220千伏电网继电保护设计
220KV电网线路继电保护设计及整定计算
1.1 220KV 系统介绍KV 220系统由水电站1W ,2W 和两个等值的KV 220系统1S 、2S 通过六条KV 220线路构成一个整体。
整个系统最大开机容量为MVA 29.1509,此时1W 、2W 水电厂所有机组、变压器均投入,1S 、2S 两个等值系统按最大容量发电,变压器均投入;最小开机容量位MVA 77,1007,此时1W 厂停MVA 302 机组,2W 厂停MVA 5.77机组一台,1S 系统发电容量为MVA 300,2S 系统发电容量为MVA 240。
KV 220系统示意图如图1.1所示。
1.2 系统各元件主要参数 (1) 发电机参数如表1.1所示:表1.1 发电机参数电源总容量(MVA )每台机额定功率额定电压额定功率正序图1.1 220kV 系统示意图最大最小 (MVA ) (kV ) 因数cos φ 电抗 W 1厂 295.29 235.29 235.29 15 0.85 0.35 2*30 11 0.83 0.25 W 2厂 310 232.5 4*77.5 13.8 0.84 0.3 S 1系统 476 300 115 0.5 S 2系统4282401150.5对水电厂12 1.45X X =,对于等值系统12 1.22X X =(2) 变压器参数如表1.2所示:表1.2 变压器参数变电站 变压器容量(MVA ) 变比 短路电压(%)Ⅰ-Ⅱ Ⅰ-Ⅲ Ⅱ-ⅢA 变 20 220/35 10.5B 变-1 240 220/15 12 B 变-2 60 220/11 12C 变 3*120 220/115/35 17 10.5 6D 变 4*90 220/11 12E 变2*120220/115/351710.56 (3) 输电线路参数KM AB 60=,上端KM BC 250=,下端KM BC 230=,KM CD 185=,KM CE 30=,KM DE 170=;KM X X /41.021Ω==,103X X =,080=ΦL 。
Q/GDW-11-220-2009:浙江电网220kV继电保护标准化设计典型二次回路规范
对断路器的要求
6.10
a)三相不一致保护功能应由断路器本体机构实现。
b)断路器防跳功能应由断路器本体机构实现。
c)断路器跳、合闸压力异常闭锁功能应由断路器本体机构实现,应能提供两组完全独立的压力闭锁触点。
附录
(规范性附录)
两套母线保护各提供一路跳闸输出,分别与线路、主变间隔操作箱的两组跳闸回路一一对应,作用于断路器的两个跳闸线圈。
合闸回路
6.7
两面线路保护柜各配置1个操作箱,每套操作箱设置一组合闸回路。
若断路器具备两组合闸线圈,则每个操作箱分别对应一组合闸线圈。若只有一组合闸线圈,则固定由第一组操作箱进行合闸,第二组操作箱内的合闸回路备用(其跳位监视回路通过接入断路器常闭辅助接点来解决)。两套线路保护各提供一路重合闸输出,接入第一组操作箱。计算机监控系统则需提供两付手跳、手合接点,需分别接至两组操作箱的分合闸回路,用于启动、返回合后继电器及断路器操作。
4.2
继电保护双重化遵循
4.3
合理分配保护所接电流互感器二次绕组,对确无办法解决的保护动作死区,采取启动失灵及远方跳闸等措施加以解决。
4.4
本标准强调了标准化设计保护典型二次回路的原则和重点要求,但并未涵盖全部技术要
4.5
依据主接线和附录图纸内容
5
依据主接线
5.1
本标准中典型二次回路设计依据浙江省电力公司220kV标准配送式变电站通用设计的主接线。
DL/T 5136-2001火力发电厂、变电所二次接线设计技术规程
DL/T 5218-2005220kV~500kV变电所设计技术规程
Q/GDW 161-2007线路保护及辅助装置标准化设计规范
220kv电网线路继电保护设计(周)
毕业设计(论文)题目220KV电网继电保护设计系别电力系专业电气工程及自动化班级姓名指导教师下达日期年月日设计时间自年月日至年月日220KV电网继电保护设计摘要本书在满足选择性、速动性、灵敏性、可靠性的基础上,对220KV电网的继电保护及自动装置的设计原理及计算方法进行了较为全面的论述,其中本书对220KV电网的保护包括有距离保护,零序电流保护,横联保护,自动装置为检无压和同期的三相一次重合闸文中举有一些具体的算例和对一些特殊问题的解决方法。
本文所遇到的问题在220KV电网中也较为普遍的。
关键词:220KV电网;继电保护;自动装置;整定计算The design for Relay protections of 220KV PowersystemAbstract:This paper in satisfying the selectivity and moving the foundation , intelligent, credibility soon, to generatrix, presents the design principle and methods of caculations for Relay protections and automations of 220KV power system. It consists of distance protection,Zero-sequence current protection and auto-reclosing device.It relate to some concrete samples and measure for problems.And these problems are univensal in the 220KV power system.Key words220KV Power System ;Relay Protection;Automation;Fixed-command前言本文是山西大学工程学院毕业生毕业设计任务书,课题为220KV电网继电保护设计。
220kv电网继电保护设计原始数据精选全文完整版
可编辑修改精选全文完整版220kV电网继电保护设计原始数据一、题目选择图1所示电力系统220kV线路的继电保护方式并进行整定计算。
图1所示系统由水电站W、R和两个等值的110kV系统S、N,通过六条220kV线路构成一个整体。
整个系统的最大开机总容量为1509.29MVA,最小开机总容量为1007.79 MVA,两种情况下各电源的开机容量如表1所示。
各发电机、变压器容量和连接方式已在图1中示出。
表1 系统各电源的开机情况代号开机情况说明第一种运行情况W、R水电厂所有机组、变压器均投入,S、N等值系统最大开机情况按最大容量发电、变压器均投入最小开机情况第二种运行情况W厂停2×30MVA机组,R厂停77.5MVA机组一台,S系统发电容量是300MVA,N系统发电容量为240MVA图1 220kV系统接线图二、系统中各元件的主要参数计算系统各元件的参数标么值时,取基准功率S b =60MVA ,基准电压U b =220kV ,基准电流I b=b S =0.157kA ,基准电抗x b = 806.67Ω。
(一) 发电机及等值系统的参数用基准值计算所得的发电机及等值系统元件的标么值参数见表2所列。
注:系统需要计算最大、最小方式下的电抗值;水电厂发电机2 1.45d x x '=,系统2 1.22d x x '=。
(二) 变压器的参数变压器的参数如表3所列。
表3 变压器参数(三) 输电线的参数线路单位电抗 x 1=x 2=0.41Ω/km ,x 0=3x 1,线路阻抗角80o 。
表4 输电线参数(四)电流互感器和电压互感器变比220kV线路的所有电流互感器均采用同一变比600:5=120,电压互感器的变比均为220000:100=2200。
(五)三、正序、负序、零序等值阻抗图根据系统各元件参数计算结果和变压器中性点接地的情况,作出系统的正序、负序、零序阻抗图。
四、系统潮流计算结果为了确定各线路的最大负荷电流,应计算系统在最大开机情况下的潮流分布。
220线路继电保护原理
《220kV 线路保护》一、220kV 系统保护基本配置线路保护:全部为微机双重化配置,由主保护(纵联保护)和后备保护(距离、零序)组成,同时具有自动重合闸功能。
母差及失灵保护:全部为微机保护,采用单套或双套配置,同时具有母联失灵和死区保护功能。
主变保护:全部为微机保护,电气量保护为双主双后,非电量保护按单套配置,双套差动保护一般按大差和小套来配置,侧路代送时一般小差切侧路。
安全自动装置:故障录波器、保护信息子站、小波测距终端、稳控装置。
二、保护装置的双重化配置为提高保护装置的可靠性,当一套保护拒动时,由另一套功能独立的保护装置切除故障,目前220千伏及以上线路保护全部按双重化配置,要求双重化配置的保护装置及其回路完全独立,主要包括:• 保护装置双重化 • 电流、电压输入双重化• 保护直流和操作直流双重化,每一套保护分别对应一组开关的跳闸线圈 • 纵联保护通道双重化 三、220kV 线路保护 1、纵联保护的分类及原理纵联保护是反应线路两端电气量变化的保护。
在区内故障时,保护全线速动(t ﹤30ms ),在区外故障时,保护不动作。
目前在辽宁电网中主要有使用载波通道的闭锁式纵联保护、使用光纤通道的允许式纵联保护和使用光纤通道的分相电流差动保护三种。
纵联保护信号的三种形式:① 闭锁信号:是阻止保护动作于跳闸的信号,收不到闭锁信号是保护动作跳闸的必要条件。
② 允许信号:是允许保护动作于跳闸的信号,收到允许信号是保护动作跳闸的必要条件。
保护元件允许信号③ 跳闸信号:是直接动作于跳闸的信号,此时与保护元件是否动作无关。
收到跳闸信号保护就动作于跳闸。
纵联保护的“远方跳闸信号”就是这种信号。
保护元件跳闸信号纵联保护按反应的物理量分:纵联方向保护(RCS-901、CSC-101)、纵联距离保护(RCS-902、PSL-602、WXH-802、PRS-702)、分相电流差动保护(RCS-931、PSL-603、WXH-803、PRS-753)。
220kV变电站继电保护设计正文
前言继电保护的发展是随着电力系统和自动化技术的发展而发展的.几十年来,随着我国电力系统向高电压、大机组、现代化大电网发展,继电保护技术及其装置应用水平获得很大提高。
在20世纪50年代及以前,差不多都是用电磁型的机械元件构成。
随着半导体器件的发展,陆续推广了利用整流二极管构成的整流型元件和半导体分立元件组成的装置。
70年代以后,利用集成电路构成的装置在电力系统继电保护中得到广泛的运用.到80年代,微型机在安全自动装置和继电保护装置中逐渐应用.在电力系统中,由于雷击或鸟兽跨接电气设备、设备制造上的缺陷、设计和安装的错误、检修质量不高或运行维护不当等原因,往往发生各种事故。
为了保证电力系统安全可靠地运行,电力系统中的各个设备必须装设性能完善的继电保护装置。
继电保护是利用被保护线路或设备故障前后某些突变的物理量为信息量,当突变量达到一定值时,起动逻辑控制环节,发生相应的跳闸脉冲或信号。
继电保护虽然种类很多,但是一般由测量部分、逻辑部分、执行部分三部分组成。
测量部分是测量被保护元件工作状态的一个或几个物理量,并和已给的整定值进行比较,从而判断保护是否应该起动。
逻辑部分是根据测量部分输出量的大小、性质、出现的顺序或它们的组合、使保护装置按一定的逻辑程序工作,最后传到执行部分。
执行部分是根据逻辑部分送的信号,最后完成保护装置所担负的任务。
如发生信号,跳闸或不动作等.继电保护的基本性能要求是选择性、速动性、灵敏性、可靠性。
随着新技术、新工艺的采用,继电保护硬件设备的可靠性、运行维护方便性也不断得到提高。
继电保护技术将达到更高的水平.由于编者水平和时间所限,文中疏漏和不足之处在所难免,恳请老师批评指正。
目录摘要 (1)第1章设计说明书 (2)第2章主变压器保护设计 (3)2。
1 主变压器保护设计 (3)2。
2 变压器容量选择 (4)2.3 变压器主保护 (8)2。
4 过电流保护 (13)2.5 接地保护 (14)2.6 其他保护 (16)第3章母线保护 (19)3。
220kV高压电网继电保护配置
维 护 电 力 系 统 的 安 全 稳 定 运 行 发 挥 了 巨 大 的 作 用 。光纤 纵联保 护采 用光 纤通信 作为 纵联保 护 的 ] 通道 方式 , 取代传 统 的高频 载波通 道 , 有较 高的可 具 靠性 和安全 性 。本文 采用 的是配 置 1 光纤 电流差 套
故 障 时流过故 障线路 的 电流 与保 护安装 处 的电流之
比r 。为了保 证继 电保 护 的选 择 性 , 止保 护 的 越 3 ] 防 级跳闸, 只能 选取 最保 守的分支 系数 。
1 3 电流 互感 器 变 比 的选 择 .
对保护用 电流互 感器性 能的基 本要 求是 在规 定
电流 ,。一般 取 1A或 者 5A, 文 J 本 取 1A。
1 2 短路 电流及 分 支 系 数 计 算 .
.
2 主保 护
2 0k 及 以上 超 高压 线 路 保 护 主要 采 用 以高 2 V 频 方 向和高频 闭锁距 离保 护为 主 的微 机 型双线路保 护, 纵联 通道 采用 电力 线 载波 或 微 波 通道 。这 种保
护 曾作为 高压 线路 保 护 的 主要 模 式 被大 量 采用 , 为
短路 电流 计算 的 目的是 为了确 定保护 装置 的整 定值 和检 验灵 敏度 。保护 的运行 方式 是 以通过保 护
装 置的短 路 电流 的大小来 区分 的 。对 应用 与双侧 电
源 网络 中的保 护 , 其整 定应 与下 一级保 护相 配合 , 但 需考 虑保 护 安 装 地 点 与 短 路 点 之 间有 电 源 和线 路
第2卷 5
第 1 期
电
力
220KV铁岭一次降压变电所继电保护电气部分初步设计
摘要本次设计的主要内容是变电所的主变压器的选择、主接线的选择、短路计算、变电所保护装置等的选定进行设计,通过对变压器以及线路保护配置的选择,来保证电力系统的安全运行。
其主要采用的保护有继电保护、过电压保护、瓦斯保护、变压器差动保护。
本次设计是我们在校期间进行的最后一个非常重要的综合性实践教学环节,也是我们学生全面运用所学基础理论、专业知识对实际问题进行设计(或研究)的综合性训练,同时还是我们将来走向工作岗位而奠定的基本实践。
通过本次设计可以增强我们运用所学知识解释实际问题的能力和创新能力,以便更好地适应工作的需要。
电力系统继电保护的设计与配置是否合理,直接影响电力系统的安全运行,故选择保护方式时,满足继电保护的基本要求。
选择保护方式和正确的计算,以保证电力系统的安全运行。
关键词电力系统,继电保护,整定计算,灵敏度校验AbstractThis important task of this design is protective relaying design of sabstation through the pootective distribution of the tramsformer and lines. Ensure the Electric power system’s safe operation.Mainly uses the protection has the gas to protect, the transformer differential motion protection, the electric current, the load, the distance protection. This design is we in school period carries on last the count for much comprehensive practice teaching link, also is our student comprehensively utilizes studies the basic theory, the specialized knowledge carry on the design to the actual problem (or research) the comprehensive training, simultaneously or we future will move towards the basic practice which the work post will establish. May strengthen us through this design to utilize studies the knowledge explanation actual problem the ability and the innovation ability, in order to meets the work need well.The Electric power system’s protective relaying design and distribution whether is rational directly affect safe operation whon selecting protective duty. Should satisfy basic requires of protectivc relaying selecting protective detty and right calculated setting ensures the electric power system’s safe operationKey Words electric power system, relay protection, setting(up) to compute,sensitivity calibration目录摘要 (I)Abstract .............................................................................................................................................................. I I 引言 (1)第一篇说明书 (2)1待设计变电所原始资料分析 (2)1.1 变电所概况介绍 (2)1.2 变电所60KV的用户负荷表 (2)1.3 电力系统接线方式图 (2)2 变电所主变压器的选择 (4)2.1 主变台数的确定 (4)2.2 变压器形式的选择 (4)2.3 主变容量的确定 (4)3 变电所电气主接线的选择 (6)3.1 电气主接线的设计原则 (6)3.2 电气主接线的基本要求 (6)3.3 电气主接线的设计程序 (8)3.4 主接线的拟定方案及选择 (9)4 短路电流计算 (11)4.1 短路电流计算的目的、规定和步骤 (11)4.2 三相短路电流的计算 (12)5 变电所保护装置 (14)5.1 变电所继电保护配置 (14)5.1.1 220kV及中性点直接接地电网线路保护配置 (14)5.1.2 变压器保护的配置 (15)5.2 变压器的各种保护原理 (16)第二章计算书 (26)1 主变压器选择的容量计算 (26)1.1 变电所60KV的用户总容量 (26)1.2 折算到变压器的容量 (26)1.3 据主变压器容量选择规则 (26)2 短路电流计算 (27)2.1 三相对称短路计算 (27)2.2 元件阻抗归算到系统的标幺值计算 (27)2.3 网络化简 (28)2.4 短路点计算 (31)2.5 60kV侧短路电流 (32)3 整定计算部分 (33)3.1 整定计算 (33)3.1.1 变压器的整定计算原则及其整定计算 (33)3.1.2 变压器瓦斯保护整定 (33)3.1.3 变压器差动保护整定 (33)3.1.4 过电流保护的整定计算 (37)3.1.5 过负荷保护的整定计算 (38)3.2 变压器油温监测 (38)致谢 (40)参考文献 (41)附录 (42)引言本毕业设计论文题目为铁岭220KV一次降压变电所继电保护电气部分初步设计,要求所设计的变电所能够保证供电的可靠性和一次性满足远期负荷的要求,本设计将按照远期负荷规划进行设计。
220kV输电线路继电保护设计
本科课程设计课程名称:电力系统继电保护原理设计题目:220kV输电线路继电保护设计院(部):专业:__________________班级:______________________姓名:________________________学号:_________________成绩:_____________________________指导教师:摘要继电保护是一种电力系统的反事故自动装置,它在电力系统中的地位十分重要。
继电保护伴随着电力系统而生,继电保护原理及继电保护装置的应用,是电力系统实用技术的重要环节。
继电保护技术的应用繁杂广泛,伴随着现代科技的飞速发展,继电保护在更新自身技术的基础上与现代的微机、通信技术相结合,使继电保护系统日趋先进。
电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的发展不断地注入新的活力,继电保护技术未来发展趋势是计算机化、网络化、智能化和数据通信一体化发展。
本次设计主要内容是220KV输电线路继电保护的配置和整定,设计内容包括:220KV电网元件参数的计算、中性点接地的选择、输电线路纵联保护、自动重合闸等。
关键词:参数计算接地的选择纵联保护自动重合闸目录1:220KV电网元件参数的计算 (1)1.1:设计原则和一般规定 (1)1.2:220KV电网元件参数计算原则 (1)1.3:变压器参数的计算 (2)1.4:输电线路参数的计算 (5)2:输电线路上TA、TV及中性点接地的选择 (6)2.1:输电线路上T A、TV变比的选择 (6)3: 输电线路纵联保护 (8)3.1:纵联保护的基本概念 (8)3.2: 各种差动保护及其动作方程 (9)3.3:纵联电流差动保护的原理 (9)3.4: 算例 (9)3.5: 纵联差动保护计算参数列表 (11)4:自动重合闸 (11)4.1: 自动重合闸的作用 (11)4.2:重合闸的前加速和后加速 (11)4.3: 自动重合闸动作时间整定应考虑问题 (12)4.4: 双侧电源线路三相跳闸后的重合闸检查条件 (13)4.5:综合重合闸的主要元件 (13)4.6: 综合重合闸整定计算算例 (14)5:参考文献 (15)6:致谢 (19)1:220KV电网元件参数的计算1.1:设计原则和一般规定电网继电保护和安全自动装置是电力系统的重要组成部分,对保证电力系统的正常运行,防止事故发生或扩大起了重要作用。
220kV(500kV)电网继电保护课件-线路保护
电网继电保护
17
4.2 保护配置方式——220kV部分 同500kV,两套保护完全双重化: 。一般配置两段零序过流保护,但不作
硬性要求; 强调主保护(纵联保护)的功能特性 。对双母线接线,重合闸、母线电压选
择、断路器防跳及跳闸自保持、断路 器失灵起动装置放在线路保护柜内, 但不双重化; 。其他同500kV部分
电网继电保护
20
6.保护动作时间级差配合
A处故障(N处线路保护1段内): (3)如N站的断路器(5011/5012)失灵或是CT与断路 器之间的死区故障; 如5011失灵,起动N站母线保护0.25s跳该母线上的所有 断路器;如5012失灵, 0.25s起动5013跳闸及远方跳闸 (5032、5033约0.30s跳闸);
电网继电保护
22
6.保护动作时间级差配合
2020年10月11日
电网继电保护
13
500kV厂站保护配置举例
ቤተ መጻሕፍቲ ባይዱ
2020年10月11日
电网继电保护
14
3.1 保护配置原则—500kV部分
——更强调保护的依赖性与速动性,但 也不能失掉安全性,同时满足其他配 置要求;
● 两套全线速动的主保护
● 完善的后备保护
- 三段式相间距离及接地距离
- 反映高电阻接地故障的定时限/反时限零序 方向过流保护
2020年10月11日
电网继电保护
5
1. 保护配置目的
1.1 检测电网中发生的故障 (相间短路、接地短路、断线)
1.2 检测其它异常运行情况 (过负荷、温度过高、压力过高)
2020年10月11日
电网继电保护
6
1. 保护配置目的
1.3 隔离故障,使受区域影响最小 1.4 使设备免受过应力、免受损害 1.5 维持整个电网的安全稳定运行
220、110kV变电站二次系统通用设计简介
系统及站内通信
光纤通信
220kV变电站光纤通信电路的设计,应结合各网省公司、地市 公司通信网规划建设方案和工程业务实际需求进行。
220kV 变电站应至少配置2级传输网设备,分别接入省、地通 信传输网;
光纤通信传输干线电路速率为622Mbit/s~2.5Gbit/s,支线电 路速率宜为155Mbit/s~622Mbit/s。
国家电网公司输变电工程通用设计
220、110kV变电站二次系统简介
220kV变电站二次系统技术原则
系统继电保护
220kV线路保护配置原则
每回220kV线路应配置双套完整的、独立的能反映各种类型故障、 具有选相功能全线速动保护,终端负荷线路也可配置一套全线速动保护, 每套保护均具有完整的后备保护。 每一套220kV线路保护均应含重合闸功能,两套重合闸均应采用一 对一起动和断路器控制状态与位置起动方式,不采用两套重合闸相互起
子站系统,保护及故障信息管理子站系统与监控系统 宜根据需要分别采集继电保护装置的信息。
调度自动化
远动系统设备配置
变电站按无人值班设计。站内应配置相应的远动通信设备,且应 冗余配置,并优先采用专用装置、无硬盘型,采用专用操作系统,远 动与计算机监控系统合用I/O测控单元。
远动信息采取“直采直送”原则,直接从I/O测控装置获取远动信 息并向调度端传送。远动通信设备直接从计算机监控系统的测控单元 获取远动信息并向调度端传送,站内自动化信息需相应传送到远方监 控中心。
对于没有迂回光缆路由的同塔双回线路,宜架设双光缆。 入城光缆和网、省、地共用光缆,应增加光纤配置芯数。
220kV线路保护迂回路由不宜采用110kV以下电压等级的架空普通 光缆。
系统及站内通信
探析220kV变电站及线路继电保护设计和整定计算
2020.9 EPEM35电网运维Grid Operation探析220kV变电站及线路继电保护设计和整定计算南瑞集团(国网电力科学研究院)有限公司 朱守德摘要:探究220kV变电站及线路继电保护设计及整定计算,前者包括其继电保护的内容、相应的设计要求以及具体的设计项目,后者则从主要设备以及相间距离进行整定计算的分析。
关键词:变电站及线路;继电保护;整定计算1 220kV 变电站及线路继电保护设计继电保护概述。
继电保护是整个电网中极为关键的组成部分,在电网运行过程中一旦出现异常情况该设备会在第一时间发出信号,并根据计算机系统实现设定的程序,将出现故障情况的位置实施隔离处理以控制故障干扰的范围,避免影响到整个电网的正常供电。
该保护装置包括主设备以及系统设备,其中前者主要负责变压装置、发电装置等元件问题,而后者是对线路的故障实施处理,同时二者间也需互相配合。
设计要求。
近年国内出现大量220kV 变电站,对其保护设备设计过程中需保证基本的可靠、灵敏等特征。
借助有效的保护设备实现保护设备价值最大化,确保其能为电网运行提供一项基础保障。
简单而言,若此级别的变电站和连接电路较为紧密,需达到可靠及速动性的标准;若二者的关联性较差则需在确保满足上述两项标准的基础上,提高变电站与线路的选择性。
各装置配置。
在整个电网中,主保护装置可确保整体的稳定性及设施的安全指数,并在较短时间内及时准确地切除异常情况的保护设备。
若在故障影响范围较广或较为严重时需进行全线的切除工序,需选择性地保护。
如:纵联保护属于绝对保护装置,若该设备出现问题相应的保护动作无法完成时后备保护装置便会发挥作用,由此可知其属于相对选择的范畴中。
后备保护装置包括远及近两种,在此级别的变电站中通常会使用后者,借助各变电站自身达到确保后备装置的使用性能。
辅助装置属于一项替补环节,同时对于问题较为简单、严重程度较低的故障具有一定的保护作用。
线路保护设计。
此部分的设计目的在于提高主保护装置的实际价值,并合理简化后备装置。
220KV变电站继电保护设计
220KV变电站继电保护设计继电保护设计是电力系统中至关重要的一环。
本文旨在解释220KV变电站继电保护设计的背景和目的,并介绍文章的结构和主要内容。
随着电力系统的发展和进步,变电站的重要性不断凸显。
变电站作为电力输配系统中的关键节点,负责变电、配电、保护等重要工作。
继电保护设计在变电站中具有至关重要的作用,它能够及时检测和保护电力设备,确保系统的安全稳定运行。
本文的目的是对220KV变电站的继电保护设计进行详细探讨和分析。
通过深入了解继电保护设计的原理和方法,可以有效提高变电站的安全性和可靠性,保障电力系统的正常运行。
本文分为以下几个部分:引言:介绍文章的背景、目的和结构。
220KV变电站概述:对220KV变电站的基本情况和功能进行概述。
继电保护设计原理:详细阐述继电保护设计的理论基础和工作原理。
继电保护设计方案:介绍具体的继电保护设计方案,包括设备选型、参数配置等。
实施与运维:对继电保护设计的实施和运维进行讨论,包括测试、校准和故障排除等。
结论:对本文进行总结,并提出对继电保护设计的展望。
本文将重点涵盖以下内容:继电保护设计的基本概念和背景。
继电保护设计的原理和方法。
220KV变电站的特点和要求。
继电保护设计方案的具体要求和步骤。
继电保护设备的选型和配置。
继电保护设计的实施和运维要点。
通过深入研究和理解以上内容,可以对220KV变电站的继电保护设计有更全面的认识,并为实际工程应用提供参考和指导。
以上是关于《220KV变电站继电保护设计》文档的简要介绍和大纲。
继电保护设计对于220KV变电站的正常运行是至关重要的。
继电保护系统是变电站中的重要组成部分,它主要负责监测和保护变电站设备和电力系统,以避免故障引发事故和损坏。
以下是继电保护设计的重要性:设备保护:继电保护系统能够监测电力设备的工作状态,及时发现异常情况并采取措施。
它可以监测电流、电压、频率等参数,一旦发现异常,会立即采取相应的保护行动,如断开故障电路、切除受故障影响的设备,保护其他设备的安全运行。
电工技术220kV线路保护在“四统一”与“六统一” 设计规范
电工技术220kV线路保护在“四统一”与“六统一”设计规范内容:励磁系统、继电保护技术交流、资料共享的平台220kV线路保护在“四统一”与“六统一”设计规范张郭晶(江苏省电力公司检修分公司扬州分部,江苏扬州225000)[摘要]从保护功能、组柜原则、外部接线、压板配置、定值整定、运行注意事项和操作票等方面对“四统一”和“六统一”设计规范下的220kV线路保护进行比较和分析,重点分析了跳闸回路、失灵回路和重合闸回路,明确了220kV线路保护的跳闸方式、重合闸功能以及失灵功能在两种设计规范下的异同点,使得运行和检修人员对于应用“四统一”和“六统一”的线路保护有更加深刻的认识,为设备的运行维护、倒闸操作以及检修工作提供参考。
关键词六统一失灵重合闸跳闸方式线路保护压板配置异同1概述20世纪70、80年代制定的继电保护“四统一”原则,在规范我国继电保护设计、制造,促进继电保护设备更新换代,提高继电保护运行水平,保障电网安全方面发挥了举足轻重的作用。
所谓“四统一”,即在设计技术条件、接线回路、元件符号、端子排编号四个方面统一标准。
随着微机保护的普遍应用,因各厂家微机保护配置和功能不标准、不规范而引发的一些突出问题逐渐在装置运行中暴露出来:①当前微机保护装置设计、制造、应用的非标准化问题突出;②各厂家微机保护装置的对外接口和回路配合要求各不相同;③由于缺乏统一的标准,导致同一类型的保护装置出现多个地区性版本。
2009年以来,国网公司先后发布Q/GDW161—2007《线路保护及辅助装置标准化设计规范》、Q/GDW175—2008《变压器、高压并联电抗器和母保护标准化设计规范》等标准,对保护装置功能配置、回路设计、端子排布置、接口标准、屏柜压板、保护定值(报告格式)六方面作出统一规范,简称“六统一”。
但一些老的变电站设备是在“六统一”设计规范应用之前就投入运行的,为了增进运行和检修人员对“六统一”设计规范的认识,本文在保护功能、组柜原则、外部接线、压板配置、定值整定、操作方式及运行注意事项等方面对应用“六统一”和“四统一”设计规范的220kV线路保护进行对比。
220KV输电线路继电保护-输电线路继电保护
220KV输电线路继电保护:输电线路继电保护XX大学课程设计课程名称:电力系统继电保护原理设计题目:220KV输电线路继电保护院(部):电力学院专业:电气工程及其自动化班级:姓名:学号:成绩:指导教师:日期:20XX年6月8日—— 6月21日目录前言 2 第一章绪论 3 1.1继电保护的概论 3 1.2继电保护的基本任务 3 1.3继电保护的构成 3 1.4课程设计的目标及基本要求 4 第二章 220KV输电线路保护 4 2.1 220KV 线路保护概要 4 2.2纵联保护 5 2.2.1纵联方向保护原理 5 2.2.2纵联保护通道 6 2.3 输电线路参数的计算 6 第三章输电线路上TA、TV及中性点接地的选择73.1 输电线路上T A、TV的选择73.2 变压器中性点接地方式的选择 8 第四章相间距离保护整定计算 94.1 距离保护的基本概念 9 4.2距离保护的整定9 4.3 距离保护的评价及应用范围 11 第五章电力网零序继电保护方式选择与整定计算 11 5.1 零序电流保护的特点 11 5.2 接地短路计算的运行方式选择 12 5.3 最大分支系数的运行方式和短路点位置的选择 12 5.4 电力网零序继电保护的整定计算 12 5.5 零序电流保护的评价及使用范围 14 心得体会15 参考文献 16 前言继电保护伴随着电力系统而生,继电保护原理及继电保护装置的应用,是电力系统实用技术的重要环节。
继电保护技术的应用繁杂广泛,随着现代科技的飞速发展,继电保护在更新自身技术的基础上与现代的微机、通信技术相结合,使继电保护系统日趋先进。
无论是继电保护装置还是继电保护系统,都蕴含着严谨而又富有创兴的科学哲理,同时也折射出现代技术发展的光芒。
可以说继电保护是一门艺术。
由于电力系统是一个整体,电能的生产、传输、分配和使用是同时实现的,各设备之间都有电或磁的联系。
因此,当某一设备或线路发生短路故障时,在瞬间就会影响到整个电力系统的其它部分,为此要求切除故障设备或输电线路的时间必须很短,通常切除故障的时间小到十分之几秒到百分之几秒。
220KV电网继电保护设计方案
220KV电网继电保护设计方案概述一、电网的特点题目所给出的电网系统接线图中,主要包括两个发电厂,两个系统,两条平行双回线及两条单回线路构成的辐射状态连接起来的整体系统,同时还有两个降压变电站。
本系统为220kv多电源电网,负荷分配均匀、合理,线路属于中短线路,可以减少一些由于线路长而传输起来灵敏度不易配合等问题,但是,由于系统中含有两条位置处于中心的平行线路,这将给设计的整定计算带来一些困难和麻烦。
二、电网分析和保护初步选择根据电网结构的不同,运行要求不同,再在满足继电保护“四性”(速动性、选择性、灵敏性、可靠性)的前提下,求取其电力系统发展的需要。
对于220kv大接地电流电网的线路上,应装设反应相间故障和接地故障的保护装置。
(1)对于单侧电源辐射形电网中单回线上,一般可装设无时限和带时限的电流及电压速断装置为主保护带阶段时限的过电流保护装置作为后备保护。
在结构比较复杂的电网上,可先考虑用带方向或不带方向的阶段式电流或电压保护作为主保护,当这类保护在选择性,灵敏性及速动性上不能满足要求时,则应装设距离保护。
(2)、在双侧电源线路上,如果要求全线速动切除故障时,则应装设高频保护作为主保护,距离保护作为后备保护,否则,一般情况,应装设阶段式距离保护。
(3)、在平行线路上,对于220kv线路,一般应装设横差方向保护或全线速动的高频保护作为主保护。
以距离保护或阶段式保护带方向或不带方向电流或电压作为后备保护。
对于单相和多相接地短路故障,一般应装设带方向的或不带方向的无时限和带时限的零序电流速断保护及灵敏的零序过电流保护。
如果零序电流保护不能满足选择性和灵敏性的要求,可采用接地距离保护。
在平行线路上,一般装设零序横差动方向保护作为主保护,如果根据系统运行稳定性等要求,需装设全线速动保护,与上述相同,也可以用一套高频保护,同时作为相间短路和接地短路的保护,而以接每一回线或接于两回线电流之上的阶段零序电流保护作为后备保护。
江苏电网220千伏系统继电保护“六统一”
江苏电网220千伏系统继电保护“六统一”应用技术原则编制说明本技术原则是根据国网企业标准《线路保护及辅助装置标准化设计规范》、《变压器、高压并联电抗器和母线保护及辅助装置标准化设计规范》,结合近年来技术发展和江苏电网220千伏变电站继电保护装置的实际应用情况进行编制。
本技术原则自颁布之日起执行。
在执行过程中所遇到的问题和建议请及时反馈江苏电力调度通信中心。
江苏电力调度通信中心将视具体情况进行必要的修订补充。
本技术原则的解释权属江苏电力调度通信中心。
一、220kV线路保护1、配置方案220kV联络线路配置双重化的主后备一体化纵联保护。
220kV单电源环网的双/多线并供线路,以及有特殊要求的馈供线路(例如可靠性或稳定性要求高,或低压侧有电源等)配置双重化的主后备一体化纵联保护。
其他220kV馈供线路,当具备光纤通道时配置双重化的主后备一体化纵联保护,当不具备光纤通道时可只配置双套距离保护。
对远景规划为联络变,本期为终端变建设的工程,线路保护及光纤通道按联络变原则配置。
纵联保护应优先采用光纤通道,优先采用分相电流差动保护。
220kV同塔双回或多回线路、单电源环网(含双/多线并供形式的单电源环网)中的各条线路、以及其他一些有特殊要求的线路(如强磁弱电等),应采用双套分相电流差动保护。
具备光纤通道的其他线路,也优先采用双套分相电流差动保护。
220kV电压等级接入的电厂采用发变线组接线形式时,电厂侧每套线路保护需加装远方就地判别装置。
具体工程中,220kV线路保护按如下原则设计和实施:1)220kV线路两侧变电站均为新建站时:两侧线路保护柜均按“六统一”原则设计(新建站B柜屏上配置的失灵启动装置仅作为充电过流保护使用)。
2) 220kV线路两侧变电站一侧为新建或间隔扩建,另一侧利用原有间隔时,可按以下原则实施:a、新建变电站线路保护与母线保护间的配合及二次回路接线应按国网“六统一”原则执行,失灵启动电流判别采用母线保护中的电流元件(不采用线路保护柜中的失灵启动装置);b、新建变电站对侧原有间隔的线路保护运行时间小于5年时,为节约投资,可将其中一侧变电站的线路保护柜搬迁至相应变电站(一般为新建变电站),与另一侧配合使用。
220kV系统继电保护技术应用规范—浙江电网
技术要求
为防止保护操作箱直流电源在切换时两组直流 电源同时失去,宜取消保护操作箱直流电源切 换回路。 第一套主保护应采用第一跳闸回路,第二套主 保护采用第二跳闸回路,其他继电保护装置宜 采用第一跳闸回路。 与线路断路器控制单元(重合闸、失灵电流判 别元件等)组屏在一起的保护为第一套线路保 护,与保护操作箱组屏在一起的保护为第二套 线路保护。 若断路器仅有单跳圈,则继电保护装置应采用 操作箱内第一跳闸回路。
母线保护双重化
500kV变电站和接有200MW及以上发电机的220kV母线 保护按双重化配置,其它重要220kV厂站 的220kV母线 保护必要时可按双重化配置。 若母线保护双重化配置时,断路器失灵保护仍按双重化 配置,正常运行时两套失灵保护可同时投入。 220kV母线保护双重化配置时,宜由不同的保护动作原 理、不同厂家的硬件结构构成。可配置一套中阻抗母线 保护、一套数字式母线保护或两套数字式母线保护; 两套母线差动保护的跳闸回路应分别作用于断路器的两 个跳闸线圈; 用于母线差动保护的断路器和隔离刀闸的辅助接点、切 换回路、辅助变流器以及与其他保护配合的相关回路亦 应遵循相互独立的原则按双重化配置; 合理分配母线差动保护所接电流互感器二次绕组,对确 无办法解决的保护动作死区,可采取起动失灵及远方跳 闸等措施加以解决。
终端变线路保护
单线进线时宜不设置线路保护; 主接线为桥接线时,进线宜不设置线路保护,但应在桥 断路器上配置独立的过流解列保护装置,220kV系统短 时合环时须投入; 为确保特殊重合闸可靠重合,如该变电站中低压侧接有 小电源时,应在小电源及接入系统侧装设有关解列装置; 小电源应能可靠解列,解列时间≤1.5s; 如在220kV终端负荷变电站中低压侧直接接有小电源或 中低压系统的小电源解列较困难时,应在220kV侧设置 带有弱馈功能的线路保护或线路两侧采用分相电流差动 保护。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
220千伏电网继电保护设计第一节概述在110-220千伏中性点直接接地电网中,线路的相间短路保护及单相接地短路保护均应动作于断路器跳闸。
在下列情况下,应装设全线任何部分短路时均能速动的保护:(1)根据系统稳定要求有必要时;(2)线路发生三相短路,使厂用电或重要用户线路电压低于60%额定电压,且其保护不能无时限和有选择地切除短路时;(3)如某些线路采用全线速动保护能显著简化电力系统保护,并提高保护的选择性、灵敏性和速动性时。
110kV线路的后备保护宜采用远后备保护方式,220kV线路宜采用进后备保护方式,如能实现远后备时,则宜采用远后备方式或同时采用远、近后备结合的方式。
110-220kV线路的保护可按以下原则配置:对于单侧电源单回线路,可装设三相多段式电流电压保护作为相间短路的保护,如不能满足灵敏度要求,则应装设多段式距离保护。
对于接地短路,宜装设带方向或不带方向元件的零序电流保护。
对某些线路,如装设带方向性接地距离保护可以明显改善整个电力系统接地保护性能时,可装设接地距离保护,并辅之以多段式零序电流保护。
对于双电源单回线路,可装设多段式距离保护,如不能满足灵敏度和速动性要求时,则应加装高频保护作为主保护,把多段式距离保护作为后备保护。
在正常运行方式下,保护安装处短路无时限电流速断保护能够动作时,可装设此种保护作为辅助保护。
对于5-7km及以下的短线路,当需要装设全线速动保护时,宜采用纵差动保护作为主保护,另装设多段式电流电压保护或距离保护做后备保护。
对于平行线路的相间短路,一般可装设横差动电流方向保护或电流平衡保护作主保护。
当灵敏度或速动性不能满足要求时,应在每回线路上装设高频保护作为主保护。
装设带方向或不带方向元件的多段式电流保护或距离保护作后备保护,并作为单回线运行时的主保护和后备保护,当采用近后备方式时,后备保护分别接于每一回线路上;当采用远后备方式时,则应接入双回线路的电流。
对于平行线路的接地短路,宜装设零序电流横差动保护作为主保护;装设接于每一回线路的带方向或不带方向原件的多段式零序电流保护作为后备保护,作为远后备保护时,可按两线路零序电流之和,以提高灵敏度。
对于电缆线路或电缆与架空线路混合的线路,应装设过负荷保护。
过负荷保护一般动作与信号,必要时可动作于跳闸。
关于各种保护的整定计算方法可参阅相关资料。
第二节题目概况选择图2-1系统220kV线路的继电保护方式并进行整定计算。
图2-1示系统由水电站W、R和两个等值的110kV系统S、N通过六条220kV线路构成一个整体。
整个系统的最大开机总容量为1509.29MV A,最小开机总容量为1007.79MV A。
两种情况下各电源的开机容量如表2-2所示。
各发电机、变压器容量和连接方式已在图2-1中示出。
第三节 系统中各元件的主要参数计算系统各元件的参数标幺值时,取基准功率Sj=60MVA ,基准电压Uj=220kV ,基准电流Ij=Sj/3Uj=0.157kA ,基准电抗xj=Uj 2/Sj=806.67Ω 。
一、发电机及等值系统的参数用基准值计算所得的发电机及等值系统元件的标幺值参数见表2-2所列。
注:①表中括号内的数据为最小运行方式时的电抗标幺值。
②负序电抗按下列情况计算:对水电厂(W 、R )的发电机,x 3=1.45x d /,对系统(S 、N )的汽轮发电机,x 2=1.22x d //。
计算举例:(1)对R 水电厂,每台发电机和变压器的有关参数为:机组容量Se=77.5MVA ,额定电压Ue=13.8kV ,功率因数cos Φ=0.84,正序电抗x d /=0.3;变压器的额定变比n B =220/11.折合到220kV 的基准值正序标幺电抗为365.0118.13*5.7760*3.011*220220*60*5.778.13*3.0S )n U (/S U x x 222222j2Bje 2ed 1F ==== 负序标幺电抗为529.0365.0*45.1x 1F ==(2)对S 等值系统,最大容量Smax=476MV A ,最小容量Smin=300MV A ,等值正序电抗x d //=0.5,Ue=115kV ,n B =220/115。
折合到220kV 的基准值正序、负序标幺电抗为122.0x ,1.030060*5.0x ,077.0x 22.1x ,063.047660*5.0x max .2.s max.1.s min .1.s min .2.s min .1.s ======='''''''''''''''''''' 二、变压器的参数变压器的参数如表2-3所列计算举例:(1)对A 变电站双绕组变压器,额定容量20MV A ,短路电压Uk=10.5%,额定变比n B =220/35.用基准值表示的标幺值电抗为:315.022060*20220*105.0x 22B == (2)对C 变电站的三绕组变压器,额定容量120MV A ,短路电压U kI-II%=17,U kI-III%=10.5,U kII-III%=6,额定变比220/115/5。
各侧绕组的电抗百分数为: x I %=(17+10.5-6)/2=10.75 x II %=(6+17-10.5)/2=6.25 x III %=(6+10.5-17)/2=0.25≈0 用基准值表示时的表幺电抗为: x I *=0.1075*60/120=0.054 x II *=0.0625*60/120=6.25 x III *=0三、输电线路的参数输电线路的参数如表2-4所列。
计算举例:AB 线路长60km ,算得有关参数为:(1)正(负)序电抗的有名值为x AB =0.41*60=24.6Ω,标幺值为x AB*=x AB /x j 。
表2-4 输电线路参数1201Φ1=80°(2)零序电抗的有名值为x0=3*24.6=73.8Ω,标幺值为x0*=73.8/806.67=0.092。
四、电流互感器和电压互感器变比220kV线路的所有电流互感器均采用同一变比,n L=600/5=120;220kV线路的所有电压互感器的变比均为n Y=220000/100=2200.五、变压器中性接地点的数目和位置为了使接地短路时变压器不会受到过电压的危害,又能使零序电流的分布基本不变,系统中各变电站的变压器接地情况如表2-5所列:表2-5第四节正序、负序、零序等值阻抗图根据系统各元件计算结果和变压器中性点接地的情况,计算出系统的正序、负序和零序等值阻抗。
第五节系统潮流分布计算为了确定各线路的最大负荷电流,应计算系统在最大开机情况下的潮流分布。
第六节动稳定计算计算动稳定的目的是为了确定能满足系统动稳定要求的、主保护动作切除故障的最大允许时间。
从动稳定观点看,不同的故障点和故障类型,对系统稳定破坏的程度是不同的,一般来说,三相短路对稳定的影响较其他短路类型严重。
靠近大型发电厂或大负荷中心的短路较其他地点发生的短路对稳定性的破坏要严重的多,为了保证系统的稳定运行,应迅速将故障切除。
注:①表中显露名称的第一字母表示送端,如线路BC表示功率的方向从B变电站送往C变电站。
②线路BA的最大输送功率按A变电站变压器额定容量的1.3倍计算。
③线路BC的输送功率为双回路线路同时运行时的总功率。
本题目通过动稳定计算,求出最大允许切除故障时间为0.2S(包括断路器跳闸时间在内,以下同)第七节短路电流计算短路电流计算的目的是为了确保保护装置的整定值和检验灵敏度。
计算短路电流时,运行方式的确定非常重要,因为它关系到所选的保护是否经济合理、简单可靠,以及是否能满足灵敏度要求等一系列问题。
保护的运行方式是以通过保护装置的短路电流的大小来区分的。
例如,某保护的最大(小)运行方式,是指在某一点短路时通过该保护装置的短路电流为最大(小)的运行方式。
一、运行方式的确定原则本题中,各线路保护的运行方式按下列原则确定:1、对单侧电源的辐射形成线路AB保护的最大运行方式由以下两条件决定:(1)电源在表2-1的第一种运行情况下运行;(2)系统所有线路和选定的接地中性点均投入。
保护的最小运行方式是:(1)电源在表2-1的第二中运行情况下运行;(2)双回线路BC单回线运行。
2、对双侧电源和多侧电源的环形网络的线路:(1)电源在表2-1的第一种情况下运行;(2)环网开环,开环点在该线路相邻的下一级线路上。
保护的最小运行方式是:(1)电源在表2-1的第二中运行情况下运行;(2)线路闭环运行,停运该线路背后可能的机组和线路。
例如,在图2-1中,环网中CE线路C侧保护的最大运行方式由下列条件决定:(1)电源在表2-1的第一种运行情况下运行;(2)双回线路BC同时运行;(3)线路ED停运。
最小运行方式由下列条件决定:(1)电源在表2-1的第二中运行情况下运行;(2)双回线路BC停运一回;(3)线路CE、ED、CD闭环运行。
3、对双回线路BC除考虑上述情况外,还应考虑双回线路保护的接线方式。
当双回线路分别装设保护时,单回线运行为保护的最大运行方式;双回线路同时运行为保护的最小运行方式。
当双回线路接一套电流保护时,情况刚好相反。
保护的运行方式确定后,还应根据选择保护方式的需要选择短路点,然后再进行短路电流计算。
二、短路电流计算结果线路AB、BC、CE、ED、CD短路计算结果。
第八节继电保护方式的选择与整定计算保护方式的选择对电力系统的安全运行有直接影响。
选择保护方式时,在满足继电保护“四性”要求的前提下,应力求采用简单的保护装置来达到系统提出的要求,只有当简单的保护不能满足要求时,才采用较为复杂的保护。
水利电力部颁发的《继电保护和安全自动装置技术规程》规定,对110-220kV中性点直接接地电网中的线路,应装设反应接地短路和相间短路的保护装置。
该规程又规定,电力设备和线路的短路保护应有主保护和后备保护,必要时,可再增设辅助保护。
根据规程规定和题给系统的具体情况,220kV线路保护毕业设计任务分配情况如下:1.全网短路电流计算(1人)2.全网采取电流三段保护(1人)3.全网采取距离三段保护(1人)4.全网零序三段保护(1人)。