第四章练习题及参考解答
人教版七年级上第四章余角和补角同步练习题(含答案)

人教版七年级上第四章余角和补角同步练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知7622α'∠=︒,则α∠的补角是( ).A .10338'︒B .10378'︒C .1338'︒D .1378'︒ 2.若一个角的补角加上20︒后等于这个角余角的3倍,则这个角的度数为( ). A .25︒ B .35︒ C .45︒ D .55︒ 3.如图,一副三角尺按不同的位置摆放,下列摆放方式中α∠与β∠互补的是( ) A . B . C . D .4.将一副三角板按如图方式摆放,则下列结论错误的是( )A .1135∠=︒B .2145∠=︒C .12∠=∠D .12270∠+∠=︒ 5.如果∠α和∠β互补,且∠α<∠β,则下列表示∠α的余角的式子中:∠90°﹣∠α;∠∠β﹣90°;∠12(∠α+∠β);∠12(∠β﹣∠α).其中正确的有( )A .1个B .2个C .3个D .4个 6.如图,点A 在点O 的北偏西60°的方向上,点B 在点O 的南偏东20°的方向上,那么AOB ∠的大小为( )A .110°B .130°C .140°D .150°7.在如图所示的方位角中,射线OA 表示的方向是( )A .东偏南60°B .南偏东30°C .南偏东60°D .南偏西60°8.如果一个角的余角等于这个角的补角的14,那么这个角是( ) A .30 B .45︒ C .60︒ D .75︒9.如图,直线DE 与BC 相交于点O ,1∠与2∠互余,150BOE ∠=︒,则AOE ∠的度数是( )A .120︒B .130︒C .140︒D .150︒10.已知∠AOB =70°,以O 为端点作射线OC ,使∠AOC =42°,则∠BOC 的度数为( ) A .28° B .112° C .28°或112° D .68°二、填空题11.将18.25°换算成度、分、秒的结果是__________.12.如图,直线AB ,CD 相交于点O ,EO ∠AB ,垂足为O ,∠EOC =35°,则∠AOD 的度数为______.13.如图,在渔船上的渔民在A 处看见灯塔M 在北偏东60°方向,这艘渔船以28海里/时的速度向正东方向航行,半小时后到达B 处,在B 处看见灯塔M 在北偏东15°方向,此时灯塔M 与渔船的距离是______海里.14.如果∠1与∠2互余,∠3与∠4互余,且∠1=∠3,∠2=55°,那么∠4=_____度.三、解答题15.如图,AB CD ,连接CA 并延长至点H ,CF 平分ACD ∠,CE CF ⊥,GAH ∠与AFC ∠互余.(1)求证:AG CE ∥;(2)若110GAF ∠=,求AFC ∠的度数.16.通过对下面数学模型的研究学习,解决下列问题:(1)如图1,点A 在直线l 上,90,BAD AB AD ∠=︒=,过点B 作BC l ⊥于点C ,过点D作DE l ⊥交于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90BCA AED ∠=∠=︒,可以推理得到()ABC DAE AAS ≌.进而得到结论:AC =_____,BC =_____.我们把这个数学模型称为“K 字”模型或“一线三直角”模型;(2)如图2,90,,,BAD MAN AB AD AM AN BM l ∠=∠=︒==⊥于点C ,NG l ⊥于点G ,由(1)易知NG =_______,ND 与直线l 交于点P ,求证:NP DP =.17.南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A 处测得北偏东30°方向上,距离为20海里的B 处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向以20海里/小时的速度前去拦截.问:经过多少小时,海监执法船恰好在C 处成功拦截.18.如图,点O 是等边三角形ABC 内的一点,∠BOC =150°,将∠BOC 绕点C 按顺时针方向旋转一定的角度,得到∠ADC ,连接OD ,OA .(1)求∠ODC 的度数;(2)试判断AD 与OD 的位置关系,并说明理由;(3)若OB =2,OC =3,求AO 的长(直接写出结果).参考答案:1.A【分析】直接将180°减去∠α即可.【详解】解:∠∠α=7622︒',∠∠α的补角为180180762210338α︒-∠=︒-︒'=︒',故选A .【点睛】本题考查了补角的定义,即如果两个角的和是180°,那么其中一个角就是另一个角的补角,因此,已知一个角,那么它的补角就等于180°减去这个已知角,解题的关键是牢记概念和公式等.2.B【分析】可先设这个角为∠α,则根据题意列出关于∠α的方程,问题可解【详解】解:设这个角为∠α,依题意,得180°-∠α+20°=3(90°﹣∠α)解得∠α=35°.故选B .【点睛】此题考查的两角互余和为90°,互补和为180°的性质,关键是根据题意列出方程求解.3.D【分析】根据同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【详解】解:A 、图中∠α+∠β=180°﹣90°=90°,∠α与∠β互余,故本选项不符合题意;B 、图中∠α=∠β,不一定互余,故本选项错误;C 、图中∠α+∠β=180°﹣45°+180°﹣45°=270°,不是互余关系,故本选项错误;D 、图中∠α+∠β=180°,互为补角,故本选项正确.故选:D .【点睛】本题考查了余角和补角,是基础题,熟记概念与性质是解题的关键.4.B【分析】如图,根据一副三角板的特征可得∠3=∠4=45°,然后根据平角的定义可得∠1和∠2的度数,进而可排除选项.【详解】解:如图,由题意得:∠3=∠4=45°,∠13180,24180∠+∠=︒∠+∠=︒,∠12135∠=∠=︒,故A 、C 正确,B 错误;∠12270∠+∠=︒,故D 正确;故选B .【点睛】本题主要考查补角的性质及角的和差关系,熟练掌握补角的性质及角的和差关系是解题的关键.5.C【分析】由α∠和β∠互补,可得180αβ∠+∠=︒,即:180αβ=︒-∠,119022αβ∠+∠=︒,再用不同的形式表示α∠的余角.【详解】解:α∠和β∠互补, 180αβ∴∠+∠=︒,180αβ∴∠=︒-∠,119022αβ∠+∠=︒ 于是有:α∠的余角为:90α︒-∠,故∠正确,α∠的余角为:9090(180)90αββ︒-∠=︒-︒-∠=∠-︒,故∠正确,α∠的余角为:1111902222ααβαβα︒-∠=∠+∠-∠=∠-∠,故∠正确, 而1()902αβ∠+∠=︒,而α∠不一定是直角,因此∠不正确,因此正确的有∠∠∠,故选:C .【点睛】本题考查互为余角、互为补角的意义,熟悉利用等式的性质进行变形和整体代入的方法是解题的关键.6.C【分析】结合图形,然后求出OA 与西方的夹角的度数,再列式计算即可得解.【详解】解:∠点A 在点O 北偏西60°的方向上,∠OA 与西方的夹角为90°-60°=30°,又∠点B 在点O 的南偏东20°的方向上,∠∠AOB =30°+90°+20°=140°.故选:C .【点睛】本题考查了方向角,熟记概念是解题的关键,结合图形更形象直观.用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.7.C【分析】表示OA 的方式有两种,东偏南30°;南偏东60°;作出判断即可.【详解】根据题意,得表示OA 的方式有东偏南30°;南偏东60°两种,故选C.【点睛】本题考查了方位角的表示法,熟练掌握方位角的表示方法是解题的关键. 8.C【分析】设这个角是x ︒,根据题意得190(180)4x x -=-,解方程即可. 【详解】解:设这个角是x ︒,根据题意得190(180)4x x -=-, 解得x =60,故选:C .【点睛】此题考查角度计算,熟练掌握一个角的余角及补角定义,并正确列得方程解决问题是解题的关键.9.A【分析】直接利用互余的定义以及结合平角的定义得出∠AOC 以及∠EOC 的度数,进而得出答案.【详解】解:∠∠1与∠2互余,∠1290∠+∠=︒,∠90AOC ∠=°,∠150BOE ∠=︒,∠18015030EOC ∠=︒-︒=°,∠9030120AOE AOC EOC ∠=∠+∠=︒+︒=︒.故选:A【点睛】此题主要考查了邻补角以及余角,正确掌握相关定义是解题关键.10.C【分析】根据题意画出图形,利用数形结合求解即可.【详解】解:如图,当点C与点C1重合时,∠BOC=∠AOB﹣∠AOC=70°﹣42°=28°;当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+42°=112°.故选C.【点睛】本题考查的是角的计算,在解答此题时要注意进行分类讨论,不要漏解.11.18°15′0″【分析】根据将高级单位化为低级单位时,乘以60,即可求得答案.【详解】18.25°=18°+0.25×60=18°15′0″,故答案为18°15′0″.【点睛】本题考查了度、分、秒的换算,掌握1度=60分,即1°=60′,1分=60秒,即1′=60″是解题的关键.12.125°【分析】由两直线垂直,求得∠AOE=90°;由∠AOC与∠EOC互余,∠EOC=35°,即可得到∠AOC的度数;再由∠AOD与∠AOC互补,即可得出∠AOD的度数.【详解】解:∠EO∠AB,∠∠AOE=90°,又∠∠EOC=35°,∠∠AOC=∠AOE-∠EOC=90°-35°= 55°,∠∠AOD=180°-∠AOC=180°-55°=125°,故答案为:125°.【点睛】本题主要考查补角、余角和垂直的定义.解题的关键是熟练利用补角、余角关系求角的度数.13.【分析】过点B作BN∠AM于点N,由已知可求得BN的长;再根据勾股定理求BM的长.×28=14海里,∠MAB=30°,∠ABM=105°.【详解】解:由已知得,AB=12过点B作BN∠AM于点N.∠在直角∠ABN中,∠BAN=30°AB=7海里.∠BN=12在直角∠BNM中,∠MBN=45°,则直角∠BNM是等腰直角三角形.即BN=MN=7海里,∠BM=.故答案为:【点睛】本题考查的是勾股定理解直角三角形的应用-方向角问题,正确标注方向角、掌握勾股定理是解题的关键.14.55【分析】根据余角的定义及等角的余角相等即可求解.【详解】解:∠∠1与∠2互余,∠∠1+∠2=90°,∠∠3与∠4互余,∠∠3+∠4=90°,又∠1=∠3,∠∠2=∠4=55°,故答案为:55.【点睛】本题考查了余角的定义及等角的余角相等等知识点,属于基础题,计算过程中细心即可.15.(1)见解析(2)20AFC ∠=︒【分析】(1)根据角平分线得出ACF FCD ∠∠=,利用平行线的性质可得AFC FCD ∠∠=,然后利用各角之间的关系得出GAH ECA ∠∠=,再由平行线的判定即可证明;(2)根据平行线的性质得出HAF ACD ∠∠=,GAH ECA ∠∠=.结合图形利用各角之间的数量关系得出20∠︒=FCD ,再由平行线的性质即可得出结果.(1)证明:∠CF 平分ACD ∠,∠ACF FCD ∠∠=.∠AB ∠CD ,∠AFC FCD ∠∠=,∠ACF AFC ∠∠=,∠GAH ∠与AFC ∠互余,即90GAH AFC ∠+∠︒=,∠90GAH ACF ∠+∠︒=.∠CE CF ⊥,∠90ECF ECA ACF ∠∠+∠︒==,∠GAH ECA ∠∠=,∠AG ∠CE(2)解:∠AB ∠CD ,AG ∠CE ,∠HAF ACD ∠∠=,GAH ECA ∠∠=.∠HAF GAH ACD ECA ∠+∠∠+∠=,即GAF ECD ∠∠=.∠110GAF ∠︒=,∠110ECD ∠︒=.∠90ECF ∠︒=,∠1109020FCD ECD ECF ∠∠∠︒︒=-=-=.∠AB ∠CD ,∠20AFC ∠︒=.【点睛】题目主要考查平行线的判定和性质及各角之间的等量代换,熟练掌握平行线的判定和性质是解题关键.16.(1)DE ,AE ;(2)AC .证明见详解.【分析】(1)根据(AAS)≌ABC DAE ,得出AC =DE ,BC =AE 即可;(2)过D 作DE ∠直线l 于E ,先证∠MCA ∠∠AGN (AAS ),得出AC =NG ,由(1)知(AAS)≌ABC DAE ,得出AC =DE ,再证∠NGP ∠∠DEP (AAS )即可.(1)解:∠(AAS)≌ABC DAE ,∠AC =DE ,BC =AE ,故答案为DE ,AE ;(2)证明:过D 作DE ∠直线l 于E ,∠90MAN ∠=︒,∠∠CAM +∠NAG =90°,∠BM ∠l ,∠∠MCA =90°,∠∠M +∠CAM =90°,∠∠M =∠NAG ,∠NG l ⊥,∠∠AGN =90°,在∠MCA 和∠AGN 中,MCA AGN M GAN MA AN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠MCA ∠∠AGN (AAS ),∠AC =NG ,由(1)知(AAS)≌ABC DAE ,∠AC =DE ,∠NG =DE ,在∠NGP 和∠DEP 中,90NGP DEP GPN EPDNG DE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∠∠NGP ∠∠DEP (AAS )∠NP =DP ,故答案为AC .【点睛】本题考查一线三直角全等问题,掌握余角性质,三角形全等判定与性质是解题关键. 17【分析】过点C 作CD ∠AB 交线段AB 延长线于点D ,证∠ACD 是等腰直角三角形,得AD =CD ,由勾股定理得AC,AD =CD,然后由AD −BD =AB 求出BD ,进而求出AC ,再利用路程=速度×时间即可求解.【详解】解:如图,过点C 作CD ∠AB 交线段AB 延长线于点D ,∠∠BAC =75°−30°=45°,∠∠ACD 是等腰直角三角形,∠AD =CD ,∠ACCD ,∠∠DBC =∠BAE =90°−30°=60°,∠∠BCD =30°,∠BC =2BD ,AD =CD =, ∠AD −BD =AB ,20BD -= 海里,解得:BD =10)1 海里,∠CD (30=+ 海里,∠AC =(海里),∠t ==C 处成功拦截. 【点睛】此题考查了解直角三角形的应用−方向角问题,勾股定理、等腰直角三角形的判定等知识,正确作出辅助线构造直角三角形是解题的关键.18.(1)60°(2)AD OD ⊥,见解析(3)AO =【分析】(1)根据旋转的性质得到三角形ODC 为等边三角形即可求解;(2)将∠BOC 绕点C 按顺时针方向旋转一定的角度,得到∠ADC ,可知∠ADC =∠BOC =150°,即得∠ADO =∠ADC -∠ODC =90°,故AD ∠OD ;(3)在Rt ∠AOD 中,由勾股定理即可求得AO 的长.(1)由旋转的性质得:CD CO =,OCB DCA ∠=∠.∠ACO OCB ACO DCA ∠+∠=∠+∠,即ACB DCO ∠=∠.∠ABC 为等边三角形,∠60ACB ∠=︒.∠60DCO ∠=︒.∠OCD 为等边三角形,60ODC ∠=︒.(2)由旋转的性质得,150BOC ADC ∠=∠=︒.∠60ODC ∠=︒,∠90ADO ADC ODC ∠=∠-∠=︒.即AD OD ⊥.(3)由旋转的性质得,AD =OB =2,∠∠OCD 为等边三角形,∠OD =OC =3,在Rt ∠AOD 中,由勾股定理得:AO【点睛】本题考查等边三角形中的旋转变换,涉及直角三角形判定、勾股定理等知识,解题的关键是掌握旋转的性质,旋转不改变图形的大小和形状.。
人工智能教程习题及答案第4章习题参考解答

第四章不确定性推理习题参考解答4.1 练习题4.1什么是不确定性推理?有哪几类不确定性推理方法?不确定性推理中需要解决的基本问题有哪些?4.2什么是可信度?由可信度因子CF(H,E)的定义说明它的含义。
4.3什么是信任增长度?什么是不信任增长度?根据定义说明它们的含义。
4.4当有多条证据支持一个结论时,什么情况下使用合成法求取结论的可信度?什么情况下使用更新法求取结论可信度?试说明这两种方法实际是一致的。
4.5设有如下一组推理规则:r1:IF E1THEN E2(0.6)r2:IF E2AND E3THEN E4 (0.8)r3:IF E4THEN H (0.7)r4:IF E5THEN H (0.9)且已知CF(E1)=0.5,CF(E3)=0.6,CF(E5)=0.4,结论H的初始可信度一无所知。
求CF(H)=?4.6已知:规则可信度为r1:IF E1THEN H1(0.7)r2:IF E2THEN H1(0.6)r3:IF E3THEN H1(0.4)r4:IF (H1AND E4) THEN H2(0.2)证据可信度为CF(E1)=CF(E2)=CF(E3)=CF(E4)=CF(E5)=0.5H1的初始可信度一无所知,H2的初始可信度CF0(H2)=0.3计算结论H2的可信度CF(H2)。
4.7设有三个独立的结论H1,H2,H3及两个独立的证据E1与E2,它们的先验概率和条件概率分别为P(H1)=0.4,P(H2)=0.3,P(H3)=0.394P(E1/H1)=0.5,P(E1/H2)=0.6,P(E1/H3)=0.3P(E2/H1)=0.7,P(E2/H2)=0.9,P(E2/H3)=0.1利用基本Bayes方法分别求出:方法分别求出:(1)当只有证据E1出现时,P(H1/E1),P(H2/E1),P(H3/E1)的值各为多少?这说明了什么?么?(2)当E1和E2同时出现时,P(H1/E1E2),P(H2/E1E2),P(H3/E1E2)的值各是多少?这说明了什么?明了什么?4.8在主观Bayes方法中,请说明LS与LN的意义。
人教版 八年级上册物理 第4章 光现象 同步训练含答案

人教版八年级物理第4章光现象同步训练附答案一、选择题1. 关于光现象,下列说法正确的()A. 凸透镜只对平行光线具有会聚作用B. 人向平面镜走近时,他在镜中的像逐渐变大C. 黑板面“反光”是由于光发生漫反射造成的D. 日食的形成是由于月球挡住了太阳射向地球的光2. 构建思维导图是整理知识的重要方法,如图是小金复习光学知识时构建的思维导图,图中Ⅰ处可以补充的现象是()A. 镜子中优秀的“自己”B. 湖水中青山的倒影C. 阳光下绿树的影子D. 岸上的人看到水中的“鱼”3. 如图所示,渔夫叉鱼时,应瞄准哪个方向才能叉到鱼?()A. 看到的鱼的前方B. 看到的鱼的方向C. 看到的鱼的上方D. 看到的鱼的下方4. 黑暗的房间里有两盏电灯,只有一盏灯点亮,但人能看到未点亮的灯泡。
图中对于“看到未点亮灯泡”所画的光路图,正确的是()5. 小明想利用一块平面镜使射向井口的太阳光竖直射入井中,如图所示.选项中的数字序号表示的是确定平面镜位置时作图的先后次序,其中作图过程正确的是()6. 学校大门旁竖直放置了一块平面镜,小张同学逐渐靠近平面镜的过程中,下列说法正确的是()A.小张的像逐渐变大B.小张想通过平面镜看到自己的全身像,则平面镜的高度至少为他身高的一半C.小张在平面镜中看见了小王,则小王在平面镜中看不到小张D.小张在平面镜中所成的像是实像7. 一条光线射到平面镜上,如果入射方向保持不变,转动平面镜的镜面,使入射角增大20°,则反射光线跟入射光线恰成直角,镜面转动前的反射光线与入射光线的夹角是() A.20°B.25°C.35°D.50°8. 如图2所示是晚上汽车在干燥的沥青路面和潮湿的沥青路面上行驶时大灯部分光路简图,在晚上开车时()A.潮湿的路面更容易使光发生漫反射B.干燥的路面发生镜面反射C.对面无车时,驾驶员看潮湿的路面更暗D.照射到干燥路面上的光不遵循光的反射定律二、填空题9. 如图,面镜在各行各业中都有广泛的应用,利用________面镜制成的太阳灶可以用来会聚太阳光烧水;而牙医利用口腔内窥镜,可以看到牙齿在镜中所成的________像(选填“实”或“虚”).10. 《康熙几暇格物编》中记载:“置钱碗底,远视若无,及盛满水时,则钱随水光而显现矣.”如图所示,在铜钱放在碗底B处后加适量水,从A处恰好看到铜钱的像在E处,用激光笔从A点向________处(用图中字母表示)照射,可照亮铜钱.加满水,从A处看到像的位置将________(选填“变高”、“变低”或“不变”).11. 月亮不是光源,它本身不会发光,“月亮的光”实际上是照到月球表面被反射的太阳光。
第四章发现与明确问题课后训练清晰版有完整答案.doc

第四章发现与明确问题课后训练一、选择题(每小题列岀的四个备选项中只有一个是符合题目要求的)1•某设计师在洗头时,发现取用洗发液瓶(如图甲所示)中的洗发液需双手操作,感觉不方便。
于是他设计了如图乙所示洗发液瓶,只要单手按压便可取用洗发液。
该设计师发现问题的途径是(A)A.观察日常生活B.技术试验C.技术研究D.收集和分析信息2.某设计师查阅相关数据后,发现火灾中大多数人死亡的原因是吸入毒性气体。
于是他设计了如图所示的消防装置,由简易灭火器和防毒面具组成,既能灭火又能保护使用者。
该设计师发现问题的途径是(D)A.观察日常生活B.技术试验C.技术研究D.收集和分析信息3.1816年,法国巴黎的市郊,有一群孩子正围着一堆木头玩耍。
一人用大铁钉在木头的一端敲打,其余人在另一端把耳朵帖在木头上听。
这时,法国医生勒内•雷奈克为一位患心脏病的贵妇看病后回来恰好路过此处,圆木的敲击声启发了雷奈克,他做了一个木管子给病人听诊, 后来又做出喇叭形的象牙管,上面安装了两根柔软的管子,这就是世界上第一个听诊器。
上述材料中,法国庾生勒内•雷奈克发现问题的途径和方法是(B)①调查问卷;②观察日常生活;③技术试验;④技术研究A.①②③④B.②③④C.①②③D.③④4.如图所示是某同学设计的铅笔套,可以延长铅笔长度或拼接两支铅笔。
在设计吋,该同学搜集了以下信息:①铅笔的横截面形状、犬小;②能正常书写的笔杆长度;③笔芯的粗细;④新铅笔的长度。
其屮,你认为有必要的是(C)A.①③B.①②④C.①②D.①②③④5.某设计师在就餐时发现普通托盘上的酒杯很容易被碰倒,于是设计了如图所示的卡口式酒杯托盘。
该设计师发现问题的途径是(A)A.观察日常生活B.技术试验C.技术研究D.收集和分析信息6.如图是一款新颖的弹性挂衣架,它由两个塑料部件组成,一部分用来悬挂,另外一部分则用来支撑,支撑部分釆用了具有弹性的材料。
这样在悬挂体恤衫等小领口的衣物时,你只需要抓住弹性的部件,用力向里握住,使得支撑部分收缩起来,从而轻松地从领口部位插入体恤衫内,然后将手松开,就可以将体恤衫撑起来了,而不用再从衣物的底部把衣架套进去。
人教版七年级上第四章几何图形初步点、线、面、体同步练习题含答案

【分析】利用雨刷可看成线,扇面是面,即可求出答案.
【详解】汽车的雨刷在挡风玻璃上画出一个扇面,这说明线动成面的数学原理.
故答案为:线动成面.
【点睛】本题考查了点,线,面、体,此题较简单,解题时要灵活应用点、线、面、体之间的关系.
12.②
【分析】易得此几何体为两个底面相同且相连的圆锥的组合体,主视图是从几何体正面看到的图形.
8.由4个面围成;面与面相交形成6条线,直线有5条,曲线有1条.
【分析】由题意直接根据立体图形的基本知识结合图形进行分析即可得出答案.
【详解】解:由图可知,该几何体由4个面围成;
面与面相交形成6条线,直线有5条,曲线有1条.
【点睛】本题考查认识立体图形的知识,比较简单,注意基本知识的掌握.
9.见解析.
12.将图所示的Rt△ABC绕AB旋转一周所得的几何体的主视图是图中的________(只填序号).
参考答案:
1.C
【分析】观察截面形状可发现,长方体内部的圆自上而下由大圆逐渐变成小圆、点,符合圆锥截面的性质.
【详解】解:观察截面形状可知,这个长方体的内部构造是长方体中间有一圆锥状空洞,
故选:C.
【点睛】本题考查了截一个几何体,解答的关键是熟悉常见的几何体的截面,由截面的形状想象复杂几何体的组成.
【详解】解:Rt△ABC绕斜边AB旋转一周所得的几何体是两个底面相等相连的圆锥,圆锥的主视图是等腰三角形,所以该几何体的左视图是两个底边相等的等腰三角形相连,并且上面的等腰三角形较大,故为图②.
故答案为②.
【点睛】本题考查了空间想象能力及几何体的三视图;发挥空间想象能力,确定旋转一周所得的几何体形状是关键.
【分析】根据生活中常见的几何体的特征进行求解即可得到答案.
高中数学(必修一)第四章 指数 练习题及答案解析

高中数学(必修一)第四章 指数 练习题及答案解析学校:___________姓名:___________班级:_____________一、解答题1.计算:2.求下列各式的值: (1)1236;(2)52164⎛⎫ ⎪⎝⎭;(4)1216-⨯.3.(1)已知11223x x-+=,计算:22111227x x x x x x ---+-+++;(2)设128x y +=,993y x -=,求x y +的值.4.(1)化简:()314211113643,01645x y x y x y x y ---->⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭;(2)计算:11026188100-⎛⎫⨯+ ⎪⎝⎭.5.求解下列问题:(1)证明:log 1log log a a ab x b x =+.(2)已知333pa qb rc ==,且1111a b c ++=.求证:()11112223333pa qb rc p q r ++=++.6.求下列各式的值:;()3,3x ∈-. 7.计算下列各式: (1)()1020.52312220.0154--⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭; (2)20.53207103720.12392748π--⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭;(322.551030.064π-⎡⎤⎛⎫⎢⎥- ⎪⎢⎥⎝⎭⎣⎦;(4))0x ⎛> ⎪⎝⎭;(5)()21113322156630,0.13a b a b a b a b ⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭>>8.化简求值:(1)4133222333814a a b b a a ⎛- ÷ +⎝⎭;(2)48lg 2(log 3log 3)lg 3+⨯.9.中国茶文化博大精深.茶水的口感与茶叶的类型和水的温度有关.经验表明,某种绿茶用85℃的水泡制,再等到茶水温度降至60℃时饮用,可以产生最佳口感.经过研究发现,在25℃室温下,设茶水温度从85℃开始,经过x 分钟后的温度为y ℃,则满足25x y ka =+(k ∈R ,01a <<,0x ≥).(1)求实数k 的值;(2)经过测试知0.9227a =,求在25℃室温下,刚泡好的85℃的茶水大约需要放置多长时间才能产生最佳饮用口感(结果精确到1分钟).(参考数据:lg70.8451≈,lg12 1.0792≈,lg 0.92270.0349≈-)10.计算求值(1)()3620189-⎛⎫--- ⎪⎝⎭;(2)221lg lg2log 24log log 32+++;(3)已知623a b ==,求11a b-的值.11.定义域均为R 的奇函数()f x 与偶函数()g x 满足()()10x f x g x +=.(1)求函数()f x 与()g x 的解析式;(2)证明:1212()()2()2x x g x g x g ++≥; (3)试用1()f x ,2()f x ,1()g x ,2()g x 表示12()f x x -与12()g x x +.12.已知函数x y a =(0a >且1a ≠)在[]1,2上的最大值与最小值之和为20,记()2xx a f x a =+. (1)求a 的值;(2)求证:()()1f x f x +-为定值;(3)求12200201201201f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.二、单选题13.已知函数()()ln ,0,e ,0,x x x f x x -⎧-<=⎨≥⎩,则()()e f f -=( ) A .e -B .0C .1eD .114.85-化成分数指数幂为( ) A .12x B .415x C .415x - D .25x三、填空题15.若01b a <<<,b p a =,a q b =,b r b =,则__________.(用>连接)16.已知17a a+=,则1122a a -+=______. 17.一种药在病人血液中的量保持1000mg 以上才有疗效,而低于500mg 病人就有危险.现给某病人静脉注射了这种药2000mg ,如果药在血液中以每小时10%的比例衰减,为了充分发挥药物的利用价值,那么从现在起经过______小时内向病人的血液补充这种药,才能保持疗效.(附:lg 20.3010≈,lg30.4771≈,精确到0.1h )参考答案:1.6【分析】先将根指数幂转化成分数指数幂的形式,在按照分数指数幂的运算法则进行计算即可. 【详解】解:原式()()111111111123323623623323223236-+++-=⨯⨯⨯⨯⨯=⨯=⨯=. 故答案为:62.(1)6 (2)312532(3)232 (4)12【分析】(1)利用指数幂的运算性质即可求解;(2)利用指数幂的运算性质即可求解;(3)将根式转化为分数指数幂,再利用幂的运算性质即可求解;(4)利用指数幂的运算性质即可求解.(1) 解:()1122122266663⨯===;(2) 解:552252252555316412522232⨯⎡⎤⎛⎫⎛⎫⎛⎫====⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎛⎫⎥⎦⎝⎣ ⎪⎭; (3)()()11310112105223133113333222222⨯⨯-⨯⎡⎤⎢⎥⎣⎦==== (4)解:()11411112162222222-----===⨯=⨯⨯=. 3.(1)4;(2)27【分析】(1)对11223x x -+=两边平方,求出17x x -+=,再对此式两边平方,化简可得2247x x -+=,从而代入可求结果,(2)将等式两边化为同底数幂的形式,然后可得关于,x y 的方程组,求出,x y 的值,从而可求得x y +的值【详解】(1)因为11223x x -+=,所以211229x x -⎛⎫+= ⎪⎝⎭,所以129x x -++=,所以17x x -+=,所以()2127x x -+=,即22249x x -++=,所以2247x x -+=, 所以22111227477473x x x x x x ---+--==++++. (2)因为128x y +=,所以()3122y x +=,即()31x y =+.又993y x -=,所以2933y x -=,即29y x =-,由3(1)29x y y x =+⎧⎨=-⎩,解得216x y =⎧⎨=⎩, 故x y +的值为27.4.(1)10y -;(2)3【分析】(1)分数指数幂的运算法则进行计算;(2)分数指数幂与根式运算法则进行计算.【详解】(1)原式14223431310310x y y x y ---==--. (2)原式())()111113226210018210018210183--⎡⎤=--+=-+=+-=⎣⎦. 5.(1)证明见解析(2)证明见解析【分析】(1)结合换底公式以及对数运算证得等式成立.(2)令333pa qb rc k ===,结合指数运算,通过证明等式左边=右边=13k 来证得等式成立.(1) 左边1log log log log 1log 1log log log a x x a a ab x x x a ab ab b x aab =====+=右边 (2)令333pa qb rc k ===,则2k pa a =,2k qb b=,2k rc c =, 所以()1132223k k k pa qb rca b c ⎛⎫++=++= ⎪⎝⎭1133111k k a b c ⎡⎤⎛⎫++= ⎪⎢⎥⎝⎭⎣⎦, 1111111133333333333111k k k p q r k k a b c a b c ⎛⎫⎛⎫⎛⎫⎛⎫++=++=++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以()12223pa qb rc ++=111333p q r ++. 6.(1)-2(3)π3-(4)22,31,4,1 3.x x x ---<≤⎧⎨-<<⎩【分析】根据根式与分数指数幂的转化化简求值即可.(1)2=-(2)=(3)3ππ3-=-(4)原式13x x ==--+,当31-<≤x 时,原式()1322x x x =--+=--;当13x <<时,原式()134x x =--+=-.因此,原式22,31,4,1 3.x x x ---<≤⎧=⎨-<<⎩7.(1)1615;(2)100;(3)3;(4)2x ;(5)9a -. 【分析】利用根式与分数指数幂的互化,根式的性质,指数幂的运算性质计算求值.【详解】(1)原式()1122221412116110129431015-⎛⎫=+⨯-=+⨯-= ⎪⎝⎭. (2)原式()12232125273710396448--⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭5937100331648=++-+100=. (3)原式()1315270.4128-⎛⎫=-- ⎪⎝⎭5350.51222=-++-3=. (4)原式31222x x x =⋅=.(5)原式21111532623699a b a +-+-=-=-.8.(1)2a (2)56【分析】(1)结合指数幂的运算公式以及立方差公式化简整理即可求出结果;(2)结合对数的换底公式化简整理即可求出结果.(1) 原式()1133211223333381242a a b b a b a b a a ⎛⎫- ⎪=÷- ⎪ ⎪++⎝⎭3311133311533621121333362242a a b a b a a b a b a a ⎡⎤⎛⎫⎛⎫⎢⎥- ⎪ ⎪⎢⎥⎝⎭⎝⎭-⎣⎦=÷⨯++ 111211211533333333362112133336(2)(24)242a a b a a b b a b a a b a b a a -++-=÷⨯++ 5445162336616aa a a a +-=⋅==451366a +-=2a =,(2) 原式lg3lg3lg2115()2lg23lg2lg3236=+⨯=+=.9.(1)60(2)大约需要放置7分钟才能产生最佳饮用口感【分析】(1)直接由0x =时,85y =代入求解即可;(2)将60y =代入函数关系式,再结合对数的运算性质求解即可.(1)依题意,当0x =时,85y =,所以08525k a =⋅+,解得60k =, 所以实数k 的值是60.(2)由(1)知,当0.9227a =时,600.922725x y =⨯+,当60y =时,600.92272560x ⨯+=,即70.922712x =, 两边取对数,得lg0.9227lg7lg12x =-, 所以lg 7lg120.8451 1.07927lg 0.92270.0349x --=≈≈-. 所以刚泡好的85℃的茶水大约需要放置7分钟才能产生最佳饮用口感.10.(1)44 (2)92(3)1【分析】(1)由指数的运算法则计算(2)由对数的运算法则计算(3)将指数式转化为对数式后计算(1)()33622023218323172271449-⨯⎛⎫---=⨯--=--= ⎪⎝⎭;(2)221lg lg 2log 24log log 32+++ ()32232lg 2lg 2log 38log 3log 3=-++⨯+-2239log 33log 322=++-=;(3)6log 3a =,2log 3b =, 则31log 6a =,31log 2b=; 所以33311log 6log 2log 31a b-=-==. 11.(1)11()(10)210x xf x =-,11()(10)210x xg x =+ (2)证明见解析 (3)121212()()()()()f x x f x g x g x f x -=-,121212()()()()()g x x g x g x f x f x +=+【分析】(1)由题意可得:()()10x f x g x +=,再根据函数的奇偶性可得:()()10()()x f x g x f x g x --+-==-+,进而结合两个式子求出两个函数的解析式. (2)由(1)可得12()()g x g x +的表达式,再利用基本不等式把12()()g x g x +进行化简整理即可得到答案. (3)由(1)可得1()f x 、2()f x 、1()g x 、2()g x 、12()f x x -与12()g x x +的表达式与结构特征,进而可求(1)解:()()10x f x g x +=℃()()10x f x g x -∴-+-=,()f x 为奇函数,()g x 为偶函数()()f x f x ∴-=-,()()g x g x -=()()10x f x g x -∴-+=℃由℃,℃解得11()(10)210x x f x =-,11()(10)210x x g x =+. (2) 解:1212121111()()(10)(10)221010x x x x g x g x +=+++ 1212121211111111(1010)()210102222210101010x x x x x x x x =+++≥⨯+⨯ 121212221102()210x x x x x x g +++=+=,当且仅当121010x x =,即12x x =时取等号; 所以1212()()2()2x x g x g x g ++≥ (3)解:11()(10)210x x f x =-,11()(10)210x x g x =+. 12121211()(10)210x x x x f x x --∴-=- 122111010()21010x x x x =- 1212121221122112110101110101(10)(10)44101010101010x x x x x x x x x x x x x x x x ++++=+----+- 12121212111111(10)(10)(10)(10)4410101010x x x x x x x x =-+-+- 1212()()()()f x g x g x f x =-121212111()(10)2210x x x x g x x +++=+⋅ 121211111010221010x x x x +⋅⋅⋅= 12121212111111(10)(10)(10)(10)4410101010x x x x x x x x =--+++. 1212()()()()g x g x f x f x =+即121212()()()()()f x x f x g x g x f x -=-,121212()()()()()g x x g x g x f x f x +=+;12.(1)4a =(2)证明见解析(3)100【分析】(1)函数x y a =在[]1,2上单调,得到220a a +=,排除5a =-,得到答案.(2)()442xx f x =+,代入数据计算得到()()11f x f x +-=,得到证明. (3)根据()()11f x f x +-=,两两组合计算得到答案.(1)解:因为函数x y a =(0a >且1a ≠)在[]1,2上的最大值与最小值之和为20,且函数x y a =(0a >且1a ≠)在[]1,2上单调,所以当1x =和2x =时,函数x y a =(0a >且1a ≠)在[]1,2上取得最值,即220a a +=,解得4a =或5a =-(舍去),所以4a =.(2)解:由(1)知,4a =,所以()442xx f x =+,故()()11444411424242424x x x x x x xf x f x --+-=+=+=++++⋅. (3)解:由(2)知,()()11f x f x +-=, 因为12001201201+=,21191201201+=,,1001011201201+=, 所以12200201201201f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 12001192012012020121f f f f ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1001011100100201201f f ⎡⎤⎛⎫⎛⎫+=⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 13.C【分析】直接代值计算即可.【详解】()e ln e=1f -=,则()()()1e 1e f f f --== 故选:C.14.B【分析】直接化根式为分数指数幂,即可得出答案.【详解】解:8855--=⎝⎭ 885145615x x ---⎛⎫=== ⎪⎝⎭⎝⎭.故选:B.15.p r q >>【分析】利用幂函数和指数函数的单调性比较大小即可【详解】解:因为01b <<,所以函数b y x =在(0,)+∞上为增函数, 因为01b a <<<,所以011b b b b a <<<=,即01r p <<<, 因为01b <<,所以函数x y b =在R 上为减函数,因为01b a <<<,所以01b a b b b b >>>,即1b q r <<<,所以p r q >>,故答案为:p r q >>16.3【分析】根据指数幂的运算即可求解.【详解】由17a a+=,可得0a >,11220a a -+>,11223a a -∴+==. 故答案为:317.6.6【分析】写出血液中药物含量关于时间的关系式,解不等式求出答案.【详解】设x h 后血液中的药物量为y mg , 则有()020001100x y =-, 令1000y ≥得:lg 20.3010 6.612lg 3120.4771x ≤≈≈--⨯ 故从现在起经过6.6h 内向病人的血液补充这种药,才能保持疗效. 故答案为:6.6。
第4章习题参考解答

p3()
{
P(s);
…
}
参考解答:
因p1和p2进程是p3进程开始执行的先决条件,即当p1和p2进程均执行完毕时,p3才能执行,则p3需有两个信号量,分别表示p1进程执行完毕的信号量s1,以及p2进程执行完毕的信号量s2。则同步算法描述如下:
main()
{
int s1=0,s2=0;
cobegin
p1();
p4();
coend
}
p1()
{
p1 execute;
V(s12);
V(s13);
V(s14);
}
p2()
{
P(s12);
p2 execute;
}
p3()
{
P(s13);
p3 execute;
}
p4()
{
P(s14);
p4 execute;
}
4-15
解:
main()
{
int sa=1,sb=0;// sa表示缓冲区S是否为空,sb表示是否为满。
(3)设a、b两并发进程,它们共享一临界资源。其执行临界区的算法框图如下图,
进程A和进程B为互斥进程,则需一个互斥信号量s,初值为1,表示临界资源初始情况下无进程使用。
main()
{
int s=1;
cobegin
pa();
pb();
coend
}
pa()
{
P(s);
进入csa…
V(s);
}
pb()
{
P(s);
进入csb…
V(s);
}
4-21
答:线程有时也称为轻量级进程,它是比进程更小的活动单位,它是进程中的一个执行路径。一个进程可以有多个执行路径即线程。
高等代数第四章矩阵练习题参考答案

第四章 矩阵习题参考答案一、 判断题1. 对于任意n 阶矩阵A ,B ,有A B A B +=+. 错.2. 如果20,A =则0A =. 错.如211,0,011A A A ⎛⎫==≠⎪--⎝⎭但.3. 如果2A A E +=,则A 为可逆矩阵.正确.2()A A E A E A E +=⇒+=,因此A 可逆,且1A A E -=+.4. 设,A B 都是n 阶非零矩阵,且0AB =,则,A B 的秩一个等于n ,一个小于n . 错.由0AB =可得()()r A r B n +≤.若一个秩等于n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n . 5.C B A ,,为n 阶方阵,若,AC AB = 则.C B = 错.如112132,,112132A B C ⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭,有,AC AB =但B C ≠.6.A 为n m ⨯矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使.000⎪⎪⎭⎫ ⎝⎛=sI PAQ 正确.右边为矩阵A 的等价标准形,矩阵A 等价于其标准形. 7.n 阶矩阵A 可逆,则*A 也可逆.正确.由A 可逆可得||0A ≠,又**||AA A A A E ==.因此*A 也可逆,且11(*)||A A A -=. 8.设B A ,为n 阶可逆矩阵,则.**)*(A B AB =正确.*()()||||||.AB AB AB E A B E ==又()(**)(*)*||*||*||||AB B A A BB A A B EA B AA A B E ====.因此()()*()(**)AB AB AB B A =.由B A ,为n 阶可逆矩阵可得AB 可逆,两边同时左乘式AB 的逆可得.**)*(A B AB =二、 选择题1.设A 是n 阶对称矩阵,B 是n 阶反对称矩阵()T B B =-,则下列矩阵中为反对称矩阵的是B .A AB BA - B AB BA +C 2()ABD BABAD 为对称矩阵,B 为反对称矩阵,C 当,A B 可交换时为对称矩阵. 2. 设A 是任意一个n 阶矩阵,那么 A 是对称矩阵. A T A A B T A A - C 2A D T A A - 3.以下结论不正确的是 C .(A) 如果A 是上三角矩阵,则2A 也是上三角矩阵; (B) 如果A 是对称矩阵,则 2A 也是对称矩阵; (C) 如果A 是反对称矩阵,则2A 也是反对称矩阵; (D) 如果A 是对角阵,则2A 也是对角阵.4.A 是m k ⨯矩阵, B 是k t ⨯矩阵, 若B 的第j 列元素全为零,则下列结论正确的是BA AB 的第j 行元素全等于零; B AB 的第j 列元素全等于零;C BA 的第j 行元素全等于零;D BA 的第j 列元素全等于零; 5.设,A B 为n 阶方阵,E 为n 阶单位阵,则以下命题中正确的是D A 222()2A B A AB B +=++ B 22()()A B A B A B -=+-C 222()AB A B =D 22()()AE A E A E -=+- 6.下列命题正确的是B . A 若AB AC =,则B C = B 若AB AC =,且0A ≠,则B C = (C) 若AB AC =,且0A ≠,则B C = D 若AB AC =,且0,0B C ≠≠,则B C = 7. A 是m n ⨯矩阵,B 是n m ⨯矩阵,则 B. (A)当m n >时,必有行列式0AB ≠; (B)当m n >时,必有行列式0AB = (C)当n m >时,必有行列式0AB ≠; (D)当n m >时,必有行列式0AB =.AB 为m 阶方阵,当m n >时,(),(),r A n r B n ≤≤因此()r AB n m ≤<,所以0AB =.8.以下结论正确的是 C(A)如果矩阵A 的行列式0A =,则0A =; (B)如果矩阵A 满足20A =,则0A =;(C)n 阶数量阵与任何一个n 阶矩阵都是可交换的; (D)对任意方阵,A B ,有22()()A B A B A B -+=-9.设1234,,,αααα是非零的四维列向量,1234(,,,),*A A αααα=为A 的伴随矩阵,已知0Ax =的基础解系为(1,0,2,0)T ,则方程组*0A x =的基础解系为 C .A 123,,ααα.B 122331,,αααααα+++.C 234,,ααα.D 12233441,,,αααααααα++++.由0Ax =的基础解系为(1,0,2,0)T 可得12341310(,,,)0,2020αααααα⎛⎫ ⎪ ⎪=+= ⎪ ⎪⎝⎭.因此A,B 中向量组均为线性相关的,而D 显然为线性相关的,因此答案为C.由可得12,,αα34,αα均为*0A x =的解.10.设A 是n 阶矩阵,A 适合下列条件 C 时,n I A -必是可逆矩阵(A) n A A = B A 是可逆矩阵 C 0n A = (B) A 主对角线上的元素全为零11.n 阶矩阵A 是可逆矩阵的充分必要条件是 D(A)1A = B 0A = C T A A = D 0A ≠12.,,A B C 均是n 阶矩阵,下列命题正确的是 A(A) 若A 是可逆矩阵,则从AB AC =可推出BA CA = (B) 若A 是可逆矩阵,则必有AB BA = (C) 若0A ≠,则从AB AC =可推出B C = (D) 若B C ≠,则必有AB AC ≠13.,,A B C 均是n 阶矩阵,E 为n 阶单位矩阵,若ABC E =,则有C (A) ACB E = B BAC E = C BCA E = D CBA E =14.A 是n 阶方阵,*A 是其伴随矩阵,则下列结论错误的是 D (A) 若A 是可逆矩阵,则*A 也是可逆矩阵; (B) 若A 是不可逆矩阵,则*A 也是不可逆矩阵; (C) 若*0A ≠,则A 是可逆矩阵; D*.AA A = 15.设A 是5阶方阵,且0A ≠,则*A = D(A)A B 2A C 3A D 4A16.设*A 是()ij n n A a ⨯=的伴随阵,则*A A 中位于(,)i j 的元素为BA 1n jk ki k a A =∑ B 1n kj ki k a A =∑ C 1n jk ik k a A =∑ D 1nki kj k a A =∑应为A 的第i 列元素的代数余子式与A 的第j 列元素对应乘积和.17.设1111n n nn a a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 1111n n nn A A B A A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,其中ij A 是ij a 的代数余子式,则C(A)A 是B 的伴随 B B 是A 的伴随 C B 是A '的伴随 D 以上结论都不对18.设,A B 为方阵,分块对角阵00A C B ⎡⎤=⎢⎥⎣⎦,则*C = C (A)**00A CB ⎡⎤=⎢⎥⎣⎦ B **00A A C B B ⎡⎤=⎢⎥⎣⎦ C **00B AC A B ⎡⎤=⎢⎥⎣⎦ D **0A B A C A B B ⎡⎤=⎢⎥⎣⎦ 利用*||CC C E =验证.19.已知46135,12246A B ⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦,下列运算可行的是 C (A) A B + B A B - C AB D AB BA -20.设,A B 是两个m n ⨯矩阵,C 是n 阶矩阵,那么 D21.对任意一个n 阶矩阵A ,若n 阶矩阵B 能满足AB BA =,那么B 是一个 C(A)对称阵 B 对角阵 C 数量矩阵 D A 的逆矩阵 与任意一个n 阶矩阵均可交换的矩阵为数量矩阵.22.设A 是一个上三角阵,且0A =,那么A 的主对角线上的元素 C(A) 全为零 B 只有一个为零(C ) 至少有一个为零 D 可能有零,也可能没有零23.设1320A⎡⎤=⎢⎥⎣⎦,则1A-= D(A)121136⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦B131136⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦C131126⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦D121136⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦24.设111222333a b cA a b ca b c⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,若111222333222a c bAP a c ba c b⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则P= B(A)100001020⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦B100002010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C001020100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦D200001010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦25.设(3)n n≥阶矩阵1111a a aa a aA a a aa a a⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,若矩阵A的秩为1,则a必为A(A)1 B-1 C11n-D11n-矩阵A的任意两行成比例.26. 设,A B为两个n阶矩阵,现有四个命题:①若,A B为等价矩阵,则,A B的行向量组等价;②若,A B的行列式相等,即||||,A B=则,A B为等价矩阵;③若0Ax=与0Bx=均只有零解,则,A B为等价矩阵;④若,A B为相似矩阵,则0Ax=与0Bx=解空间的维数相同.以上命题中正确的是 DA ①, ③.B ②, ④.C ②,③. D③,④.当APPB1-=时,,A B为相似矩阵;相似矩阵的秩相等;齐次线性方程组基础解系所含解的个数即为其解空间的维数;三、填空题1.设A 为三阶方阵,*A 为A 的伴随矩阵,有2A =,则11()2*3A A --=11*||2A A A A --==,111()33A A --=,因此11111311()2*34(1)32A A A A A A ------=-=-=-=-. 2.设,AB 为4阶方阵,且3A =,则1(3)A --= 1/27 , 21BA B -= 9 ; 3.设A 是一个m n ⨯矩阵,B 是一个n s ⨯矩阵,那么是()'AB 一个s m ⨯阶矩阵,它的第i 行第j 列元素为1njk ki k a b =∑.4.n 阶矩阵A 可逆A 非退化 ||0A ≠⇔ A 与单位矩阵等价 ⇔ A 可以表示为一系列初等矩阵的乘积 .4.三阶对角矩阵000000a A b c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则A 的伴随矩阵*A = 000000bc ac ab ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦. 5.设123023003A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则*1()A -=16A . 6.设0,1,2,i a i n ≠=,矩阵12100000000000n na a a a -⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦的逆矩阵为 111121100000000000n n a a a a -----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 7.设,A B 都是可逆矩阵,矩阵00A C B ⎡⎤=⎢⎥⎣⎦的逆矩阵为1100B A --⎡⎤⎢⎥⎣⎦.8.设121331,,342424A B C ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则(2)B A C -= . 9.A 既是对称矩阵,又是反对称矩阵,则A 为 零 矩阵.10.设方阵111222333b x c A b x c b x c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111222333b y c B b y c b y c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,且2,3A B =-=则行列式A B += 4 .11.设A 为m 阶方阵,B 为n 阶方阵,已知,A a B b ==,则行列式00A B=ab mn )1(-.将A 的各列依次与B 的各列交换,共需要交换mn 次,化为00A B12.设A 为n 阶方阵,且0A ≠,则 在A 等价关系下的标准形为 n 阶 单位矩阵 .13. 设12221311A a -⎛⎫⎪=- ⎪ ⎪⎝⎭a为某常数,B 为43⨯的非零矩阵,且0BA =,则矩阵B 的秩为 1 .由0BA =可得A 的各列为齐次线性方程组0Bx =的解,A 的前两列线性无关,因此0Bx =的基础解系至少有两个解,因此()1r B ≤.又B 为非零矩阵,因此()1r B ≥.即() 1.r B =四、解答下列各题 1.求解矩阵方程1 25461321X -⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;2 211113210432111X -⎛⎫-⎛⎫⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭; 3 142031121101X ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭;4 010100143100001201001010120X -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭解:11254635462231321122108X -----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 212111132212104328/352/3111X --⎛⎫--⎛⎫⎛⎫ ⎪== ⎪ ⎪ ⎪--⎝⎭⎝⎭ ⎪-⎝⎭2.设033110123A ⎛⎫⎪= ⎪ ⎪-⎝⎭,2AB A B =+ ,求B 解:(2)A E B A -=.0332002332110020110123002121A E -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭.22A E -=,因此2A E -可逆.3..设1P AP -=Λ,其中1411P --⎛⎫= ⎪⎝⎭,1002-⎛⎫Λ= ⎪⎝⎭,求11A . 解:1,A P P -=Λ4.设3级方阵,A B 满足124A B B E -=-,证明:2A E -可逆,并求其逆. 证明:124A B B E -=-两边同左乘以A 得到24B AB A =-.因此有(2)4A E B A -=.由A 可逆可得2A E -,且111(2).4A E BA ---=5.设A 是一个n 级方阵,且()R A r =,证明:存在一个n 级可逆矩阵P 使1PAP -的后n r -行全为零.证明:()R A r =,因此矩阵A 可以经过一系列行初等变换化为后n r -行全为零.也即存在初等矩阵11,,,m P P P ,使得21m P P P A 后n r -行全为零. 21mP P P P =,则PA 的后n r -行全为零.由矩阵乘法运算可得1PAP -的后n r -行全为零.6.设矩阵,m n n m A B ⨯⨯,且,m n AB E <=,证明:A 的行向量组线性无关. 证明:由,m n AB E <=可得()()m r AB r A m =≤≤,因此()r A m =.因此A 的行向量组线性无关.7.如果,2A A =称A 为幂等矩阵.设B A ,为n 阶幂等矩阵,证明:B A +是幂等矩阵的充要条件是0.AB BA +=证明:当B A +时幂等阵时, 因此0.AB BA +=反之,当0.AB BA +=时有 B A +是幂等矩阵.。
九年级上册第4章《回顾与思考》当堂检测及课后作业(后附答案)

九年级上册第四章图形的相似回顾与思考一、学习目标1. 系统梳理本章知识;2. 在知识梳理的过程中,会运用知识点完成简单题目;3. 通过例题提高自主建构知识系统的能力.二、目标检测A组1. 已知=,那么下列式子中一定成立的是()A.4m=3n B.3m=4n C.m=4n D.mn=122.如图,已知△ADE∽△ABC,且AD:DB=2:1,则S△ADE:S△ABC=()A.2:1 B.4:1 C.2:3 D.4:93.如图,在平面直角坐标系中,已知点A(2,4),B(4,1),以原点O为位似中心,将△OAB缩小为原来的,则点A的对应点A的坐标是()A.(2,) B.(1,2)C.(4,8)或(﹣4,﹣8) D.(1,2)或(﹣1,﹣2)4. 如图,已知l1∥l2∥l3,CH=1.2cm,DH=2.4cm,AB=3cm,那么AG=cm.5.如图,点D、E分别在AB、AC上,且∠ABC=∠AED,若DE=4,AE=5,BC=8,则AB的长为.6.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=15米,那么该古城墙的高度CD是米.2题图3题图4题图5题图7. 如图,△ABC 中,∠C= 90°,BC=8cm ,AC=6cm ,点 P 从B 出发,沿BC 方向以2 cm/s 的速度移动,点Q 从C 出发,沿 CA 方向以1 cm /s 的速度移动. 若 P 、Q 分别从B 、C 出发,经过多少时间△CPQ 与△CBA 相似?三、课后作业A 组:1. 下列命题中错误的是( )A .相似三角形的周长比等于对应中线的比B .相似三角形对应高的比等于相似比C .相似三角形的面积比等于相似比D .相似三角形对应角平分线的比等于相似比2. 若△ABC ∽△A'B'C',∠A=55°, ∠B=100°, 则∠C'的度数是( )A .100°B .55°C .25°D .不能确定3. 如图所示,已知∠1=∠2, 那么添加下列哪个条件后, 仍无法..判定△ABC ∽△ADE ( ) A .AB AD =AC AE B .AB AD =BC DE C .∠B=∠D D .∠C=∠AED4. 如图,在△ABC 中, D 是边AB 上的一点, ∠ADC=∠ACB , AD=2, BD=6, 则边AC 的长为 ( ) A .2 B .4 C .6 D .85.若△ABC 与△DEF 相似且周长之比为5∶4, 则△ABC 与△DEF 的面积之比为 .6.如图,在ΔABC 中,D 为AC 边上一点,∠DBC=∠A ,BC=6,AC=3,求CD的长.4题图 3题图7. 如图所示, 一电线杆AB 的影子落在地面和墙壁上, 同一时刻, 小明在地面上竖立一根1米高的标杆(PQ ), 量得其影长(QR )为0.5米, 此时, 他又量得电线杆AB 落在地面上的影子BD 长为3米, 墙壁上的影子CD 高为2米, 小明用这些数据很快算出了电线杆AB 的高为( )A .5米B .6米C .7米D .8米 8.如图,在△ABC 中, EF ∥BC , AE EB =23, 四边形BCFE 的面积为21, 则△ABC 的面积是 ( )A .913B .25C .35D .639.如图, 在平面直角坐标系中有两点A (4,0), B (0,2), 如果点C 在x 轴上(点C 与点A 不重合), 当点C 的坐标为 时, △BOC ∽△AOB.10.如图,一块材料的形状是锐角三角形ABC ,边BC =120mm ,高AD =80mm ,把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是多少?C 组:11.如图所示, 在△ABC 中, BA=BC=20 cm, AC=30 cm, 点P 从点A 出发, 沿AB 方向以每秒4 cm 的速度向点B 运动; 同时点Q 从点C 出发, 沿CA 方向以每秒3 cm 的速度向点A 运动, 当其中一点到达终点时, 另一点也随之停止运动. 设运动时间为x s(x>0).(1)当x 为何值时, PQ ∥BC ? (2)△APQ 能否与△CQB 相似? 若能, 求出AP 的长; 若不能, 请说明理由.图形的相似回顾与思考答案二、目标检测A 组1-3 A D D 4. 15. 106. 10B 组7. 125或3211三、课后作业A 组:1.C2.C3.B4.B5.25:166.2B 组7. D8.B9. (1,0)或(-1,0)或(-4,0)10. 48mmC 组:11(1)103(2)相似. 20或409。
计量经济学第四章练习题及参考解答

第四章练习题及参考解答4.1 假设在模型i i i i u X X Y +++=33221βββ中,32X X 与之间的相关系数为零,于是有人建议你进行如下回归:ii i i i i u X Y u X Y 23311221++=++=γγαα(1)是否存在3322ˆˆˆˆβγβα==且?为什么? (2)111ˆˆˆβαγ会等于或或两者的某个线性组合吗? (3)是否有()()()()3322ˆvar ˆvar ˆvar ˆvar γβαβ==且?练习题4.1参考解答:(1) 存在3322ˆˆˆˆβγβα==且。
因为()()()()()()()23223223232322ˆ∑∑∑∑∑∑∑--=iiiii iii iii x x x x x x x y x x y β当32X X 与之间的相关系数为零时,离差形式的032=∑i ix x有()()()()222223222322ˆˆαβ===∑∑∑∑∑∑iiiiiiii xx y x x x x y 同理有:33ˆˆβγ= (2) 111ˆˆˆβαγ会等于或的某个线性组合 因为 12233ˆˆˆY X X βββ=--,且122ˆˆY X αα=-,133ˆˆY X γγ=- 由于3322ˆˆˆˆβγβα==且,则 11222222ˆˆˆˆˆY Y X Y X X αααββ-=-=-= 11333333ˆˆˆˆˆY Y X Y X X γγγββ-=-=-= 则 1112233231123ˆˆˆˆˆˆˆY Y Y X X Y X X Y X X αγβββαγ--=--=--=+- (3) 存在()()()()3322ˆvar ˆvar ˆvar ˆvar γβαβ==且。
因为()()∑-=22322221ˆvar r x iσβ当023=r 时,()()()22222232222ˆvar 1ˆvar ασσβ==-=∑∑iixr x 同理,有()()33ˆvar ˆvar γβ=4.2在决定一个回归模型的“最优”解释变量集时人们常用逐步回归的方法。
人教版初中物理八年级下册第四章浮力经典习题(含答案解析)

考试范围:xxx ;满分:***分;考试时间:100分钟;命题人:xxx 学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.把重为5N 的物体轻轻放入盛满水的溢水杯中,有200g 水流出,则物体静止后会( ) A .沉底B .悬浮C .漂浮D .无法判断2.水上救援需要打捞沉没的货物,我们将该情景简化为如图所示的物理过程,假设物体浸没在水深0.5m h =的容器底部(非密合),现利用弹簧测力计将物体从水中匀速提出,当物体有一半体积露出水面时,弹簧测力计示数为3N ,当物体全部离开水面后,弹簧测力计示数为4N ,已知水的密度331.010kg/m ρ=⨯水,取10N/kg g =,则( )A .物体在水面下的上升过程中所受浮力逐渐减小B .物体在容器底部时,受到的浮力为1NC .物体露出水面前,弹簧测力计的示数是1ND .物体的密度为2.0×103kg/m 3 3.在物理教学研讨会上,王老师用自制教具演示了如下实验:将一只去盖、去底的饮料瓶的瓶口朝下,把乒乓球(直径略大于瓶口直径)放入瓶内并注水,看到有少量水从瓶口流出,此时乒乓球静止(如图)。
然后用手堵住瓶口,一会儿乒乓球浮起来了。
以下分析正确的是( )A .图中乒乓球静止时仅受到支持力和重力作用B .图中乒乓球静止时受到的支持力与受到的重力平衡C .乒乓球上浮过程中,受到的浮力等于受到的重力D .乒乓球上浮过程中,受到的浮力先不变,后减小 4.一艘船从黄河驶入渤海时,船受到的浮力将会( ) A .浮力增大,船身上浮些B .浮力增大,船身下沉些C .浮力不变,船身下沉些D .浮力不变,船身上浮些5.如图所示,一个空的塑料瓶,瓶口扎上橡皮膜,竖直地浸入水中,第一次瓶口朝上,第二次瓶口朝下,这两次塑料瓶在水中位置相同。
第1次放置时,水对塑料瓶口橡皮膜的压强为1p ,瓶子受到的浮力为1F 浮;第2次放置时,水对塑料瓶口橡皮膜的压强为2p ,瓶子受到的浮力为2F 浮。
第四章练习题及答案

第四章交易性金融资产与可供出售金融资产一、单项选择题1、下列金融资产中,应作为可供出售金融资产的是(D)。
A.企业购入有意图和能力持有至到期的公司债券B.企业从二级市场购入准备随时出售的普通股票C.企业购入没有公开报价且不准备随时变现的A公司3%的股权D.企业购入有公开报价且不准备随时变现的A公司3%的流通股票2、A公司于2010年4月5日从证券市场上购入B公司发行在外的股票500万股作为可供出售金融资产,每股支付价款6元(含已宣告但尚未发放的现金股利1.5元),另支付相关费用20万元,A公司可供出售金融资产取得时的入账价值为(C )。
A.3 020万元B.2 250万元C.2 270万元D.3 000万元3、甲公司对外提供中期财务会计报告,2010年5月16日以每股6元的价格购进某股票60万股作为可供出售金融资产,其中包含已宣告但尚未发放的现金股利每股0.1元,另付相关交易费用0.4万元,于6月5日收到现金股利,6月30日该股票收盘价格为每股5元,7月15日以每股5.50元的价格将股票全部售出。
要求:根据上述资料,不考虑其他因素,回答下列问题。
<1>、2010年6月30日确认的资本公积为(A )。
A.-54.4万元B.60万元C.-54万元D.54.4万元<2>、出售该可供出售金融资产影响2010年7月营业利润的金额为(C )。
A.54万元B.36万元C.-24.4万元D.30万元4、甲公司于2010年2月10日,购入某上市公司股票10万股,每股价格为15.5元(其中包含已宣告发放但尚未领取的现金股利每股0.5元),享有该公司2%的股权。
甲公司购买该股票另支付手续费等10万元。
甲公司购入的股票暂不准备随时变现,划分为可供出售金融资产。
2010年12月31日,该股票的每股价格为17元。
要求:根据上述资料,不考虑其他因素,回答下列各题。
<1>、关于上述可供出售金融资产的计量,下列说法正确的是(A)。
浙教版九年级上测 第四章1-3节知识点练习(含答案)(含答案)

消化系统消化道:口腔→咽→食道→胃→小肠→大肠→肛门(进行食物的消化吸收)消化腺分布于消化道外:唾液腺、肝脏、胰腺分布于消化道壁上:胃腺、胰腺分泌消化液,参与食物的消化九上第四章1-3节知识点+练习第1节食物与营养(一)食物与能量1.食物中的营养素主要有七大类,其中糖类、脂肪和蛋白质等有机物都能为人体提供能量2.同等质量的糖类、脂肪和蛋白质在体内完全氧化释放的能量:脂肪>糖类=蛋白质3.实验中注意事项:脂肪、蛋白质、糖类质量要相同,试管中水的质量和初温要相同,通过温度计温度的变化来区分释放能量的大小(二)营养素的作用·水是人体中含量最大的物质,不能供能·糖类是直接能量来源·蛋白质也可以供能(鱼虾肉)·维生素(缺维生素B1,消化不良、食欲不振)第2节食物的消化与吸收(一)消化系统的组成A.消化系统的组成B.小肠是消化和吸收的主要场所,其原因是:1、小肠很长2、小肠内壁有绒毛,褶皱,扩大了消化与吸收的面积3、有丰富的毛细血管,有利于营养物质的吸收4、三种消化液流入小肠,对食物进行彻底消化(二)人体消化系统的功能:消化和吸收A.消化1.概念:人体将食物中的大分子物质分解成能被身体利用的小分子物质的过程2.类型1)物理消化:食物经过牙齿的切割、研磨、胃肠的蠕动等被逐渐软化和细化的过程2)化学消化:食物中的大分子物质经各种消化液的作用被分解成能被机体利用的小分子物质的过程3.淀粉、蛋白质和脂肪被消化的过程淀粉麦芽糖葡萄糖(唾液能初步消化淀粉)蛋白质初步分解物氨基酸脂肪脂肪微粒甘油+脂肪酸4.肝脏是人体最大的消化腺,有解毒功能,分泌的胆汁(不含消化酶),对脂肪有乳化作用(物理作用),储存于胆囊;消化腺唾液腺胃腺胰腺肝脏肠腺消化液唾液胃液胰液胆汁(流入胆囊储存)肠液消化酶B.吸收:营养物质在消化道被吸收的情况①胃:酒精和少量的水②小肠:全部葡萄糖、氨基酸、甘油、脂肪酸、大量的水、维生素、无机盐③大肠:少量的水、无机盐、部分维生素(三)酶的催化作用1.酶的化学本质:生物催化剂2.酶催化作用的特点:高效性、专一性3.影响酶催化作用的因素:温度、酸碱度等第3节体内物质的运输(一)血液1.功能:运载血细胞、运输营养物质和代谢产物A.红细胞1.特点:数量最多,呈两面凹的圆饼状,成熟后无细胞核,含血红蛋白唾液口腔肠液、胰液小肠胃液胃肠液、胰液小肠胆汁肝脏肠液、胰液小肠2.功能:运输氧和部分二氧化碳3.临床应用:红细胞数量或血红蛋白含量少时易患贫血,应多食用含蛋白质和铁较多的食物4.血红蛋白的特点:在氧含量高的地方与氧结合,在氧浓度低的地方与氧分离(呼吸作用强的地方,结合律低)B.白细胞1.特点:有细胞核,比红细胞大且数量少2.功能:抵抗病菌侵入,淋巴细胞还与机体的抗传染能力有关3.临床应用:机体产生炎症时,白细胞数量会增多C.血小板1.特点:个体最小,无细胞核2.功能:加速血液凝固、防止伤口大量出血及阻止细菌入侵附:比较血细胞,血细胞由红骨髓产生项目红细胞白细胞血小板体积较小最大最小数量最多最少较少形状两面凹的圆饼状球状不规则有无细胞核无有无功能运输氧气吞噬病菌凝血和止血(二)心脏和血管A.心脏的结构1.四个腔左心房:连肺静脉,流动脉血左心室:连主动脉,流动脉血右心房:连上、下腔静脉,流静脉血右心室:连肺动脉,流静脉血2.瓣膜房室瓣:位于心室与心房之间,朝心室开动脉瓣:位于心室与动脉瓣,朝动脉开(动脉瓣不在动脉)静脉瓣:位于静脉B.心脏壁的特点1.心室壁比心房壁厚,左心室壁比右心室壁厚,这主要与其功能相适应。
第四章练习题及参考解答(第四版)计量经济学

第四章练习题及参考解答4.1 假设在模型i i i i u X X Y +++=33221βββ中,32X X 与之间的相关系数为零,有人建议你分别进行如下回归:1221i i i Y X u αα=++ 1332i i i Y X u γγ=++(1) 是否存在3322ˆˆˆˆβγβα==且?为什么? (2) 1ˆβ会等于1ˆα或1ˆγ或者两者的某个线性组合吗? (3) 是否有()()22ˆˆVar Var βα=且()()33ˆˆVar Var βγ=?【练习题4.1参考解答】(1) 存在2233ˆˆˆˆαβγβ==且 。
因为 ()()()()()()()22332322222323ˆi iii ii iiii iy x x y x x xx x x x β-=-∑∑∑∑∑∑∑当23X X 与 之间的相关系数为零时,离差形式的230i ixx =∑有 ()()()()223222222223ˆˆi i i i i iiiy x x y x xx x βα===∑∑∑∑∑∑ 同理有: 33ˆˆγβ= (2)会的。
(3) 存在 ()()()()2233ˆˆˆˆvar var var var βαβγ==且 因为 ()()2222223ˆvar 1ix r σβ=-∑当 230r = 时, ()()()22222222223ˆˆvar var 1iix x r σσβα===-∑∑ 同理,有 ()()33ˆˆvar var βγ=4.2 表4.4给出了1995—2016年中国商品进口额Y 、国内生产总值GDP 、居民消费价格指数CPI 的数据。
表4.4 中国商品进口额、国内生产总值、居民消费价格指数资料来源:《中国统计年鉴2017》考虑建立模型: i t t t u CPI GDP Y ++=ln ln ln 321βββ+ (1)利用表中数据估计此模型的参数。
(2)你认为数据中有多重共线性吗?(3)进行以下回归:121ln ln t t i Y A A GDP v =++ 122ln ln t t i Y B B CPI v =++ 123ln ln t t i GDP C C CPI v =++ 根据这些回归你能对多重共线性的性质有什么认识?(4)假设经检验数据有多重共线性,但模型中32ˆˆββ和在5%水平上显著,并且F 检验也显著,你对此模型的应用有何建议?【练习题4.2参考解答】建立模型: i t t t u CPI GDP Y ++=ln ln ln 321βββ+ (1)利用表中数据估计此模型的参数。
计算机体系结构第四章练习题参考解答

计算机体系结构第四章练习题参考解答第四章4.52 浮点数系统使⽤的阶码基值r e =2,阶值位数q=2,尾数基值r m =10,尾数位数p ′=1,即按照使⽤的⼆进制位数来说,等价于p=4。
计算在⾮负阶、正尾数、规格化情况下的最⼩尾数值、最⼤尾数值、最⼤阶值、可表⽰的最⼩值和最⼤值及可表⽰数的个数。
解: 最⼩尾数值:r m -1 = 10-1 = 0.1最⼤尾数值:1- r m -p ′ =1-10-1 = 0.9 最⼤阶值:2q -1=3可表⽰数的最⼩值:1×r m -1 = 10-1 = 0.1 可表⽰数的最⼤值:r m 2q-1×(1- r m -p ′)=103(1-10-1)= 900可表⽰数的个数:2q ×r m p ′(r m -1)/r m = 22×101(10-1)/10 = 364.53 ⼀台机器要求浮点数的字长的精度不低于10-7.2,表数的范围正数不⼩于1038,且正负对称。
尾数⽤原码、纯⼩数表⽰,阶码⽤移码、整数表⽰。
设计这种浮点数的格式。
解依题意,取表数范围N =1038,表数精度δ=10-7.2。
由式(4-4)得:37log(log10log 21)log 2q +> = 6.99,上取整,得到阶码字长q=7。
由式(4-5)得:16log1053.2log 2p -->=,上取整,得到尾数字长p=24。
从⽽加上⼀个尾数符号位和⼀个阶码符号位,浮点数的总字长为:p+q+2=24+7+2=33。
实际浮点数总字长应为8的倍数,故取浮点数总字长为40位。
多出的7位可以加到尾数字长p 中⽤于提⾼浮点数的表数精度,也可以加到阶码字长q 中来扩⼤浮点数的表数范围。
暂且让p 增加6位,q 增加1位,即p=30,q=8。
如图4-8所⽰是设计出来的浮点数格式。
图4-8 例4.2浮点数的设计格式4.58 ⽤于⽂字处理的某专⽤机,每个⽂字符⽤4位⼗进制数字(0~9)编码表⽰,空格⽤︼表⽰。
高一数学(必修一)《第四章 对数》练习题及答案解析-人教版

高一数学(必修一)《第四章 对数》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、解答题1.求下列各式的值: (1)2log 32-; (2)2lg310; (3)3ln 7e ; (4)23log 9; (5)2lg100; (6)2lg 0.001. 2.求下列各式的值:(1)2log 32-;(2)2lg310;(3)3ln 7e ;(4)23log 9;(5)2lg100;(6)2lg 0.001. 3.化简下列各式(1)1223321()4(0.1)()a b ---.4.已知()2lg lg lg lg lg 0lg lg lg lg x y x y x y x y x y-⎡⎤++⎣⎦++=⋅,求()2log xy 的值. 5.对数的运算性质在数学发展史上是伟大的成就.(1)对数运算性质的推导有很多方法,请同学们推导如下的对数运算性质:如果0a >,且1a ≠,0M >那么()log log n a a M n M n =∈R ;(2)因为()10342102410,10=∈,所以102的位数为4(一个自然数数位的个数,叫作位数),试判断220219的位数;(注:lg 219 2.34≈)(3)中国围棋九段棋手柯洁与机器人阿尔法狗曾进行了三局对弈,以复杂的围棋来测试人工智能,围棋复杂度的上限约为3613=M .根据有关资料,可观测宇宙中普通物质的原子总数的和约为8010=N ,甲、乙两个同学都估算了MN的近似值,甲认为是7310,乙认为是9310.现有一种定义:若实数x 、y 满足x m y m -<-,则称x 比y 接近m ,试判断哪个同学的近似值更接近MN,并说明理由.(注:lg 20.3010≈和lg30.4771≈)6.计算:(1)21023213(2)(9.6)(3)(1.5)48----+(2)lg232log 9lg lg 4105+--7.计算求值(1)()362189-⎛⎫--- ⎪⎝⎭;(2)221lg lg2log 24log log 32+++;(3)已知623a b ==,求11a b-的值.8.计算:(1)7lg142lg lg 7lg183-+-;(2)()2lg53lg 22lg5lg 2lg5+++⨯;(3)()()22666661log 2log 33log 2log log 23⎛⎫++⨯ ⎪⎝⎭.9.近年来,我国在航天领域取得了巨大成就,得益于我国先进的运载火箭技术.据了解,在不考虑空气阻力和地球引力的理想状态下,可以用公式0lnMv v m=计算火箭的最大速度v (单位:m/s ).其中0v (单位m/s )是喷流相对速度,m (单位:kg )是火箭(除推进剂外)的质量,M (单位:kg )是推进剂与火箭质量的总和,Mm称为“总质比”,已知A 型火箭的喷流相对速度为2000m/s . 参考数据:ln 230 5.4≈和0.51.648 1.649e <<.(1)当总质比为230时,则利用给出的参考数据求A 型火箭的最大速度;(2)经过材料更新和技术改进后,A 型火箭的喷流相对速度提高到了原来的1.5倍,总质比变为原来的13,若要使火箭的最大速度增加500 m/s ,记此时在材料更新和技术改进前的总质比为T ,求不小于T 的最小整数? 10.(1)()()2293777log 49log 7log 3log 3log 3+--;(2)2log 31431lg 25lg 2log 9log 822-++-⨯++11.已知函数()()()ln 3ln 3f x x x =++-. (1)证明:函数()f x 是偶函数;(2)求函数()f x 的零点.12.已知集合{}54log 2,log 25,2A =,集合231log 5,log 9B ⎧⎫=⎨⎬⎩⎭.记集合A 中最小元素为a ,集合B 中最大元素为b . (1)求A B 及a ,b 的值; (2)证明:函数()1f x x x =+在[)2,+∞上单调递增;并用上述结论比较a b +与52的大小. 13.某公司为了实现2019年销售利润1000万元的目标,准备制定一个激励销售人员的奖励方案:从销售利润达到10万元开始,按销售利润进行奖励,且奖金数额y (万元)随销售利润x (万元)的增加而增加,但奖金数额不超过5万元.现有三个奖励模型:y =0.025x ,y =1.003x ,y =12ln x +1,其中是否有模型能完全符合公司的要求?请说明理由.(参考数据:1.003538≈5,e ≈2.71828…,e 8≈2981)14.已知2x =3y =a ,若112x y+=,求a 的值.15.将下列对数形式化为指数形式或将指数形式化为对数形式: (1)2-7=1128; (2)12log 325=-;(3)lg1000=3; (4)ln 2x =二、单选题16.在下列函数中,最小值为2的是( ) A .1y x x=+B .1lg (110)lg y x x x=+<< C .222(1)1x x y x x -+=>-D .1sin 0sin 2y x x x π⎛⎫=+<< ⎪⎝⎭17.已知集合{}|2x A x x N *=≤∈,{}2|log (1)0B x x =-=,则A B =( )A .{}1,2B .{}2C .∅D .{}0,1,2参考答案与解析1.(1)13;(2)9;(3)343; (4)4; (5)4; (6)6-.【分析】根据指对数的关系及对数的运算性质求值. (1)由2log 3a =-,则1232aa -==,即123a=,故2log 33212a -==. (2)由22lg 3lg 3lg 9a ===,则109a =,故2lg309110a ==. (3)由33ln 7ln 7a ==,则3e 7343a ==,故3ln733e 4a e ==. (4)223333log 9log 9log 34log 2234====.(5)2222lg100lg100lg104lg104====.(6)23lg 0.001lg 0.001lg106lg10622-==-=-=. 2.(1)13(2)9(3)343(4)4(5)4(6)6-【解析】(1)根据log a b a b =,即可求得2log 32-; (2)根据log a b a b =,即可求得2lg310; (3)根据log a b a b =,即可求得3ln 7e ;(4)根据log log Ma ab M b =和log 1a a =,即可求得23log 9;(5)根据log log Ma ab M b =和log 1a a =,即可求得2lg100;(6)根据log log M a a b M b =和,log 1a a =,即可求得2lg 0.001.【详解】(1) log a b a b =∴ 22log 3log 31112(2)33---===;(2) log a b a b = ∴2lg3lg32210(10)39===;(3) log a b a b = ∴3ln 7ln 33e (e 7)7343===;(4) log log Ma ab M b =和log 1a a =∴2433log 9log 34==;(5) log log Ma ab M b =和log 1a a =∴24lg100lg104==;(6) log log Ma ab M b =和log 1a a =∴26lg 0.001lg106-==-.【点睛】本题考查了对数的化简求值,解题关键是掌握log log Ma ab M b =和log 1a a =,考查了计算能力,属于基础题. 3.(1)425(2)-4【分析】(1)利用分数指数幂和根式的性质和运算法则求解即可得到结果; (2)利用对数的性质和运算法则求解即可得到结果. (1) ()1原式3312233221824222525100a ba b---⎛⎫=⨯=⨯= ⎪⎝⎭; (2) 原式()()lg 812525100241111222lg ⨯÷÷====-⨯---. 4.()2log 0xy =【分析】对原式化简,得()()22lg lg lg 0x y x y ++-=⎡⎤⎣⎦,由对数的运算性质求解xy 的值,再代入即可. 【详解】由()2lg lg lg lg lg 0lg lg lg lg x y x y x y x y x y-⎡⎤++⎣⎦++=,去分母可得 ()()22lg lg lg 0x y x y ++-=⎡⎤⎣⎦,所以()lg lg lg 01lg 01x y xy xy x y x y +===⎧⎧⇒⎨⎨-=-=⎩⎩所以()2log 0xy =. 5.(1)答案见解析 (2)515(3)甲同学的近似值更接近MN,理由见解析【分析】(1)利用对数的恒等式结合指数的运算性质可证得结论成立; (2)利用对数运算性质计算出220lg 219的近似值,即可得出220219的位数;(3)由题意可得出36180310=M N ,比较7310M N -与9310M N -的大小关系,即可得出结论. (1)解:若0a >,且1a ≠,0M >和n ∈R ,则()log log a a nn M M n a a M ==化为对数式得log log na a M n M =.(2)解:令220219t =,所以lg 220lg 219t = 因为lg 219 2.34≈,所以lg 220lg 219514.8t =≈ 所以()514.85145151010,10t ≈∈,所以220219的位数为515.(3)解:根据题意,得36180310=M N 所以36136180803lg lg lg3lg10361lg38092.233110M N ==-=⋅-≈ 所以()92.233192931010,10MN≈∈ 因为()361173lg 23lg 2361lg3172.5341173lg10⨯=+⋅≈<=所以36117317315323101010⨯<<+,所以36193738023101010⨯<+ 所以361361739380803310101010-<-,所以甲同学的近似值更接近M N .6.(1)4736- (2)1-【分析】(1)根据指数幂运算性质计算即可; (2)根据对数的运算性质计算即可. (1)解:21023213(2)(9.6)(3)(1.5)48----+=212329273()1()()482=23233321[()]()223=22132()()223=194249=4736-; (2)解:lg232log 9lg lg 4105+--=2lg 2lg52lg 22=lg 2(1lg 2)2lg 21.7.(1)44 (2)92(3)1【分析】(1)由指数的运算法则计算 (2)由对数的运算法则计算 (3)将指数式转化为对数式后计算 (1)()33622023218323172271449-⨯⎛⎫---=⨯--=--= ⎪⎝⎭;(2)221lglg 2log 24log log 32+++ ()32232lg 2lg 2log 38log 3log 3=-++⨯+- 2239log 33log 322=++-=; (3)6log 3a = 2log 3b =则31log 6a = 31log 2b=; 所以33311log 6log 2log 31a b-=-==.8.(1)0 (2)3 (3)1【分析】(1)利用对数相加相减的运算法则求解即可; (2)提公因式,逐步化简即可求解; (3)逐步将原式化成只含6log 2和6log 3形式. (1)方法一:(直接运算)原式227147lg14lg lg 7lg18lg lg1037183⎛⨯⎛⎫=-+-==⎫⎪⎝⎭= ⎪⎝⎭⨯. 方法二:(拆项后运算)原式()()()2lg 272lg7lg3lg7lg 32=⨯--+-⨯lg 2lg72lg72lg3lg72lg3lg 20=+-++--=.(2)原式()()lg5lg5lg22lg2lg5lg2=⨯++++()lg5lg102lg10lg22lg5lg23=⨯++=++=.(3)原式()()226666log 2log 33log 2log =++⨯ ()()22666log 2log 33log 2log =++⨯()()226666log 2log 32log 2log 3=++⨯ ()626log 2log 31=+=.9.(1)10800 m/s (2)45【分析】(1)运用代入法直接求解即可;(2)根据题意列出不等式,结合对数的运算性质和已知题中所给的参考数据进行求解即可. (1)当总质比为230时,则2000ln 2302000 5.410800v =≈⨯= 即A 型火箭的最大速度为10800m /s . (2)A 型火箭的喷流相对速度提高到了原来的1.5倍,所以A 型火箭的喷流相对速度为2000 1.53000/m s ⨯=,总质比为3Mm由题意得:3000ln2000ln 5003M M m m-≥ 0.50.5ln 0.5272727M M M e e m m m⇒≥⇒≥⇒≥因为0.51.648 1.649e <<,所以0.544.4962744.523e << 即44.49644.523T <<,所以不小于T 的最小整数为45. 10.(1)2;(2)4.【分析】(1)将()237log 7log 3+展开再根据对数的运算求解; (2)根据对数的运算求解即可.【详解】解:(1)原式()()()2223373777log 7log 7log 32log 7log 3log 3log 3=++⨯-- ()()2233log 72log 72=+-=.(2)原式2221221log 322233312log 3lg 5lg 2log 3log 2ln e 22=++-⨯++323314log 3lg5lg 2log 33log 222=++-⨯++ ()4lg 52324114=+⨯-+=+-=.11.(1)证明见解析;(2)-【分析】(1)先证明函数()f x 的定义域关于原点对称,再证明()()f x f x -=即可;(2)利用对数运算对函数()f x 的解析式进行化简,求解方程()0f x =即可得到函数()f x 的零点. (1)证明:由3030x x +>⎧⎨->⎩,解得33x -<<∴函数的定义域为{}33x x -<<,且定义域关于原点对称 又∵()()()()ln 3ln 3f x x x f x -=-++=,∴()f x 是偶函数. (2)解:()()()()2ln 3ln 3ln 9f x x x x =-++=-,令()()2ln 90f x x =-=∴291x -=,解得x =±∴函数()f x的零点为-和12.(1){}2log 5⋂=A B ,5log 2a =和2log 5b =; (2)证明见解析52+>a b【分析】(1)根据对数的运算性质以及对数函数的单调性即可解出; (2)根据单调性的定义即可证明函数()1f x x x=+在[)2,+∞上单调递增,再根据单调性以及对数的性质1log log a b b a=即可比较出大小. (1)因为42log 25log 5=,所以{}52log 2,log 5,2A =,{}2log 5,2B =-即{}2log 5⋂=A B .因为5522log 2log 252log 4log 5<==<,所以5log 2a = 2log 5b =.(2)设12,x x 为[)2,+∞上任意两个实数,且122x x ≤<,则120x x -< 121x x >()()()1212121212121212111110x x f x f x x x x x x x x x x x x x ⎛⎫⎛⎫--=+-+=-+-=-⨯< ⎪ ⎪⎝⎭⎝⎭,即()()12f x f x <,所以()f x 在[)2,+∞上单调递增.所以()()522f x f >=,所以()5222215log 2log 5log 5log 5log 52f +=+=>. 13.奖励模型1ln 12y x =+能完全符合公司的要求,答案见解析.【分析】由题意得模型需满足①函数为增函数;②函数的最大值不超过5;③y ≤x ·25%,依次判断三个模型是否满足上述条件即可.【详解】解:由题意,符合公司要求的模型需同时满足:当x∈[10,1000]时,则①函数为增函数;②函数的最大值不超过5;③y≤x·25%. (1)对于y=0.025x,易知满足①,但当x>200时,则y>5,不满足公司的要求;(2)对于y=1.003x,易知满足①,但当x>538时,则不满足公司的要求;(3)对于1ln12y x=+,易知满足①.当x∈[10,1000]时,则y≤12ln1000+1.下面证明12ln1000+1<5.因为12ln1000+1-5=12ln1000-4=12(ln1000-8)=12(ln1000-ln2981)<0,满足②.再证明12ln x+1≤x·25%,即2ln x+4-x≤0.设F(x)=2ln x+4-x,则F′(x)= 2x-1=2xx-<0,x∈[10,1000]所以F(x)在[10,1000]上为减函数F(x)max=F(10)=2ln10+4-10=2ln10-6=2(ln10-3)<0,满足③.综上,奖励模型1ln12y x=+能完全符合公司的要求.【点睛】本题主要考查函数的模型应用,属于简单题.14.a.【分析】利用对指互化得到x=log2a,y=log3a,再利用对数的运算化简求值. 【详解】因为2x=3y=a,所以x=log2a,y=log3a所以1x+1y=2311log loga a+=log a2+log a3=log a6=2所以a2=6,解得a=又因为a>0,所以a15.(1)log217 128=-(2)511 232-⎛⎫=⎪⎝⎭(3)103=1 000(4)2e x=【分析】根据对数和指数互化公式得到相应结果即可.(1)由2-7=1128,可得log 21128=-7. (2) 由12log 325=-,可得512-⎛⎫ ⎪⎝⎭=32. (3)由lg 1 000=3,可得103=1 000.(4)由ln 2x =,可得e 2=x .16.C【分析】结合基本不等式的知识对选项逐一分析,由此确定正确选项.【详解】对于A 选项,1x =-时,则y 为负数,A 错误.以D 错误.故选:C17.B【分析】分别求出集合,A B ,根据集合的交集运算得出答案.【详解】由题意知:{}{}|20,1,2x A x x N *=≤∈= {}{}2|log (1)02B x x =-== {}2A B ⋂=.故选:B.。
第四章植物的物质和能量的转化练习题2023-2024学年华东师大版科学八年级上册(含答案)

第四章植物的物质和能量的转化练习题2023-2024学年华东师大版科学八年级上册(含答案)第四章植物的物质和能量的转化练习题一、选择题1.绿叶海蜗牛是一种海洋软体动物。
它食用了藻类之后,能将藻类的某一结构置于自己的细胞内而使自身也能进行光合作用,这种细胞结构是()A.细胞壁B.细胞膜C.叶绿体D.液泡2.移栽植物时往往暂时出现萎蔫现象,这是由于()A.水分的输导受到阻碍B.没有及时浇水C.一些根毛和幼根被拉断,降低了对无机盐的吸收D.一些根毛和幼根被折断,降低了对水分的吸收3.关于直根系的叙述,正确的是()①主根长而粗②主根不发达③侧根短而细④由不定根组成.A.①② B.①③ C.②③ D.②④4.下列曲线表示不同温度条件下测得的光合作用效率与光照强度的关系曲线,下面信息正确的是()A.当温度一定时,光合速率随光照强度的增加而增加B.当光照强度一定时,光合速率随温度升高而增加C.当光照强度大于Q时,温度是限制光合作用效率的因素D.当光照强度小于P时,温度是限制光合作用效率的因素5.下面关于叶片结构特点的描述,正确的是()A.叶片上的气孔可以开闭,主要控制氧气进出叶片B.一般叶片多覆盖角质层的为旱生植物C.叶肉具有支持和输导作用D.叶片呈绿色,是因为叶表皮中含大量叶绿体6.在玉米苗期,农民第一次浇足水后,较长一段时间内不再浇水,其目的是()A.增强玉米抗涝能力B.提高土壤温度C.增加玉米抗干旱能力D.促进根系向土壤深处生长7.水分吸收的主要部位、运输通道、散失的门户依次是A.成熟区、气孔、导管B.根毛、叶脉、气孔C.根毛、导管、气孔D.根毛、叶脉、保卫细胞8.根系在土壤中的分布,跟下列哪些因素直接有关()A.空气湿度B.大气中二氧化碳浓度C.土壤湿度和土壤肥力D.光照强度和温度9.植物吸收水分和运输水分、输导无机盐的动力是()A.光合作用B.呼吸作用C.蒸腾作用D.生长作用10.如图为叶片结构示意图,下列对相关结构和功能叙述不正确的是()A.①⑤为叶片的上下表皮,由一层绿色的细胞构成B.②是栅栏组织,④是海绵组织C.③是叶脉,内有输导组织D.⑥为气孔,是植物气体交换和水分散失的“门户”11.如图所示在光照强度一定的情况下,温室中某蔬菜光合作用和呼吸作用的强度(用单位时间内合成或分解的有机物量来表示)受温度影响的曲线图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章练习题及参考解答4.1 假设在模型i i i i u X X Y +++=33221βββ中,32X X 与之间的相关系数为零,于是有人建议你进行如下回归:ii i i i i u X Y u X Y 23311221++=++=γγαα(1)是否存在3322ˆˆˆˆβγβα==且?为什么? (2)111ˆˆˆβαγ会等于或或两者的某个线性组合吗? (3)是否有()()()()3322ˆvar ˆvar ˆvar ˆvar γβαβ==且?练习题4.1参考解答:(1) 存在3322ˆˆˆˆβγβα==且。
因为()()()()()()()23223223232322ˆ∑∑∑∑∑∑∑--=iiiii iii iii x x x x x x x y x x y β当32X X 与之间的相关系数为零时,离差形式的032=∑i ix x有()()()()222223222322ˆˆαβ===∑∑∑∑∑∑iiiiiiii xx y x x x x y 同理有:33ˆˆβγ= (2) 111ˆˆˆβαγ会等于或的某个线性组合 因为 12233ˆˆˆY X X βββ=--,且122ˆˆY X αα=-,133ˆˆY X γγ=- 由于3322ˆˆˆˆβγβα==且,则 11222222ˆˆˆˆˆY Y X Y X X αααββ-=-=-= 11333333ˆˆˆˆˆY Y X Y X X γγγββ-=-=-= 则 1112233231123ˆˆˆˆˆˆˆY Y Y X X Y X X Y X X αγβββαγ--=--=--=+- (3) 存在()()()()3322ˆvar ˆvar ˆvar ˆvar γβαβ==且。
因为()()∑-=22322221ˆvar r x iσβ当023=r 时,()()()22222232222ˆvar 1ˆvar ασσβ==-=∑∑iixr x 同理,有()()33ˆvar ˆvar γβ=4.2在决定一个回归模型的“最优”解释变量集时人们常用逐步回归的方法。
在逐步回归中既可采取每次引进一个解释变量的程序(逐步向前回归),也可以先把所有可能的解释变量都放在一个多元回归中,然后逐一地将它们剔除(逐步向后回归)。
加进或剔除一个变量,通常是根据F 检验看其对ESS 的贡献而作出决定的。
根据你现在对多重共线性的认识,你赞成任何一种逐步回归的程序吗?为什么?练习题4.2参考解答:根据对多重共线性的理解,逐步向前和逐步向后回归的程序都存在不足。
逐步向前法不能反映引进新的解释变量后的变化情况,即一旦引入就保留在方程中;逐步向后法则一旦某个解释变量被剔出就再也没有机会重新进入方程。
而解释变量之间及其与被解释变量的相关关系与引入的变量个数及同时引入哪些变量而呈现出不同,所以要寻找到“最优”变量子集则采用逐步回归较好,它吸收了逐步向前和逐步向后的优点。
4.3 下表给出了中国商品进口额Y 、国内生产总值GDP 、居民消费价格指数CPI 。
资料来源:《中国统计年鉴》,中国统计出版社2000年、2008年。
请考虑下列模型:i t t t u CPI GDP Y ++=ln ln ln 321βββ+ 1)利用表中数据估计此模型的参数。
2)你认为数据中有多重共线性吗? 3)进行以下回归:it t i t t i t t v CPI C C GDP v CPI B B Y v GDP A A Y 321221121ln ln ln ln ln ln ++=+=+=++根据这些回归你能对数据中多重共线性的性质说些什么?4)假设数据有多重共线性,但32ˆˆββ和在5%水平上个别地显著,并且总的F 检验也是显著的。
对这样的情形,我们是否应考虑共线性的问题?练习题4.3参考解答: (1) 参数估计结果如下22ln() 3.060 1.657ln() 1.057ln() (0.337) (0.092) (0.215)0.992 0.991 F 1275.093GDP CPI R R =-+-===进口(括号内为标准误)(2)居民消费价格指数的回归系数的符号不能进行合理的经济意义解释,且且CPI 与进口之间的简单相关系数呈现正向变动。
可能数据中有多重共线性。
计算相关系数:(3)最大的CI=108.812,表明GDP 与CPI 之间存在较高的线性相关。
(4)分别拟合的回归模型如下:22ln Y 4.09071.2186ln () t= (-10.6458) (34.6222)0.9828 0.9820 1198.698GDP R R F =-+===22ln Y 5.4424 2.6637ln (PI) t= (-4.3412) (11.6809)0.8666 0.8603 136.4437C R R F =-+===22ln() 1.4380 2.2460ln (PI) t=(-1.9582) (16.8140)0.9309 0.9276 282.7107GDP C R R F =-+===单方程拟合效果都很好,回归系数显著,可决系数较高,GDP 和CPI 对进口分别有显著的单一影响,在这两个变量同时引入模型时影响方向发生了改变,这只有通过相关系数的分析才能发现。
(5)如果仅仅是作预测,可以不在意这种多重共线性,但如果是进行结构分析,还是应该引起注意。
4.4 自己找一个经济问题来建立多元线性回归模型,怎样选择变量和构造解释变量数据矩阵X 才可能避免多重共线性的出现?练习题4.4参考解答:本题很灵活,主要应注意以下问题:(1)选择变量时要有理论支持,即理论预期或假设;变量的数据要足够长,被解释变量与解释变量之间要有因果关系,并高度相关。
(2)建模时尽量使解释变量之间不高度相关,或解释变量的线性组合不高度相关。
4.5 克莱因与戈德伯格曾用1921-1950年(1942-1944年战争期间略去)美国国内消费Y 和工资收入X1、非工资—非农业收入X2、农业收入X3的时间序列资料,利用OLSE 估计得出了下列回归方程:37.107 95.0 (1.09) (0.66) (0.17) (8.92) 3121.02452.01059.1133.8ˆ2==+++=F R X X X Y括号中的数据为相应参数估计量的标准误差。
试对上述模型进行评析,指出其中存在的问题。
练习题4.5参考解答:从模型拟合结果可知,样本观测个数为27,消费模型的判定系数95.02=R ,F 统计量为107.37,在0.05置信水平下查分子自由度为3,分母自由度为23的F 临界值为3.028,计算的F 值远大于临界值,表明回归方程是显著的。
模型整体拟合程度较高。
依据参数估计量及其标准误,可计算出各回归系数估计量的t 统计量值:01238.1331.0590.4520.1210.91, 6.10,0.69,0.118.920.170.661.09t t t t ========除1t 外,其余的j t 值都很小。
工资收入X1的系数的t 检验值虽然显著,但该系数的估计值过大,该值为工资收入对消费边际效应,因为它为1.059,意味着工资收入每增加一美元,消费支出的增长平均将超过一美元,这与经济理论和常识不符。
另外,理论上非工资—非农业收入与农业收入也是消费行为的重要解释变量,但两者的t 检验都没有通过。
这些迹象表明,模型中存在严重的多重共线性,不同收入部分之间的相互关系,掩盖了各个部分对解释消费行为的单独影响。
4.6 理论上认为影响能源消费需求总量的因素主要有经济发展水平、收入水平、产业发展、人民生活水平提高、能源转换技术等因素。
为此,收集了中国能源消费总量Y (万吨标准煤)、国民总收入(亿元)X1(代表收入水平)、国内生产总值 (亿元)X2(代表经济发展水平)、工业增加值(亿元)X3、建筑业增加值(亿元)X4、交通运输邮电业增加值(亿元)X5(代表产业发展水平及产业结构)、人均生活电力消费(千瓦小时)X6(代表人民生活水平提高)、能源加工转换效率(%)X7(代表能源转换技术)等在1985-2007年期间的统计数据,具体如表4.2所示。
表4.12 1985~2007年统计数据资料来源:《中国统计年鉴》,中国统计出版社2000、2008年版。
要求:1)建立对数多元线性回归模型,分析回归结果。
2)如果决定用表中全部变量作为解释变量,你预料会遇到多重共线性的问题吗?为什么?3)如果有多重共线性,你准备怎样解决这个问题?明确你的假设并说明全部计算。
练习题4.6参考解答:(1)建立对数线性多元回归模型,引入全部变量建立对数线性多元回归模型如下:生成: lny=log(y), 同样方法生成: lnx1,lnx2,lnx3,lnx4,lnx5,lnx6,lnx7.作全部变量对数线性多元回归,结果为:从修正的可决系数和F统计量可以看出,全部变量对数线性多元回归整体对样本拟合很好,,各变量联合起来对能源消费影响显著。
可是其中的lnX3、lnX4、lnX6对lnY影响不显著,而且lnX2、lnX5的参数为负值,在经济意义上不合理。
所以这样的回归结果并不理想。
(2) 预料此回归模型会遇到多重共线性问题, 因为国民总收入与GDP本来就是一对关联指标;而工业增加值、建筑业增加值、交通运输邮电业增加值则是GDP的组成部分。
这两组指标必定存在高度相关。
解释变量国民总收入(亿元)X1(代表收入水平)、国内生产总值(亿元)X2(代表经济发展水平)、工业增加值(亿元)X3、建筑业增加值(亿元)X4、交通运输邮电业增加值(亿元)X5(代表产业发展水平及产业结构)、人均生活电力消费(千瓦小时)X6(代表人民生活水平提高)、能源加工转换效率(%)X7(代表能源转换技术)等很可能线性相关,计算相关系数如下:可以看出lnx1与lnx2、lnx3、lnx4、lnx5、lnx6之间高度相关,许多相关系数高于0.900以上。
如果决定用表中全部变量作为解释变量,很可能会出现严重多重共线性问题。
(3)因为存在多重共线性,解决方法如下:A:修正理论假设,在高度相关的变量中选择相关程度最高的变量进行回归建立模型:而对变量取对数后,能源消费总量的对数与人均生活电力消费的对数相关程度最高,可建立这两者之间的回归模型。
如22ln 9.9320.421ln 6 (0.116) (0.026)0.926 0.922 261.551y x R R F =+===B :进行逐步回归,直至模型符合需要研究的问题,具有实际的经济意义和统计意义。
采用逐步回归的办法,去检验和解决多重共线性问题。
分别作ln Y 对1234567ln ,ln ,ln ,ln ,ln ,ln ,ln X X X X X X X 的一元回归,结果如下:一元回归结果:其中加入lnX6的方程调整的可决系数最大, 以lnX6为基础, 顺次加入其他变量逐步回归。