(2)=11+2=13.又∵g(x)=x2+2,∴g(2)=22+2=6,∴f(g(2))=f(6)=11+6=17.[答案]1317求函数值的方法(1)已知f(x)的表达式时,只需用a替换表达式中的x即得f(a)的值;(2)求f(g(a))的值应遵循由里向外的原则.第二课时函数的概念(二)知识点一区间的概念1.一般区间的表示设a,b∈R,且a<b,规定如下:定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b]2.特殊区间的表示用区间表示下列数集:(1){x|x≥1}=________;(2){x|2<x≤3}=________;(3){x|x>-1且x≠2}=________;(4)R=________;(5){x|x≤-1}∩{x|-5≤x<2}=________;(6){x|x<9}∪{x|9<x<20}=________.答案:(1)[1,+∞)(2)(2,3](3)(-1,2)∪(2,+∞)(4)(-∞,+∞)(5)[-5,-1](6)(-∞,9)∪(9,20)知识点二同一个函数定义域和值域分别相同的两个函数是同一个函数吗?提示:不一定,如果对应关系不同,这两个函数一定不是同一个函数.1.判断正误.(正确的画“√”,错误的画“×”)(1)f(x)=x2x与g(x)=x是同一个函数.()(2)函数f(x)=x2-x与g(t)=t2-t是同一个函数.()答案:(1)×(2)√2.下列各组函数中,表示同一个函数的是()A.y=x2-9x-3与y=x+3B.y=x2-1与y=x-1C.y=x0(x≠0)与y=1(x≠0)D.y=2x+1,x∈Z与y=2x-1,x∈Z答案:C题型一区间的应用[例1]将下列集合用区间以及数轴表示出来:(1){x|x<2};(2){x|-1<x<0或1≤x≤5};(3){x|2≤x≤8且x≠5};(4){x|3<x<5}.[解](1){x|x<2}可以用区间表示为(-∞,2),用数轴表示如图①.(2){x|-1<x<0或1≤x≤5}可以用区间表示为(-1,0)∪[1,5],用数轴表示如图②.(3){x|2≤x≤8且x≠5}用区间表示为[2,5)∪(5,8],用数轴表示如图③.(4){x|3<x<5}用区间表示为(3,5),用数轴表示如图④.用区间表示数集的方法(1)区间左端点值小于右端点值;(2)区间两端点之间用“,”隔开;(3)含端点值的一端用中括号,不含端点值的一端用小括号;(4)以“-∞”,“+∞”为区间的一端时,这端必须用小括号.[例2](多选)下列式子表示同一个函数的是()A.f(x)=|x|,φ(t)=t2B.y=x2,y=(x)2C.y=1+x·1-x,y=1-x2D.y=(3-x)2,y=x-3[解析]A:f(x)与φ(t)的定义域相同,又φ(t)=t2=|t|,即f(x)与φ(t)的对应关系也相同,∴f(x)与φ(t)是同一个函数;B:y=x2的定义域为R,y=(x)2的定义域为{x|x≥0},两者定义域不同,故y=x2与y=(x)2不是同一个函数;C:y=1+x·1-x的定义域为{x|-1≤x≤1},y=1-x2的定义域为{x|-1≤x≤1},即两者定义域相同.又∵y=1+x·1-x=1-x2,∴两函数的对应关系也相同.故y=1+x·1-x与y=1-x2是同一个函数;D:∵y=(3-x)2=|x-3|与y=x-3的定义域相同,但对应关系不同,∴y=(3-x)2与y=x-3不是同一个函数.[答案]AC判断两个函数是否为同一个函数的步骤题型三求函数的值域[例3]求下列函数的值域:(1)y=x-1;(2)y=x2-2x+3,x∈{-2,-1,0,1,2,3};(3)y=3x-1 x+1;(4)y=2x+41-x.[解](1)(直接法)∵x≥0,∴x-1≥-1,∴y=x-1的值域为[-1,+∞).(2)(观察法)∵x∈{-2,-1,0,1,2,3},把x代入y=x2-2x+3得y=11,6,3,2,∴y=x2-2x+3的值域为{2,3,6,11}.(3)(分离常数法)y=3x-1x+1=3x+3-4x+1=3-4x+1.∵4x+1≠0,∴y≠3,∴y=3x-1x+1的值域为{y|y∈R,且y≠3}.(4)(换元法)令t=1-x(t≥0),则x=1-t2,则y=-2t2+4t+2=-2(t-1)2+4(t≥0),结合图象(图略)可得函数的值域为(-∞,4].求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f(x)=ax+b+cx+d(其中a,b,c,d为常数,且a≠0)型的函数常用换元法.抽象函数与复合函数的定义域一、概念1.抽象函数的概念没有给出具体解析式的函数,称为抽象函数.2.复合函数的概念若函数y=f(t)的定义域为A,函数t=g(x)的定义域为D,值域为C,则当C ⊆A时,称函数y=f(g(x))为f(t)与g(x)在D上的复合函数,其中t叫做中间变量,t=g(x)叫做内层函数,y=f(t)叫做外层函数.[说明]由复合函数的定义可知,内层函数的值域是外层函数的定义域或定义域的子集,外层函数的定义域和内层函数的值域共同确定了复合函数的定义域.二、结论理解抽象函数或复合函数的定义域,要明确以下几点:(1)函数f(x)的定义域是指x的取值所组成的集合;(2)函数f(φ(x))的定义域是指x的取值范围,而不是φ(x)的范围;(3)f(t),f(φ(x)),f(h(x))三个函数中的t,φ(x),h(x)在对应关系f下的范围相同;(4)已知f(x)的定义域为A,求f(φ(x))的定义域,其实质是已知φ(x)的范围(值域)为A,求出x的取值范围;(5)已知f(φ(x))的定义域为B,求f(x)的定义域,其实质是已知f(φ(x))中的x 的取值范围为B,求出φ(x)的范围(值域),此范围就是f(x)的定义域.[迁移应用]1.已知f (x )的定义域,求f (g (x ))的定义域[例1] 已知函数f (x )=-x 2+2x +3,则函数f (3x -2)的定义域为( ) A.⎣⎢⎡⎦⎥⎤13,53 B.⎣⎢⎡⎦⎥⎤-1,53 C .[-3,1]D.⎣⎢⎡⎦⎥⎤13,1 [思路点拨] 解题的关键是求出函数y =f (x )中x 的范围,这个范围即为3x -2的范围,建立不等式求出自变量x 的范围即可.[解析] 由-x 2+2x +3≥0, 解得-1≤x ≤3,即函数f (x )的定义域为[-1,3]. 由-1≤3x -2≤3,解得13≤x ≤53, 则函数f (3x -2)的定义域为⎣⎢⎡⎦⎥⎤13,53.[答案] A2.已知f (g (x ))的定义域,求f (x )的定义域[例2] 已知f (x 2-1)定义域为[0,3],则f (x )的定义域为________. [思路点拨] 定义域是指自变量的取值范围,则f (x 2-1)中x ∈[0,3],求出x 2-1的范围,这个范围即为f (x )的定义域.[解析] 根据f (x 2-1)定义域为[0,3],得x ∈[0,3], ∴x 2∈[0,9],∴x 2-1∈[-1,8]. 故f (x )的定义域为[-1,8]. [答案] [-1,8]3.已知f (g (x ))的定义域,求f (h (x ))的定义域[例3] 若函数f (x +1)的定义域为⎣⎢⎡⎦⎥⎤-12,2,则函数f (x -1)的定义域为________.[思路点拨] 由f (x +1)的定义域为⎣⎢⎡⎦⎥⎤-12,2,即-12≤x ≤2,可求得12≤x +1≤3,也就是f (x )的定义域为⎣⎢⎡⎦⎥⎤12,3,由此可推出12≤x -1≤3,进而求出x 的范围即为f (x -1)的定义域.[解析] 由题意知-12≤x ≤2,则12≤x +1≤3,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,3,∴12≤x -1≤3,解得32≤x ≤4.故f (x -1)的定义域是⎣⎢⎡⎦⎥⎤32,4.[答案] ⎣⎢⎡⎦⎥⎤32,43.1.2 函数的表示法第一课时 函数的表示法知识点 函数的表示方法函数三种表示法的优缺点比较1.函数y =f (x )的关系如下表,则f (11)=( )x 0<x <5 5≤x <10 10≤x <15 15≤x ≤20y23 45A .2B .3C.4 D.5答案:C2.已知函数f(x)的图象如图所示,其中点A,B的坐标分别为(0,3),(3,0),则f(f(0))=()A.2 B.4C.0 D.3答案:C3.若反比例函数f(x)满足f(3)=-6,则f(x)的解析式为________.答案:f(x)=-18x题型一函数的表示法[例1](链接教科书第67页例4)某问答游戏的规则是:共答5道选择题,基础分为50分,每答错一道题扣10分,答对不扣分.试分别用列表法、图象法、解析法表示一个参与者的得分y与答错题目道数x(x∈{0,1,2,3,4,5})之间的函数关系y=f(x).[解](1)用列表法可将函数y=f(x)表示为x 01234 5y 50403020100(2)用图象法可将函数y=f(x)表示为(3)用解析法可将函数y=f(x)表示为y=50-10x,x∈{0,1,2,3,4,5}.1.函数的三种表示法的选择解析法、图象法和列表法分别从三个不同的角度刻画了自变量与函数值的对应关系.采用解析法的前提是变量间的对应关系明确,采用图象法的前提是函数的变化规律清晰,采用列表法的前提是定义域内自变量的个数较少.2.用三种表示法表示函数时的注意点 (1)解析法必须注明函数的定义域;(2)列表法必须罗列出所有的自变量的值与函数值的对应关系; (3)图象法必须清楚函数图象是“点”还是“线”.题型二函数图象的作法及应用[例2] 作出下列函数的图象并求出其值域: (1)y =2x +1,x ∈[0,2]; (2)y =2x ,x ∈[2,+∞).[解] (1)当x ∈[0,2]时,图象是直线y =2x +1的一部分,如图①,观察图象可知,其值域为[1,5].(2)当x ∈[2,+∞)时,图象是反比例函数y =2x 的一部分,如图②,观察图象可知其值域为(0,1].描点法作函数图象的三个关注点(1)画函数图象时首先关注函数的定义域,即在定义域内作图;(2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象; (3)要标出某些关键点,例如图象的顶点、端点、与坐标轴的交点等.要分清这些关键点是实心点还是空心圈.[注意] 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等.题型三函数解析式的求法角度一用待定系数法求函数解析式[例3]已知f(x)是二次函数,且f(x+1)+f(x-1)=2x2-4x,求f(x).[解]设f(x)=ax2+bx+c(a≠0),则f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c+a(x-1)2+b(x-1)+c=2ax2+2bx+2a+2c=2x2-4x,∴{2a=2,2b=-4,2a+2c=0,∴{a=1,b=-2,c=-1,∴f(x)=x2-2x-1.待定系数法求函数解析式已知函数的类型,如是一次函数、二次函数等,即可设出f(x)的解析式,再根据条件列方程(或方程组),通过解方程(组)求出待定系数,进而求出函数解析式.角度二用换元法(配凑法)求函数解析式[例4]求下列函数的解析式:(1)已知f(x+1)=x+2x,求f(x);(2)已知f(x+2)=2x+3,求f(x).[解](1)法一(换元法):令t=x+1,则x=(t-1)2,t≥1,所以f(t)=(t-1)2+2(t-1)=t2-1(t≥1),所以f(x)的解析式为f(x)=x2-1(x≥1).法二(配凑法):f(x+1)=x+2x=x+2x+1-1=(x+1)2-1.因为x+1≥1,所以f(x)的解析式为f(x)=x2-1(x≥1).(2)f(x+2)=2x+3=2(x+2)-1,∴f(x)=2x-1.换元法、配凑法求函数解析式已知f (g (x ))=h (x ),求f (x ),有两种方法:(1)换元法,即令t =g (x ),解出x ,代入h (x )中,得到一个含t 的解析式,再用x 替换t ,便得到f (x )的解析式.利用换元法解题时,换元后要确定新元t 的取值范围,即函数f (x )的定义域; (2)配凑法,即从f (g (x ))的解析式中配凑出g (x ),用g (x )来表示h (x ),然后将解析式中的g (x )用x 代替即可.角度三 用方程组法求函数解析式[例5] 已知函数f (x )对于任意的x 都有f (x )-2f (-x )=1+2x ,求f (x )的解析式.[解] 在f (x )-2f (-x )=1+2x 中,以-x 代换x ,可得f (-x )-2f (x )=1-2x , 则⎩⎨⎧f (x )-2f (-x )=1+2x , f (-x )-2f (x )=1-2x , 消去f (-x ),可得f (x )=23x -1.方程组法求函数的解析式方程组法(消去法),适用于自变量具有对称规律的函数表达式,如互为相反数的f (-x ),f (x )的函数方程,通过对称规律再构造一个关于f (-x ),f (x )的方程,联立解出f (x ).第二课时 分段函数知识点 分段函数 1.分段函数如果函数y =f (x ),x ∈A ,根据自变量x 在A 中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数.2.分段函数的图象分段函数有几段,它的图象就由几条曲线组成.在同一直角坐标系中,根据每段的定义区间和表达式依次画出图象,要注意每段图象的端点是空心点还是实心点,组合到一起就得到整个分段函数的图象.对分段函数的再理解(1)分段函数是一个函数,而不是几个函数.处理分段函数问题时,要先确定自变量的取值在哪个区间,从而选取相应的对应关系;(2)分段函数在书写时用大括号把各段函数合并写成一个函数的形式,并且必须指明各段函数自变量的取值范围;(3)分段函数的定义域是所有自变量取值区间的并集.分段函数的定义域只能写成一个集合的形式,不能分开写成几个集合的形式;(4)分段函数的值域是各段函数在对应自变量的取值范围内值域的并集.1.判断正误.(正确的画“√”,错误的画“×”) (1)分段函数由几个函数构成.( )(2)函数f (x )={x +1,x ≤1,-x +3,x >1是分段函数.( )(3)分段函数尽管在定义域不同的部分有不同的对应关系,但它们是一个函数.( )(4)分段函数各段上的函数值集合的交集为∅.( ) 答案:(1)× (2)√ (3)√ (4)×2.已知f (x )=⎩⎨⎧-x ,x ≤0,x 2,x >0.则f (-2)=________.答案:23.函数y =⎩⎨⎧x 2,x >0,-2,x <0的定义域为________________,值域为____________.答案:(-∞,0)∪(0,+∞) {-2}∪(0,+∞)4.下列图形是函数y =x |x |的图象的是________(填序号).答案:④[例1] 已知函数f (x )=⎩⎨⎧x +1,x ≤-2,3x +5,-2<x <2,2x -1,x ≥2,求f (-5),f (1),f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-52.[解] 由-5∈(-∞,-2],1∈(-2,2),-52∈(-∞,-2],知f (-5)=-5+1=-4,f (1)=3×1+5=8,f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-52+1=f ⎝ ⎛⎭⎪⎫-32=3×⎝ ⎛⎭⎪⎫-32+5=12.[母题探究]1.(变设问)本例条件不变,若f (a )=3,求实数a 的值.解:当a ≤-2时,f (a )=a +1=3,即a =2>-2,不合题意,舍去;当-2<a <2时,f (a )=3a +5=3,即a =-23∈(-2,2),符合题意;当a ≥2时,f (a )=2a -1=3,即a =2∈[2,+∞),符合题意.综上可得,当f (a )=3时,a 的值为-23或2.2.(变设问)本例条件不变,若f (x )>2x ,求x 的取值范围.解:当x ≤-2时,f (x )>2x 可化为x +1>2x ,即x <1,所以x ≤-2; 当-2<x <2时,f (x )>2x 可化为3x +5>2x ,即x >-5,所以-2<x <2; 当x ≥2时,f (x )>2x 可化为2x -1>2x ,则x ∈∅. 综上可得,x 的取值范围是{x |x <2}.1.求分段函数函数值的方法(1)先确定要求值的自变量属于哪一段区间;(2)然后代入该段的解析式求值,直到求出值为止.当出现f (f (x 0))的形式时,应从内到外依次求值.2.已知分段函数的函数值求对应的自变量的值,可分段利用函数解析式求得自变量的值,但应注意检验函数解析式的适用范围,也可先判断每一段上的函数值的范围,确定解析式再求解.。
人教版高中数学必修第一册第三章函数的概念与性质小结与复习【课件】
润.
(1) 将y表示为x的函数;
(2) 求出下一个销售季度利润y不少于57 000元时,市场需求量x的
范围.
【解】
同学们再见!
Goodbye Students!
(1) 当0≤x≤220时,求函数v(x)的解析式;
(2) 当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的
车辆数,单位:辆/h)f(x)=x·v(x)可以达到最大?并求出最大值.
思路点拨: (1) 当0≤x≤20时,车流速度为100 km/h.当20≤x≤220时,车
流速度v是车流密度x的一次函数,用待定系数法求出当20≤x≤220时的函
A.
B.
C. 或
D. 2
)
【解】
主题2
函数的图象和性质及数形结合思想的应用
【例3】(1) 设abc>0,二次函数f(x)=ax2+bx+c的图象可能是( D )
(2) 已知定义在R上的奇函数f(x)在[0,+∞)上的图象如图所示,则
(-∞,-4)∪(-2,0)∪(2,4) __.
误. 故选B.
+ , <
【例4】已知函数f(x)=ቊ
− + , >
(1) 求证:f(x)是奇函数;
(2) 求f(x)的单调递减区间,并证明你的结论.
思路点拨:(1) 要证明f(x)是奇函数,只要根据奇函数的定义,证明f(x)
满足:对定义域中的任意x的值,均有f(-x)=-f(x)成立.(2) 可先作
大桥——港珠澳大桥正式通车.在一般情况下,大桥上的车流速度
人教版高中数学必修一第三章知识点总结
第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。
即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.3、函数零点的求法:○1 (代数法)求方程0)(=x f 的实数根; ○2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点.4、基本初等函数的零点:①正比例函数(0)y kx k =≠仅有一个零点。
②反比例函数(0)k y k x=≠没有零点。
③一次函数(0)y kx b k =+≠仅有一个零点。
④二次函数)0(2≠++=a c bx ax y . (1)△>0,方程20(0)ax bx c a ++=≠有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.(2)△=0,方程20(0)ax bx c a ++=≠有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程20(0)ax bx c a ++=≠无实根,二次函数的图象与x 轴无交点,二次函数无零点. ⑤指数函数(0,1)x y a a a =>≠且没有零点。
⑥对数函数log (0,1)a y x a a =>≠且仅有一个零点1.⑦幂函数y x α=,当0n >时,仅有一个零点0,当0n ≤时,没有零点。
5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把()f x 转化成()0f x =,再把复杂的函数拆分成两个我们常见的函数12,y y (基本初等函数),这另个函数图像的交点个数就是函数()f x 零点的个数。
高一函数概念与性质知识点归纳
高一函数概念与性质知识点归纳在高一数学中,函数是一个非常重要的概念。
理解函数的概念及其性质,对于学习高中数学以及解决实际问题都具有重要的意义。
下面将对高一函数概念与性质的知识点进行归纳总结。
一、函数的定义函数是一个相互对应的关系,它将一个集合的元素(称为自变量)与另一个集合的元素(称为因变量)一一对应。
通常表示为:y = f(x)。
二、函数的图像与曲线函数的图像是自变量与因变量之间的关系在平面直角坐标系中的表现形式。
函数的图像通常为曲线,曲线上的点表示自变量和因变量之间的对应关系。
三、函数的性质1. 定义域和值域:函数的定义域是指自变量的取值范围,值域是指因变量的取值范围。
2. 奇偶性:如果函数满足对任意x,有f(-x) = f(x),则函数为偶函数;如果对任意x,有f(-x) = -f(x),则函数为奇函数。
3. 单调性:函数的单调性指的是函数在定义域上的取值的增减情况。
可以分为增函数和减函数。
4. 周期性:如果对任意x,有f(x+T) = f(x),其中T>0,则函数为周期函数,T称为函数的周期长度。
5. 极值与最值:函数在定义域内某一点上的函数值称为该点的函数值。
如果函数在某一区间内的函数值都小于(或大于)其他点的函数值,则该点对应的x值称为函数在该区间内的极小值(或极大值)。
函数在定义域上的极值称为最值。
6. 对称轴:函数的对称轴是指曲线关于某一直线对称。
四、基本函数与常用函数1. 一次函数:y = kx + b,其中k为斜率,b为常数。
2. 二次函数:y = ax^2 + bx + c,其中a、b、c为常数。
3. 幂函数:y = x^a,其中a为常数。
4. 指数函数:y = a^x,其中a为常数且a>0且a≠1。
5. 对数函数:y = loga(x),其中a为常数且a>0且a≠1。
6. 三角函数:包括正弦函数、余弦函数和正切函数等。
五、函数的运算与性质1. 四则运算:函数之间可以进行加、减、乘、除的运算。
新教材人教版高中数学必修第一册 第三章 知识点总结
必修第一册第三章函数的概念与性质3.1 函数的概念及其表示1.函数的概念:一般地,设A、B是非空的数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
记作:y=f(x),x∈A。
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。
2.构成函数的三要素:定义域、对应关系和值域(1)函数的定义域的求法:①自然型:解析式自身有意义,如分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数;②实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。
(2)求函数的值域的方法:①配方法(将函数转化为二次函数);②不等式法(运用不等式的各种性质);③函数法(运用函数的单调性、函数图象等)。
(3)两个函数的相等:当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。
3.常用的函数表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;(2)列表法:就是列出表格来表示两个变量的函数关系;(3)图象法:就是用函数图象表示两个变量之间的关系。
4.分段函数:若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数;5.区间的概念:设a,b是两个实数,且a<b,我们规定:(1)满足不等式a≤x≤b的实数x的集合叫做闭区间,表示[a,b];(2)满足不等式a<x<b的实数x的集合叫做开区间,表示(a,b);(3)满足不等式a≤x<b或a<x≤b的实数x的集合叫做半开半闭区间,表示[a,b)或(a,b];a,b都叫做区间的端点。
(4)代数与几何表示对照表(数轴上用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点)(5)3.2 函数的基本性质⊆: 1.单调性:(1)定义:一般地,设函数y=f(x)的定义域为I,区间D I①∀ x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数;特别地,当函数f(x)在它的定义域上单调递增时,我们成它是增函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年新高一数学必修一知识点总结第三章 函数的概念与性质3.1函数的概念及其表示1.函数是刻画变量间对应关系的数学模型和工具。
2.函数问题的共同特征:①定义域、值域均为非空数集;②定义域和值域间有一 个对应关系;③对于定义域中的任何一个自变量,在值域中都有唯一确定的数 与之对应。
3.函数中的对应关系可用解析式、图象、表格等表示,为了表示方便,引进符号 f 统一表示对应关系。
【注】函数符号()y f x =是由德国数学家莱布尼茨在18世纪引入的。
4.函数定义一般地,设,A B 是非空的实数集,如果对于集合A 中的任意一个数x ,按 照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就 称:f A B →为从集合A 到集合B 的一个函数,记作(),y f x x A =∈。
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对 应的y 值叫做函数值,函数值的集合(){}f x x A ∈叫做函数的值域。
5.函数的三要素:①定义域;②对应关系;③值域。
6.(1)函数的定义域和对应关系可以确定出函数的值域,即一个函数的值域是 由它的定义域和对应关系决定的。
(2)没有特别说明的情况下,函数的定义域默认是使其有意义的自变量取值范围。
如y ={}0x x ≠(3)实际问题中的函数定义域要根据实际情况定.如:匀速直线运动中位移、速度和时间的关系:()s t v t =,隐含着0t ≥。
6.几个特殊函数的定义域和值域(1)正比例函数()0y kx k =≠,定义域和值域都为全体实数R 。
(2)一次函数()0y kx b k =+≠,定义域和值域都为全体实数R 。
(3)反比例函数()0k y k x=≠,定义域为{}0x x ≠,值域为{}0y y ≠。
(4)一元二次函数()20y ax bx c a =++≠,定义域为R 。
①当0a >时,值域为244ac b y y a ⎧⎫-⎪⎪≥⎨⎬⎪⎪⎩⎭; ②当0a <时,值域为244ac b y y a ⎧⎫-⎪⎪≤⎨⎬⎪⎪⎩⎭。
7.区间及其表示设,a b 是两个实数,且a b <(注意:a 不能等于b )。
我们规定:(1)满足a x b ≤≤的实数x 的集合叫做闭区间,表示为[],a b ; (2)满足a x b <<的实数x 的集合叫做开区间,表示为(),a b ;(3)满足a x b ≤<或a x b <≤的实数x 的集合叫做半开半闭区间,分别表示为[),a b 和(],a b ;这里的实数a 与b 都叫做相应区间的端点。
(4)在数轴上表示时,用实心点表示包括在区间内的端点,用空心点表示不包 括在区间内的端点。
8.区间的几何表示9.实数集R 可以用区间表示为()-∞+∞,,“∞”读作“无穷大”,“-∞”读作“负 无穷大”,“+∞”读作“正无穷大”。
10.我们把满足x a ≥,x a >,x b ≤,x b <的实数x ,用区间分别表示为[),a +∞、 (),a +∞、(],b -∞、(),b -∞。
即11.在函数定义中,用符号()f x 表示函数,其中()f x 表示x 对应的函数值,而不 是f 乘x 。
12.由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。
13.相等函数、同一函数:因为值域是由定义域和对应关系决定的,所以,如果 两个函数的定义域相同,并且对应关系完全一致,即相同的自变量对应的函数 值也相同,那么这两个函数是同一个函数,也称为相同函数、相等函数、同一 函数。
特别地,两个函数如果仅有对应关系相同,但定义域不同,那么它们不 是相等函数。
14.相等函数又叫相同函数、同一函数。
指的是两个函数的三要素(定义域、对 应关系、值域)完全相同的函数。
而如果定义域和值域中有一个不同,即便两 个函数的解析式相同也不是相等函数。
这部分题多为选择题,做题的方法多为 排除法。
【注】1.相等函数的图象相同。
2.相等函数的变量符号未必相同,如:)0y x =≥和)0y t =≥的定义 域相同(都是非负实数)、对应关系相同(都是一个非负实数的算术平方根)、 值域相同(都是{}0y y ≥),所以它们两个是相等函数。
再如:①()2,,x y y =∈-∞+∞,②()2,,x y x =∈-∞+∞,③()2,,u t t =∈-∞+∞, 这三个函数虽然表示它们的字母不同,但因为它们的对应关系和定义域相同, 所以它们三个都是相等函数。
15.一个常用的相等函数(也是分段函数):∵y x ==,∴y x R =∈和,y x x R =∈是同一函数。
3.1.2 函数的表示法1.函数常见的表示法有三种:解析法、列表法和图像法。
解析法,就是用数学表达式表示两个变量之间对应关系。
列表法,就是列出表格来表示两个变量之间的对应关系。
图像法,就是用图象表示两个变量之间的对应关系。
【注】函数的图象既可以是连续的曲线,也可以是直线、折线、离散的点等。
2.作图通常有列表、描点、连线三个步骤。
【注意】如果函数的图象是离散的“点”时,则不能连线或用虚线连结。
3.分段函数如果一个函数,在其定义域内,对应自变量x 在不同的取值范围内,函数 有不同的对应关系(表达式),则称这样的函数为分段函数。
【注】(1)分段函数是一个函数,而不是多个函数。
(2)分段函数的定义域是各段自变量取值范围的并集,并且分段函数各段间的定义域的交集为空集。
(3)分段函数的值域是各段函数值域的并集。
(4)分段函数有几段,它的图象就由几条曲线组成。
(5)分段函数重要口诀:“分段函数分段画,分段函数分段求”。
4.高中阶段几种常见的分段函数 (1)(),0,0x x f x x x x ≥⎧==⎨-<⎩,图象为:(2)取整函数 ()[]f x x =([]x 表示不大于x 的最大整数)。
5.函数解析式的求法,常见的有代入法、配凑法、换元法、待定系数法、构造方程组解方程组法(多用于抽象函数,如已知()12f x f x x ⎛⎫+= ⎪⎝⎭,求()f x )。
6.对于多层函数()()f f a 或()()()f f f a 的形式,一般遵循从内往外求值的原则。
7.函数图象的简单变换有平移变换、对称变换、翻折变换。
(1)函数图象的平移变换①左右平移变换:()y f x =与()y f x a =+()()00a a a a y f x y f x a ><=−−−−−−−−−−−→=+时,向左平移个单位时,向右平移个单位②上下平移变换()()00a a a a y f x y f x a ><=−−−−−−−−−−−→=+时,向上平移个单位时,向下平移个单位【注】变换的口诀为:“上加下减,左加右减”。
(2)对称变换①()()y y f x y f x =−−−−−−−−−→=-作关于轴对称的图象 ②()()x y f x y f x =−−−−−−−−−→=-作关于轴对称的图象 ③()()y f x y f x =−−−−−−−−−→=--作关于原点对称的图象 (3)翻折变换①()()x x x x y f x y f x =−−−−−−−−−−−−−−−−−→=轴上方的图象,保持不变轴下方的图象,沿轴对称地翻折到轴上方。
②()()y y y y y f x y f x =−−−−−−−−−−−−−−−−−−−−−→=轴右侧的图象,保持不变轴左侧的图象去掉,并把轴右侧的图象翻折到轴左侧。
3.2 函数的基本性质1.增函数和单调递增区间一般地,设函数()f x 的定义域为I ,区间D I ⊆:如果12,x x D ∀∈,当12x x < 时,都有()()12f x f x <,那么就称函数()f x 在区间D 上单调递增。
特别地,当函数()f x 在它的定义域上单调递增时,就称它是增函数。
图象特点:在区间D 上,沿x 轴正向从左向右看图象呈上升趋势。
2.减函数和单调递减区间一般地,设函数()f x 的定义域为I ,区间D I ⊆:如果12,x x D ∀∈,当12x x < 时,都有()()12f x f x >,那么就称函数()f x 在区间D 上单调递减。
特别地,当函数()f x 在它的定义域上单调递减时,就称它是减函数。
图象特点:在区间D 上,沿x 轴正向从左向右看图象呈下降趋势。
3.定义法判断或证明函数单调性的步骤可以归纳为:取值定大小,作差和变形, 定号给结论,3个关键步骤。
4.复合函数的单调性复合函数()()y f u x =的单调性,遵循“同增异减”的原则.其中()y f u = 是外层函数,()u u x =是内层函数,有以下几种情况:①()y f u =,()u u x =,则()()y f u x =; ②()y f u =,()u u x =,则()()y f u x =; ③()y f u =,()u u x =,则()()y f u x =; ④()y f u =,()u u x =,则()()y f u x =;5.如果函数()y f x =在区间D 上单调递增或单调递减,那么就说函数()y f x =在 这一区间具有(严格的)单调性,区间D 叫做()y f x =的单调区间。
6.函数()y f x =在[],a b 上是增函数⇔任取[]12,,x x a b ∈,且12x x <时,都有()()12f x f x <成立。
⇔任取[]12,,x x a b ∈,且12x x >时,都有()()12f x f x >成立。
⇔任取[]12,,x x a b ∈,且12x x ≠时,都有()()()12120x x f x f x -->⎡⎤⎣⎦成立。
⇔任取[]12,,x x a b ∈,且12x x ≠时,都有()()()12120f x f x x x ->-成立。
7.单调区间的端点问题:由于讨论在某一点处的单调性也没有意义,所以书写函 数的单调区间时,区间端点的开或闭没有严格规定(可开可闭)。
习惯上,定 义域中含有端点时写成闭区间(也可写成开区间),但定义域中不含端点时, 只能写成开区间。
如(1):2y x =的递增区间可以写成()0,+∞,也可以写成[)0,+∞,但是, 一般都写成[)0,+∞。
(2)1y x=的递减区间,因为定义域中不含0,所以只能写成()(),0,0,-∞+∞。
【注】单调区间之间一般都不能“并”,要用逗号或“和”字隔开。
8.函数最值定义(1)一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: ①x I ∀∈,都有()f x M ≤;②0x I ∃∈,使得()0f x M =。